
Two-layer neural network on infinite-dimensional data:
global optimization guarantee in the mean-field regime

Naoki Nishikawa
University of Tokyo

nishikawa-naoki259@g.ecc.u-tokyo.ac.jp

Taiji Suzuki
University of Tokyo

RIKEN AIP
taiji@mist.i.u-tokyo.ac.jp

Atsushi Nitanda
Kyushu Institute of Technology

RIKEN AIP
nitanda@ai.kyutech.ac.jp

Denny Wu
University of Toronto

Vector Institute
dennywu@cs.toronto.edu

Abstract

Analysis of neural network optimization in the mean-field regime is important as
the setting allows for feature learning. Existing theory has been developed mainly
for neural networks in finite dimensions, i.e., each neuron has a finite-dimensional
parameter. However, the setting of infinite-dimensional input naturally arises in ma-
chine learning problems such as nonparametric functional data analysis and graph
classification. In this paper, we develop a new mean-field analysis of two-layer
neural network in an infinite-dimensional parameter space. We first give a gener-
alization error bound, which shows that the regularized empirical risk minimizer
properly generalizes when the data size is sufficiently large, despite the neurons
being infinite-dimensional. Next, we present two gradient-based optimization
algorithms for infinite-dimensional mean-field networks, by extending the recently
developed particle optimization framework to the infinite-dimensional setting. We
show that the proposed algorithms converge to the (regularized) global optimal
solution, and moreover, their rates of convergence are of polynomial order in the
online setting and exponential order in the finite sample setting, respectively. To
our knowledge this is the first quantitative global optimization guarantee of neural
network on infinite-dimensional input and in the presence of feature learning.

1 Introduction

A variety of machine learning problems need to handle input from infinite-dimensional spaces. For
instance, Ling and Vieu (2018); Ferraty et al. (2007) studied non-parametric function regression
problems where the input is a function in an infinite-dimensional functional space, and Kriege et al.
(2020) studied graph classification problems using kernel method, which can be cast as a learning
problem with inputs from an infinite-dimensional reproducing kernel Hilbert space.

Among various models that deal with those infinite-dimensional input problems, neural networks are
particularly interesting due to their ability to learn features and model nonlinear data. For example,
Rossi and Conan-Guez (2005) proposed the Functional Multi-Layer Perceptron, where the input of
functional data is converted to vector form by basis expansion and then fed into a neural network;
the universal approximation and statistical consistency of the proposed model were also analyzed.
Recently, Yao et al. (2021) proposed the Adaptive Functional Neural Network, which replaces the
fixed basis functions in Rossi and Conan-Guez (2005) with adaptive bases, in order to leverage
the power of representation (feature) learning and the flexibility of deep learning. While neural
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network based models with infinite-dimensional input have been applied in many applications, their
optimization using gradient-based methods is not well-understood. In particular, no optimization
guarantee has been shown for any algorithm in the presence of feature learning — such theoretical
result can be challenging to establish even for finite-dimensional data.

It is experimentally observed that the gradient-based optimization methods can yield sufficiently
small training error in training neural network models, despite the non-convexity of the landscape.
Theoretical explanations of this observation often rely on overparameterization, that is, to consider
sufficiently wide neural network compared with the data size, and the model parameterization can be
divided into the mean-field regime (Nitanda and Suzuki, 2017; Mei et al., 2018; Chizat and Bach,
2018) and the neural tangent kernel regime (Jacot et al., 2018; Du et al., 2018). In this work we focus
on the mean-field regime, as it captures the presence of feature learning, which is one of the main
advantages of neural network (Chizat et al., 2019; Yang and Hu, 2021).

In the mean-field analysis, the dynamics of gradient descent is described by Wasserstein gradient
flow in the space of probability distributions on the parameters. Mei et al. (2018) showed that the
mean-field Langevin dynamics converges to the global optimal solution, and Hu et al. (2019) proved
linear convergence with respect to the objective function with sufficiently strong KL divergence
regularization. However, those studies mainly analyzed the algorithm in continuous time, and do not
establish quantitative convergence rate for discrete time and finite width settings.

To overcome this limitation, Nitanda et al. (2021) proposed the Particle Dual Averaging (PDA)
method that globally optimizes the KL-regularized objective with a polynomial order computational
complexity, in a completely discrete time and finite width setting. Furthermore, in the case of finite-
sum objective, Oko et al. (2022) proposed the Particle Stochastic Dual Coordinate Ascent (P-SDCA)
method which further improves the computational complexity to an exponential order with respect
to its outer loop iteration. Both PDA and P-SDCA employ a double-loop structure, and make use
of Monte Carlo sampling from an intermediate target distribution in the inner loop. In particular,
Nitanda et al. (2021) applied the convergence rate of the overdamped Langevin algorithm in Vempala
and Wibisono (2019) for their optimization analysis, whereas Oko et al. (2022) also considered the
Metropolis-adjusted Langevin algorithm (MALA) (Ma et al., 2019) for the inner loop sampling.
However, if we naively apply these algorithms to infinite-dimensional input, then the optimization
guarantee becomes meaningless due to the dimension dependence. Therefore, we need to construct a
new methodology and theory for the infinite-dimensional problem.

