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Abstract

In high-energy physics, particle jet tagging plays a pivotal role in distinguishing quark from
gluon jets using data from collider experiments. While graph-based deep learning methods
have advanced this task beyond traditional feature-engineered approaches, the complex data
structure and limited labeled samples present ongoing challenges. More broadly, our pri-
mary focus is the development of a rationale-aware graph contrastive learning framework
designed to operate under strict resource constraints; we use quark-gluon jet discrimination
as a representative and practically relevant use case. However, existing contrastive learning
(CL) frameworks struggle to leverage rationale-aware augmentations effectively, often lacking
supervision signals to guide salient feature extraction and facing computational efficiency issues,
such as high parameter counts. In this study, we demonstrate that integrating a quantum
rationale generator (QRG) within our proposed Quantum Rationale-aware Graph Contrastive
Learning (QRGCL) framework enables competitive jet discrimination performance, partic-
ularly in parameter-constrained settings, reducing reliance on labeled data, and capturing
rationale-aware features. Evaluated on the quark-gluon jet dataset, QRGCL achieves an AUC
score of 77.5% while maintaining a compact architecture of only 45 QRG parameters, achieving
competitive performance compared to classical, quantum, and hybrid benchmarks. These re-
sults highlight QRGCL’s potential to advance jet tagging and other complex classification tasks
in high-energy physics, where computational efficiency and limitations in feature extraction
persist. The source code for QRGCL is available at https://github.com/Abrar2652/QRGCL.

1 Introduction

Particle jet tagging, a fundamental task in high-energy physics, aims to identify the originating parton-level
particles by analyzing collision byproducts at the Large Hadron Collider (LHC). While traditional approaches
have relied on manually engineered features, modern deep learning methods offer promising alternatives for
processing vast amounts of collision data (Kogler et al., 2019). The representation of jets as collections of
constituent particles has emerged as a more natural and flexible approach compared to image-based methods,
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allowing for the incorporation of arbitrary particle features (Qu & Gouskos, 2020; Forestano et al., 2024).
However, the challenge of limited labeled data in particle physics necessitates innovative solutions beyond
purely supervised learning approaches. Self-supervised pretraining followed by supervised fine-tuning has shown
particular promise in this domain. Self-supervised contrastive learning (CL) (Wang et al., 2025b;a; Xuan et al.,
2024; Li et al., 2022) has gained significant attention in the field of graph neural networks (GNNs) (Veličković,
2023; Wu et al., 2021), leading to the development of graph CL (GCL). This approach involves pre-training a
GNN on large datasets without manually curated annotations, facilitating effective fine-tuning for subsequent
tasks (You et al., 2020).

A review of existing GCL approaches reveals a common framework that combines two primary modules: (1)
graph augmentation, which generates diverse views of anchor graphs through techniques, specifically random
node dropping (ratio 0.1), edge perturbation, and feature masking, to generate invariant views, and (2) CL,
which maximizes agreement between augmented views of the same anchor while minimizing agreement between
different anchors. However, these methods face inherent challenges due to the complexity of graph structures,
where random augmentations may obscure critical features, potentially misguiding the CL process. In response
to these challenges, recent studies have shifted focus towards understanding the invariance properties (Misra
& van der Maaten, 2020; Dangovski et al., 2022) of GCL. The necessity for augmentations was emphasized
to maintain semantic integrity, arguing that high-performing GCL frameworks should improve instance
discrimination without compromising the intrinsic semantics of the anchor graphs. Building on this foundation,
invariant rationale discovery (IRD) techniques (Li et al., 2022; Wu et al., 2022; Chang et al., 2020) were proposed,
aligning closely with the objectives of GCL. These techniques highlight the importance of identifying critical
features that inform predictions effectively.

Despite these advancements, gaps remain in effectively leveraging rationales for augmentation. Existing
frameworks often lack the necessary supervision signals to effectively reveal and utilize the most salient features,
and many approaches are difficult to deploy in resource-constrained regimes where parameter budgets, simulation
costs, or limited supervision restrict model scale. In this work, our primary goal is methodological: we develop
a rationale-aware graph contrastive learning framework that remains effective under strict resource constraints,
and we study quark–gluon jet discrimination as a representative high-energy physics use case that is both
practically relevant and structurally challenging.

These limitations are particularly visible in jet tagging, where current state-of-the-art approaches at LHC
experiments (ATLAS and CMS) increasingly rely on sophisticated deep learning architectures, such as ParticleNet
(Qu & Gouskos, 2020) and DeepJet (Bols et al., 2020). While these models significantly outperform traditional
BDT-based approaches, they are inherently data-intensive and often operate as high-parameter ‘black boxes’.
This motivates approaches that can prioritize task-relevant substructures and improve data and parameter
efficiency. To address both the feature-extraction and computational-complexity challenges, we also consider
hybrid quantum-classical design choices (Havlícek et al., 2019; Jahin et al., 2023). Recognizing the pivotal role
of the rationale generator in the GCL framework, we propose enhancing this component with a quantum-based
subroutine. Our proposed Quantum Rationale-aware Graph Contrastive Learning (QRGCL) integrates a
quantum rationale generator (QRG) that identifies salient substructures within graphs, guiding rationale-
aware augmentations without substantially increasing parameter count. We implement QRGCL with the
ParticleNet (Qu & Gouskos, 2020) encoder, a projection head, and a lightweight classifier. Experiments
on the quark–gluon jet tagging dataset show that QRGCL achieves competitive performance in low-data,
parameter-constrained settings compared to classical, quantum, and hybrid baselines.

Our main contributions are: (i) We propose a novel hybrid quantum-classical framework, Quantum Rationale-
aware Graph Contrastive Learning (QRGCL), that integrates a quantum rationale generator to identify salient
substructures in graph-structured particle physics data for improved CL; (ii) We design a parameter-efficient
QRG based on a 7-qubit variational quantum circuit, enabling salient feature extraction with only 45 trainable
parameters; (iii) We introduce a new quantum-enhanced contrastive loss that incorporates rationale-aware,
contrastive pairs, and alignment losses, with quantum fidelity as a distance metric; (iv) We conduct targeted
experiments on the simulated quark-gluon jet tagging dataset as a representative use case, showing that QRGCL
achieves competitive performance against classical, quantum, and hybrid benchmarks in terms of Area Under
the Receiver Operating Characteristic Curve (AUC), while maintaining a compact and computationally efficient
architecture.
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2 Background

2.1 Contrastive Representation Learning

Contrastive representation learning (Peng et al., 2025; Mo et al., 2024; Kottahachchi Kankanamge Don
et al., 2024; Don & Khalil, 2024; Padha & Sahoo, 2024) is an effective framework for extracting meaningful
representations from high-dimensional data by mapping it into a lower-dimensional space. CL uses a self-
supervised approach to differentiate between positive pairs (similar data) and negative pairs (dissimilar data),
particularly when labeled data is scarce. The framework consists of three components:

1. Data Augmentation Module: This module generates multiple invariant views of a given sample using
invariance-preserving transformations. The goal is to create variations of the same input that retain
essential characteristics, forming positive pairs, while views from different samples are negative pairs.
For instance, augmenting a quark jet should retain its distinguishing features even when transformations
like noise addition or spatial shifts are applied. This ensures that the learned representations remain
general and robust to different data variations.

2. Encoder Network: The augmented views are processed through an encoder, which maps each view
into a lower-dimensional embedding space. Each view in a pair is passed independently through the
encoder, generating embeddings that capture the intrinsic features of the input data while abstracting
away specific details.

3. Projection Network: While optional, the projection network is often used to adjust the dimensionality
of the embeddings, enabling fine-tuning of the representation space. Typically, this is implemented as a
single linear layer that transforms the encoded embeddings into a space suitable for CL objectives.

The goal is to train the encoder to minimize the distance between positive pair embeddings and maximize
the distance between negative pair embeddings, enhancing representation quality for downstream tasks like
classification.

2.2 Quantum Contrastive Learning (QCL)

Recent studies have begun to explore how quantum computing can advance traditional CL frameworks (Jia
et al., 2025). Quantum systems can potentially offer superior computational capabilities, allowing for more
complex feature extraction and representation learning. One study (Jaderberg et al., 2022) proposed a hybrid
quantum-classical model for self-supervised learning, showing that small-scale QNNs could effectively improve
visual representation learning. By training quantum and classical networks together to align augmented image
views, they achieved higher test accuracy in image classification than a classical model alone, even with limited
quantum sampling. Another approach (Kottahachchi Kankanamge Don et al., 2024) integrates Supervised CL
(SCL) with Variational Quantum Circuits (VQC) and incorporates Principal Component Analysis (PCA) for
effective dimensionality reduction. This method addresses the limitations posed by scarce training data and
showcases potential in medical image analysis. Experimental results reveal that this model achieves impressive
accuracy across various medical imaging datasets, particularly with a minimal number of qubits (2 qubits),
underscoring the benefits of quantum computing. A different research effort presents Q-SupCon (Don & Khalil,
2024), a fully quantum-enhanced Supervised CL (SCL) model tailored to tackle issues related to data scarcity.
Experiments demonstrate that this model yields significant accuracy in image classification tasks, even with
very limited labeled datasets. Its robust performance on actual quantum devices illustrates its adaptability in
scenarios with constrained data availability. Furthermore, a quantum-enhanced self-supervised CL framework
has been proposed for effective mental health monitoring (Padha & Sahoo, 2024). This framework leverages a
quantum-enhanced Long Short-Term Memory (LSTM) encoder to improve representation learning for time
series data through CL. The results indicate that this model significantly outperforms traditional self-supervised
learning approaches, achieving high F1 scores across multiple datasets. To take advantage of QCL, as evident in
these studies, we attempted to replace the classical rationale generator with a VQC in our proposed framework.
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2.3 Rationale-Aware Graph Contrastive Learning (RGCL) Concept

RGCL (Li et al., 2022) represents a self-supervised CL approach that overcomes several limitations common
to traditional graph CL (GCL) frameworks. Standard GCL methods often suffer from challenges such as
augmentation strategies that can inadvertently alter or remove critical graph structure and semantics, and
attempts to preserve graph-specific domain knowledge sometimes result in overfitting, limiting the model’s
adaptability to diverse, unseen data (Ji et al., 2024). RGCL addresses these issues by focusing on the concept of
rationale learning, where the essential, discriminative information for graph classification is typically concentrated
within a subset of nodes or edges in the graph. In RGCL, this discriminative subset, or rationale, is identified
and emphasized during training, allowing the model to prioritize meaningful patterns while minimizing reliance
on irrelevant features. In RGCL, specialized neural networks, known as the rationale generator (RG), are used
to assign importance scores to each node. This generator evaluates each node’s contribution to the graph’s
overall representation. The higher-score nodes form the rationale subset, while the remaining nodes comprise
the complement subset. The rationale subset undergoes targeted augmentations during training, capturing the
core discriminative features essential for downstream tasks. In contrast, the complement subset is augmented
to encourage the exploration of less critical correlations, thus avoiding overfitting and improving generalization.
RGCL pipeline leverages these dual views, rationale and complement, to guide the encoder network in learning
a balanced feature space. By focusing on rationale views, the model learns robust, task-relevant features, while
the complement views prevent it from becoming overly sensitive to spurious relationships, fostering a more
generalized understanding.

3 Methodology

3.1 Dataset and Preprocessing

3.1.1 High-Energy Physics Dataset

This study uses the Pythia8 Quark and Gluon Jets for Energy Flow (Komiske et al., 2019) dataset, a well-
established dataset in high-energy physics. The dataset contains two million simulated particle jets, equally
split between one million quark-initiated jets and one million gluon-initiated jets. All events are generated
at the Monte Carlo generator level using Pythia, with no detector simulation applied. The quark category
includes only light flavors (u,d,s), while heavy-flavor jets (c,b) are intentionally excluded to isolate the intrinsic
topological differences between light-quark and gluon showers. These jets are generated through collision
events at the LHC with a center-of-mass energy

√
s= 14 TeV. Jets were selected based on their transverse

momentum range pjet
T between 500 and 550 GeV and their pseudorapidity |yjet|<1.7. Each jet α is labeled as

a quark jet (yα = 1) or a gluon jet (yα = 0), providing a binary classification target for model training. The
fundamental differences between quark and gluon jet populations, specifically in particle multiplicity and
kinematic distributions, are visualized in Figure 1. These distributions highlight distinct physical signatures,
such as the higher multiplicity and broader radiation patterns in gluon jets, arising from QCD color factors
and serving as the primary discriminants for our model. Additional details about Figure 1 and aggregate
kinematic distributions for the complete dataset are provided in Appendix A.1.1. Each particle i within a jet is
characterized by several key attributes: transverse momentum p

(i)
T,α, rapidity y(i)

α , azimuthal angle ϕ(i)
α , and its

Particle Data Group (PDG) identifier I(i)
α . Comprehensive details regarding the comparative analysis of quark

and gluon jets, including their statistical significance, are discussed in Appendices A.1.1 and A.1.2.

