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Abstract001

The Mixture of Depths (MoD) was introduced002
to improve computational efficiency by dynam-003
ically skipping less important layers, reduc-004
ing redundant computation while maintaining005
model capacity. Despite its promise, existing006
MoD approaches remain under-explored and007
face two main challenges: (1) high training008
costs due to the need to train the entire model009
along with the routers that determine which010
layers to skip, and (2) performance degrada-011
tion when important layers are bypassed. In012
response to the first issue, we propose Router-013
Tuning, which fine-tunes only the routers on014
a small dataset, drastically reducing the com-015
putational overhead associated with full model016
training. For the second challenge, we inves-017
tigate Router-Tuning across different architec-018
tures and granularities, demonstrating its ef-019
fectiveness on Attention layers and MoE lay-020
ers. This method preserves the model’s perfor-021
mance while significantly enhancing compu-022
tational and memory efficiency. Extensive ex-023
periments demonstrate that our approach deliv-024
ers competitive results while dramatically im-025
proving the computation efficiency, e.g., 21%026
speedup and only a 0.2% performance drop.027
The code will be released upon acceptance.028

1 Introduction029

Large Language Models (LLMs) have shown030

promising performance across various domains031

(OpenAI et al., 2024; Team, 2024; DeepSeek-AI032

et al., 2024). However, the continuous increase in033

model size leads to substantial computational costs034

in real-world applications, making computation035

reduction a critical research focus for improving036

LLM efficiency (Sun et al., 2024; Lin et al., 2024).037

A promising approach to this challenge is the Mix-038

ture of Depths (MoD) (Raposo et al., 2024), which039

dynamically allocates computational resources for040

specific inputs. Instead of uniformly applying all041

layers to every input, MoD selectively activates042

only a subset of the model’s layers, skipping those 043

deemed less important. This targeted activation sig- 044

nificantly reduces computational overhead while 045

maintaining performance. 046

Despite its potential, current MoD methods are 047

still underexplored and face several critical chal- 048

lenges. On the one hand, the involvement of ad- 049

ditional router networks, which decide which lay- 050

ers to skip, often requires extra extensive training: 051

Raposo et al. (2024) train the entire model from 052

scratch while Tan et al. (2024) performs costly con- 053

tinual training. This creates a significant barrier to 054

efficiently integrating MoD with existing LLMs. 055

Furthermore, most prior MoD implementations 056

(Raposo et al., 2024; Tan et al., 2024) have been ap- 057

plied to transformer blocks and MLP layers, which 058

are sensitive to skipping. As a result, omitting 059

important components often leads to significant 060

performance degradation (He et al., 2024b). 061

These challenges prompt us to reflect on the two 062

key questions: (1) How can we implement dynamic 063

depth to improve efficiency without incurring exces- 064

sive training costs? (2) How can we preserve model 065

performance in the presence of dynamic depth? 066

To tackle the first challenge, we introduce 067

Router-Tuning, a novel method that fine-tunes only 068

the router network without updating the backbone 069

model’s parameters. As each router network is a 070

lightweight, single-layer projector that accounts for 071

less than 0.01% of the total parameters, the training 072

overhead is minimal and even significantly lower 073

than that of parameter-efficient finetuning methods 074

(Houlsby et al., 2019a; He et al., 2021) like LoRA 075

(Hu et al., 2022). Router-tuning requires only a 076

small-scale dataset and fewer training steps, elimi- 077

nating the need for large-scale pretraining or exten- 078

sive continual training. Meanwhile, by freezing the 079

backbone, Router-Tuning contributes to mitigat- 080

ing catastrophic forgetting and better retaining the 081

original model performance (Houlsby et al., 2019b; 082

Liu et al., 2024; Qiao and Mahdavi, 2024). These 083

1



properties make Router-Tuning a highly efficient084

and scalable solution for dynamic adaptation.085

To address the second challenge, we conduct086

a comprehensive investigation of target modules087

(e.g., Block, MLP, Attention, MoE), and various088

granularities (e.g., token and sequence). For dense089

transformer architectures, we propose Attention090

with Dynamic Depths, which selectively applies091

