
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT LLM COLLABORATION VIA PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, large language models (LLMs) have demonstrated strong performance,
ranging from simple to complex tasks. However, while large proprietary models
(e.g., models with over 100B parameters) achieve remarkable results across di-
verse tasks, they are often accessible through costly APIs, making frequent use
too costly for many applications. In contrast, small open-source models (e.g.,
models with fewer than 3B parameters) are freely available and easy to deploy
locally, but their performance on complex tasks remains limited. This trade-off
raises a natural question: how can small and large models efficiently collaborate
to combine their complementary strengths? To bridge this trade-off, we propose
COPE, a test-time collaboration framework. A planner model first generates a
plan, a high-level abstraction of the task, and this plan serves as a lightweight in-
termediate that guides a downstream executor model. Small and large models take
turns acting as planner and executor, exchanging plans in a multi-stage cascade to
collaboratively solve tasks. Through comprehensive experiments on benchmarks
spanning mathematical reasoning, code generation, open-ended tasks, and agent
tasks, we demonstrate that COPE achieves performance comparable to large pro-
prietary models, while drastically reducing the inference API cost. These results
highlight planning as an effective prior for cost-efficient inference.

1 INTRODUCTION

Large language models (LLMs) have achieved impressive performance on complex tasks (Rae et al.,
2021; Lewkowycz et al., 2022). However, deploying them at scale presents a critical trade-off be-
tween model capability and computational cost. As larger models continue to improve in capability,
they also grow increasingly costly to run (Achiam et al., 2023; Schick et al., 2023). Smaller models,
in contrast, are far more deployable, but their limited capacity hinders them on complex tasks (Ko-
jima et al., 2022; Wei et al., 2022).

This trade-off is especially clear in realistic deployment scenarios. Users typically interact with lan-
guage models via mobile or edge devices, which cannot host large models (Leviathan et al., 2023;
Chowdhery et al., 2023). Instead, large models often reside in the cloud and incur substantial infer-
ence costs. In this setting, relying solely on large models for every request is both economically and
practically infeasible. These constraints call for inference strategies that use small models whenever
possible and selectively leverage large models only when necessary. For clarity, we use the terms
free vs. costly, small vs. large, and weak vs. strong interchangeably to refer to models with different
capacities and cost characteristics, depending on context.

There are few methods that address cost-aware small-large model collaboration, where large models
are used sparingly at test time (Yue et al., 2023; Kolawole et al., 2024; Chen et al., 2023). These
methods essentially operate as cascades: a small model first attempts the task, and if its output fails
to satisfy a confidence-based criterion (e.g., majority voting threshold), the task escalates to the large
model in the next stage. However, they remain a form of independent delegation, as only one model
operates in each stage, without collaborating within a stage to produce outputs together. This limits
their ability to jointly perform complex tasks in a structured and interactive manner.

In contrast, we propose to structure this collaboration through planning. Instead of directly perform-
ing a task, a model first produces a high-level abstraction of the task (such as a goal or a guideline),
which we call a plan. A plan guides downstream execution by another model. This planning step

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

serves as a lightweight, transferable intermediate that allows models to scaffold each other’s think-
ing. Thus, we explore the following research question:

Research Question

Can planning function as a mediator of collaboration between large and small models for
efficient inference?

To answer this question, we introduce COPE (Collaborative Planning and Execution), a test-time
inference framework in which free and costly models share the roles of planner and executor. The
process begins with a free model attempting both planning and execution. If the model lacks con-
fidence in its output, planning and then execution are gradually escalated to a costly model. This
structure allows models to collaborate adaptively: easy tasks are handled by free models, and harder
tasks are handled by costly models.

COPE significantly reduces inference cost while matching or even surpassing the performance of
the larger model. For example, on the MATH-500 dataset, COPE achieves 75.8% accuracy (higher
than GPT-4o’s 75.2%) while reducing cost by nearly 45%. On the MBPP code generation bench-
mark, COPE improves accuracy to 66.4% compared to GPT-4o’s 64.0%, while cutting inference
cost by nearly 75%. Similar trends hold across diverse tasks including open-ended tasks and agent
tasks. These results highlight COPE as a broadly effective and scalable framework for efficient LLM
inference.

2 RELATED WORK

Planning for LLM inference. Planning has been primarily studied in robotics and vision-
language-action models as a core mechanism for structured decision-making (Kim et al., 2024;
Black et al., 2023). A high-level planning module decomposes a task into subgoals, which are then
carried out through low-level execution by downstream components. Planning can be seen as a
feature of System-2 thinking (Ji et al., 2025).

In contrast, planning remains relatively underexplored in the context of LLM inference. Wang et al.
propose the use of planning tokens prepended to each chain-of-thought step. However, this method
requires supervised training to learn the tokens and focuses on local step-wise annotations rather
than providing global guidance. Saha et al. (2025) introduce EvalPlanner, a framework for LLM-as-
a-Judge (Zheng et al., 2023) evaluation. Given a pair of responses, the model generates an evaluation
plan to structure its judgment. However, the plan is generated only after seeing the responses and
serves solely to structure the judgment process, not to guide generation. The method further requires
training on both planning and reasoning.

In our method, planning precedes execution in LLM inference. The plan is a purpose-driven repre-
sentation of the task (such as a goal or guideline). Here, planning is not learned and decoupled from
execution, so it serves as a lightweight interface between models of different capacities.

Test-time compute scaling. Test-time compute scaling (Snell et al., 2024) refers to how compu-
tational resources are allocated and utilized at inference time to improve accuracy. These efforts
typically fall into two directions: parallel sampling, which generates multiple outputs and selects
the best among them (Wei et al., 2022; Wang et al., 2022), and sequential sampling (or iterative
refinement), where a model revises its outputs over multiple passes (Madaan et al., 2023; Zelikman
et al., 2022; Lee et al., 2025; Kumar et al., 2024; Muennighoff et al., 2025).

These techniques typically aim to improve performance by allocating more compute to a single
model. However, they remain limited by the capacity of the model itself. Once a model’s abilities
are exceeded, performance saturates (Snell et al., 2024). This motivates a different approach: rather
than pushing a single model further, we explore collaboration across models of different capacities.
This form of cross-model scaling can be seen as a new axis of test-time compute scaling.