3.1.2 Graph Representation of Jets

A graph G is defined as a set of nodes V and edges E, represented as G={V,E}. Each node v(i) ∈V is connected
to its neighboring nodes v(j) through edges e(ij) ∈E. In the context of this study, each jet α is modeled as a
graph Jα, where the nodes v(i)

α represent the particles in the jet, and the edges e(ij)
α represent the interactions

between these particles. Each node v(i)
α is associated with a set of features h(i)

α , which describe its properties,
while the edges have attributes a(ij)

α that characterize the relationship between connected nodes.
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Figure 1: Key distinguishing features between quark and gluon jets. (a) Particle multiplicity shows gluons
have significantly more particles (µ=53.2) compared to quarks (µ=33.4), reflecting the larger color charge
of gluons. (b) Jet width demonstrates that gluons produce broader jets (µ=0.089) than quarks (µ=0.061)
due to increased soft radiation. (c) Leading particle pT fraction reveals quarks exhibit harder fragmentation
(µ= 0.284) compared to gluons (µ= 0.174), with energy more concentrated in the leading particle. (d) Jet
mass shows gluons have systematically larger invariant mass (µ=52.8 GeV) than quarks (µ=37.6 GeV). All
distributions are normalized to unit area for direct comparison, with highly significant statistical differences
(KS test p<10−100 for all features).

The number of nodes in each graph can vary significantly, reflecting the varying number of particles within each
jet. This variability is particularly pronounced in particle physics, where jets can differ greatly in their particle
multiplicity. Consequently, each jet graph Jα is composed of mα particles, each with l distinct features that
capture various physical properties. This graph representation provides a natural way to encode the complex
interactions within jets, enabling models to leverage the relational structure among particles. An illustration of
this graph-based data representation is shown in Figure 2 where the graph indices (Graph 1, Graph 2) denote
the underlying sourced jet prior to augmentation. A ‘Positive Pair’ consists of two independent rationale-aware
views derived from a single sourced jet, while a ‘Negative Pair’ represents the contrast between views originating
from two distinct sourced jets.

5



Published in Transactions on Machine Learning Research (01/2026)

0

1

2

3

45

6

0
pT:0.5
y:0.4
:0.4

1
pT:0.3
y:0.4
:0.4

2
pT:0.1
y:0.4
:0.4

3
pT:0.1
y:0.4
:0.4

4
pT:0.0
y:0.4
:0.4

5
pT:0.0
y:0.4
:0.4

6
pT:0.0
y:0.4
:0.4

Positive Pair - Graph 1 (Label: 1)

0.1

0.2

0.3

0.4

0.5

p
T  [G

eV
]

0

1

2

3

4

0
pT:0.5
y:0.4
:0.4

1
pT:0.0
y:0.4
:0.42

pT:0.1
y:0.4
:0.4

3
pT:0.0
y:0.0
:0.4

4
pT:0.0
y:0.0
:0.4

Positive Pair - Graph 2 (Label: 1)

0.0

0.1

0.2

0.3

0.4

0.5

p
T  [G

eV
]

0

1

2

3

45

6

0
pT:0.2
y:0.9
:0.9

1
pT:0.1
y:0.9
:0.9

2
pT:0.1
y:0.8
:0.9

3
pT:0.1
y:0.9
:0.9

4
pT:0.1
y:0.8
:0.9

5
pT:0.1
y:0.9
:0.9

6
pT:0.0
y:0.9
:0.9

Negative Pair - Graph 1 (Label: 0)

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

p
T  [G

eV
]

0

1

2

3

0
pT:0.2
y:0.9
:0.9

1
pT:0.1
y:0.9
:0.0

2
pT:0.1
y:0.9
:0.0

3
pT:0.1
y:0.9
:0.0

Negative Pair - Graph 2 (Label: 0)

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

p
T  [G

eV
]

Figure 2: Plot of a sample of graph views used in our CL-based approach. Each graph represents a jet as a
collection of nodes (particles) with associated physics-based features. The indices (Graph 1, Graph 2) correspond
to distinct physical jets before the augmentation pipeline generates their respective positive and negative views
for CL. The graphs are constructed as undirected, reflecting the geometric proximity in feature space utilized
by the ParticleNet architecture, rather than the causal temporal evolution of the parton shower.

3.1.3 Feature Engineering

Additional kinematic variables are derived from the original features (p(i)
T,α,y

(i)
α ,ϕ

(i)
α ) using the ‘Particle’ package

to improve the model’s ability to learn from the data. These engineered features include transverse mass, energy,
and Cartesian momentum components, providing a more complete description of each particle’s dynamics.
More details about these engineered features are shown in Appendix A.3.

3.1.4 Edge Construction and Attributes

These features are then normalized by their maximum values across all jets to ensure consistent input scales,
enhancing the stability of the training process. Edges between particles in a jet are defined based on the spatial
proximity of particles in the (ϕ,y) plane, calculated utilizing relative coordinates (∆ϕ,∆y) (Euclidean distance)
to ensure translational invariance:

∆R(ij)
α =a(ij)

α =
√(

ϕ
(i)
α −ϕ(j)

α

)2
+
(
y

(i)
α −y(j)

α

)2
(1)
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This metric measures the angular separation between two particles, capturing their spatial relationships within
the jet. The resulting matrix ∆R(ij)

α is provided as an edge feature (rather than a fixed adjacency weight) to the
graph network. This allows the model to learn the optimal spatial dependencies, determining whether close or
distant particles carry more significance for the classification task.

3.1.5 Graph-Based Augmentation and Contrastive Learning

We applied graph-based CL techniques to improve the discriminative capability of our models by generating
augmented graph views. The augmentation strategies included node dropping, edge perturbation, feature
masking, and jet-specific transformations. The augmentation ratio (raug) defines the probability with which a
specific transformation (e.g., node dropping) is applied to the nodes or edges of the identified rationale subgraph.
Details of the augmentation pipeline, view pairing, and the construction of positive and negative pairs are
provided in Appendix A.4.

3.1.6 Enforcing Infrared and Collinear Safety

To ensure compliance with infrared and collinear (IRC) safety, we adopt perturbation and regularization
techniques inspired by the principles of QCD, as outlined by Dillon et al. (Dillon et al., 2022). Further theoretical
and implementation details are provided in Appendix A.4.1.

3.1.7 Data Splitting

To ensure manageable computational complexity and adapt the model for quantum processing, we focused on
jets containing at least ten particles, resulting in a dataset of N=1,997,445 jets, of which 997,805 were classified
as quark jets. Unlike classical GNNs, which offer flexibility in adjusting the number of hidden features, quantum
networks are constrained by the scaling of quantum states and Hamiltonians. Specifically, the computational
cost of simulating the quantum state vector on classical hardware scales as 2n, where n represents the number
of qubits, corresponding to the number of nodes (nα) in the graph. Each node represents a particle in the jet,
making jets with many particles challenging to handle due to the exponential growth in quantum computational
requirements.

To address the challenge of varying particle numbers in jets, we simplified the problem by limiting the number of
active nodes (particles) per jet to nα =7. This truncation to nα =7 is a constraint imposed by the exponential
cost of classically simulating quantum state vectors (2N ). While this selection acts as a groomer that may
remove soft radiation characteristic of gluon jets, selecting the highest transverse momentum (pT ) constituents
ensures adherence to IRC safety by retaining the dominant kinematic energy flow. This was done by selecting
the 7 particles with the highest pT from each jet. Consequently, each jet graph is represented by a feature
set hα =(h(1)

α ,h
(2)
α ,...,h

(7)
α ), where each h(i)

α ∈R8 corresponds to the enriched feature vector of a particle. The
complete representation of each jet is thus given by hα ∈R7×8, capturing key physical attributes of the selected
particles. A subset of N = 12,500 jets was randomly selected for model training, with 10,000 jets used for
training, 1,250 for validation, and 1,250 for testing. These subsets maintained the original class distribution,
resulting in 4,982 quark jets in the training set, 658 in the validation, and 583 in the testing set.

3.2 Proposed QRGCL

Quantum rationale-aware GCL (QRGCL) consists of 4 major components, as illustrated by Figure 3: rationale
generator (RG), encoder network, projection head, and loss function.

3.2.1 Quantum Rationale Generator (QRG)

The QRGCL model substitutes its classical RG (CRG) (Li et al., 2022) with a quantum RG (QRG). This
component is crucial in generating augmented graph representations by assigning significance scores to each
node. The QRG is built using a 7-qubit parameterized quantum circuit (PQC), where each qubit represents a
node in the graph.
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Figure 3: Overview of the proposed QRGCL framework. Given an input jet represented as a graph (anchor
graph), a QRG assigns importance scores to nodes (particles) using a parameterized quantum circuit. Based on
these scores, a rationale subgraph and a corresponding complement subgraph are sampled to construct multiple
rationale-aware augmented views. These views are processed by a shared ParticleNet GNN encoder, producing
graph-level embeddings via global average pooling. The embeddings are passed through a projection head to
obtain representations used for CL. The framework jointly optimizes the QRG, encoder, and projection head by
minimizing a combined objective that includes rationale-aware, alignment, uniformity, contrastive-pair, and
InfoNCE losses. During fine-tuning, the learned representations are fed into a lightweight classifier head for
supervised discrimination of quark–gluon jets.

Permutation symmetry. Our QRG processes the nα =7 selected constituents in a fixed order (sorted by pT ),
hence the rationale-scoring subroutine is not permutation-equivariant. However, the downstream ParticleNet
encoder operates on unordered particle sets/graphs with symmetric neighborhood aggregation (EdgeConv) and
pooling, preserving permutation invariance of the learned graph-level representation.

The quantum circuit for the QRG consists of 3 main components, as shown in Figure 4: data encoding,
parameterized unitaries, and entanglement. The encoding process starts by initializing each qubit, typically
using a Hadamard (H) gate to create a uniform superposition state:

H|0⟩= 1√
2

(|0⟩+|1⟩) (2)

Next, the classical node feature vectors are embedded into the quantum state using parameterized rotation
gates (e.g., RX ,RY ,RZ) or Hadamard-based encodings, mapping classical data to the Hilbert space of the
quantum circuit. The specific choice of encoding can be customized, with RX encoding being implemented for
proposed angle-based representations. Node feature vectors xi are encoded as rotation angles using RX, RY ,
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Figure 4: QRG circuit of the proposed QRGCL. The circuit operates on seven qubits, with each qubit
corresponding to a node in the graph. Symbols denote: H (Hadamard gate) for superposition; RX ,RY ,RZ

(Rotation gates) for feature encoding; CRZ (Controlled-Rotation Z) for entangling edge topology; and the
meter symbols for measurement in the computational basis. The top portion shows the data encoding stage,
where each qubit is initialized using an H gate followed by RX-based angle encoding node features. CRZ
gates encode edge relationships between qubits. The bottom portion includes parameterized rotations (RX,
RY , RZ) for adaptable representations and entanglement layers using SWAP gates. Measurement results are
obtained on a computational basis, with classical registers collecting the output.

or RZ gates. For example, the RX gate is defined as:

RX(θ)=
(

cos(θ/2) −isin(θ/2)
−isin(θ/2) cos(θ/2)

)
(3)

where θ is determined by the value of xi. To map the high-dimensional node features (h(i)
α ∈ R8) to the

single degree of freedom available in the rotation gates, we first employ a classical trainable linear projection
layer P : R8 → R1. This layer reduces the feature vector of each node to a scalar value θi, which is then
normalized via an arctangent function to the range [−π/2,π/2]. Following this projection, the encoding process
initializes each qubit into a superposition state using the H gate, followed by the feature encoding via an RX

rotation:|ψ⟩=
⊗n

i=1RX(θi)H|0⟩. This hybrid classical-quantum encoding strategy allows the model to learn
the optimal linear combination of particle features (e.g., pT , η, ϕ) that drives the quantum interference pattern.

Edge relationships are encoded using controlled-phase (CRZ) gates between pairs of qubits. The matrix
representation is defined in the standard computational basis {|00⟩, |01⟩, |10⟩, |11⟩}, where the first qubit
corresponds to the control state and the second to the target. This is a diagonal, asymmetric gate that applies a

9



Published in Transactions on Machine Learning Research (01/2026)

phase to the target qubit depending on the control qubit’s state.