dynamic depth to attention layers. By focusing092

on attention layers known to exhibit high redun-093

dancy (He et al., 2024b), Router-Tuning not only094

preserves model accuracy but also alleviates com-095

putational and memory bottlenecks. In the case of096

Mixture-of-Experts (MoE) layers (Shazeer et al.,097

2017; Fedus et al., 2022), where efficiency is often098

hindered by the computational cost of activating099

multiple expert networks, we apply Router-Tuning100

at the expert level to enhance overall efficiency.101

Through extensive experiments, we demonstrate102

the effectiveness of our approach across multiple103

open-source language models, including Llama104

(Touvron et al., 2023), Mistral (Jiang et al., 2023),105

Qwen (Bai et al., 2023), Deepseek-MoE (Dai et al.,106

2024), and OLMoE (Muennighoff et al., 2024).107

Router-Tuning requires less than half an hour on108

an Nvidia RTX A6000, making it 1000 times faster109

than DLO (Tan et al., 2024). Router-Tuning main-110

tains a high percentage of the original model’s per-111

formance while significantly reducing memory us-112

age and accelerating inference, achieving, for ex-113

ample, a 21% inference speedup with only a 0.2%114

performance degradation. Furthermore, Router-115

Tuning can be seamlessly integrated with LoRA116

fine-tuning, further enhancing both efficiency and117

performance.118

In short, our contributions are as follows:119

• We introduce Router-Tuning, a lightweight120

method that fine-tunes only the router using121

a small dataset, effectively addressing the122

high computational cost of training the entire123

model with routers.124

• We systematically investigate routing scopes,125

deployment granularities, and model archi-126

tectures, demonstrating the effectiveness of127

Router-Tuning on Attention and MoE layers.128

• Through comprehensive experiments, Router-129

Tuning achieves competitive performance130

while delivering substantial improvements in131

training and inference efficiency.132

2 Related Work 133

Layer Redundancy While increasing the depth 134

of large language models has demonstrated promis- 135

ing performance across a wide range of tasks (Ope- 136

nAI et al., 2024; Team, 2024), it also introduces 137

layer redundancy (Gromov et al., 2024; He et al., 138

2024b), posing efficiency challenges. To address 139

this issue, several approaches have been proposed 140

to reduce model depth (Men et al., 2024) while 141

maintaining comparable performance. Surpris- 142

ingly, removing redundant layers has been shown to 143

preserve performance while significantly reducing 144

memory and computational costs (Gromov et al., 145

2024; He et al., 2024a,b). Specifically, Gromov 146

et al. (2024) suggest dropping continuous Trans- 147

former blocks, and He et al. (2024b) propose fine- 148

grained layer dropping to further improve the effec- 149

tiveness of layer reduction. However, these static 150

techniques fail to account for the varying com- 151

plexity of different input sequences, where exces- 152

sive layer removal can significantly degrade perfor- 153

mance on more complex tasks. Instead of statically 154

removing unimportant layers, our approach focuses 155

on dynamically skipping these layers based on the 156

specific inputs. 157

Dynamic Depth Dynamic Depth, which allo- 158

cates different layers based on the specific input, 159

is an effective technique for accelerating inference 160

while preserving performance (Han et al., 2021, 161

2022). Recent works primarily implement dynamic 162

depth through two key methods: Early-Exit (Bae 163

et al., 2023; Elhoushi et al., 2024) and Mixture 164

of Depths (MoD) (Raposo et al., 2024). Early- 165

exit strategies terminate computation in later lay- 166

ers once sufficient confidence is achieved, effec- 167

tively reducing redundant computations. In con- 168

trast, MoD offers greater flexibility by dynamically 169

skipping less critical layers, enhancing adaptability 170

and representational capacity. Despite their ad- 171

vantages, both Early-Exit and MoD often involve 172

significant training overhead. For instance, Lay- 173

erSkip (Elhoushi et al., 2024) and MoD (Raposo 174

et al., 2024) require training models from scratch or 175

extensive continual training, while Tan et al. (Tan 176

et al., 2024) extends pre-trained model training over 177

long schedules to achieve optimal performance. To 178

overcome these limitations, we propose Router- 179

Tuning, an efficient approach to dynamic layer 180

skipping that requires minimal additional offline 181

training, providing a more cost-effective solution. 182
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3 Methodology183