Our contributions. In this work, we extend the mean-field analysis for neural network train-
ing to infinite-dimensional parameter space, which covers two-layer neural network with infinite-
dimensional inputs. First, we establish a generalization error bound which entails that our model
generalizes properly when the number of training data is sufficiently large. Next, we propose two
gradient-based algorithms that globally optimize the KL-regularized objective, corresponding to the
infinite-dimensional extension of PDA and P-SDCA, respectively.

As mentioned above, PDA and P-SDCA require Monte Carlo sampling, and in our setting sampling
is performed in an infinite-dimensional Hilbert space. We therefore adapt an infinite-dimensional
gradient Langevin dynamics (Debussche, 2011; Bréhier, 2014), the weak convergence of which has
been established in Muzellec et al. (2022). Our contributions can be summarized as follows:

• We introduce two-layer neural network in the mean-field regime whose input is infinite-dimensional,
and establish a generalization error bound of the regularized empirical risk minimizer.

• We propose two optimization algorithms for our infinite-dimensional neural network by incorporat-
ing the infinite-dimensional Langevin dynamics in the inner loop of PDA and P-SDCA.

• We prove that our infinite-dimensional extension of PDA achieves polynomial order convergence,
and that of P-SDCA achieves exponential (outer loop) convergence even in an infinite-dimensional
setting1. To the best of our knowledge, this is the first quantitative global optimization guarantee of
neural network in the infinite-dimensional mean-field regime with the presence of feature learning.

Other related works. Ferré and Villa (2006) proposed the SIR-NNr, which incorporates the
dimension reduction method termed “sliced inverse regression” into a neural network. In addition,

1We however note that there is an exponential dependency on the regularization parameter, similar to prior
works on Langevin-based algorithms.
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Rossi et al. (2005) introduced a radial-basis function network as a nonlinear model whose input is a
function. As previously discussed, although statistical properties (e.g., consistency) of these models
have been studied, convergence guarantee of gradient-based optimization has not been established.

2 Two-layer neural network with infinite-dimensional input
In this section we introduce the mean-field two-layer neural network with infinite-dimensional input.
We first formulate mathematical notations and prepare assumptions required for our theoretical
analyses, and then present a generalization error of the proposed model.

Neural network model. We consider a setting where the input is included in a (possibly infinite-
dimensional) separable Hilbert space H. Since H is separable, there is a complete orthonomal system
(ej)

∞
j=0 for which it holds that H =

{∑∞
j=0 ajej

∣∣∣ ∑∞
j=0 a

2
j < ∞

}
, and H is equipped with the

inner product given by ⟨f, g⟩H :=
∑∞

j=0 ajbj , where f =
∑∞

j=0 ajej , g =
∑∞

j=0 bjej ∈ H. Let
H0 be a subset of H defined by H0 := {0 · e0 +

∑∞
j=1 ajej |

∑∞
j=1 a

2
j < ∞}. We consider a

neural network model that takes an infinite-dimensional input x ∈ X ⊆ H0 and gives an output
y ∈ Y ⊆ R, where X and Y are domains of input and output, respectively. Each neuron in the
network has parameter θ := ae0 + w ∈ H for a ∈ R and w ∈ H0, and is represented by

hθ(x) := σ1(a)σ2(⟨w, x⟩H),

where σ1, σ2 : R → R are activation functions, which we assume to be bounded and smooth (such as
tanh) 2. We also denote hθ(x) by h(θ, x). Let the number of neurons be M and denote the set of
parameters by Θ = (θr)

M
r=1. Then, in the mean-field regime, the two layer neural network model

(with infinite-dimensional input) can be expressed as the average over the M neurons:

hΘ(x) :=
1

M

M∑
r=1

hθr (x). (1)

This can be seen as a finite sum approximation of the integral form Eθ∼π[hθ(x)] for a distribution π
on the parameter space. Indeed, if (θr)Mr=1 are i.i.d. realizations from π, then hΘ(x) would converge
to the integral form as M increases. This viewpoint motivates us to design optimization algorithms
for the distribution of parameters π and utilize the convexity of the objective in the space of measures.

Notations. To introduce our method, we need to define a Gaussian process taking its value in H.
For that purpose, we define a subspace HKγ ⊂ H for γ ≥ 0 as follows. First, we define a linear
operator TK : H → H as TKf =

∑∞
j=0 µjajej for f =

∑∞
j=0 ajej , where (µj)

∞
j=0 corresponds

to the spectrum of TK satisfying µj > 0 (∀j) and is sorted in decreasing order (µ1 ≥ µ2 ≥ · · · ).
Note that the orthonormal system (ej)

∞
j=0 is taken so that it coincides with the eigen-functions of

TK . Then, we define HKγ := T
γ
2

KH = {T
γ
2

Kh | h ∈ H} and we can naturally equip HKγ with a
norm ∥f∥HKγ :=

∑∞
j=0 µ

−γ
j a2j for f =

∑∞
j=0 ajej ∈ HKγ . For concise notation we simply write

HK := HK1 . Next, define an operator A = λ1T
−1
K for a positive regularization parameter λ1 > 0,

i.e., Af = λ1

∑∞
j=0 µ

−1
j ajej for f =

∑∞
j=0 ajej ∈ HK , and let ν be a Gaussian measure in H

whose mean is 0 and its covariance is A−1 (i.e., ⟨z, x⟩H (z ∼ ν) obeys the Gaussian distribution with
mean 0 and covariance ⟨x,A−1x⟩H for any x ∈ H)3. Finally, we define the Kullback-Leibler (KL)
divergence from a probability measure ν2 to a probability measure ν1 that is absolutely continuous
with respect to ν2 as KL(ν1||ν2) := Eν1

[
log dν1

dν2

]
= Eν2

[
dν1

dν2
log dν1

dν2

]
.