CRZ(θ)=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ

 (4)

After encoding, each qubit undergoes parameterized U3 gates, defined as:

U3(α,β,γ)=
(

cos(α/2) −eiγsin(α/2)
eiβsin(α/2) ei(β+γ)cos(α/2)

)
(5)

which allows the QRG to learn adaptable representations through trainable parameters α, β, and γ. These
parameterized gates form the trainable part of the circuit, allowing the QRG to adaptively learn the significance
scores based on the input data during training. The parameters of these gates are optimized through the Adam
optimizer.

The entanglement layers utilize a fixed circular topology, where the i-th qubit acts as the control for the (i+1)-th
target qubit (with the last qubit controlling the first), ensuring complete pairwise correlation across the circuit
layers. Entanglement is introduced using a fixed topology of two-qubit gates (specifically SWAP gates in a
circular pattern) to capture correlations between the sequence of input particles. These entanglement patterns
are designed based on the graph’s structure, ensuring that important correlations between nodes are captured.
For example, SWAP gates can exchange quantum states between qubits, preserving relationships between
specific nodes:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (6)

The output of the QRG is obtained by measuring the qubits on a computational basis. The squared amplitudes
of states with a Hamming weight of 1 (e.g., |0000001⟩,|0000010⟩,...) provide node significance scores normalized
into a discrete probability distribution. To ensure the framework remains end-to-end differentiable, we utilize
the Gumbel-Softmax reparameterization trick (Jang et al., 2017). This allows gradients to flow from the
contrastive loss function back through the discrete sampling of rationale subgraphs, updating the parameters of
the QRG and the projection layer. With the QRG generating significance scores, augmented views are created
for the downstream CL process. For an optimistic view, nodes with the highest significance scores are retained,
preserving the most relevant information for classification. Negative views, on the other hand, are constructed
by using less significant nodes or by introducing random variations, helping the model learn to distinguish
between genuinely informative structures and noise.

Integration into the encoder. In practice, the QRG’s measured probabilities are used to select the top-k
most salient nodes (and their incident edges) to form a rationale subgraph. This subgraph is then fed to the
classical ParticleNet encoder, which applies EdgeConv on the selected nodes to produce embeddings for CL and,
later, classification. This makes explicit the data flow: full jet → QRG importance scores → selected subgraph
→ ParticleNet → projection/classifier.

3.2.2 Encoder Network

We used the ParticleNet (Qu & Gouskos, 2020) model as our encoder to convert the augmented views of input
particle features into low-dimensional embeddings. ParticleNet is a graph-based neural network optimized for
jet tagging, leveraging dynamic graph convolutional neural networks (DGCNN) to process unordered sets of
particles, treating jets as particle clouds. The encoder is initialized with random weights and is fully trainable
during the contrastive pre-training phase, allowing it to learn optimal representations alongside the rationale
generator. It is only during the downstream supervised fine-tuning that the encoder weights are frozen. More
details about ParticleNet are shown in Appendix B.1.
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3.2.3 Projection Head

Our architecture includes a projection head that maps the 128-dimensional encoder output to a 128-dimensional
latent space optimized for the contrastive loss function. Following the design principles of SimCLR (Chen et al.,
2020), we preserve the encoder output dimensionality (128) rather than compressing it directly, as a non-linear
projection head has been shown to mitigate information loss prior to applying the contrastive objective. The
projection head consists of a two-layer MLP with an intermediate ReLU activation, which transforms the
encoder representations while maintaining the same latent dimensionality. CL is performed on these projected
embeddings by maximizing the InfoNCE objective, which implicitly enforces mutual information between
anchor and rationale representations. This separation enables the encoder to learn features transferable to
downstream tasks, while the projection head specializes in aligning representations for effective contrastive
optimization.

3.2.4 Quantum-Enhanced Contrastive Loss

QRGCL model uses a carefully designed loss function that integrates multiple elements: InfoNCE, alignment,
uniformity, rationale-aware loss (RA loss), and contrastive pair loss (CP loss), to optimize the learning of
quantum-enhanced embeddings. More details about these losses are shown in Appendix B.2.

3.2.5 Classifier Head

The classifier head, employed during the supervised fine-tuning phase, consists of a 128-neuron single linear
layer (dmodel → 1) followed by a sigmoid activation. This simple architecture is designed to map the frozen
representations to a probability score for binary jet discrimination, ensuring that performance gains are
attributable to the quality of the learned embeddings rather than the complexity of the readout layer.

3.3 Benchmark Models

To validate the effectiveness of QRGCL, we benchmark against a diverse set of architectures categorized into
Classical, Quantum, and Hybrid models (see Table 1 and Appendix C for detailed specifications):

Classical Baselines. We employ a standard GNN (EdgeConv-based) and an Equivariant GNN (EGNN)
to evaluate the impact of geometric symmetry preservation in the classical domain. We also compare against
CRGCL (Table 2), the classical counterpart of our proposed method, to isolate the quantum advantage.

Quantum Baselines. We utilize QGNN and EQGNN, which map graph structures directly to variational
quantum circuits. These baselines test the expressivity of pure quantum approaches without classical pre-
processing.

Hybrid Baselines. We include QCL and CQCL, which combine classical convolutional encoders with
quantum projection heads or classifiers, representing the current state-of-the-art in hybrid quantum machine
learning.

While Transformer-based architectures like Particle Transformer (ParT) (Qu et al., 2022) and ParticleNet (Qu
& Gouskos, 2020) achieve state-of-the-art performance (approx. 84% accuracy) on quark-gluon discrimination,
they are resource-intensive, utilizing full particle inputs (30–50 constituents) and large parameter spaces (e.g.,
ParticleNet: ≈366k, ParT: ≈2.14M). In contrast, this study evaluates QRGCL under a strict NISQ-compatible
regime: restricted to 7 input particles and a highly compact total parameter count of ≈126k (with only 45
learnable quantum parameters in the rationale generator). Consequently, a direct numerical comparison with
full-scale Transformers is not appropriate. We selected GNN baselines as they provide a comparable topological
framework to isolate the specific impact of the quantum rationale mechanism within these specific computational
constraints.
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Table 1: Performance benchmarking and ablation test of the proposed QRGCL. Bolded values indicate the best
performance. Results represent the mean and standard deviation calculated over 3 random seeds using the
optimal hyperparameter configurations identified in Table 2.

Model Test Acc. (↑) AUC (↑) F1 Score (↑) #Params (↓) nα (↓) nlayer (↓) Batch size Epoch Encoder

QGNN 72.2%±2.6% 70.4%±2.1% 72.1%±2.4% 5156 3 6 1 19 MLP + H
GNN 73.9%±1.8% 63.4%±0.9% 73.9%±1.3% 5122 3 5 64 19 MLP
EGNN 73.9%±0.9% 67.9%±0.5% 73.6%±0.9% 5252 3 4 64 19 MLP
EQGNN 71.4%±2.2% 74.4%±1.8% 71.2%±1.5% 5140 3 6 1 19 MLP + H
QCL 50.4%±1.3% 53.3%±0.5% 51.5%±0.7% 280 3 3 256 1000 Amplitude
CQCL 50.0%±0.8% 49.8%±1.5% 48.3%±1.3% 250 3 3 256 1000 Amplitude
QCGCL 57.4%±1.5% 62.3%±1.6% 56.7%±1.6% 7448 7 6 128 50 Angle (RY+RX)
QCGCL 65.4%±1.0% 71.1%±0.5% 63.8%±1.0% 7448 7 6 128 50 Angle (RY)
QCGCL 65.3%±1.3% 70.8%±0.8% 64.5%±1.5% 7448 7 6 128 50 Amplitude + Angle (RY)

CRGCL 70.4%±0.3% 76.3%±0.2% 68.2%±0.6% 127025 7 4 2000 50 GAT

QRGCL variant 70.9%±1.0% 77.3%±1.8% 70.4%±1.7% 126015 7 3 2000 50 RX + H
Proposed QRGCL 71.5%±0.8% 77.5%±0.9% 70.4%±0.8% 126015 7 3 2000 50 H + RX

Parameter breakdown: The reported QRGCL parameter count (126,015) includes the ParticleNet encoder (125,961 params) and
the QRG (54 params: 45 quantum + 9 classical), used during pre-training and frozen for fine-tuning. The downstream classifier is a

separate linear head (129 params) trained on frozen embeddings.

Table 2: Comparison between classical and quantum RG of RGCL. Reported values represent the mean
validation accuracy across stratified 10-fold cross-validation (with shuffling enabled) on the training set.
Standard deviations indicate the variability across folds. Bolded values indicate the best performance.

Parameter type Parameter Classical RG Quantum RG
Accuracy (↑) AUC (↑) F1 score (↑) Accuracy (↑) AUC (↑) F1 score (↑)

Nodes per graph
7 70.4%±1.2% 76.3%±1.1% 69.1%±1.2% 70.8%±0.9% 75.9%±0.8% 69.9%±0.9%
8 68.2%±1.3% 74.1%±1.2% 67.9%±1.3% 70.8%±0.9% 75.6%±0.9% 70.5%±0.9%
9 68.4%±1.4% 73.4%±1.3% 67.2%±1.4% 67.6%±1.1% 74.5%±1.0% 67.5%±1.1%

10 67.0%±1.5% 73.4%±1.4% 66.5%±1.5% 70.7%±0.9% 75.7%±0.8% 70.3%±0.9%

Number of layers
2 68.8%±1.3% 74.5%±1.2% 68.8%±1.3% 66.8%±1.0% 71.4%±1.0% 66.5%±1.0%
3 66.7%±1.5% 73.6%±1.4% 66.7%±1.5% 68.6%±0.9% 74.7%±0.8% 68.5%±0.9%
4 71.2%±1.1% 76.3%±1.0% 71.1%±1.1% 66.4%±1.2% 72.3%±1.1% 66.4%±1.2%
5 63.0%±1.8% 67.5%±1.7% 63.0%±1.9% 67.4%±1.3% 71.2%±1.2% 67.3%±1.3%

Augmentation ratio
0.0 65.2%±1.6% 71.5%±1.5% 65.1%±1.7% 69.8%±1.0% 73.2%±1.0% 69.5%±1.0%
0.1 67.8%±1.4% 74.1%±1.3% 67.8%±1.4% 72.1%±0.8% 78.8%±0.7% 72.1%±0.8%
0.2 64.6%±1.7% 69.8%±1.6% 64.5%±1.7% 65.6%±1.4% 71.1%±1.3% 65.6%±1.4%
0.3 63.7%±1.8% 69.6%±1.7% 63.7%±1.8% 71.3%±0.9% 77.0%±0.8% 71.3%±0.9%

Table 3: Scalability comparison of classical, quantum, and hybrid models as the number of active nodes per
graph (nα) increases beyond 3. Entries marked "–" indicate training failures due to out-of-memory (OOM)
errors resulting from exponential circuit width growth at nα =7. Bolded values indicate the best performance.

Model Test Acc. AUC F1-score nα #Params nlayer Batch size Epoch Encoder

EGNN 54.2% 64.4% 68.5% 7 5252 5 64 19 MLP
EQGNN 47.8% 55.1% 30.9% 7 990100 6 1 19 MLP + H
QGNN 54.6% 43.9% 54.6% 7 1021076 6 1 19 MLP + H
GNN 52.2% 57.8% 35.8% 7 5252 4 64 19 MLP
QCL 44.8% 48.3% 61.9% 5 384 3 256 1000 Amplitude
QCL – – – 7 – 3 256 1000 Amplitude
CQCL 45.2% 48.4% 60.7% 5 354 3 128 50 Angle (RY+RX)
CQCL – – – 7 – 3 128 50 Angle (RY)

Clarification: Models marked “CL” used CL but did not use a rationale generator. All other models (EGNN, EQGNN, GNN,
QGNN) use full subgraphs of size nα without rationale selection or augmentation.

4 Experimental Setup

4.1 Simulation Tools and Environment

We implemented all the models using the PyTorch 2.2.0 (Paszke et al., 2019) framework for classical computations
and Pennylane 0.38.0 (Bergholm et al., 2018) and TorchQuantum 0.1.8 (Wang et al., 2022) for quantum
circuit simulation. We used the Deep Graph Library (DGL) 2.1.0+cu121 (Zheng et al., 2020) to handle graph
operations and the Qiskit 0.46.0 (Javadi-Abhari et al., 2024) framework to simulate quantum circuits. The
computing infrastructure consisted of Intel(R) Xeon(R) CPUs (x86) with a clock frequency of 2 GHz, equipped
with 4 vCPU cores and 30 GB of DDR4 RAM. For GPU acceleration, we utilized two NVIDIA T4 GPUs,
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each with 2560 CUDA cores and 16 GB of VRAM, significantly boosting the performance of deep learning
tasks. For reproducibility, we set random seeds to 42, 123, and 456 for the 3-seed averaging reported in
Table 1. Common training utilities included: (i) learning rate warm-up with linear increase from 1×10−6 to
base LR over specified epochs and (ii) gradient clipping. Quantum circuit differentiation exclusively utilized
the parameter-shift rule to ensure hardware compatibility, with statevector simulation employed for models
requiring exact gradients and shot-based simulation (with 1024 shots) specified. The source code for QRGCL,
including the quantum rationale generator implementation and benchmarking suites, is publicly available at
https://github.com/Abrar2652/QRGCL.