Cost-aware LLM inference. Some recent approaches aim to reduce the cost of LLM inference
by using costly models only when necessary. Given a problem, LLM Cascade (Yue et al., 2023)
samples multiple answers from a free model and estimates consensus ratio, which is the degree

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Accuracy (%) of model combinations on the MATH-500
dataset. ‘Base’ shows accuracy without a planner; other columns
use GPT-mini, Llama-3B, or Llama-1B as planners.

Executor Base GPT-mini Llama-3B Llama-1B
GPT-mini 73.8 76.2 70.6 69.6
Llama-3B 42.8 53.0 37.6 32.8
Llama-1B 25.2 36.4 26.0 23.2

Table 2: Accuracy of Llama-
1B with different plan types
on the MATH-500 dataset.

Plan Type Accuracy (%)
None 25.2
Guideline 23.2
Goal 30.2

of agreement among the answers. If the consensus ratio fails to meet a criterion, the problem is
escalated to a costly model. It leverages few-shot examples with a mixture of reasoning formats
(Chain of Thought (CoT) and Program of Thought (PoT)). ABC (Kolawole et al., 2024) routes
among multiple models without relying on curated few-shot examples. FrugalGPT (Chen et al.,
2023) trains a lightweight scoring function for a routing policy. However, the limited capacity of the
scoring function may hinder performance on complex tasks. In contrast, our method requires neither
few-shot examples nor training, and it extends beyond reasoning to open-ended and agent tasks.

3 MOTIVATION

In this section, we hypothesize that generating a simple plan can guide downstream execution (e.g.,
reasoning), and introduce motivational examples and the insights drawn from them. In this work, a
plan refers to a high-level abstraction of the task. More precisely, it is a purpose-oriented represen-
tation that serves as a guide for execution (refer to Figure 2).

Given a task, we first prompt the planner model to generate a brief guideline, typically one or two
sentences, that outlines how to approach the task. This guideline is then provided, along with the
original task, to the executor model. The following observations illustrate how this planning stage
enables collaboration between models.

We use Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and GPT-4o-mini, hereafter referred to as
Llama-1B, Llama-3B, and GPT-mini, respectively. Llama-1B and Llama-3B are open-source and
freely accessible, while GPT-mini is accessed via a paid API.

Observation 1. Larger planners help smaller executors.

We begin by examining whether larger models can improve the performance of smaller ones by pro-
viding plans. As shown in Table 1, when a larger model acts as a planner for a smaller executor, such
as GPT-mini planning for Llama-3B or Llama-3B planning for Llama-1B, the executor’s accuracy
improves over the no-plan baseline. For example, Llama-3B achieves 42.8% accuracy without plan-
ning, which rises to 53.0% when guided by GPT-mini. Likewise, Llama-1B improves from 25.2%
to 36.4% when using plans from Llama-3B. This suggests that larger models are effective at guiding
smaller models through planning.

Observation 2. Smaller planners degrade larger executors.

We next examine whether smaller models can effectively serve as planners for larger executors.
As shown in Table 1, when smaller models such as Llama-1B or Llama-3B act as planners for
larger models like GPT-mini or Llama-3B, the resulting performance is often lower than the no-plan
baseline. For instance, GPT-mini achieves 73.8% without a plan, but drops to 70.6% and 69.6%
when using plans from Llama-3B and Llama-1B, respectively. This suggests that low-quality plans
generated by smaller models can hinder the execution ability of larger models.

Observation 3. A model benefits from plans aligned with its capacity.

We investigate whether a model can effectively act as their own planners, i.e., given a task, the
model first generates a plan and then performs the task based on the plan. For large models such as
GPT-mini, self-generated plans improve performance: GPT-mini achieves 73.8% accuracy without
planning, which increases to 76.2% when using its own plans (Table 1). This suggests that large
models can successfully scaffold their own execution through planning. In contrast, small models

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overall framework of COPE. The system proceeds in up to three stages of inference,
where small and large models alternate roles as planner and executor. In each stage, given a task,
a plan is generated by the planner, and the executor produces candidate outputs. If a task-specific
confidence falls below the stage threshold, the task escalates to the next stage. Plans generated in
earlier stages are retained and reused in later stages.

show mixed results when acting as their own planners. For example, Llama-1B performs worse with
self-generated plans (23.2%) than with no plan at all (25.2%).

To explore whether simpler planning might help, we prompt the model to generate a goal (what to
achieve) rather than a guideline (how to solve the task) as before. In this setting, accuracy improved
to 30.2% (Table 2). This suggests that planning must be tailored to the model’s capacity: small
models benefit more from simpler, purpose-oriented abstractions than from complex instructions.

These findings motivate a broader framework where planning functions as a modular component in
test-time collaboration.

4 METHOD

We introduce COPE, a collaborative inference framework in which small and large models alter-
nate roles as planners and executors across multiple stages. The core idea is to structure model
collaboration by first generating an intermediate plan, which then guides downstream execution.
Figure 1 illustrates the overall structure of COPE. Figure 2 shows an example of plan generation and
execution based on that plan.

COPE operates in three stages. In Stage 1, a small model attempts to perform the task on its own
by generating both a plan and an output. In Stage 2, a large model provides a new plan, and the
small model reattempts execution with this guidance. In Stage 3, the large model assumes both roles
to directly perform the task. Each stage is triggered only when the previous stage fails to reach
sufficient confidence, enabling adaptive allocation of compute. Here, confidence is a general notion
that can be instantiated in different ways depending on the task (e.g., majority voting for reasoning,
test case pass rate for coding, perplexity for open-ended generation). Below we describe each stage
in detail, focusing on majority voting as the confidence measure for reasoning tasks.

Stage 1: small model planning and execution In Stage 1, the small model acts as both planner
and executor. Given a problem x, it first samples n goal-type plans g1, . . . , gn ∼ Psmall(g | x).
For each plan gi, it then generates a solution yi ∼ Psmall(y | x, gi), and extracts the corresponding
answer ai = f(yi), where f denotes an answer extraction function.