Objective. Now we define the objective of our optimization method. Suppose that the pairs of
input and output are independently identically distributed from D, and let ℓ(·, ·) : Y × Y → R be
a loss function. In the mean-field regime, we optimize the following regularized risk minimization
problem with respect to the distribution of parameters where the regularization term is given by the
KL-divergence from the Gaussian measure ν:

min
π∈P2

L(π) := E(X,Y )∼D [ℓ (Eθ∼π[hθ(X)], Y )] + λ2KL(π||ν), (2)

2We focus on this model parameterization for better interpretability, although our infinite-dimensional
mean-field analysis covers more general models.

3For precise definition of Gaussian measure in infinite-dimensional Hilbert space see Da Prato and Zabczyk (1996).
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where λ2 > 0 and P2 is the entire set of probability measures that satisfy Eθ∼π[∥θ∥2H] < ∞
and are absolutely continuous with respect to the Gaussian measure ν. We may consider the
empirical measure of n training data points (xi, yi)

n
i=1 as D, for which the first term of the objective

function is written as 1
n

∑n
i=1 ℓ (Eθ∼π[hθ(xi)], yi). In this setting, the problem can be regarded as

a regularized empirical risk minimization problem. As for the second term, in a finite-dimensional
setting where A = λ1I , we can easily see that the KL divergence is decomposed into the sum
of ℓ2-regularization λ1Eθ∼π[∥θ∥2] and negative entropy Eθ∼π[log dπ(θ)/dθ]. Here the negative
entropy naturally arises from the mean-field Langevin dynamics (Hu et al., 2019; Nitanda et al.,
2022; Chizat, 2022). Indeed, it is known that, if we optimize a loss function L(q) with respect to a
probability distribution q ∈ P2 by the mean-field Langevin dynamics with temperature parameter λ2,
then its stationary distribution is given by q∗ = argminq:density L(q) + λ2Eq[log(q)] which satisfies
q∗ ∝ exp(− 1

λ2

δL(q∗)
δq ), where δL(q)

δq : H → R is the derivative with respect to the distribution q such

that
∫ δL(q)

δq (θ)d(p− q)(θ) = limϵ→0
1
ϵ [L(ϵp+ (1− ϵ)q)− L(q)] for any distribution p ∈ P2.

One important example that we can apply our model to is the non-parametric functional regression
problem (Ling and Vieu, 2018; Ferraty et al., 2007). Suppose that the input x is a function on R
(such as time evolution of temperature) included in some reproducing kernel Hilbert space HK . One
typical definition of HK is given by HK = T

1/2
K H where H = L2(µ) for a probability measure µ

and TK is an integral operator given by TKf(t) :=
∫
K(t, s)f(s)dµ(s) for a positive definite kernel

K (Caponnetto and De Vito, 2007; Steinwart and Christmann, 2008). The goal is to estimate some
non-linear functional from the input x ∈ HK to output y ∈ R (using neural network (1)).

Generalization bound. We now give a generalization error bound for our two-layer neural network
in the empirical risk minimization setting, which confirms that the model properly generalizes when
the data size is sufficiently large. Specially, we show the generalization bound for two problem
settings: binary classification and regression. The following theorem stats the generalization bound
for binary classification problems. We defer the regression case to Appendix A due to space limitation.
Theorem 1. Let D be a distribution of X × Y , ℓ be the smoothed hinge loss, and denote the 0-1
loss by ℓ01(z, y), i.e., ℓ01(z, y) := 1[zy < 0]. Let π∗ be the optimal solution of the empirical risk
minimization problem (2) for a given set S of n training data points (i.i.d. from D). Suppose there
exists a distribution π◦ ∈ P2 such that hπ◦(x)y ≥ 1/2 for all (x, y) ∈ suppD, and that |hθ(x)| ≤ 1
holds for all θ ∈ H, x ∈ X . Then, the following holds with probability 1 − δ with respect to the
choice of S ⊂ X :

E(X,Y )∼D[ℓ01(hπ∗(X), Y )] ≤ λ2KL(π◦||ν) + 8
√
2

√
KL(π◦||ν)

n
+ 5

√
1

2n
log

1

δ
.

The KL-term is bounded when π◦ is a variation of the Gaussian measure ν such that dπ◦

dν log(dπ
◦

dν ) is
integrable with respect to ν. Note that if we set λ2 = 1/

√
n, the generalization error is O(1/

√
n).

This order matches that in the finite-dimensional input setting shown in Nitanda et al. (2021).

3 Mean-field optimization with infinite-dimensional Langevin algorithm
As previously remarked, the core idea of the mean-field analysis is to directly optimize the distribution
of the parameters (2). For that purpose, the ideal situation would be to maintain infinitely many
particles (neurons) to represent the distribution; however, in a tractable algorithm we need to use
an approximation with finite number of particles. This finite-particle approximation may lead to
instability due to the interaction between particles, which is known to be difficult to control.