4.2 Hyperparameters and Configurations

We varied hyperparameters for CRG, QRG, data augmentation, and training in the proposed QRGCL model, and
reported test accuracy, AUC, and F1 scores across various encoder types, learning rates (LR), and entanglement
strategies. We used Adam optimizer with a 1×10−3 learning rate (β1 =0.9, β2 =0.999, and ϵ=10−8) across
all the models and a Binary Cross-Entropy (BCE) loss function. 10-fold cross-validation was performed for
each model, and the mean and standard deviation were calculated for each metric. The hidden feature size for
classical GNN and EGNN was 10 to maintain a comparable parameter count to the quantum counterparts,
while for the QGNN and EQGNN, it was 2nα=8. In the case of QCL and CQCL, nlayer stands for the depth of
the quantum circuit, and in other models, it refers to the number of GNN layers. The term nlayer in QRG refers
to the number of repetitions of the variational block, which consists of the parameterized rotation gates (U3)
and the entanglement layers. A deeper circuit (nlayer>1) increases the expressivity of the quantum ansatz. In
Table 2, each row varies a single hyperparameter while keeping all others fixed to a shared default configuration
(nα = 7 nodes, two GNN layers, 10% dropout, GAT encoder, embedding dimension 128, hidden size 256, output
dimension 128, no weight decay, augmentation ratio 0.1, temperature 0.1, batch size 2000, and for QRGCL only:
3 quantum layers). Specifically, the third row sets the number of GNN layers to 4 for CRGCL, while all other
parameters remain at their default values. No joint (pairwise) hyperparameter optimization was performed due
to computational constraints; thus, comparisons reflect controlled one-factor-at-a-time sweeps under consistent
training settings.

The choice of epochs and batch sizes varies based on the computational requirements of classical and quantum
models. Classical models like GNN and EGNN use larger batch sizes (64) and fewer epochs (19) to achieve
more efficient gradient updates, enabling faster convergence. In contrast, quantum models such as QGNN and
EQGNN use much smaller batch sizes (1) due to quantum hardware limitations, yet still require 19 epochs to
achieve adequate learning despite fewer updates per step. For fully quantum and hybrid models like QRGCL
and QCGCL, larger batch sizes (2000) and more epochs (50) are used due to the longer backpropagation caused
by the complex custom loss function, with multiple loss components ensuring that the model has sufficient time
to learn robust quantum-based representations, as the slower convergence can hinder effective learning.

Training Protocol. For fair comparison, classical GNN, EGNN, and EQGNN baselines were trained
using fully supervised learning, whereas QCL, CQCL, and QCGCL adopted contrastive objectives. Only
QRGCL and its classical counterpart CRGCL employed rationale-aware contrastive pretraining followed
by fine-tuning, isolating the contribution of the QRG. All supervised benchmarks were trained using BCE
loss with the Adam optimizer (lr = 10−3, β1 = 0.9, β2 = 0.999, and ϵ = 10−8). Contrastive benchmarks
(QCL, CQCL) utilized InfoNCE loss (T = 0.1) during pre-training. We adopt a two-stage procedure for
QRGCL: (i) self-supervised pretraining for 50 epochs using a rationale-aware contrastive objective defined
as LQRGCL = (LRA +λLCP +αLalign +βLuniform +δLInfoNCE), and (ii) supervised fine-tuning with a linear
classifier for 1000 epochs on the learned graph-level embeddings (during fine-tuning, the encoder parameters
are kept fixed). Convergence of the contrastive loss was monitored using a validation set during the 50-epoch
pretraining phase to ensure sufficient feature alignment before the extensive 1000-epoch fine-tuning stage. This
step evaluates the quality of learned representations in a supervised downstream setting. Figure 5 illustrates the
learning dynamics over 1000 epochs. While the accuracy begins to stabilize around 500–800 epochs, we extended
training to 1000 epochs to ensure complete convergence of the projection head. Crucially, no degradation in
validation performance was observed in the later epochs, indicating that the model is robust against overfitting
even with prolonged training.
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Table 4: Hyperparameter optimization results of the proposed QRGCL. Reported values represent the mean
validation accuracy across stratified 10-fold cross-validation (with shuffling enabled) on the training set. Standard
deviations indicate the variability across folds. Bolded values indicate the best performance. Unless otherwise
varied in a specific row, the default configuration uses nα =7 nodes, 3 quantum layers, a learning rate of 1×10−3,
SWAP entanglement, and RX encoding.

Parameter type Parameter Accuracy (↑) AUC (↑) F1 Score (↑)

Encoder type

Amplitude 69.3%±1.1% 74.7%±1.0% 69.3%±1.1%
IQP 68.9%±1.2% 76.1%±0.9% 68.5%±1.2%
Displacement-amplitude 66.2%±1.5% 72.1%±1.4% 66.0%±1.6%
Displacement-phase 70.2%±1.0% 76.2%±0.9% 69.1%±1.0%
RY 67.0%±1.3% 73.9%±1.1% 67.0%±1.2%
RX 70.8%±0.9% 76.3%±0.8% 69.6%±0.8%
RZ 62.9%±2.1% 67.3%±1.9% 62.8%±2.0%
H 70.8%±0.8% 76.7%±0.7% 69.7%±0.8%
Phase 68.5%±1.2% 74.2%±1.1% 68.3%±1.2%

Learning rate

1E-04 68.6%±1.1% 74.4%±1.0% 68.4%±1.1%
1E-03 70.3%±0.8% 76.2%±0.8% 70.3%±0.8%
3E-03 63.9%±1.6% 68.8%±1.5% 63.7%±1.7%
5E-03 66.0%±1.4% 70.9%±1.3% 66.0%±1.4%
1E-02 69.5%±1.0% 75.8%±0.9% 69.5%±1.0%

Entanglement type

CNOT 69.8%±1.0% 76.6%±0.9% 69.8%±1.0%
CZ 68.2%±1.2% 73.5%±1.1% 68.1%±1.2%
SWAP 71.0%±0.9% 76.2%±0.8% 70.8%±0.9%
CNOT Butterfly 68.0%±1.3% 74.6%±1.2% 68.0%±1.3%
CZ Butterfly 67.7%±1.4% 73.2%±1.3% 67.7%±1.4%
SWAP Butterfly 68.0%±1.3% 73.2%±1.2% 67.8%±1.3%

Scalability. Models ending with “CL” in Table 3 used CL but lacked rationale generation. For other models,
increasing nα corresponds to including more raw particle features in the encoder without explicitly learning
which ones are most informative. As nα increases, both quantum and hybrid models experience exponential
scaling in circuit width and memory usage, making larger graphs harder to simulate reliably and resulting in
failed runs for QCL and CQCL at nα =7. It is important to note that this exponential bottleneck applies to the
classical simulation of the quantum state. On actual quantum hardware, the resource scaling would be linear
with respect to the number of nodes (qubits), limited primarily by gate fidelity and coherence times rather
than memory. In contrast, classical graph-based models such as GNN and EGNN maintain stable accuracy
and F1-scores, reflecting linear computational scaling. QGNN and EQGNN remain trainable but incur a steep
parameter cost (≈106) without proportional performance gains. The absence of consistent improvement, and
occasional degradation, with larger nα supports our central finding: simply enlarging the particle subgraph
does not improve jet discrimination unless the most salient constituents are identified, as done by QRGCL.
The observation that performance does not improve and often worsens with higher nα supports our main
claim: larger input subgraphs do not necessarily improve discrimination in jet data unless the substructure is
meaningfully selected, as in QRGCL.

5 Results and Discussion

We evaluate the performance of QRGCL against the baseline architectures defined in Section 3.3 (see also
Appendix B.3 and C for detailed specifications). AUC was selected as the benchmark metric due to its
effectiveness in assessing binary classification performance across all thresholds. While specific working points
(e.g., background rejection at fixed efficiency) are often used in HEP, AUC provides a holistic measure of
the discriminator’s separation power independent of specific operating conditions, facilitating architectural
comparison. The number of trainable parameters of CRG was 1,073, compared to 45 for QRG.

The hyperparameters specific to QRGCL include encoder type, learning rate, and entanglement type, as
detailed in Table 4. See Appendix B.3 for detailed definitions of the specific quantum encoders tested, including
Amplitude, IQP, and Angle-based variants. Among the encoders, RX and H achieved the highest AUC values
at 76.3% and 76.7%, respectively, while displacement-amplitude and RZ encodings performed poorly, with
AUCs of 72.1% and 67.3%. The optimal learning rate of 1×10−3 produced the highest AUC of 76.2%, with
higher rates resulting in decreased performance. The SWAP entanglement type yielded the best overall results,
achieving an AUC of 76.2%. CNOT and CZ entanglements performed strongly, while other configurations
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Figure 5: Training and testing dynamics of QRGCL over 1000 epochs. The left graph illustrates loss curves,
while the right graph presents accuracy curves.

Figure 6: ROC curves comparing the proposed QRGCL with classical, quantum, and hybrid baseline models on
the quark–gluon jet discrimination task. QRGCL achieves competitive AUC performance across a wide range
of operating points. In particular, QRGCL maintains a higher TPR at low FPRs, highlighting its effectiveness
in regimes relevant for high-purity jet tagging. These results confirm that incorporating quantum-enhanced
rationale selection can improve discriminative performance while remaining parameter-efficient.
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underperformed. For the proposed QGRCL, two possible combinations of RX and H encoders, the learning
rate of 1×10−3 and SWAP entangler were tried.

For both the classical RGCL and QRGCL models, tunable parameters included the number of nodes per
head (nα) ranging from 7 to 10, the number of classical or quantum layers (nlayer) ranging from 2 to 5, and
the augmentation ratio ranging from 0.1 to 0.3. As shown in Table 2, QRGCL achieves comparable AUC
values to the classical RGCL across different node counts (8 and 10 nodes). At 3 layers, QRGCL achieves
performance comparable to the classical model (74.7% vs 73.6%, within statistical uncertainty). However, it
underperformed at 2 and 4 layers. With a 0.1 augmentation ratio, QRGCL achieved its strongest performance
of 78.8%, compared to the classical approach’s 74.1%. The optimal parameters for QRGCL were found to be
nα =7, nlayer =3, and an augmentation ratio of 10%.

Based on Table 1 and Figure 6, it is evident that our proposed QRGCL model achieves a robust mean AUC
score of 77.5% (averaged over 3 seeds), with peak performance reaching 78.8% in optimal configuration runs
(Table 2). While QRGCL achieves the highest mean AUC, the error margins indicate competitive performance
with state-of-the-art classical models, suggesting that the quantum advantage lies primarily in parameter
efficiency and rationale interpretability rather than raw accuracy alone. We selected the two best-performing
encoders from Table 4 and developed two variants by hybridizing them. Further experimentation revealed that
H initialization followed by RX encoding demonstrated greater stability, achieving the highest mean AUC and
lowest standard deviation across validation folds. Additionally, the relatively large number of parameters in
the QRGCL is due to the utilization of the ParticleNet GNN encoder, which contains 125k parameters, while
the QRG circuit only has 45 parameters. Tables 1,2, and 4 complement the ablation studies for QRGCL by
presenting results for configurations without rationale-awareness (QGNN, GNN, EGNN, EQGNN), analyzing
VQC components (such as encoding variants, entanglement structures, and variations in qubits and layers),
exploring different classical-quantum interfaces (including quantum-only and hybrid architectures, as well as
a classical-only baseline), and examining the effects of rationale-guided data augmentation. Figure 5 shows
steadily decreasing training and testing losses in QRGCL, indicating effective learning. While the training
and testing curves stabilize around 800 epochs, we observe a persistent gap (∼ 2%) and a slight decline in
test accuracy in later epochs, indicating mild overfitting typical of deep learning models trained on restricted
datasets (10k samples). Additionally, we observe that classical GNNs perform slightly better in the high-purity
regime (tight cuts, Figure 6 bottom-left), likely because they utilize the full feature set without the information
bottleneck imposed by the quantum rationale generator. Training and testing accuracies increase rapidly within
the first 200 epochs and plateau near 800 epochs. Test accuracy stabilizes slightly above 70%, with training
accuracy close behind, indicating stable performance and limited gains from further training. Figure 6 presents
the ROC curves for the top-performing models, highlighting that QRGCL (blue curve) maintains a competitive
true positive rate across most false positive thresholds compared to the classical GNN and hybrid baselines.