The final answer is determined by majority vote over the answer set A := {a1, . . . , an}, treating
agreement among solutions as an indicator of correctness (Wang et al., 2022; Du et al., 2023). The
consensus ratio, defined as the fraction of samples agreeing on the most frequent answer, serves as
the confidence score:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Vanilla

Problem: You had 7 bags of gold coins, each containing the same number
of coins. You found another bag that contained 53 coins, and you
decided to redistribute all your coins evenly across the 8 bags.
You successfully did this, and you also know that the total number
of coins you have is more than 200. What is the smallest number of
coins you could have had before finding the extra bag?
Solution (executor): Step 1: Determine the Target Number of Coins per
Bag. Since you end up with eight bags and all bags have the same
number of coins, let x be the number of coins in each of the
original seven bags. After adding the 53 coins, the total number of
coins becomes 8x. Thus, we have: 7x+ 53 = 8x [...]

COPE

Problem: You have seven bags of gold coins. [...]
Guideline (planner): You want to redistribute these coins into 8 bags,
meaning 7x+ 53 must be divisible by 8. Then, set up the equation
7x+ 53 ≥ 201 to ensure you have more than 200 coins. Solve for x to
find the smallest integer that satisfies both conditions.
Solution (executor): Step 1: Set up the divisibility condition. The
total coins 7x+ 53 must be divisible by 8. This can be expressed
as: 7x+ 53 ≡ 0 (mod 8). Simplifying modulo 8: 7x+ 53 ≡ 7x+ 5 ≡ 0 (mod 8),
7x ≡ −5 (mod 8). Since −5 ≡ 3 (mod 8): 7x ≡ 3 (mod 8). [...] Step 3:
Ensure 7x+ 53 > 200. Substitute x = 8k + 5 into the inequality: [...]
The smallest integer k that satisfies this inequality is k = 3.
Therefore, the total number of coins before finding the bag of 53
coins is: 7x = 7× 29 = 203. Thus, the smallest number of coins you
could have had before finding the bag of 53 coins is: 203

Figure 2: Comparison between vanilla inference and planning-guided inference with COPE. The
vanilla model fails to account for the divisibility and inequality constraints, leading to incorrect
reasoning (red). In contrast, COPE’s planner highlights these constraints explicitly (green), allowing
the executor to follow a structured solution path.

Consensus(A) :=
maxa′∈A |{i : ai = a′}|

n
. (1)

If the consensus exceeds a threshold τ1, the answer is accepted. Otherwise, the problem is escalated
to the next stage. In that case, one of the plans gi that produced the majority-voted answer is
randomly selected and designated as gS, which is passed to Stage 2.

Stage 2: large model planning, small model execution If Stage 1 fails to produce a confident
answer, Stage 2 begins with the large model generating a new guideline-type plan gL ∼ Plarge(g | x).
This plan is passed to the small model, which then attempts to solve the problem again by leveraging
both the original plan gS from Stage 1 and the new plan gL. These two plans are provided jointly as
input to the small model in the prompt.

Then, the small model generates a solution yi ∼ Psmall(y | x, gS, gL) and corresponding answer
ai = f(yi). Majority voting is applied over the answer set {a1, . . . , an} as in Stage 1. If the
consensus ratio exceeds a second threshold τ2, the answer is accepted. Otherwise, the problem is
escalated to Stage 3.

Stage 3: large model planning and execution If the small model still fails in Stage 2, the problem
is escalated to Stage 3. Here, the large model takes full control of both planning and execution.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: Performance on the MATH-500 dataset for mathematical reasoning.

Small Large Method Shot Train Total

Acc ↑ Cost ↓

EXAONE-3.5
-2.4B

– Small (single) Zero × 52.8 –
– Small (majority) Zero × 65.2 –

GPT-4o

Large Zero × 75.2 5025
Cascade (vote) Few × 72.4 3017
Cascade (verify) Few × 73.0 3021
ABC Zero × 74.4 4297
FrugalGPT Few ✓ 68.0 4163
COPE (ours) Zero × 75.8 2766

GPT-4o
-mini

Large Zero × 73.8 355
Cascade (vote) Few × 70.6 224
Cascade (verify) Few × 72.2 250
ABC Zero × 72.4 304
FrugalGPT Few ✓ 65.6 298
COPE (ours) Zero × 74.4 212

Qwen-2.5
-1.5B

– Small (single) Zero × 49.0 –
– Small (majority) Zero × 58.0 –

GPT-4o

Large Zero × 75.2 5025
Cascade (vote) Few × 71.4 5150
Cascade (verify) Few × 72.6 5046
ABC Zero × 72.6 4723
FrugalGPT Few ✓ 68.2 5472
COPE (ours) Zero × 75.2 3725

GPT-4o
-mini

Large Zero × 73.8 355
Cascade (vote) Few × 71.6 327
Cascade (verify) Few × 72.8 319
ABC Zero × 72.0 298
FrugalGPT Few ✓ 69.4 349
COPE (ours) Zero × 74.0 285

Specifically, it reuses the plan gL that it generated in Stage 2, and samples y ∼ Plarge(y | x, gL). The
final answer is extracted as a = f(y). Since this is the final stage, no further escalation occurs, and
the answer is returned as the system’s output.

5 EXPERIMENTS

We evaluate COPE on multiple tasks spanning mathematical reasoning, code generation, open-
ended tasks, and agent tasks. We find n = 8, τ1 = 0.75, and τ2 = 0.5 are effective in many
of experiments. Please refer to the empirical study on the effect of these hyperparameters in Ap-
pendix A.

Baselines. We compare COPE against several recent methods for cost-aware inference. We im-
plement the method proposed in Yue et al. (2023), referred to as Cascade. Cascade includes two
decision strategies: vote and verify. In the vote setting, multiple answers are sampled from two dif-
ferent few-shot prompts, and the final answer is selected by majority voting across all the answers. If
the consensus ratio exceeds a threshold, the answer is accepted. Otherwise, the problem is escalated
to a stronger LLM. In the verify setting, majority voting is applied separately to answers from each
few-shot prompt, and the final decision is accepted only if the two majority-voted answers agree.
Otherwise, the problem is escalated to the stronger LLM.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 4: Performance on the AIME-2024 dataset for mathematical reasoning.