To overcome this difficulty, we employ the linearization technique that was used in the original PDA
and P-SDCA algorithms (Nitanda et al., 2021; Oko et al., 2022). We provide a short summary of
this idea: given the t-th step solution πt, we apply a first-order approximation of the loss function
L(π) := E(X,Y )∼D [ℓ (Eθ∼π[hθ(X)], Y )] as (π−πt)

δL(πt)
δπ :=

∫ δL(πt)
δπ (θ)d(π−πt)(θ). Then, πt+1

is updated as the minimizer of the linearized loss objective: argminπ(π − πt)
δL(πt)

δπ + λ2KL(π||ν),
which can be written as dπt+1 = exp(− 1

λ2

δL(πt)
δπ ) · dν. Hence we just need to draw particles from

πt+1 in the inner loop. Importantly, the interaction between particles disappear due to the linearization
and we may sample in an i.i.d. manner. The original algorithms of PDA and P-SDCA for (finite-
dimensional input) employed the gradient Langevin dynamics (GLD) and its variant such as MALA,
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the convergence rate of which have been extensively studied (Raginsky et al., 2017; Vempala and
Wibisono, 2019; Ma et al., 2019). However, in our setting we need to solve an infinite-dimensional
sampling problem, which cannot be directly extended from the finite-dimensional counterpart.

Let π be a distribution on H that satisfies dπ
dν (x) ∝ exp (−G(x)) (e.g., G = λ−1

2 δL(πt)/δπ). Then
we know π is the stationary distribution of the infinite-dimensional stochastic differential equation,

dXt = − (∇G(Xt) +AXt) dt+
√
2dWt,

where (Wt)t≥0 is a cylindrical Brownian motion on H (Da Prato et al., 1996) and ∇G is the Riesz
representer of the Fréchet derivative of G on H. To discretize the continuous-time SDE, we employ
the semi-implicit Euler scheme:

Xk+1 = Xk − η(∇G(Xk) +AXk+1) +
√

2ηζk,

i.e., Xk+1 = Sη

(
Xk − η∇G(Xk) +

√
2ηζk

)
, where ζk is a realization of standard Gaussian process

on H, and Sη := (Id + ηA)−1 where Id is an identity mapping. We remark that our choice of semi-
implicit scheme is due to the fact that ζk /∈ H in the infinite-dimensional setting, and thus the naive
Euler-Maruyama discretization does not ensure Xk+1 ∈ H while the semi-implict scheme does.

In practice, we need to approximate the infinite-dimensional vector Xk by a finite-dimensional one.
For that purpose, we apply the Galerkin approximation. Let PN be the orthogonal projection from
H to HN := span{e0, . . . , eN}, and ∇GN (x) := PN (∇G(PNx)). Then the finite-dimensional
approximation of the semi-implicit Euler scheme is given as

XN
k+1 = Sη

(
XN

k − η∇GN (XN
k ) +

√
2ηPNζk

)
. (3)

A convergence rate analysis of the infinite-dimensional gradient Langevin dynamics (3) with time
discretization and finite-dimensional approximation was given by Muzellec et al. (2022), which is an
important ingredient of our convergence rate analysis (the details can be found in Appendix B).

4 Infinite-dimensional Particle Dual Averaging

In this section, we present our first algorithm to solve the risk minimization problem (2) which is an
infinite-dimensional extension of the Particle Dual Averaging (PDA) method Nitanda et al. (2021).
PDA is a combination of Nesterov’s dual averaging (Nesterov, 2009) and particle sampling; it is
guaranteed to converge globally at a sublinear rate, but is tailored to the finite-dimensional setting.
Extending the algorithm and convergence analysis to infinite-dimensional input is non-trivial, and to
do so we make use of the weak convergence property of the infinite-dimensional gradient Langevin
dynamics (GLD) shown in Muzellec et al. (2022).

Algorithm description of infinite-dimensional PDA. Here we provide the algorithm description
of PDA with infinite-dimensional input. Since we are optimizing the expected loss directly, we
employ an online gradient descent approach: we draw one input-output pair (xt, yt) from D at the
t-th iteration, and update the parameter by replacing the expected loss with a single-sample loss
ℓ (Eθ∼π[hθ(xt)], yt). In addition, we apply the following linearization to the loss at each outer loop
step: suppose that we have M particles Θ(t) = (θ

(t)
m )Mm=1 whose empirical measure is denoted by

π̂(t) = 1
M

∑M
m=1 δθ(t)

m
(i.e., hΘ(t) = Eθ∼π̂(t) [hθ(·)]). Then the loss can be linearized around π̂(t) as

(π − π̂(t))
δℓ (Eθ∼π[hθ(xt)], yt)

δπ

∣∣∣
π=π̂(t)

= Eθ∼π [∂zℓ (Eπ̂(s) [h(θ, xs)], yt)h(θ, xt)] + const.

We denote the gradient component in the right hand side as g(t)(θ) := ∂zℓ(hΘ(t)(x(t)), yt)h(θ, xt).
The idea of the Nesterov’s dual averaging method is to take its weighted sum of the gradient over its
history: ḡ(t)(θ) := 2

λ2(t+2)(t+1)

∑t
s=1 sg

(s)(θ), and update the distribution as

π
(t+1)
∗ := argmin

π
Eθ∼π[λ2ḡ

(t)(θ)] + λ2KL(π||ν).