6 Broader Impacts

QRGCL enables efficient, low-supervision feature extraction that can accelerate particle physics discoveries,
inspire quantum-augmented ML methods, raise ethical and interpretability considerations, and generalize to
broader graph-structured problems across science and industry.

7 Conclusion

This paper introduced QRGCL, a resource-constrained rationale-aware graph contrastive learning framework
that integrates a quantum rationale generator into a hybrid quantum–classical pipeline. We evaluate this
methodology on quark–gluon jet discrimination as a representative use case, demonstrating that rationale-
aware contrastive pretraining with a compact QRG can yield competitive downstream performance. Our
results show that QRGCL achieves a robust mean AUC of 77.5%, with peak performance reaching 78.8% in
optimal configuration runs, while keeping the quantum rationale module extremely lightweight (45 parameters).
Hyperparameter analysis further indicates that theH+RX encoder and the SWAP entanglement gate improve
stability and performance, emphasizing the importance of circuit design choices in this regime. These findings
support QRGCL as a general approach for learning representations from graph-structured data when resources
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(parameters, simulation cost, or supervision) are limited, with jet tagging serving as a concrete and challenging
testbed.

8 Limitations

A primary limitation of this study is the use of generator-level data and aggressive jet grooming (nα = 7)
necessitated by current quantum simulation constraints. While real LHC analyses involve full detector
reconstruction and O(50) particles, this work serves as a proof-of-concept for the parameter efficiency of
Quantum Rationales. Our experiments are limited to a narrow pT range (500-550 GeV) and exclude detector
effects/pileup, which limits conclusions regarding real-world LHC performance. The use of only 10k training
samples, necessitated by quantum simulation costs, may disadvantage the larger classical benchmark models.
Additionally, our current QRG architecture utilizes a classical linear layer to project the 8-dimensional particle
feature vectors onto a single scalar for angle encoding. While this ensures parameter efficiency, it acts as an
information bottleneck that may limit the quantum circuit’s ability to leverage complex nonlinear correlations
between the original raw features compared to a full-width classical encoder. Future work could focus on
reducing parameter complexity to streamline model efficiency, exploring other state-of-the-art encoder networks,
such as LorentzNet (Gong et al., 2022) and Lorentz-EQGNN (Jahin et al., 2025), and also hybridizing RG.
We also plan to extend the model to other high-energy physics tasks, such as anomaly detection in particle
collisions and event reconstruction. We look forward to improving the explainability of GCL and exploring how
retrospective and introspective learning in rationale discovery can guide discrimination tasks and improve the
generalization of backbone models.
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A Details of Dataset and Preprocessing

A.1 Details of High-Energy Physics Dataset

This study uses the Pythia8 Quark and Gluon Jets for Energy Flow (Komiske et al., 2019) dataset, a well-
established benchmark in high-energy physics for jet classification. The dataset comprises 2 million simulated
particle jets, evenly divided into 1 million quark-originated jets and 1 million gluon-originated jets. The dataset
was generated using Pythia 8.226 with the default Monash 2013 tune. The hard-scatter processes simulated were
Z(→νν̄)+(u,d,s) for quark jets and Z(→νν̄)+g for gluon jets, computed at leading order (LO). Hadronization
was performed using the Lund string model. The quark jets consist exclusively of light quarks (u,d,s) and do
not include heavy flavor (c,b) jets. No detector simulation or pileup interactions were included. These jets are
generated through collision events simulating the Large Hadron Collider (LHC) conditions with a center-of-mass
energy

√
s=14 TeV. Jets were selected based on their transverse momentum range pjet

T between 500 and 550
GeV and their pseudorapidity |yjet|<1.7. Each jet α is labeled as a quark jet (yα =1) or a gluon jet (yα =0),
providing a binary classification target for model training.

Each particle i within a jet is characterized by several key attributes: transverse momentum p
(i)
T,α, rapidity

y
(i)
α , azimuthal angle ϕ(i)

α , and its Particle Data Group (PDG) identifier I(i)
α . The particle mass m(i)

α is derived
directly from the PDG identifier, allowing for the complete reconstruction of the 4-momentum vector used in
subsequent feature engineering (Eq. 7). From these basic features, we derive additional physically motivated
quantities including particle masses (from PDG identifiers), transverse masses m(i)

T,α =
√
m

(i)2
α +p(i)2

T,α, energies
E

(i)
α =m

(i)
T,αcoshy(i)

α , and momentum components.

(a) (b) (c) (d)

Figure 7: Aggregate kinematic distributions of the Pythia-generated dataset: (a) Particle multiplicity across
all jets; (b) Transverse momentum (pT,α); (c) Total momenta (pα); and (d) Energy (Eα). These distributions
represent the combined quark and gluon populations before grooming and class-specific analysis.

A.1.1 Comparative Analysis of Quark and Gluon Jets

General kinematic distributions for the entire simulated dataset, including particle counts and energy ranges
before class separation, are visualized in Figure 7. To provide a comprehensive understanding of the underlying
class structure and the distinguishing features between quark and gluon jets, we present detailed comparative
analyses in Figures 1, 8, and 9.

Figure 1 presents the four most discriminating features that clearly distinguish quark and gluon jets:

• Particle Multiplicity (Fig. 1a): Gluon jets contain approximately 59% more particles on average
than quark jets (µgluon =53.2 vs. µquark =33.4). This fundamental difference arises from the QCD color
factors: gluons carry a color charge of 8 (adjoint representation withCA =3) compared to quarks’ charge
of 3 (fundamental representation with CF = 4/3). While the color factor ratio CA/CF = 9/4 ≈ 2.25
predicts that gluons radiate approximately 2.25 times more strongly than quarks, the observed 59%
difference in this study is attributed to hadronization effects and the nα = 7 truncation (grooming)
required for quantum simulation. This truncation specifically suppresses the soft radiation contributions
that typically drive higher multiplicity in gluon jets.
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• Jet Width (Fig. 1b): Gluon jets exhibit a 46% larger spatial extent in the η-ϕ plane compared
to quark jets (µgluon =0.089 vs. µquark =0.061). This increased width reflects the stronger coupling
of gluons to the color field and their enhanced emission of soft, wide-angle radiation. The jet width
is computed as w=

√
⟨∆y2+∆ϕ2⟩, where the angular distances are weighted by particle transverse

momentum.

• Leading Particle pT Fraction (Fig. 1c): Quark jets demonstrate significantly harder fragmentation,
with the leading particle carrying 63% more of the total jet momentum on average than in gluon jets
(µquark =0.284 vs. µgluon =0.174). This reflects the fact that quarks tend to fragment into a dominant
hadron that preserves much of the original quark’s momentum, while gluons distribute their energy
more democratically among multiple softer particles through cascading radiation.

• Jet Mass (Fig. 1d): Gluon jets have 40% larger invariant mass compared to quark jets (µgluon =52.8
GeV vs. µquark =37.6 GeV). This increased mass is consistent with their higher multiplicity and softer
particle spectra, as more particles with broader angular distribution contribute to larger invariant mass
through m2 =E2−p⃗2.

Figure 8 provides a systematic overview of all twelve engineered features across both jet classes. Only the final
8 particle-level features are used as model inputs; the remaining variables are shown for completeness and
comparison. Beyond the four key features discussed above, several additional discriminating characteristics are
evident:

• Particle pT Statistics: The mean particle pT is lower in gluon jets (reflecting their higher multiplicity
and softer spectrum), while the standard deviation is higher (indicating greater variation in particle
energies). The leading particle pT shows clear separation, with quark jets having significantly higher
values.

• Fragmentation Patterns: The top-3 particle pT fraction demonstrates that not only the leading
particle, but the entire high-pT component is more prominent in quark jets. This indicates fundamentally
different fragmentation dynamics between the two parton types.

• Energy Distributions: Mean particle energies show similar patterns to pT distributions, with gluons
having lower mean values but higher standard deviations. Total jet energy, constrained by the selection
criteria (pjet

T ∈ [500,550] GeV), shows relatively similar distributions but with gluons extending to
slightly higher values due to their larger mass contributions.

All features demonstrate highly significant statistical differences between classes (Kolmogorov-Smirnov test
p<10−10), confirming that the dataset contains rich discriminative structure across multiple complementary
observables.

Figure 9 explores the multivariate structure of the feature space through two-dimensional projections. These
visualizations reveal several important patterns:

1. Correlated Discrimination: Multiple feature pairs show clear class separation, indicating that
the discriminative information is distributed across many complementary dimensions. For example,
the multiplicity-width plane (Fig. 9a) shows that gluons consistently occupy the high-multiplicity,
large-width quadrant, while quarks cluster in the low-multiplicity, narrow-jet region.

2. Physical Correlations: The strong correlation between jet width and mass (Fig. 9d) reflects the
physical connection between spatial extent and invariant mass, broader jets naturally have larger masses
due to the geometric contribution to m2. Similarly, multiplicity and mass are correlated (Fig. 9b) as
more particles generally contribute to larger total mass.

3. Anti-correlations: The negative correlation between fragmentation hardness and jet width (Fig. 9c)
demonstrates that jets with more concentrated energy (high leading pT fraction) tend to be more
collimated (narrow), consistent with the physical picture of hard fragmentation producing tightly-
clustered particle showers.
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Figure 8: Comprehensive comparison of twelve features characterizing quark and gluon jets. Each panel
shows normalized distributions (probability density) for both classes, with statistical significance indicated by
Kolmogorov-Smirnov test p-values. Top row: fundamental jet properties including multiplicity, mass, transverse
momentum, and spatial width. Middle row: particle-level pT characteristics showing mean, standard deviation,
leading particle value, and leading particle fraction. Bottom row: fragmentation and energy properties including
top-3 particle fraction and energy distributions. All features show highly significant differences between classes
(p<10−10), demonstrating the rich discriminative structure in the dataset. Quark jets (red) consistently show
harder, more collimated fragmentation patterns, while gluon jets (teal) exhibit softer, more diffuse radiation.

4. Class Overlap: While clear separation exists in feature space, there is non-trivial overlap between the
classes, particularly in the intermediate regions of the parameter space. This overlap presents a genuine
classification challenge and explains why sophisticated machine learning approaches are necessary to
achieve optimal discrimination.

A.1.2 Statistical Significance and Effect Sizes

To quantify the discriminative power of each feature, we computed Cohen’s d effect sizes and performed
two-sample Kolmogorov-Smirnov (KS) tests. Table 5 summarizes these statistics for all features. The results
show that:

• All features exhibit highly significant differences (KS test p < 10−100), far exceeding conventional
significance thresholds.
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Figure 9: Two-dimensional feature space projections revealing class separation patterns. Each panel shows
scatter plots of 5,000 randomly sampled jets from each class. (a) Multiplicity vs. width shows clear separation
with gluons occupying the high-multiplicity, large-width region. (b) Multiplicity vs. mass demonstrates
correlated increases in both quantities for gluons. (c) Fragmentation (leading pT fraction) vs. width shows
anti-correlated behavior, with harder fragmentation (higher fraction) corresponding to narrower jets. (d)
Width vs. mass shows strong positive correlation, particularly for gluons. (e) Mean pT vs. energy reveals the
kinematic relationships between transverse and total energy. (f) Multiplicity vs. fragmentation shows clear class
separation, with quarks clustering at high fragmentation fractions and low multiplicities. The scatter patterns
demonstrate that multivariate combinations of features provide improved discriminative power compared to
single features alone.

• Particle multiplicity shows the largest effect size (d=1.89), indicating that this single feature provides
strong discriminative power.

• Multiple features demonstrate large effect sizes (|d|>0.8), suggesting that an optimal classifier should
leverage the information from multiple complementary observables.

• The relative differences between classes range from 20% to 63%, with the most dramatic differences
appearing in multiplicity (+59.4%) and leading pT fraction (+63.2%).

A.2 Details of Graph Representation of Jets

A graph G is defined as a set of nodes V and edges E, represented as G={V,E}. Each node v(i) ∈V is connected
to its neighboring nodes v(j) through edges e(ij) ∈E. In the context of this study, each jet α is modeled as a
graph Jα, where the nodes v(i)

α represent the particles in the jet, and the edges e(ij)
α represent the interactions

between these particles. Each node v(i)
α is associated with a set of features h(i)

α , which describe its properties,
while the edges have attributes a(ij)

α that characterize the relationship between connected nodes.
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Table 5: Statistical comparison of quark and gluon jet features. Cohen’s d measures effect size (standardized
difference between means), with |d|>0.8 indicating large effects. All features show highly significant differences
(p<10−100). Relative differences are computed as 100×(µgluon−µquark)

µquark
.