Method Shot Train Acc ↑ Cost ↓
Small (single) Zero × 3.33 –
Small (majority) Zero × 6.67 –

Large Zero × 33.3 502
Cascade (vote) Few × 23.3 568
Cascade (verify) Few × 26.6 570
ABC Zero × 33.3 485
FrugalGPT Few ✓ 33.3 513
COPE (ours) Zero × 40.0 478

ABC (Kolawole et al., 2024) is another agreement-based method. Unlike Cascade, it does not rely on
curated few-shot exemplars. Instead, it proceeds through multiple stages with progressively stronger
models as the stages advance. We report results using three models, following the original setup.

FrugalGPT (Chen et al., 2023) trains a lightweight scoring function which is implemented with
DistilBERT (Sanh et al., 2019). Specifically, the scoring function is trained to estimate whether an
answer is correct for a given problem. A routing policy based on the score decides whether to accept
the answer or escalate to a stronger model.

We also consider three simpler baselines. The first uses only the small model in a single-pass setting
without any sampling or aggregation (Small (single)). The second baseline uses the small model
to generate multiple outputs and applies majority voting to select the most frequent answer (Small
(majority)). The third baseline runs the large model once without planning or verification (Large).
For each task, we evaluate against the baselines that are applicable to that task.

5.1 MATHEMATICAL REASONING

Datasets and models. We use the MATH-500 dataset (Lightman et al., 2023) and the AIME-
2024 dataset (Art of Problem Solving, 2024). MATH-500 is a filtered subset of the MATH
dataset (Hendrycks et al., 2021) consisting of 500 math problems. The problems cover a broad
range of topics and difficulty levels. Compared to MATH-500, AIME-2024 is a more challenging
benchmark. AIME-2024 consists of 30 curated olympiad-level problems.

We use EXAONE-3.5-2.4B-Instruct (Research, 2024) and Qwen-2.5-1.5B-Instruct (Team, 2024) as
the small models, and GPT-4o and GPT-4o-mini as the large models. For the more challenging
AIME-2024 dataset, considering the increased difficulty of the problems, we use Qwen-2.5-3B-
Instruct as the small model, and Gemini-2.0-Flash as the large model. For ABC, which requires
three models, we additionally include Qwen-2.5-0.5B-Instruct alongside the above models.

Evaluation metrics. We evaluate accuracy (%) using exact match. For mathematical answers, we
use symbolic comparison to accept equivalent expressions (e.g., 1/2 and 0.5). For non-mathematical
outputs, exact string match is used. For cost, we use the actual per-problem API price based on real-
world model pricing (OpenAI, 2025; Google DeepMind, 2024). We scale the values by one million
for readability, reporting cost in USD per million problems.

Results. Table 3 shows that COPE outperforms the large model baseline in overall accuracy, with
75.8% vs. 75.2% for GPT-4o and 74.4% vs. 73.8% for GPT-4o-mini. This suggests that collab-
orative planning enables small models to solve certain problems that large models alone cannot.
COPE also reduces inference cost significantly, with 2766 compared to 5025 for GPT-4o, and 212
compared to 355 for GPT-4o-mini. This corresponds to nearly a 50% reduction in cost while main-
taining or improving accuracy. Moreover, COPE consistently outperforms few-shot, multi-model,
and training-based baselines in both accuracy and cost.

In Table 4, COPE achieves the highest accuracy while incurring the lowest cost, outperforming
the baselines. This suggests that COPE excels even on significantly more difficult reasoning tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Performance on the MBPP dataset for code generation tasks.

Small Large Method Shot Train Total

Acc ↑ Cost ↓

EXAONE-3.5
-2.4B

– Small (single) Zero × 42.2 –
– Small (multi) Zero × 57.2 –

GPT-4o

Large Zero × 64.0 4889
Cascade Few × 64.6 2706
ABC Zero × 63.2 1267
FrugalGPT Few ✓ 63.6 4012
COPE (ours) Zero × 66.4 1279

GPT-4o
-mini

Large Zero × 57.6 276
Cascade Few × 59.2 159
ABC Zero × 59.4 80
FrugalGPT Few ✓ 53.4 240
COPE (ours) Zero × 62.2 77

Qwen-2.5
-1.5B

– Small (single) Zero × 38.6 –
– Small (multi) Zero × 54.2 –

GPT-4o

Large Zero × 64.0 4889
Cascade Few × 62.2 2263
ABC Zero × 62.6 1542
FrugalGPT Few ✓ 59.4 5029
COPE (ours) Zero × 66.2 1469

GPT-4o
-mini

Large Zero × 57.6 276
Cascade Few × 57.4 147
ABC Zero × 59.2 96
FrugalGPT Few ✓ 57.2 493
COPE (ours) Zero × 61.4 94

Compared to Table 3, the performance gap between the Small baselines and COPE is larger on these
harder problems, which is consistent with the difficulty-based analysis in Appendix A.2.

5.2 CODE GENERATION

For code generation, we adopt a pass-based evaluation instead of majority voting, since multiple
correct outputs may differ syntactically. Each generated output is executed against the task’s test
cases. If at least one output passes all test cases, a passing output is randomly selected as the final
output. Otherwise, the task is escalated to the next stage.

Datasets and models. We use the 500-problem test set of the MBPP dataset (Austin et al., 2021),
which consists of crowd-sourced Python code generation tasks. Each task includes a natural lan-
guage task description and test cases. We use EXAONE-3.5-2.4B-Instruct and Qwen-2.5-1.5B-
Instruct as the small models, and GPT-4o and GPT-4o-mini as the large models.

Evaluation metrics. We evaluate performance using the separate hidden test cases from the
MBPP-ET dataset (Dong et al., 2025). A generated program is considered correct if it passes all
hidden test cases.

Results. Table 5 reports the results on code generation. We find that, due to its limited capacity,
the scoring function of FrugalGPT is difficult to train effectively on complex tasks. COPE achieves
both the highest accuracy and the lowest cost. This shows that the benefits of collaborative planning
extend beyond mathematical reasoning.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Performance on the MT-Bench dataset
for open-ended tasks.