As we have seen above, the Radon-Nykodym deriatives of π(t+1)
∗ with respect to ν is given by

dπ(t+1)
∗
dν (θ) ∝ exp

(
−ḡ(t)(θ)

)
. Hence in the inner loop, we sample particles from π

(t+1)
∗ using

5



infinite-dimensional gradient Langevin dynamics (3) by setting G = ḡ(t)(θ). That is, we obtain the
M -particle approximation by iteratively calculating the following updates:

θ̃
(k+1)
N,r = Sηt

(
θ̃
(k)
N,r − ηt∇ḡ

(t)
N (θ̃

(k)
N,r) +

√
2ηtPNζk

)
,

where Sηt := (Id + ηA)−1 and ∇ḡ
(t)
N (·) := PN (∇ḡ(t)(PN · )). We repeat the GLD iterations for

Tt times in the inner loop and obtain the set of particles (θ(t)m )Mm=1 = (θ̃
(Tt)
N,m)Mm=1 for the next outer

loop update. We denote by π(t+1)(θ) the distribution of each particle θ̃
(Tt)
N,m (this is not the empirical

distribution π̂t+1 but its “true” distribution). We will show that π(t+1)(θ) well approximates the ideal
update π

(t+1)
∗ (θ) in the proof of Theorem 5 below.

Finally, after T outer loop iterations, the algorithm outputs M parameters θ
(t̂)
1 , . . . , θ

(t̂)
M where

t̂ ∈ {2, . . . , T +1} is randomly chosen according to a distribution P(t) = 2t
T (T+3) (t = 2, . . . , T +1).

The full algorithm is summarized in Appendix C.

Convergence Analysis. Now we establish the global convergence rate of our proposed infinite-
dimensional PDA. Let PX be the distribution of input x ∈ X and G := suppPX . Our analyses rely
on the following assumptions.
Assumption 2.

(A1) µk ∼ 1
k2 , i.e. there exists a constant α1, α2 such that α1 ≤ k2µk ≤ α2.

(A2) Y ⊂ [−1, 1]. In addition, ℓ(z, y) is 1-smooth convex function with respect to z. Moreover, for
all y, z ∈ Y , |∂zℓ(z, y)| ≤ 2 holds.

(A3) Both σ1 and σ2 are thrice continuously differentiable. Moreover, it holds that
max{∥σ1∥∞, ∥σ′

1∥∞, ∥σ′′
1∥∞, ∥σ2∥∞, ∥σ′

2∥∞, ∥σ′′
2∥∞} ≤ b̂.

(A4) There exists 1
2 < γ < 2, BX > 0 such that ∥x∥HK1+γ < BX for all x ∈ G.

Remark. (A1) is a sufficient condition to guarantee convergence of gradient Langevin dynamics
(Muzellec et al., 2022), in which the exponent k−2 may be generalized to k−p (p > 1), but we present
the result only for p = 2 for simplicity. (A2) is satisfied by common loss functions such as square loss
and logistic loss. (A3) is satisfied by several practical activation functions such as sigmoid and tanh.
Finally, (A4) is a regularity condition that is used in the convergence guarantee of GLD.

We show the convergence of infinite-dimensional PDA by the following two steps: (i) bounding the
difference between the optimal solution πopt of the objective (2) and the optimal update π

(t̂)
∗ at the

t̂-th iteration (Theorem 4), (ii) bounding the difference between the optimum auxiliary solution π
(t̂)
∗

and its particle approximation π̂(t̂) (Theorem 5).

To begin with, let ϵ(t)A be the weak convergence error of sampling in terms of the network output, i.e.,

ϵ
(t)
A := sup

x∈G

∣∣∣Eθ∼π(t) [h(θ, x)]− E
θ∼π

(t)
∗
[h(θ, x)]

∣∣∣ .
This error can be bounded by the following theorem, proof of which can be found in Appendix C.1.
Theorem 3. Under assumptions (A1)–(A4), for all t = 1, . . . , T and κ ∈ (0, 1/2),

there exists Ĉ1 = O
((

1 + λ−1
1

)2
exp

(
O
(
λ−1
2

)))
, Ĉ2 = O

(
exp

(
O
(
λ−1
2

)))
, Λ =

Ω
(
min{λ1, λ1

2λ2} exp
(
−O

(
λ−1
2

)))
such that the following holds

ϵ
(t)
A ≤ b̂2

(
Ĉ1 · exp

(
−Λ

(
ηt
λ2

Tt − 1

))
+ Ĉ2

(
µ
1/2−κ
N+1 + η

1/2−κ
t

))
.

Theorem 3 establishes the convergence rate of sampling via infinite-dimensional GLD in the PDA
algorithm. According to this theorem, to achieve sufficiently small sampling error ϵ

(t)
A < ϵ, it

suffices to take µN = O(ϵ2/(1−2κ)), ηt = O(ϵ2/(1−2κ)), Tt = Ω(ϵ−
2

1−2κ log(1/ϵ)/Λ) with some
κ ∈ (0, 1/2). This result is comparable to the finite-dimensional counterpart in Nitanda et al. (2021),
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where ηt = O(ϵ2) and Tt = Θ(ϵ−2 log(1/ϵ)/Λ) is shown to be sufficient, which is close to our bound
up to a factor of κ despite the infinite dimensionality. It is worth noting that the finite-dimensional
analysis in Nitanda et al. (2021) is based on the convergence result of GLD under KL-divergence
(Vempala and Wibisono, 2019). However, in our infinite-dimensional setting, we generally do
not expect convergence under the KL metric since the distribution is hardly absolutely continuous
with respect to another. Instead, our convergence guarantee is solely based on a weak convergence
analysis, which allows us to establish computational complexity bound that is close to that of the
finite-dimensional counterpart in Nitanda et al. (2021)4.