Feature Quarks (mean ± std) Gluons (mean ± std) Relative Diff (%) Cohen’s d
Multiplicity 33.4±10.6 53.2±12.8 +59.4 1.89
Jet pT [GeV] 524.2±14.4 524.9±14.5 +0.1 0.05
Jet Mass [GeV] 37.6±15.9 52.8±18.3 +40.4 0.98
Jet Width 0.061±0.028 0.089±0.034 +45.9 1.01
Mean Particle pT [GeV] 15.8±7.4 10.1±3.8 -36.1 -1.12
Leading pT [GeV] 172.3±89.4 92.4±41.8 -46.4 -1.28
Leading pT Fraction 0.284±0.134 0.174±0.074 -38.7 -1.11
Top-3 pT Fraction 0.523±0.168 0.365±0.110 -30.2 -1.21
Total Jet Energy [GeV] 759.2±149.8 821.4±171.3 +8.2 0.40

The number of nodes in each graph can vary significantly, reflecting the varying number of particles within each
jet. This variability is particularly pronounced in particle physics, where jets can differ greatly in their particle
multiplicity. Consequently, each jet graph Jα is composed of mα particles, each with l distinct features that
capture various physical properties. This graph representation provides a natural way to encode the complex
interactions within jets, enabling models to leverage the relational structure among particles. An illustration of
this graph-based data representation, along with an example jet depicted in the (ϕ,y) plane, is shown in Figure
10. Here, particles are visualized as nodes and their interactions as edges, offering a clear view of the underlying
structure and relationships within the jet.

Figure 10: Plot of a sample jet shown in (ϕ,y) plane with each particle color-coded by its p(i)
T,α.

A.3 Details of Feature Engineering

Additional kinematic variables are derived from the original features (p(i)
T,α,y

(i)
α ,ϕ

(i)
α ) using the ‘Particle’ package

to improve the model’s ability to learn from the data. These engineered features include transverse mass, energy,
and Cartesian momentum components, providing a more complete description of each particle’s dynamics.
Specifically, the transverse mass per multiplicity (m(i)

α,T ) of particle i in jet α is calculated as:

m
(i)
α,T =

√
m

(i)2
α +p(i)2

α,T (7)
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where m is the rest mass of the particle and p(i)
T is its transverse momentum. Energy per multiplicity (E(i)

α ) of
particle i is computed using:

E(i)
α =m

(i)
α,T coshy(i)

α (8)

Kinematic momenta components per multiplicity (p⃗(i)
α =(p(i)

x,α,p
(i)
y,α,p

(i)
z,α) ) are derived from:

p(i)
x,α =p

(i)
T,αcosϕ(i)

α ,p(i)
y,α =p

(i)
T,αsinϕ(i)

α ,p(i)
z,α =m

(i)
T,αsinhy(i)

α (9)

These components decompose the momentum of each particle into Cartesian coordinates, providing additional
features for analysis.

The original and derived features are combined into an enriched feature set for each particle, defined as:

h(i)
α =

{
p

(i)
T,α,y

(i)
α ,ϕ(i)

α ,m
(i)
T,α,E

(i)
α ,p(i)

x,α,p
(i)
y,α,p

(i)
z,α

}
(10)

where h(i)
α represents the feature vector for particle i in jet α. We further calculate aggregate kinematic properties

for each jet using the individual particle features. The total momentum vector of a jet (p⃗α) is obtained by
summing the momentum components of its constituent particles:

p⃗α =
∑

i

p⃗(i)
α (11)

with the transverse momentum of the jet (pT,α) calculated as:

pT,α =

√√√√(∑
i

p
(i)
x,α

)2

+
(∑

i

p
(i)
y,α

)2

(12)

which measures the momentum of the jet perpendicular to the beam axis. The jet mass (mα) and rapidity (yα)
are defined as:

mα =
√

(E2
α−|p⃗α|2),yα = 1

2ln
(
Eα+pz,α

Eα−pz,α

)
(13)

where Eα is the sum of the energies of the jet’s constituent particles and pz,α is the component of the jet’s
momentum along the beam axis.

A.4 Details of Graph-Based Augmentation and Contrastive Learning

Next, the preprocessed graph data creates pairs or "views" as input for our CL framework. In CL, pairs of
similar and dissimilar views are generated to help the model learn discriminative representations. Positive views
are created by taking a graph and generating an augmented version of it, such as applying transformations
like node dropping, edge perturbation, or feature masking. For instance, an augmented view of a quark jet
remains labeled as similar (1), while a dissimilar pair may consist of a quark jet and a gluon jet, labeled as 0.
The differentiation between positive and negative pairs is established solely through the loss function, with the
model lacking an inherent understanding of the concept of ‘view’. The loss function guides the model toward
clustering similar samples in proximity. Figure ?? shows positive and negative pairs created for our CL process.
The distorting jets method was applied to shift the positions of the jet constituents independently, with shifts
drawn from a normal distribution. The shift is applied to each constituent’s y and ϕ values, scaled by their pT ,
ensuring that lower pT particles experience more significant shifts. The collinear fill technique added collinear
splittings to the jets, filling zero-padded entries by splitting existing particles. A random proportion is applied
for each selected particle to create two new particles that share the original momentum and position information.

A.4.1 Enforcing Infrared and Collinear Safety

To ensure that our methodology adheres to the principles of infrared and collinear (IRC) safety, we follow
the guidelines established by Dillon et al. (Dillon et al., 2022) to avoid sensitivities to soft and collinear
emissions, which are irrelevant to the physical properties of jets. Infrared safety is maintained by applying small
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perturbations to the η′ and ϕ′ of soft particles. These perturbations follow normal distributions, η′ ∼N (η,Λsoft
pT

)
and ϕ′ ∼ N (ϕ,Λsoft

pT
), where Λsoft = 100 MeV and pT is the transverse momentum of the jet. Collinear safety

is ensured by requiring that the sum of the transverse momenta of two collinear particles equals the total
transverse momentum of the jet: pT,α +pT,β = pT . Additionally, the η and ϕ of the two particles are kept
identical, i.e., ηa = ηb = η and ϕa = ϕb = ϕ, preserving the collinear structure of the jet during training and
testing. Techniques like node dropping and edge perturbation alter the graph’s structure by randomly removing
or changing connections between nodes. This helps to train the model with varying graph structures, ensuring
it can adapt to different particle distributions and topologies.

B Details of Proposed QRGCL

B.1 Details of Encoder Network

We used the ParticleNet (Qu & Gouskos, 2020) model as our encoder to convert the augmented views of input
particle features into low-dimensional embeddings. ParticleNet is a graph-based neural network optimized for
jet tagging, leveraging dynamic graph convolutional neural networks (DGCNN) to process unordered sets of
particles, treating jets as particle clouds.

The input to the encoder is a matrix X∈Rn×d, where n represents the number of particles and d the feature
dimension (e.g., momentum, energy). ParticleNet constructs a k-nearest neighbor (k-NN) graph, connecting
each particle to its k closest neighbors in feature space. The EdgeConv block begins by computing the k nearest
neighbors using the particles’ spatial coordinates. Edge features are constructed based on the feature vectors
of these neighbors. The core operation of EdgeConv is a 3-layer multi-layer perceptron (MLP), where each
layer consists of a linear transformation, batch normalization, and a ReLU activation. To improve information
flow and avoid vanishing gradients, a shortcut connection inspired by the general ResNet architecture runs
parallel to the EdgeConv operation, allowing input features to bypass the convolution layers. The two main
hyperparameters of each EdgeConv block are k, the number of nearest neighbors, and C= (C1,C2,C3), the
number of units in each MLP layer.

ParticleNet’s architecture consists of three EdgeConv blocks. In the first block, distances between particles are
computed in the pseudorapidity-azimuth (η,ϕ) plane. In the following blocks, learned feature vectors from the
previous layers serve as the coordinates. The number of nearest neighbors k is 16 across all blocks. The channel
configurations C are (64, 64, 64), (128, 128, 128), and (256, 256, 256), respectively, indicating the units per
MLP layer. After the EdgeConv blocks, global average pooling aggregates the learned features from all particles
into a single vector. This vector is passed through a fully connected layer with 256 units and a ReLU activation.
A dropout layer with a 0.1 probability is applied to prevent overfitting before the final fully connected layer.
The output layer, with two units and a softmax function, produces the jet-level embeddings. These embeddings
are then weighted according to node importance scores, emphasizing the most relevant particles. A global mean
pooling operation is used further to aggregate the weighted features into a fixed-size jet representation.

B.2 Details of Quantum-Enhanced Contrastive Loss

QRGCL model uses a carefully designed loss function that integrates multiple elements: InfoNCE (van den
Oord et al., 2018), alignment, uniformity, rationale-aware loss (RA loss), and contrastive pair loss (CP loss), to
optimize the learning of quantum-enhanced embeddings. In this section, we provide detailed derivations and
theoretical interpretations for these components. The overall objective is designed to learn discriminative graph
embeddings by contrasting different views derived from graph rationales and their complements, while ensuring
desirable geometric properties in the embedding space.

B.2.1 Core Contrastive Losses: InfoNCE, RA, and CP

These losses form the foundation of the CL process in QRGCL, aiming to distinguish between positive pairs
(derived from similar rationales or views) and negative pairs (dissimilar rationales, complements, or other
instances).
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InfoNCE Loss The InfoNCE loss (van den Oord et al., 2018) serves as a general contrastive objective. In our
context, it can be applied to augmented views of the entire graph or specific components. It maximizes a lower
bound on the mutual information between two views, represented by their embeddings z and z′. For a batch of
N pairs, it is defined as:

LInfoNCE =− 1
N

N∑
i=1

log
(

exp(sim(zi,z′
i)/T )∑N

j=1exp(sim(zi,z′
j)/T )

)
(14)

where (zi,z′
i) is a positive pair of embeddings (e.g., from two augmentations of the same graph), z′

j are embeddings
from other instances (negatives) in the batch, T >0 is the temperature hyperparameter, and sim(·,·) denotes
the cosine similarity function sim(u,v)= u⊤v

∥u∥∥v∥ . Minimizing LInfoNCE encourages the embeddings of positive
pairs to be more similar than the embeddings of negative pairs.

Derivation of InfoNCE Loss Let Z =(zi,z′
i)

N
i=1 be a batch of N positive contrastive pairs. Assume that

the joint distribution p(z,z′) is known, and our goal is to maximize the mutual information I(z,z′). Using the
Donsker-Varadhan representation of KL divergence:

I(z,z′)≥Ep(z,z′)

[
log f(z,z′)

Ep(z)p(z′)[f(z,z′)]

]
(15)

Choose f(z,z′)=exp(sim(z,z′)/T ). Replacing the denominator with a sum over negatives in the batch (empirical
estimate), we get the InfoNCE bound:

LInfoNCE =− 1
N

N∑
i=1

log
(

esim(zi,z′
i)/T∑N

j=1e
sim(zi,z′

j
)/T

)
(16)

This lower bounds the mutual information I(z,z′), making it suitable for contrastive representation learning.

RA Loss The RA loss specifically focuses on contrasting positive pairs derived from the graph’s "rationale"
(critical subgraph identified for classification) against other rationale-derived pairs within the batch. Let zi

1 and
zi

2 be embeddings corresponding to two different views or augmentations of the rationale of the i-th graph in a
batch of size N . The RA loss aims to make zi

1 similar to zi
2 while distinguishing it from zj

2 for j ̸= i. The loss is
calculated as:

LRA =− 1
N

N∑
i=1

log
(

e(sim(zi
1,zi

2)/T )∑N
j=1e

(sim(zi
1,zj

2)/T )−e(sim(zi
1,zi

2)/T )

)
(17)

Here, the denominator sums the similarity scores between the anchor rationale embedding zi
1 and all rationale

embeddings zj
2 from the second view in the batch, excluding the positive pair similarity itself. This forces the

model to learn representations that are highly specific to the corresponding rationale pairs.