Method Win rate (%) ↑ Cost ↓
Large 35.0 225
COPE (ours) 36.9 160

Table 7: Performance on the ALFWorld bench-
mark for agent tasks.

Method Success rate ↑ Cost ↓
Large 42.5 11.06
COPE (ours) 44.8 8.64

5.3 OPEN-ENDED TASKS

To examine whether COPE extends beyond reasoning domains, we further evaluate it on open-ended
tasks. In each stage, the small model generates multiple candidate outputs. The one with the lowest
perplexity is selected as the final answer. If this perplexity is above a threshold, indicating low
confidence, the task is escalated to the next stage.

Datasets and models. We use the MT-Bench dataset (Zheng et al., 2023), which consists of multi-
turn open-ended prompts spanning domains such as writing and roleplay. We use EXAONE-3.5-
2.4B-Instruct as the small model, GPT-4o-mini as the large model, and GPT-4o as the judge model.

Evaluation metrics. Since open-ended tasks lack unique ground-truth answers, we adopt the
LLM-as-a-Judge protocol from MT-Bench (Zheng et al., 2023). A judge model compares two re-
sponses and assigns a win, loss, or tie. We report the win rate between COPE and the large model.
We alternate the positions of outputs in pairwise comparisons to mitigate positional bias.

Results. Table 6 reports the win rate and inference cost on MT-Bench. COPE achieves a higher
win rate than the large model baseline with much lower inference cost. Specifically, COPE obtains
36.9% wins, 28.1% ties, and 35.0% losses against the large model. This highlights that perplexity
can serve as an effective confidence signal, and that COPE is applicable even to open-ended tasks.

5.4 AGENT TASKS

We further demonstrate the effectiveness of COPE on agent tasks, which require multi-step decision-
making. At every action step, the planner and executor collaborate to decide on next action, where
the consensus status is determined by majority voting.

Datasets and models. We conduct experiments on the evaluation split of the ALFWorld bench-
mark (Shridhar et al., 2020), which comprises 134 household tasks. In this benchmark, an LLM
is employed as an agent, and it must predict actions over multiple steps by interacting with a text-
based simulator. If the LLM-based agent successfully achieves the task, it receives the reward of
1.0; otherwise, 0.0. We use Qwen3-8B as the small model and GPT-4.1 as the large model.

Evaluation metrics. We report the success rate, which measures the percentage of tasks success-
fully resolved by the agent. In addition, we report the cost in USD, representing the total expense of
running the evaluation on all 134 tasks.

Results. Table 7 shows that COPE improves success rate while substantially reducing cost. This
demonstrates the effectiveness of COPE in agent tasks, where cost-efficiency is critical due to the
long sequence of actions.

6 CONCLUSIONS

We introduce COPE, a test-time inference framework where small and large language models col-
laborate via planning. COPE improves accuracy and reduces cost by exchanging lightweight plans
across planner-executor roles, without relying on few-shot exemplars or additional training. Across
diverse benchmarks, COPE consistently outperforms prior baselines and large models alone, while
significantly cutting inference cost. These findings highlight planning as a key mediator of efficient
cross-model collaboration, even when human priors or training data are unavailable.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. All datasets used are publicly available, and no
human subjects or private data were involved. All models were used under their respective licenses
(see Appendix D).

8 REPRODUCIBILITY STATEMENT

We provide details of datasets, model versions, prompts, and hyperparameters in the main text and
appendices (see Appendix C and Appendix G). Code is released as the supplementary material to
enable replication of results.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Art of Problem Solving. AIME Problems and Solutions. https://artofproblemsolving.
com/wiki/index.php/AIME_Problems_and_Solutions, 2024. Accessed: 2025-05-
19.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Edward Beeching, Lewis Tunstall, and Sasha Rush. Scaling test-time compute with
open models. URL https://huggingface.co/spaces/HuggingFaceH4/
blogpost-scaling-test-time-compute.

Kevin Black, Mitsuhiko Nakamoto, Pranav Atreya, Homer Walke, Chelsea Finn, Aviral Kumar, and
Sergey Levine. Zero-shot robotic manipulation with pretrained image-editing diffusion models.
arXiv preprint arXiv:2310.10639, 2023.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on
mixture of experts. arXiv preprint arXiv:2407.06204, 2024.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Yihong Dong, Jiazheng Ding, Xue Jiang, Ge Li, Zhuo Li, and Zhi Jin. Codescore: Evaluating
code generation by learning code execution. ACM Transactions on Software Engineering and
Methodology, 34(3):1–22, 2025.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
tuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2023.

Google DeepMind. Gemini api pricing, 2024. URL https://ai.google.dev/
gemini-api/docs/pricing. Accessed: 2025-05-19.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Jia Xu, Linjian Mo, and Min Zhang. Test-time computing:
from system-1 thinking to system-2 thinking. arXiv preprint arXiv:2501.02497, 2025.

10

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://ai.google.dev/gemini-api/docs/pricing
https://ai.google.dev/gemini-api/docs/pricing

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214, 1994.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Steven Kolawole, Don Dennis, Ameet Talwalkar, and Virginia Smith. Agreement-based cascading
for efficient inference. arXiv preprint arXiv:2407.02348, 2024.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Hyunseok Lee, Seunghyuk Oh, Jaehyung Kim, Jinwoo Shin, and Jihoon Tack. Revise: Learning to
refine at test-time via intrinsic self-verification. arXiv preprint arXiv:2502.14565, 2025.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

OpenAI. Openai api pricing. https://platform.openai.com/docs/pricing, 2025.
Accessed: 2025-05-13.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

LG AI Research. Exaone 3.5: Series of large language models for real-world use cases. arXiv
preprint arXiv:https://arxiv.org/abs/2412.04862, 2024.

Swarnadeep Saha, Xian Li, Marjan Ghazvininejad, Jason Weston, and Tianlu Wang. Learning to
plan & reason for evaluation with thinking-llm-as-a-judge. arXiv preprint arXiv:2501.18099,
2025.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–
68551, 2023.