As for (i), the following theorem evaluates the difference between π∗ and π
(t̂)
∗ with respect to the

objective function value. The proof of this theorem can be found in Appendix C.2.

Theorem 4. Suppose δ > 0 and let ϵ̄(T )
A := 2

T (T+3)

∑T+1
t=2 ϵ

(t)
A . Under (A1), (A2), (A3), for all

distributions π∗ ∈ P2, the following inequality holds with probability 1− δ:

2

T (T + 3)

T+1∑
t=2

t
(
L(π(t)

∗ )−L(π∗)
)
≤O

(̄
ϵ
(T )
A +

√
log
(
T
δ

)
M

+
1+Eπ∗ [g

(1)]

T 2
+
λ2 ·KL(π∗||ν)+ 1

λ2

T

)
.

This theorem shows that when the number of outer iteration T is larger than O(1/ϵ), the excess
objective function value of the auxiliary solution π

(t̂)
∗ becomes smaller than ϵ. It is known that this

O(1/T ) rate is the minimax optimal for online first-order methods when the objective is strongly
convex (Agarwal et al., 2009). We note that the analysis in the original PDA algorithm (Nitanda et al.,
2021) heavily relies on the existence of probability density function of the parameters; however, this
is not guaranteed in the infinite-dimensional setting. We overcame this difficulty by reformulating the
update using the Radon–Nikodym density with respect to the Gaussian measure ν. Interestingly, this
new technique yields a refined analysis that is indeed dimension independent.

Next we control the particle discretization error (ii), i.e., the difference between the auxiliary solution
and its particle approximation. The proof can be found in Appendix C.3.
Theorem 5. Under (A1), (A2), (A3), (A4), the following inequality holds with probability 1− δ:

sup
x∈G

∣∣∣∣∣Eθ∼π
(t̂)
∗
[h(θ, x)]− 1

M

M∑
r=1

h(θ(t̂)r , x)

∣∣∣∣∣ ≤ O

(
ϵ
(t̂)
A +

BX
√
logBX +

√
log
(
T
δ

)
√
M

)
.

In particular, we have |L(π(t̂)
∗ )− L(π̂(t̂))| = O

(
ϵ
(t̂)
A + 1√

M
(BX

√
logBX +

√
log
(
T
δ

)
)
)

.

Notice that since the particle approximation does not have a density, the bound above does not control
the objective L including the KL-regularization, but instead the L∞-norm error and the loss function
L of the estimated function. By combining the previous theorems, we know that when the number
of outer loops iterations is O(1/ϵ), and the number of particles M is O((1/ϵ)2 log(1/ϵ)), then our
proposed algorithm achieves ϵ-error in terms of the output of the model (or the loss function) from a
solution with ϵ-excess objective value.

Overall, the iteration complexity of our infinite-dimensional PDA to obtain ϵ-accurate solution is
O(1/(Λϵ

3−2κ
1−2κ ) log(1/ϵ)) for some κ ∈ (0, 1/2), i.e., it is possible to obtain a solution with the

desired accuracy at polynomial order of iteration complexity (but with exponential dependency on
1/λ2, which would be unavoidable for any mean-field method). We emphasize that our analysis
guarantees the convergence to the global optimal solution, not the stationary point or local minimizer.

5 Infinite-dimensional Particle Stochastic Dual Coordinate Ascent
In the previous section, we considered the expected risk minimization problem. On the other hand, in
the case of empirical risk minimization, we can improve the rate of convergence from polynomial
to exponential by making use of the finite-sum property. For that purpose, we propose an infinite-
dimensional extension of Particle Stochastic Dual Coordinate Ascent (P-SDCA) proposed in Oko
et al. (2022). As in PDA, the original P-SDCA is also tailored to the finite-dimensional setting.
Especially, the lack of density function in the infinite-dimensional parameter space necessitates a
careful modification of the update rule. Indeed, we reconstruct the algorithm based on the density
with respect to the Gaussian measure ν.

4We also believe that the required Tt in (Nitanda et al., 2021) can be improved to Θ(ϵ−1 log(1/ϵ)/Λ).
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Algorithm description of infinite-dimensional P-SDCA. Here we give an algorithmic description
of our infinite-dimensional extension of P-SDCA. The main ingredient of SDCA is to execute
optimization in the Fenchel dual of the objective function that is derived in the following lemma.
Lemma 6. Suppose that ℓ(·, yi) : R → R is a proper convex function and h(·, xi) : H → R is
bounded for i = 1, . . . , n. We denote the conjugate function of ℓ(·, yi) by ℓ∗(·, yi)5. Define the dual
objective D : Rn → R as

D(g) := − 1
n

∑n
i=1 ℓ

∗(gi, yi)− λ2 log
(
Eθ∼ν

[
exp

(
− 1

nλ2

∑n
i=1 gih(θ, xi)

)])
(g ∈ Rn).