Derivation of RA Loss We reinterpret the RA loss as a softmax-based ranking loss. Let P (i|j) denote the
probability of matching rationale pair (i,j):

P (i|j)= e(sim(zi
1,zi

2)/T )∑N
k=1e

(sim(zi
1,zj

2)/T )
(18)

To ensure the model doesn’t trivially match a pair to itself, we subtract the matching term from the denominator:

LRA =−logP (i|j)=−log
(

e(sim(zi
1,zi

2)/T )∑N
j=1e

(sim(zi
1,zj

2)/T )−e(sim(zi
1,zi

2)/T )

)
(19)

This form can be derived from maximizing a modified log-likelihood over rationale-based matching while
excluding the anchor-positive redundancy from the normalization.
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CP Loss The CP loss introduces the concept of a "complement" view (pairs involving nodes not deemed
crucial for the classification task), derived from the non-rationale parts of the graph. It encourages the rationale
embedding zi

1 to be similar to its corresponding rationale pair zi
2, while simultaneously being dissimilar to

embeddings derived from the complement regions, denoted by zj
3. This helps the model distinguish between

critical (rationale) and non-critical (complement) information:

LCP =− 1
N

N∑
i=1

log
(

e(sim(zi
1,zi

2)/T )∑N
j=1e

(sim(zi
1,zj

3)/T )+e(sim(zi
1,zi

2)/T )

)
(20)

where the denominator includes the sum of similarities between the anchor rationale zi
1 and all complement

embeddings zj
3 from the third view, plus the positive pair similarity. This loss helps the model differentiate

genuine relationships between similar samples from spurious correlations by learning from pairs with varying
significance.
Theorem 1 (Interpretation of RA and CP Losses). Minimizing the combined loss LRA+λLCP encourages the
model to learn representations z such that:

1. Embeddings zi
1 and zi

2 derived from the same rationale are pulled closer together in the embedding space.

2. Embeddings zi
1 derived from one rationale are pushed apart from embeddings zj

2 (for j ̸= i) derived from
other rationales.

3. Embeddings zi
1 derived from a rationale are pushed apart from embeddings zj

3 derived from complement
regions.

This promotes learning of features that are both specific to the rationale’s identity and distinct from non-critical
graph components.

Proof Sketch. The structure of LRA equation 17 and LCP equation 20 follows the standard contrastive loss
form −log( positive

positive+
∑

negatives
). Minimizing this loss is equivalent to maximizing the log-probability of correctly

identifying the positive pair among a set of negatives. For LRA, the "negatives" are other rationale pairs within
the batch (zj

2,j ̸= i). Minimization increases sim(zi
1,zi

2) relative to sim(zi
1,z

j
2), thus pulling positive rationale

pairs together and pushing them apart from other rationale pairs. For LCP, the "negatives" are the complement
embeddings (zj

3). Minimization increases sim(zi
1,zi

2) relative to sim(zi
1,z

j
3), thus pushing rationale embeddings

away from complement embeddings. Combining these objectives achieves the stated properties.

B.2.2 Geometric Regularization Losses: Alignment and Uniformity

These losses, inspired by (Wang & Isola, 2020), aim to improve the quality of the embedding space by enforcing
desirable geometric properties, preventing representational collapse, and improving feature diversity.

Alignment Loss The alignment loss measures the expected distance between normalized embeddings of
positive pairs (ppos), encouraging them to map to nearby points in the embedding space. Assuming the input
embeddings z1 and z2 are L2-normalized (denoted ẑ1,ẑ2), the alignment loss is defined as the expected squared
Euclidean distance (L2):

Lalign≜E(ẑ1,ẑ2)∼ppos

[
∥ẑ1−ẑ2∥2

2
]

(21)

where ppos is the distribution of positive pairs and normalization ensures embeddings lie on the unit hypersphere.
Minimizing this loss forces the representations of augmented views of the same input to be identical, promoting
invariance.

Quantum Fidelity Alignment (Theoretical) As a theoretical alternative motivated by quantum informa-
tion, we used quantum state fidelity as a distance metric, replacing the traditional L2 distance typically used
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in classical CL. Quantum fidelity measures the closeness between two quantum states. If embeddings z1,z2
represent quantum states via density matrices ρ1,ρ2, the fidelity-based alignment loss is:

Lalign≜E(ρ1,ρ2)∼ppos [1−F(ρ1,ρ2)]=E(ρ1,ρ2)∼ppos

[
1−
(

Tr
(√√

ρ1ρ2
√
ρ1

))2
]

(22)

where F(ρ1,ρ2) is the fidelity between states ρ1 and ρ2. Lower values of 1−F indicate higher similarity between
quantum states. If ρi = |ϕi⟩⟨ϕi| are pure states derived from normalized vectors zi, then F(ρ1,ρ2)= |⟨ϕ1|ϕ2⟩|2 =
cos2(θ). Therefore, alignment loss becomes:

Lalign≜E(ρ1,ρ2)∼ppos [1−F(ρ1,ρ2)]=E(ρ1,ρ2)

[
1−|⟨ϕ1|ϕ2⟩|2

]
(23)

This aligns the quantum embeddings up to a global phase, a desirable property in quantum feature spaces.

Uniformity Loss The uniformity loss encourages the embeddings to be uniformly distributed on the unit
hypersphere. This prevents the model from collapsing all embeddings to a single point or small region, thereby
preserving the discriminative information contained in the representations. It is defined as the expected log
pairwise potential over all distinct data points:

Luniform≜ logE(zx,zy)∼pdata,x ̸=y

[
e−t∥zx−zy∥2

2

]
(24)

where pdata is the distribution of data samples, and t>0 is a hyperparameter (typically t=2). Minimizing this
loss encourages larger distances between embeddings of different samples, promoting uniformity.
Theorem 2 (Role of Alignment and Uniformity). Minimizing the combined loss αLalign+βLuniform regularizes
the embedding space by:

1. Enforcing invariance to data augmentations or view generation (Alignment).

2. Maximizing the entropy of the embedding distribution on the unit hypersphere, preserving feature
diversity (Uniformity).

These properties contribute to learning higher quality, more discriminative representations.

Proof Sketch. Minimizing Lalign equation 21 directly minimizes the distance between positive pairs, achieving
local invariance. Minimizing Luniform equation 24 minimizes the potential energy of a system where points
repel each other via a Gaussian kernel e−td2 , leading to a uniform distribution on the embedding manifold
(unit hypersphere if normalized) (Wang & Isola, 2020). Uniformity is related to maximizing the entropy of the
representations, thus preserving information from the input data.

B.2.3 Overall QRGCL Objective

The overall loss for the QRGCL model is a weighted combination of the InfoNCE, RA, and CP loss, with
optional contributions from the alignment and uniformity terms, allowing for flexible control over the learning
process:

LQRGCL =LRA+λLCP+αLalign+βLuniform+δLInfoNCE (25)
where λ,α,β,δ≥0 are hyperparameters balancing the contribution of each loss component. During experimenta-
tion, the uniformity term (βLuniform) might be omitted (β=0) if it hinders performance empirically.
Remark 1. Each component has a bounded gradient and differentiable form, ensuring compatibility with
stochastic gradient descent. Further, RA and CP are mutually reinforcing, and the inclusion of alignment and
uniformity ensures geometric and quantum-consistent embeddings.

B.3 Details of Quantum Feature Encoders

To evaluate the impact of different quantum feature maps on the performance of the QRG, we benchmarked
several encoding strategies.
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B.3.1 Angle Encoding (RX, RY, RZ, H)

Angle encoding embeds N classical features x={x1,...,xN } into the rotation angles of N qubits, maintaining a
parameter-efficient 1:1 correspondence between features and qubits. In the standard Rotation Encoding variants
(RX, RY, RZ), the feature xi serves as the rotation parameter for a Pauli rotation gate acting on the i-th qubit.
For instance, the RX encoding prepares the state |ψ⟩=

⊗N
i=1RX(xi)|0⟩=

⊗N
i=1exp

(
−ixi

2 σ̂x

)
|0⟩. To increase

the expressivity of this feature map, the H + Angle variant first places the qubits in a uniform superposition
using Hadamard (H) gates before applying the rotations, resulting in the state |ψ⟩=

⊗N
i=1RX(xi)H|0⟩.

B.3.2 IQP Encoding

The Instantaneous Quantum Polynomial (IQP) encoding embeds features into a quantum state conjectured to
be hard to simulate classically. This strategy diagonalizes the encoding in the Z-basis using Hadamard gates
and specific interactions. The circuit structure consists of an initial layer of Hadamard gates, followed by a layer
of diagonal phase gates that encode the features, and a final entangling layer. Mathematically, for a feature
vector x, the encoding unitary is defined as UIQP (x)=

(∏
(i,j)∈Se

ixixj σ̂(i)
z ⊗σ̂(j)

z

)(⊗N
i=1e

ixiσ̂(i)
z

)⊗N
i=1H, where

S represents the set of entangled qubit pairs. In our experiments, we utilized a standard repetition pattern
(nrepeats =1) to embed the correlations between features.

B.3.3 Amplitude Encoding

Amplitude encoding is a space-efficient strategy that embeds a normalized classical vector x of dimension 2N

into the probability amplitudes of an N -qubit entangled state. Given a normalized input vector such that
∥x∥2 =1, the state is prepared as |ψ⟩=

∑2N −1
i=0 xi|i⟩, where |i⟩ are the computational basis states. While this

method theoretically allows for the encoding of exponentially many features into 7 qubits (up to 128 features), it
generally requires state preparation circuits that can scale exponentially in depth without specific optimization.
We restricted the input to the graph node features for this study.

B.3.4 Displacement Encoding

Originally derived from Continuous Variable (CV) quantum computing, Displacement encoding maps classical
features to the phase space displacement of a quantum mode via the operator D(α)=exp(αâ†−α∗â). In the
context of our variational circuit, we implemented two variants of this embedding: Displacement-Amplitude,
where the feature xi is mapped to the magnitude of the displacement (α=xi), and Displacement-Phase,
where the feature determines the phase (α=eixi). This encoding provides a distinct non-linear feature map
compared to standard qubit rotations, allowing us to test the model’s sensitivity to phase-space geometric
embeddings.

C Details of Benchmark Models

We developed two classical models (GNN and EGNN), three quantum models (QGNN, EQGNN, and QCL), five
hybrid classical-quantum models (CQCL, 3 QCGCL variants, and QRGCL with RX+H encoding) (see Table
1), and the classical counterpart of QRGCL, i.e., CRGCL (see Table 2). This section provides comprehensive
architectural specifications and training configurations for each benchmark, ensuring reproducibility.

C.1 Classical RGCL (CRGCL)

C.1.1 Architecture

The classical RG (CRG) of RGCL is a GNN estimator designed to generate node representations from graph-
structured data, which acts as the counterpart of QRGCL. It consists of three graph attention network (GAT)
layers with the following configuration: Layer 1 (input → 32 features, 4 attention heads), Layer 2 (32 → 16
features, 2 heads), and Layer 3 (16 → 8 features, 1 head). Each layer is followed by batch normalization
(momentum = 0.1) to stabilize training and reduce internal covariate shifts. ReLU activation is applied after
the first two layers, while dropout (p = 0.1) is used to mitigate overfitting. The final output passes through a

31



Published in Transactions on Machine Learning Research (01/2026)

linear layer to yield a single value per node, followed by a softmax for probabilistic node importance scoring. For
a fair comparison between the CRG and QRG, we use the well-established ParticleNet as the encoder network,
followed by the same projection head used in QRGCL.

C.1.2 Training Configuration

CRGCL employs a combined loss function: LCRGCL = LRA +λLCP +αLalign +βLuniform + δLInfoNCE with
hyperparameters λ=1.0, α=0.5, β=0.0 (uniformity term disabled), δ=0.5, and temperature T =0.1 for all
contrastive components. We use the Adam optimizer with learning rate 1×10−3, β1 = 0.9, β2 = 0.999, and
ϵ=10−8, with no weight decay. Training follows a two-stage procedure: (i) self-supervised pre-training for 50
epochs with batch size 2000 and gradient clipping (max norm 1.0), and (ii) supervised fine-tuning for 1000
epochs with frozen encoder parameters using BCE loss. Data augmentation includes node dropping (0.1), edge
perturbation (0.05), and feature masking (0.1) with an augmentation ratio of 0.1.

C.2 GNN

C.2.1 Architecture

The baseline GNN architecture consists of 5 EdgeConv blocks with k=16 nearest neighbors per block. The
architecture processes input features through: EdgeConv Block 1 (channels=[32,32,32]), EdgeConv Block 2
([64,64,64]), EdgeConv Block 3 ([64,64,64]), EdgeConv Block 4 ([64,64,64]), and EdgeConv Block 5 ([10,10,10]).
Each block contains a 3-layer MLP with BatchNorm and ReLU activation, followed by a max pooling operation
over neighboring elements. The message-passing mechanism updates node features based on neighboring nodes
using edge features constructed as ∆fij =fj −fi. Residual connections are applied around each block. After
all EdgeConv layers, global mean pooling aggregates node features into a graph-level representation, which
is passed through a linear layer ([10 → 2]) with softmax for classification. GNNs can inherently handle node
permutations due to their graph-based nature.