11

https://platform.openai.com/docs/pricing

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, and Alessandro Sordoni. Guid-
ing language model reasoning with planning tokens, december 2023b. URL http://arxiv.
org/abs/2310.05707.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu Yao. Large language model cascades with
mixture of thoughts representations for cost-efficient reasoning. arXiv preprint arXiv:2310.03094,
2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

12

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 8: Truncated COPE. Using COPE with only Stage 1 and Stage 2 yields a dramatic reduction
in inference cost.

Setting Accuracy (%) Cost
Large 73.8 355
COPE (S1+S2+S3) 74.4 212
COPE (S1+S2) 71.8 50

Table 9: Performance by difficulty. Improvements are larger for more difficult problems.

Method Level 1–2 Level 3–4 Level 5 Total

Acc Cost Acc Cost Acc Cost Acc ↑ Cost ↓
Small (single) 78.9 – 54.9 – 23.1 – 52.8 –

Small (majority) 86.5 – 70.8 – 34.3 – 65.2 –

COPE (ours) 91.0 70 79.8 190 49.3 392 74.4 212

A EMPIRICAL STUDY

All experiments in this section are conducted on the MATH-500 dataset using EXAONE-3.5-2.4B-
Instruct as the small model and GPT-4o-mini as the large model.

A.1 TRUNCATING AT STAGE 2: BALANCING EFFICIENCY AND ACCURACY

In Table 8, we compare three settings: a large model alone, full 3-stage COPE, and a truncated
version that stops at Stage 2.

The 2-stage variant yields a dramatic reduction in inference cost (202 vs 50) while maintaining com-
petitive accuracy (74.4% vs. 71.8%). This shows that, in many cases, the small model, once guided
by a plan from the large model in Stage 2, produces reliable answers without further escalation.

This makes the truncated version a practical alternative when minimizing inference cost is a priority,
offering a strong balance between performance and efficiency.

A.2 PERFORMANCE BY DIFFICULTY

Table 9 shows the performance breakdown by difficulty level. Compared to the Small (majority)
baseline, COPE achieves consistent improvements across all segments. On the easiest Level 1–2
problems, accuracy increases from 86.5% to 91.0% (+4.5). For intermediate Level 3–4 problems,
the gain is larger, from 70.8% to 79.8% (+9.0). The improvement is most pronounced on the most
challenging Level 5 problems, where accuracy rises from 34.3% to 49.3% (+15.0). These results
indicate that the benefits of COPE become more significant as problem difficulty increases.

A.3 EFFECT OF SAMPLE COUNT ON VOTING STABILITY

In Table 10, we study how the number of sampled solutions n influences performance in our frame-
work. Since the final answer is selected via majority voting under a consensus threshold, increasing
n does not always lead to higher overall accuracy. However, it introduces greater diversity in the
reasoning paths explored, allowing the model to consider a broader range of plausible solutions.

Moreover, increasing n improves the stability and reliability of voting outcomes. With more sam-
ples, the consensus ratio becomes less sensitive to sampling noise, and the decisions become more
consistent. We observe that the conditional accuracy under consensus also increases with n, sug-
gesting that when agreement is reached, it is more likely to reflect a correct answer. Overall, larger
sample counts enhance both the breadth of exploration and the trustworthiness of decisions.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 10: Effect of number of samples n on accuracy and conditional accuracy under consensus.

n Accuracy (%) Accuracy
@ Consensus (%)

4 71.4 78.5
8 74.4 84.1

32 74.4 85.7

Table 11: Effect of consensus thresholds. Each row shows the number of problems resolved in each
stage under different threshold settings for Stage 1 and Stage 2.

Threshold Resolved Problems Results
Stage 1 Stage 2 Stage 1 Stage 2 Stage 3 Accuracy (%) Cost

0.5 0.5 312 72 116 70.0 173
0.5 0.75 326 37 137 70.8 175
0.75 0.5 204 150 146 74.4 212
0.75 0.75 205 96 199 74.2 258

A.4 EFFECT OF CONSENSUS THRESHOLD

Table 11 shows how varying the consensus thresholds in Stage 1 and Stage 2 affects both accuracy
and cost. When both thresholds are low (e.g., 0.5/0.5), the small model tends to accept answers even
when the agreement among solutions is weak. This leads to lower cost, since fewer problems are
escalated, but often results in reduced accuracy due to incorrect answers being accepted too early.

On the other hand, setting both thresholds high (e.g., 0.75/0.75) makes the system more cautious, es-
calating more problems to the large model. While this improves accuracy, it also increases inference
cost. Among the tested combinations, the 0.75/0.5 setting offers a more favorable balance. This
threshold configuration effectively reduces unnecessary use of the large model, without sacrificing
much in terms of final accuracy.

A.5 ERROR BARS

We report error bars in Table 12 as standard deviations computed over five independent runs with
different random seeds.

B THEORETICAL INTERPRETATION

Each inference stage (Figure 3) follows three steps: (i) sample a plan g, (ii) generate a solution y
conditioned on g, and (iii) aggregate the extracted answers by majority vote. We formalize the first
stage (the template for all stages) with a concise latent-variable model.

Latent variable model We formalize prediction as computing the most likely answer a = f(y),
where y is a solution and x is the input problem:

â = f

(
argmax

y
P (y | x)

)
, (2)

where f(·) denotes an answer extraction function that maps a complete solution y (e.g., a reasoning
trace) to its final answer a (e.g., a scalar result).

Although one could sample solutions directly from P (y | x), we instead introduce a latent plan g to
structure the generation process. This yields the decomposition:

P (y | x) =
∑
g

P (y | g, x) · P (g | x). (3)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 12: Mean accuracy and cost (with standard deviation).

Method Acc ↑ Cost ↓
Large 73.8 ± 0.93 355 ± 3.4
COPE (ours) 74.4 ± 0.88 207 ± 6.0

Figure 3: Common inference module in COPE.

This decomposition enables exploration of diverse reasoning strategies, each corresponding to a
distinct plan. We sample from the resulting process by drawing gi ∼ P (g | x) and then yi ∼ P (y |
gi, x).