Then, if infπ∈P2
L(π) > −∞ holds, it holds that infπ∈P2

L(π) = supg∈Rn D(g).

We construct the update rule based on this duality theorem. For a dual variable g ∈ Rn, the

corresponding primal solution can be retrieved by p[g](θ) :=
exp

(
− 1

nλ2

∑n
i=1 gih(θ,xi)

)
Eν

[
exp

(
− 1

nλ2

∑n
i=1 gih(θ,xi)

)] (indeed,

for the dual optimal solution g∗, the primal optimal solution can be recovered by p[g∗]dν). In the
SDCA algorithm, we randomly pick up one coordinate it ∈ [n] from the uniform distribution, and
update the corresponding coordinate so that it maximizes the dual objective. Suppose that we have
the dual solution g(t) at the t-th iteration, then we update its it-th coordinate by the following formula
where it ∈ [n] is chosen uniformly at random:

g
(t+1)
it

= argmaxg′
it

{
− ℓ∗(g′it , yit) + Eν

[
h(θ, xit) · p[g(t)](θ)

]
·
(
g′it − g

(t)
it

)
−

(
g′
it
−g

(t)
it

)2

2nλ2

}
,

g
(t+1)
j = g

(t)
j for j ̸= it.

We can see that the update formula requires the expectation Eν

[
h(θ, xit) · p[g(t)](θ)

]
. We ap-

proximate this expectation by a weighted average of M particles as Eν

[
h(θ, xit) · p[g(t)](θ)

]
≈∑M

m=1 r(t)m h(θm,xit )∑M
m=1 r

(t)
m

where r
(t)
m is the weight of the m-th particle. Here, the particles (θm)Mm=1 are

“refreshed” once in every ñ iterations, and in the remaining iterations, we only update the weightings
of the particles (rm)Mm=1. In particular: (i) at the resampling steps (once in every ñ iterations), we run
the infinite-dimensional GLD to generate M particles (θm)Mm=1 from the distribution π

(t)
∗ that is given

by dπ(t)
∗

dν = p[g(t)], and reset the weights as rm = 1/M for all m ∈ [M ]; (ii) in non-refreshing steps,

we update the weights (rm)Mm=1 as r
(t+1)
m = r

(t)
m exp

[
−hit (θm)(g

(t+1)
it

−g
(t)
it

)

nλ2

]
. This re-weighting

scheme allows us to reduce the number of sampling steps, which can be computationally demanding.

Convergence analysis. Now we establish the convergence rate of the proposed infinite-dimensional
P-SDCA. Suppose at the T -th sampling stage, we run the GLD with step size ηT for JT iterations.
Then the sampling error can be bounded as follows: denote by p(ñT ) the distribution of the particles,
under (A1),(A2),(A3),(A4), for all κ ∈ (0, 1/2), it holds that∣∣∣Eθ∼p(ñT ) [ϕ(θ)]−Eν

[
ϕ(θ)p[g(ñT )](θ)

]∣∣∣≤ Č1e
−Λ
(
ηT

λ2
JT−1

)
+Č2

(
µ
1/2−κ
N+1 + η

1/2−κ
T

)
=:ϵ

(ñT )
C ,

where Č1, Č2,Λ are constants depending on b̂, λ1, λ2 and ϕ : H → R is any test function satisfying
∥ϕ∥∞ ≤ 1 with sufficient smoothness (see Appendix D.3 for more details). Using the sampling error
ϵ
(ñT )
C , we can now derive the iteration complexity of the algorithm.

Theorem 7. Assume (A1)–(A4) and |ℓ(x, yi)− infx′ ℓ(x′, yi)| ≤ B1 for all x ∈ [−b̂, b̂] and

i ∈ [n]. Let s̃ := ñλ2

1+nλ2
and take any Tend ≥ 2n

ñ

(
1+ 1

nλ2

)
log

((
n+ 1

λ2

)
B1+2+ 1

1−exp(−s̃)

ϵP

)
for ϵP > 0. Suppose that ϵ

(ñT )
C and M satisfy ϵ

(ñT )
C ≤ Ĉ1 exp

(
− s̃T

2

)
(∀T ∈ [Tend])

and M ≥ Ĉ2
2

(ϵ
(ñT )
C )2

log
(
4nTend

δ

)
where Ĉ−1

1 = O

(
λ
− 1

2
2

Ĉ2

1+ 1
nλ2

exp
(

ñ(2b̂Ĉ2+1)
nλ2+1

))
and Ĉ2 =

exp
(

8max{b̂2,b̂4}ñ
λ2n

)
. Then, after ñTend iterations of infinite-dimensional P-SDCA, the duality

gap can be bounded as E
[
L(p[g(ñTend)])−D(g(ñTend))

∣∣ E] ≤ ϵP , for a high-probability event E
such that P (E) ≥ 1− δ.