C.2.2 Training Configuration

GNN is trained using BCE loss: LGNN =−[y ·log(σ(ŷ))+(1−y)·log(1−σ(ŷ))] where σ is the sigmoid function.
We employ Adam optimizer with learning rate 1 × 10−3 and ReduceLROnPlateau scheduler (factor=0.5,
patience=5, min_lr=1×10−6). Training runs for 19 epochs with a batch size of 64, using gradient clipping and
early stopping (patience of 10 epochs on the validation loss). The dropout rate is 0.1 after each EdgeConv block.
No data augmentation is applied (supervised baseline).

C.3 Equivariant GNN (EGNN)

C.3.1 Architecture

EGNNs extend GNNs by incorporating SE(3) equivariance, ensuring predictions remain invariant to rotations
and translations. The architecture consists of 4 EGNN layers with hidden dimensions [32, 64, 64, 10] and
edge dimensions fixed at 32. Each layer updates both node features hi and coordinates xi ∈R3 through: (i)
edge features mij =ϕe(hl

i,h
l
j ,∥xl

i−xl
j∥2,aij), (ii) coordinate updates xl+1

i =xl
i+
∑

j(xi−xj)·ϕx(mij), and (iii)
node feature updates hl+1

i = ϕh(hl
i,mi) where mi =

∑
jmij . Each ϕ is a 2-layer MLP with SiLU activation

and layer normalization. Initial coordinates are derived from kinematic features: x=pT cos(ϕ), y=pT sin(ϕ),
z = pT sinh(η). After all layers, global mean pooling over node features produces the graph representation,
which is processed through an MLP readout ([10 → 32 → 2]).

C.3.2 Training Configuration

EGNN uses BCE loss with Adam optimizer (learning rate 1×10−3, weight decay 1×10−5). The learning rate
follows CosineAnnealingLR schedule (Tmax=19, ηmin =1×10−6) with 3-epoch linear warm-up from 1×10−5 to
1×10−3. Training runs for 19 epochs with a batch size of 64 and gradient clipping (max norm: 1.0). Layer
normalization is applied instead of batch normalization to preserve equivariance properties. Coordinate clipping
at ±10.0 prevents explosion. No dropout is used to maintain equivariance.
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C.4 Quantum GNN (QGNN)

C.4.1 Architecture

In QGNN, the graph’s node features are first processed through a classical MLP encoder ([8 → 16 → 8]) with
ReLU and BatchNorm, followed by a linear projection ([8 → nα]) to map features to qubit count. These
features are embedded into quantum states using a parameterized quantum circuit with nα = 3 qubits and
6 variational layers. The quantum circuit structure per layer consists of: (i) Hadamard gates H⊗nα , (ii) RY
rotation encoding with θi =arctan(xi), (iii) parameterized U3 gates on each qubit with 3 parameters (α,β,γ),
and (iv) CNOT ladder entanglement with wrap-around connection. These quantum states evolve under the
parameterized Hamiltonian, which encodes node interactions based on the graph’s adjacency matrix. The
QGNN model utilizes unitary transformations to evolve the quantum state across multiple layers. After the
final layer, quantum measurements are performed in the Z-basis, producing a 2nα = 8 dimensional classical
vector. The results are passed through an MLP classifier ([8 → 16 → 2]) with ReLU and Dropout (0.1) to make
predictions. Total parameters: 5,156 (54 quantum + 5,102 classical).

C.4.2 Training Configuration

QGNN is trained using BCE loss with Adam optimizer (learning rate 1×10−3, no weight decay). Quantum circuit
simulation uses PennyLane’s default qubit device with statevector simulation (no shots) and parameter-shift
rule for differentiation. Due to quantum circuit overhead, the batch size is 1 with gradient accumulation over 64
steps (effective batch size = 64). Training runs for 19 epochs with gradient clipping (max norm 0.5) to prevent
barren plateaus. Quantum parameters are initialized uniformly in [−π/4,π/4], while classical parameters use
Xavier initialization. Layer-wise learning rates are applied: first 2 quantum layers at 5×10−4, last 4 at 1×10−3,
classical layers at 1×10−3. Gaussian parameter noise (σ=0.01) is added during training for robustness.

C.5 Equivariant Quantum GNN (EQGNN)

C.5.1 Architecture

EQGNNs (Jahin et al., 2025; Forestano et al., 2024; 2023a;b;c) are quantum analogs of EGNNs, incorporating
equivariance into the quantum architecture. The model begins with an equivariant classical encoder: Equivariant
MLP Layer 1 ([8+3 → 16]) and Layer 2 ([16 → 16]), both with Layer Norm and SiLU activation. Node features
hi ∈R8 and coordinates xi ∈R3 are jointly processed. Permutation-invariant pooling (DeepSets style) produces
a fixed-size feature vector projected to nα values. Like QGNNs, EQGNNs operate on quantum states (3 qubits,
6 layers, same circuit structure as QGNN) but ensure that the learned representations are equivariant under
symmetries, such as permutations or rotations. The final quantum states are aggregated through pooling,
ensuring the network remains permutation-equivariant. This aggregation is followed by classical post-processing
to yield the model’s predictions. The model ensures: (i) permutation equivariance in classical encoding, (ii)
graph isomorphism invariance in quantum embedding, and (iii) permutation invariance in final pooling. Total
parameters: 5,140 (54 quantum + 5,086 classical).

C.5.2 Training Configuration

EQGNN uses BCE loss with Adam optimizer (learning rate 1×10−3, weight decay 1×10−5). The learning
rate follows the StepLR schedule (step_size=5, gamma=0.5). Training runs for 19 epochs with batch size 1
and gradient accumulation over 64 steps. Gradient clipping is set to max norm 0.5. During training, periodic
equivariance checks ensure f(P ·G)≈P ·f(G) for permutation P . Layer normalization is used instead of batch
normalization to preserve equivariance, and no dropout is applied in equivariant layers. Coordinate noise
augmentation with σ=0.01 is applied.
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C.6 QCL

C.6.1 Architecture

QCL employs a quantum convolutional neural network (QCNN) with input size 18×18 (zero-padded from
variable jet size) as the encoder, where data-reuploading circuits (DRCs) replace classical convolutional kernels.
The QCNN consists of 2 quantum convolutional layers: Layer 1 with (3×3) kernel and stride 2, using a 3-qubit
DRC as a filter, producing an 8×8×4 feature map; Layer 2 with the same configuration, producing a 3×3×4
feature map. Each DRC filter contains 3 qubits with 3 layers, where each layer includes: (i) feature encoding via
RY(θdata), (ii) trainable rotation RY(θparam), and (iii) CNOT chain entanglement. Each filter has 18 parameters
(3 qubits × 3 layers × 2 rotations). The final encoding size after flattening is 36 features, which are linearly
projected to 16 dimensions. The projection network uses a 2-node linear layer ([16 → 2]). Total parameters:
280 (36 quantum + 244 classical).

C.6.2 Training Configuration

QCL uses InfoNCE contrastive loss: LQCL =−log[exp(sim(zi,zj)/τ)/
∑

kexp(sim(zi,zk)/τ)] where sim(·,·) is
cosine similarity and τ=0.1 (temperature). Positive pairs are the same jet with different augmentations, while
negative pairs are different jets. Adam optimizer with learning rate 1×10−3 (no scheduler, no weight decay) is
used. Training follows a two-stage procedure: pre-training for 1,000 epochs and fine-tuning for 500 epochs,
with a batch size of 256 and 2 augmented views per sample. Data augmentation includes random crop (16×16
from 18×18), random rotation (±15◦), Gaussian noise (σ= 0.05), and intensity scaling (±10%). Gradient
clipping is set to a maximum norm of 1.0. Quantum circuits employ shot-based simulation (with 1024 shots)
and parameter-shift differentiation. Quantum parameters are initialized uniformly in [−π,π], with parameter
sharing across filters for efficiency.

C.7 Classical-Quantum CL (CQCL)

C.7.1 Architecture

Hybrid CQCL uses a fully classical CNN encoder with a quantum projection head. The classical encoder
consists of: Conv2D Layer 1 (1 → 16 channels, 3×3 kernel, stride 2) with BatchNorm and ReLU, followed by
Conv2D Layer 2 (16 → 32 channels, same configuration). After flattening (32×4×4=512 features), a linear
layer projects to 256 dimensions with ReLU and Dropout (0.1). The quantum projection head utilizes amplitude
encoding to embed the normalized 256-dimensional vector into 8 qubits (log2(256) = 8). The variational
circuit consists of three layers, each with RY and RZ rotations applied to all qubits, followed by linear CNOT
entanglement (16 parameters per layer, totaling 48 parameters). Measurements are performed in the Z-basis
on all qubits, producing an 8-dimensional output, which is finally projected to 2 dimensions. To evaluate the
ability of QCL and CQCL to generate generalized representations, we make predictions using a simple MLP
with an input layer of size 256 and a hidden layer of size 32, both with Batch Normalization and leaky ReLU.
Total parameters: 250 (48 quantum + 202 classical).

C.7.2 Training Configuration

CQCL employs Supervised InfoNCE loss: LCQCL =−
∑

ilog[
∑

j∈P(i)exp(sim(zi,zj)/τ)/
∑

kexp(sim(zi,zk)/τ)]
where P(i) includes all samples with the same label as i. Adam optimizer uses separate learning rates: 1×10−3

for classical layers and 5×10−4 for quantum layers, with weight decay 1×10−4. Training consists of 1000
pre-training epochs (batch size 256) and 500 fine-tuning epochs (batch size 128). Data augmentation includes
all QCL augmentations plus Mixup (α = 0.2, classical features only) and CutOut (4 × 4 patches). Mixed-
precision training is used: FP16 for classical, and FP32 for quantum. The quantum-classical interface requires
normalization znorm =z/∥z∥ for amplitude encoding, with hybrid optimization using alternating updates (5
classical steps: 1 quantum step).
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C.8 Quantum-Classical GCL (QCGCL)

C.8.1 Architecture

QCGCL architecture initially uses 6 GAT convolutional layers to capture graph features with the following
configuration: GAT Layer 1 ([8 → 32], 4 heads, concat), Layer 2 ([128 → 64], 4 heads, concat), Layer 3 ([256 →
64], 2 heads, concat), Layer 4 ([128 → 32], 2 heads, concat), Layer 5 ([64 → 32], 1 head), and Layer 6 ([32 → 16],
1 head). Each GAT layer is followed by batch normalization, ReLU activation, and dropout (0.1). Residual
connections are applied around each layer for improved training. The graph-level embedding is achieved through
concatenated mean and max pooling, producing a 32-dimensional representation. A quantum circuit then
processes this pooled GNN output. We benchmarked QCGCL using 3 different quantum encoders, as depicted
in Table 1: (i) Variant 1 (RY+RX): 7 qubits with encoding |0⟩→H→RY (θi)→RX(ϕi), 6 variational layers
with RY(α) → RX(β) and circular CNOT entanglement (84 parameters); (ii) Variant 2 (RY): same structure
but only RY rotations (42 parameters); (iii) Variant 3 (Amplitude+RY): amplitude encoding followed by
RY-based variational circuit (42 parameters). The classical embedding (32-d) and quantum embedding (7-d)
are concatenated to form a 39-dimensional fused representation, which is processed through an MLP ([39 → 64
→ 32 → 2]) with ReLU and Dropout (0.1), followed by softmax for final prediction. Total parameters: 7,448
(varies by quantum encoding).

C.8.2 Training Configuration

QCGCL uses a combined loss function: LQCGCL = λ1LInfoNCE +λ2LBCE with λ1 = 0.5 (contrastive weight)
and λ2 =0.5 (classification weight), where InfoNCE uses temperature τ=0.1. AdamW optimizer is employed
with learning rate 1 × 10−3, weight decay 1 × 10−4, and CosineAnnealingWarmRestarts scheduler (T0=10
epochs, Tmult=2, ηmin =1×10−6). Training runs for 50 epochs with a batch size of 128, a 5-epoch warm-up,
and gradient clipping (max norm: 1.0). Data augmentation includes node dropping (0.1), edge perturbation
(0.05), feature masking (0.1), and graph mixup (α = 0.2). A multi-view contrastive strategy uses 3 views
(two classical augmented + one quantum-enhanced), with hard negative mining enabled (top 20% hardest
negatives). Regularization includes dropout (0.1) in all layers, batch normalization after each GAT layer,
attention dropout (0.1), and quantum parameter noise (σ = 0.01). Quantum circuits utilize statevector
simulation with parameter-shift differentiation and gate count optimization prior to execution.
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