This process yields a set of solutions y1, . . . , yn sampled from P (y | x). From each, we extract an
answer ai = f(yi). We then approximate the objective in Eq. equation 2 via majority voting:

f

(
argmax

y
P (y | x)

)
≈ mode(f(y1), . . . , f(yn)). (4)

This procedure offers a simple approximation to the most likely answer under P (y | x). Since
higher-probability yi are sampled more often, their corresponding answers f(yi) dominate the vote.
The latent plan g encourages diversity by inducing varied reasoning strategies. This improves ro-
bustness, helping recover correct answers that might be missed by direct decoding.

Bayesian inference From a Bayesian perspective, we are interested in the posterior predictive
distribution P (a | x) over answers:∑

g

∫
y

δ(f(y) = a)P (y | g, x)P (g | x) dy, (5)

where P (g | x) serves as a prior over plans and P (y | g, x) is the likelihood of a solution path.

We approximate this distribution via Monte Carlo sampling: gi ∼ P (g | x), yi ∼ P (y | gi, x), and
set ai = f(yi). Majority voting over {ai} yields an estimate â ≈ argmaxa P (a | x).
We treat the consensus ratio as an empirical estimate of P (a = â | x), and use it to decide whether
to accept the prediction or escalate.

Mixture-of-experts (MoE) Our approach shares several structural similarities with MoE mod-
els (Jordan & Jacobs, 1994; Cai et al., 2024):

First, sampling a plan g ∼ P (g | x) corresponds to selecting an expert based on the input, akin to
input-dependent gating. Second, each plan defines a distinct strategy for solving the problem, much
like how individual experts specialize in different regions of the input space. Third, given a selected
plan, the model generates a solution via P (y | g, x), which parallels how an expert produces an
output conditioned on its assignment.

C FURTHER IMPLEMENTATION DETAILS

We conduct all experiments using 8 NVIDIA RTX-3090 GPUs. Our implementation builds upon
and modifies the codebase from the search-and-learn repository by Hugging Face (Beeching
et al.). We provide our code in the supplementary material.

Model version We use the default API versions of each large model and ensure consistency across
all experiments. Specifically, GPT-4o-2024-08-06 is used for GPT-4o, GPT-4o-mini-2024-07-16 for
GPT-4o-mini, and Gemini-2.0-Flash-001 for Gemini-2.0-Flash.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Hyperparameters For code generation, we use a batch size of 32, and for mathematical reasoning,
a batch size of 160. In COPE, decoding temperatures are set as follows: in Stage 1, the planner uses
a temperature of 0.8 and the executor uses 0.4; in Stage 2, both the planner and executor use 0.8;
and in Stage 3, the executor uses greedy decoding (temperature = 0).

Prompts For mathematical reasoning, we adopt the system prompt from Beeching et al. for the
executor. All other prompts, including those for planners are designed by us. The system prompts
are provided in Appendix G.

D LICENSE

We use GPT-4o and GPT-4o-mini via their official APIs, which are subject to OpenAI’s commercial
license. LLaMA, EXAONE, Qwen models are used under Llama 3.2 Community License Agree-
ment, EXAONE AI Model License Agreement, and Apache license 2.0, respectively. All datasets
used in this work are publicly available and used under their respective licenses.

E BROADER IMPACT

As AI systems increasingly span both edge devices and the cloud, collaborative inference frame-
works like COPE may help shape efficient and scalable deployment strategies. By reducing unnec-
essary compute, this approach can also contribute to more sustainable AI usage.

In addition, COPE reduces reliance on expensive proprietary models, making high-quality language
model inference more accessible to users with limited resources. This may support broader adoption
of AI tools across diverse settings, including education, research, and local deployment.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

F QUALITATIVE EXAMPLES

Vanilla

Problem: Six cars pull up to a red light, one at a time. At the light, there are three
lanes, one left-turn lane, one straight-going lane, and one right-turn lane. How many
ways can the cars stack up so that all three lanes are occupied? Note that if the
first car turns left and the second goes straight, this is considered different from
the first car going straight and the second car turning left. In other words, the cars
are distinguishable, but pull up to the intersection in a fixed order.

Solution (executor): To solve this problem, we need to determine the number of ways six
distinguishable cars can be arranged such that each lane (left-turn, straight-going,
right-turn) is occupied by exactly one car. Step-by-Step Solution: Step 1: Assigning
Cars to Lanes Since there are three lanes and six cars, one lane will remain empty. We
need to choose which lane will be empty. There are 3 ways to choose which lane will
be empty (left-turn, straight-going, or right-turn). Step 2: Arranging Cars in Chosen
Lanes Once we have chosen which lane will be empty, we need to arrange the remaining
five cars in the three lanes. The number of ways to arrange n distinguishable objects
in k distinguishable bins is given by kn. Here, we have 5 cars to arrange in 3 lanes:
35 = 243 Step 3: Combining Both Steps Since there are 3 ways to choose which lane will
be empty and for each choice, there are 35 ways to arrange the cars in the remaining
lanes: 3 × 243 = 729 Therefore, the total number of ways the cars can stack up so that

all three lanes are occupied is: 729

COPE

Problem: Six cars pull up to a red light, one at a time. [...]

Goal (planner): The goal of the problem is to determine the number of distinct permutations
of six distinguishable cars parking in three lanes (left turn, straight, right turn)
such that each lane is occupied by at least one car.

Guideline (planner): To solve this problem, first determine the total number of ways to
assign the cars to the three lanes such that each lane has at least one car. This
can be achieved using the principle of inclusion-exclusion: calculate the total
arrangements of cars in the lanes, subtract the arrangements where at least one lane
is empty, and then add back arrangements where two lanes are empty. Finally, ensure
that each arrangement respects the order of the cars.

Solution (executor): To solve this problem efficiently using combinatorial principles, we
need to ensure that each lane (left-turn, straight-going, right-turn) has at least
one car while accommodating six distinguishable cars in three lanes sequentially.
Step-by-Step Solution: Step 1: Total Arrangements Without Restrictions. First,
calculate the total number of ways to assign six cars into three lanes without any
restrictions. Each car has 3 choices (left, straight, right): 36 = 729. Step 2:
Subtract Arrangements Where At Least One Lane is Empty. Next, subtract the cases
where at least one lane is empty. We use the principle of inclusion-exclusion for this
purpose: One Lane Empty: Choose which lane is empty (3 ways), and distribute the cars
among the remaining two lanes (26 ways for each choice):

(3
1

)
· 26 = 3 · 64 = 192. Two

Lanes Empty: Choose which two lanes are empty (
(3
2

)
ways), and place all cars into the

remaining lane (1 way):
(3
2

)
·16 = 3 ·1 = 3. Using inclusion-exclusion: 729−192+3 = 540.