In this section, we first review the challenges asso-184

ciated with deploying Mixture of Depths and then185

introduce Router-Tuning, addressing the implemen-186

tation of Mixture of Depths from both design and187

training perspectives.188

3.1 Motivation189

The Mixture of Depths (MoD) framework (Raposo190

et al., 2024), which dynamically adjusts layer depth191

based on input complexity to enhance computa-192

tional efficiency, was originally designed for inte-193

gration during the pretraining phase, where trans-194

former models are trained from scratch with MoD-195

enabled layers. More recently, Tan et al. (2024)196

applied MoD to pretrained Llama models (Tou-197

vron et al., 2023) through continual training. While198

these approaches have demonstrated promising re-199

sults, training with MoD remains computation-200

ally expensive and time-consuming, posing chal-201

lenges for scalability and real-world deployment.202

A more efficient alternative is to apply MoD di-203

rectly to existing pretrained models, followed by204

lightweight fine-tuning of a subset of parameters205

(Houlsby et al., 2019b; Hu et al., 2022), signifi-206

cantly reducing both computational costs and train-207

ing time.208

On the other hand, MoD has typically been im-209

plemented at the transformer block level. However,210

skipping entire transformer blocks has shown to211

be suboptimal to maintain the performance. In-212

spired by He et al. (2024b), we recognize that each213

transformer block contains layers of varying impor-214

tance. Aggressively skipping entire blocks risks215

omitting critical layers, potentially degrading per-216

formance. Instead, skipping fine-grained layers of-217

fers a more effective strategy for preserving model218

accuracy. Moreover, unlike blocks that generally219

share the same architecture, individual layers im-220

pose different computational costs. For instance,221

in dense transformer models, attention layers are222

particularly expensive, with computational com-223

plexity scaling quadratically with sequence length224

and additional memory needed for KV cache stor-225

age. In contrast, in MoE models, MLP layers hold226

the majority of the parameters, leading to substan-227

tial communication and computation overhead.228

Building on these insights, we propose Router-229

Tuning, a cost-effective formulation of MoD that230

achieves a favorable trade-off between performance231

and computational costs.232

3.2 Router-Tuning for Dynamic Depth 233

In this part, we propose Router-Tuning to address 234

the challenges outlined in Section 3.1. As illus- 235

trated in Figure 1, Router-Tuning incorporates an 236

additional trainable router that determines whether 237

to skip the layer. Specifically, Router-Tuning can 238

be deployed in two levels: (1) token-level, where 239

layers are dynamically skipped for individual to- 240

kens, and (2) sequence-level, where layers are dy- 241

namically skipped for the entire sequence. Given 242

an input x ∈ RL×d, the router first computes an 243

importance score for the input: 244

R(x)i =

{
GATE(xi), Token-level
GATE( 1

L

∑L
i=1 xi), Sequence-level

, (1) 245

where R is a scoring router that assesses the im- 246

portance score of the input, GATE is the gating 247

function GATE(x) = Sigmoid(Wx). Based on 248

the computed importance scores, we further apply 249

a binarized mask M to determine whether to skip 250

a token or an entire sequence: 251

M =

{
1, if R(x) ≥ τ

0, otherwise
, (2) 252

where τ is the threshold. The score is set to zero for 253

skipped inputs and one for retained inputs, ensuring 254

stable outputs (Tan et al., 2024). 255

To enable a differentiable and trainable binary 256

decision process, we utilize the straight-through 257

estimator (STE) (Bengio et al., 2013), which allows 258

gradients to propagate through the binary selection 259

mechanism via ∂M
∂R = 1. The final output of MoD 260

is then computed as follows: 261

y = M ⊙ F (x) + x, (3) 262

where F denotes a given layer and y is the output. 263

This formulation ensures that the router is fully 264

trainable through the gradient calculations: 265

∂y

∂W
=

∂y

∂M

∂M

∂R

∂R

∂W
. (4) 266

During inference, without the need for gradient 267

calculations, we further enhance computational ef- 268

ficiency by completely bypassing computations for 269

skipped inputs: 270

y =

{
F (x) + x, if R(x) ≥ τ

x, otherwise
. (5) 271

This dynamic routing mechanism ensures that com- 272

putation is performed only when necessary, thereby 273

enhancing the computational efficiency. 274
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𝑭(⋅)Input 𝒙 Output 𝒚+

Router 𝑹

𝑹 𝒙 ≥ 𝝉

𝑭(⋅)Input 𝒙 Output 𝒚+

Router 𝑹

𝑹 𝒙 < 𝝉

Figure 1: Overview of Router-Tuning. Router-Tuning involves a trainable router to determine whether a given
layer F (·) (e.g., Attention and MLP) would be skipped. Inputs with routing scores lower R(x) than the threshold τ
are skipped, and only the router R is trainable in the whole model.