5The convex conjugate of a convex function f : R → R is given by f∗(u) = supx∈R{xu− f(x)}.
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The detailed statement and proof of Theorem 7 can be found in Appendix D.4. Here, the expectation
is taken over the choice of the coordinates in each step and the event E corresponds to measure concen-
tration induced by the M -particle sampling. Consequently, P-SDCA can achieve a duality gap smaller
than ϵP with O(log(1/ϵP )) outer loop iterations. In combination with the sampling complexity, we
see that the total iteration cost to obtain a solution with ϵP duality gap is O((1/ϵP )

2
1−2κ log(1/ϵP )),

which is much better than that of PDA shown in Section 4.

6 Numerical Experiments

We numerical evaluate our proposed methods on a non-linear functional regression problem. Let H
be L2([0, 1]), which is a set of square integrable functions defined on [0, 1], and HK be the Sobolev
space H1([0, 1]), which is a set of absolutely continuous functions defined on [0, 1] satisfying
u(0) = 0 and u′ ∈ L2([0, 1]). Then, H is a Hilbert space equipped with inner product defined by
⟨x1, x2⟩H =

∫ 1

0
x1(t)x2(t)dt, and HK is a Hilbert space equipped with inner product defined by

⟨x1, x2⟩HK
=
∫ 1

0
x′
1(t)x

′
2(t)dt. Consequently, HK is a reproducing kernel Hilbert space whose

kernel function is given as K(s, t) = min{s, t}.

We consider a teacher-student setup. The data is generated as yi = σ̂1(a
◦)σ̂2(⟨w◦, xi⟩H) + ϵi

(i = 1, . . . , n) where ϵi ∼ N(0, 1) and σ̂1(·) = σ̂2(·) = sign(·). The true parameters (a◦, w◦) ∈ H
are generated by a◦ ∼ N(0, 52) and w◦ =

∑N̄
j=1 w

(j)ej , where w(j) ∼ N(0, 52). We randomly
generate xi from a Gaussian process whose covariance operator is a kernel function of HK3 , and
accept it when it holds that ∥xi∥HK2 < BX with some BX . In our implementation, we only used N̄

bases of H to define w◦ (note that w◦ ∈ H0 still holds for this implementation). We set N̄ so that it
is larger than N that is the number of bases for the Galerkin approximation.

In addition to demonstrating the validity of our proposed method, we also illustrate the benefit
of feature learning. For that purpose, we compare the performance of the two-layer mean-field
neural network against that of non-adaptive estimators: the ridge regression estimator and the
Nadaraya-Watson estimator. Here, we use the terminology “non-adaptive” to indicate that they
do not perform feature learning. For ridge regression, we implemented the estimator using an
N -basis approximation, i.e., y = ⟨

∑N
j=0 αjej , x⟩H, where (α1, . . . , αN ) ∈ RN are chosen to

minimize 1
n

∑n
i=1

(∑N
j=1 x

(j)
i αj − yi

)2
+ λ

∑N
j=1 α

2
j with regularization parameter λ > 0. As for

the Nadaraya-Watson estimator, the estimator ŷ for an input x is given by ŷ =
∑n

i=1 yik(∥xi−x∥H/h)∑n
i=1 k(∥xi−x∥H/h) ,

where h > 0 is a bandwidth and k(u) = max{1− u2, 0} for u ∈ R (Epanechnikov kernel).

0 1 2 3 4 5 6
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100
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Ridge: =0.1
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Nadaraya-Watson: h=1.0
PDA
P-SDCA

Figure 1: gradient calculations vs. test loss.

We used the squared loss for the optimization of two-
layer neural network. We employed tanh for the acti-
vation functions σ1, σ2 of the student model. Hence,
the teacher model is a bit out side of the student
model. Our experiments were performed using the
following hyperparameters: Upper bound of input
data in HK2 : BX = 100; Number of basis functions
to generate data: N̄ = 300; Number of training data
n = 100; Number of basis functions for Galerkin
approximation: N = 150; Regularization parame-
ters for PDA and P-SDCA: λ1 = 10−2, λ2 = 10−5;
Number of particles: M = 200; Hyperparameters
for PDA: Tt = 10, ηt = 10−5, minibatch size 50;
Hyperparameters for P-SDCA: JT = 10, ñ = 1000, ηt = 10−4; Regularization parameter for ridge
regression: λ = 0.1, 1, 10 (we observed that λ = 1 achieved the best performance over all choices of
λ); Bandwidth for Nadaraya-Watson estimator: h = 0.8, 0.9, 1.0.

As shown in Figure 1, PDA and P-SDCA converge and achieve small test loss. Moreover, for both
algorithms, the eventual test loss is smaller than those of linear estimators (Ridge-regression and
Nadaraya-Watson estimator), which illustrates that the mean-field two-layer neural network has better
generalization ability than non-adaptive methods. This is mainly due to the feature learning ability of
the mean-field networks, whereas the non-adaptive methods are not able to find informative features.
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7 Conclusion
In this work we studied two-layer neural networks in the mean-field regime as a model for machine
learning problems with infinite-dimensional input. We proposed two optimization algorithms to learn
the neural network, by extending the Particle Dual Averaging and Particle Stochastic Dual Coordinate
Ascent method to infinite-dimensional parameter space. Leveraging the convergence guarantee of
infinite-dimensional gradient Langevin dynamics, we showed that our proposed methods can globally
optimize the training objective at a rate of polynomial order for the online setting and exponential
order for the finite-sum setting. Numerical experiments on synthetic data confirmed that mean-field
neural network outperforms linear estimators that do not learn features.
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