Step 3: Ensure Each Lane Has At Least One Car. Since we already ensured each lane had
at least one car through subtraction in Step 2, no further adjustment is needed here.
Conclusion. Therefore, the number of ways to stack up the six cars such that all three

lanes are occupied is: 540

Figure 4: Comparison between vanilla and COPE inference on a MATH-500 problem. The
vanilla solution (left), generated by EXAONE-3.5-2.4B-Instruct, results in incorrect rea-
soning (red). In contrast, COPE combines a goal from the same model with a guideline from
GPT-4o-mini, highlighting key constraints (green) and guiding the executor to a correct solu-
tion.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Vanilla

Problem: Suppose a and b are different prime numbers greater than 2. How many
whole-number divisors are there for the integer a(2a + b) − 2a2 + ab?

Solution (executor): To determine the number of whole-number divisors of the integer N =
a(2a + b) − 2a2 + ab, where a and b are distinct prime numbers greater than 2, we start by
simplifying N. Step 1: Simplify N. First, let’s rewrite N: N = a(2a + b) − 2a2 + ab.
Expanding and combining like terms: N = 2a2 + ab − 2a2 + ab = 2ab. Thus, we have:
N = 2ab. Step 2: Analyze the Divisors of N. Since N = 2ab and a and b are distinct
prime numbers greater than 2, we note the following: - a and b are both odd primes
(since they are greater than 2). - The product ab is odd because the product of two
odd numbers is odd. - Therefore, N = 2ab is an even number because it includes the
factor 2. Step 3: Determine the Divisors. To find the divisors of N = 2ab: - The
prime factorization of N is 21 × ab. - The divisors of N are all combinations of the
factors 21 and ab. The possible divisors are: 1, 2, ab, 2ab. Conclusion. Counting these
distinct divisors, we have: {1, 2, ab, 2ab}. Thus, there are **4** whole-number divisors

of N. Therefore, the final answer is: 4 .

COPE

Problem: Suppose a and b are different prime numbers greater than 2. [...]

Goal (planner): The goal of the problem is to determine the exact number of distinct
whole-number divisors of the polynomial expression a(2a + b) − 2a2 + ab, given that a
and b are distinct prime numbers greater than 2.

Solution (executor): To determine the number of whole-number divisors of the expression a(2a +
b) − 2a2 + ab, we start by simplifying the expression algebraically. Step 1: Simplify
the Expression. First, let’s rewrite and simplify the given polynomial expression:
a(2a+ b)− 2a2 + ab. Expanding and combining like terms: a · 2a+ a · b− 2a2 + ab = 2a2 + ab−
2a2 + ab = 2ab. Thus, the simplified form of the expression is: 2ab. Step 2: Analyze
Divisors of 2ab. Since a and b are distinct prime numbers greater than 2, let’s denote
them as a = p and b = q, where p and q are primes different from each other and greater
than 2. The expression 2ab can be written as: 2pq Step 3: Determine the Divisors.
To find the number of divisors of 2pq, we use the property of divisors for a number n =
p
e1
1 p

e2
2 · · · pek

k , which states that the total number of divisors is given by: (e1 + 1)(e2 +

1) · · · (ek + 1). For 2pq: - The prime factorization is 21 · p1 · q1. - Here, e1 = 1 for 2,
e2 = 1 for p, and e3 = 1 for q. Thus, the number of divisors is: (1 + 1)(1 + 1)(1 + 1) = 2×
2×2 = 8. Conclusion. Therefore, the number of whole-number divisors of a(2a+b)−2a2+ab

is 8 .

Figure 5: Comparison between vanilla and COPE inference on a MATH-500 problem. The
vanilla solution (left), generated by EXAONE-3.5-2.4B-Instruct, results in incorrect rea-
soning (red). In contrast, COPE combines a goal from the same model, highlighting a key condition
(green) and guiding the executor to a correct solution.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

G PROMPTS

Table 13: System prompts used in COPE for mathematical reasoning

Executor System Prompt

Solve the following math problem efficiently and clearly:
- For simple problems (2 steps or fewer): Provide a concise solution with minimal explana-
tion.
- For complex problems (3 steps or more): Use this step-by-step format:

Step 1: [Concise description]
[Brief explanation and calculations]

Step 2: [Concise description]
[Brief explanation and calculations]

Regardless of the approach, always conclude with:
Therefore, the final answer is: \boxed{answer}. I hope it is correct.
Where [answer] is just the final number or expression that solves the problem.

Planner System Prompt

Goal Generation: You are a math teacher. State the goal of the following math problem in
one sentence.

Plan Generation: You are a skilled math coach. Explain how to solve the following math
problem. Focus on strategy and key ideas. Respond in just one or two sentences. Return
only the guidelines as plain text.

Table 14: System prompts used in COPE for code generation

Executor System Prompt

You are an expert Python programmer. Solve the following coding problem efficiently and
clearly.

Planner System Prompt

Goal Generation: You are an expert Python programmer. State the goal of the following
coding problem in one sentence.

Plan Generation:You are an expert Python programmer. Explain how to solve the following
coding problem. Focus on strategy and key ideas. Respond in just one or two sentences.
Return only the guidelines as plain text.

19

	Introduction
	Related Work
	Motivation
	Method
	Experiments
	Mathematical reasoning
	Code generation
	Open-ended tasks
	Agent tasks

	Conclusions
	Ethics statement
	Reproducibility statement
	Empirical Study
	Truncating at Stage 2: balancing efficiency and accuracy
	Performance by difficulty
	Effect of sample count on voting stability
	Effect of consensus threshold
	Error bars

	Theoretical Interpretation
	Further Implementation Details
	License
	Broader Impact
	Qualitative Examples
	Prompts