3.3 Extension to Mixture of Experts275

Mixture of Experts (MoE) employs sparse acti-276

vation, dynamically selecting expert networks for277

each input, which delivers promising performance278

in various tasks (Jiang et al., 2024; Dai et al., 2024;279

Muennighoff et al., 2024). However, MoE also280

exhibits significant redundancy, allowing certain281

experts or layers to be skipped with minimal impact282

on performance (Lu et al., 2024; He et al., 2024a).283

Building on this, we extend Router-Tuning to MoE284

layers by implementing dynamic skipping within285

each expert:286

Êi(x) =

{
Ei(x), if R(x) ≥ τ

0, otherwise
, (6)287

where Ei denotes the i-th expert and Êi(x) is the288

corresponding output denotes the corresponding289

output, bypassing the skipped tokens. Given a col-290

lection of n experts, {E1,E2, . . . ,En}, the overall291

output of the MoE layer is as follows:292

K = TopK(Softmax(G(x)), k), (7)293

294

y =
∑

i∈K
G(x)i · Êi(x), (8)295

where K denotes the indices of the top-k selected296

experts, and G(x)i represents the selection score297

for the i-th expert. By dynamically skipping ex-298

perts within each layer, Router-Tuning significantly299

reduces computation costs.300

3.4 Training Objectives301

Given the computationally intensive nature of train-302

ing entire LLMs and the constraints of real-world303

computational resources, our goal is to implement304

dynamic depth while minimizing both computa-305

tional costs and time overhead. To achieve this,306

we focus exclusively on fine-tuning the routers, as307

illustrated in Figure 1, thereby eliminating the need308

for costly full-model training.309

Specifically, we optimize two training objectives:310

improving task-specific performance and lowering311

MoD capacity (the proportion of non-skipped in- 312

puts). On the one hand, Router-Tuning is designed 313

to maintain the performance of the original model, 314

which we enforce using the loss term Ltask during 315

fine-tuning. On the other hand, the model is en- 316

couraged to skip more tokens or sequences (i.e., 317

reduce MoD capacity) to enhance efficiency. To 318

achieve this, we introduce another loss term LMoD, 319

which drives the model to reduce MoD capacity 320

to a desired target sparsity level s, thereby lower- 321

ing computational costs and accelerating inference. 322

The overall training objective is as follows: 323

L = Ltask + λ · LMoD, (9) 324

325

LMoD = ReLU(∥M∥0 − s), (10) 326

where L represents the standard loss function (e.g., 327

cross-entropy), while LMoD is an l0-norm regular- 328

ization term that reduces MoD capacity. The co- 329

efficient λ acts as a scaling factor to balance the 330

trade-off between task performance and efficiency. 331

4 Main Results 332

In this section, we evaluate the effectiveness of 333

Router-Tuning on transformer architectures with 334

the deployment details in Appendix A. 335

4.1 Performance of Router-Tuning 336

Router-Tuning achieves superior performance 337

on Attention layers We first compare deploying 338

Router-Tuning to different modules, e.g., Block, 339

MLP, and Attention, as shown in Table 1. Based 340

on the observation that deeper layers are more re- 341

dundant than shallow layers (Gromov et al., 2024; 342

He et al., 2024b), we focus on deploying Router- 343

Tuning to the deepest layers except the last one, 344

leaving other layers unchanged. 345

While previous studies have primarily explored 346

layer dropping or skipping to Block and MLP lay- 347

ers (Bae et al., 2023; Gromov et al., 2024), skipping 348

these modules significantly degrades performance 349

when applied at either token or sequence level. In 350
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Table 1: Router-Tuning at different granularities. We compare deployments on Attention, Block, and MLP layers.
The number of skippable layers is capped at 16, with 50% MoD capacity. SpeedUp denotes inference-time speedup.

Llama-3-8B

Method Granularity Speedup ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline – 1.00× 58.1 81.3 82.1 65.3 45.0 80.5 67.2 77.7 69.7

Router-Tuning

Blocktoken 1.24× 44.2 77.9 63.1 64.4 34.0 70.4 65.4 71.6 61.4
Blockseq 1.26× 44.5 78.0 62.6 64.6 34.2 70.3 65.3 71.2 61.3

MLPtoken 1.05× 45.3 77.8 65.1 62.8 33.7 71.9 66.8 72.4 62.0
MLPseq 1.06× 45.1 77.7 65.4 62.4 33.4 71.6 66.4 72.1 61.8

Attntoken 1.18× 56.4 79.8 81.0 65.3 45.2 79.9 64.6 77.3 68.7
Attnseq 1.21× 56.6 80.5 80.7 65.1 44.6 80.5 69.7 77.7 69.4

Llama-3-8B-Instruct

Method Granularity Speedup ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline – 1.00× 62.1 83.2 78.8 65.7 42.8 78.7 67.5 75.9 69.3

Router-Tuning

Blocktoken 1.24× 44.6 80.9 54.1 60.2 31.2 64.8 67.7 65.1 58.6
Blockseq 1.26× 44.7 81.2 54.5 60.6 32.4 64.6 67.1 64.8 58.7

MLPtoken 1.05× 41.4 74.9 59.3 64.8 31.6 67.8 66.4 68.4 59.3
MLPseq 1.06× 41.8 75.1 59.3 64.5 31.2 68.2 66.7 68.8 59.5

Attntoken 1.18× 60.2 82.9 76.8 65.8 42.6 78.6 67.7 76.6 68.9
Attnseq 1.21× 60.4 83.3 76.9 65.7 43.0 78.2 68.2 76.9 69.1

ARC-C MMLU OBQA RTE
Dataset
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Figure 2: Comparison between Router-Tuning and
Layer Drop on MLP and Attention layers under a fixed
25% overall skipping ratio.
contrast, applying dynamic depth to Attention lay-351

ers maintains the performance of original models,352

e.g., 69.4 v.s. 69.7 in Llama-3-8B. These findings353

reinforce our motivation to target Attention layers,354

and we utilize Router-Tuning on Attention layers355

by default unless stated otherwise.356

Router-Tuning improves over static layer drop-357

ping While statically dropping attention layers358

(He et al., 2024b) has demonstrated promising per-359

formance, its static nature lacks flexibility and lim-360

its representational power. Here, we further inves-361

tigate the improvements offered by the dynamic362

mechanism. Figure 2 compares Router-Tuning363

with static Layer Drop (He et al., 2024b), where364

Router-Tuning consistently achieves superior per-365

formance. For more complex tasks that are more366

sensitive to layer skipping, as shown in Figure 3,367

we compare Router-Tuning with Layer Drop on368

attention layers (i.e., “Attention Drop”) under the369

same computation budget, e.g., dropping 4 lay-370

ers versus deploying MoD to 8 layers with 50%371

capacity. Under the same skipping ratios, Router-372

Tuning significantly outperforms Attention Drop373

on the GSM8K benchmark (Cobbe et al., 2021),374

e.g., 6.5% when the skipping ratio is 25.0%. In Fig-375

ure 4, we further visualize the layer-wise skipping376

12.5% 25.0%
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Figure 3: Comparison with Attention Drop on
GSM8K tasks under identical skipping ratios.
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Figure 4: Layer-wise Skipping Ratios for Attention
layers after Layer Drop and Router-Tuning.

ratios of MoD versus Attention Drop. Unlike static 377

approaches that permanently remove certain layers, 378

Router-Tuning maintains the utilization of all lay- 379

ers by adaptively distributing skipping ratios across 380

them. This flexible allocation strategy contributes 381

to improved performance. 382

Router-Tuning outperforms dynamic skipping 383

methods Table 2 compares Router-Tuning with 384

dynamic skipping baselines, including DLO (Tan 385

et al., 2024) and Skip Transformer (Peroni and 386

Bertsimas, 2024). Following the setup of baselines, 387

we conduct the comparison on the token level for 388

MLP layers. Router-Tuning consistently outper- 389

forms these methods across most tasks, despite 390

operating under the router-only training constraint. 391

On the one hand, Router-Tuning freezes the model 392

backbones, which contributes to avoiding the risks 393
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of catastrophic forgetting (Houlsby et al., 2019b;394

Liu et al., 2024; Qiao and Mahdavi, 2024). Addi-395

tionally, Router-Tuning is trained end-to-end with-396

out being constrained by precomputed labels (e.g.,397

token-level similarity scores in DLO) or stochas-398

tic gating mechanisms. This design enables more399

flexible and stable learning, while preserving the400

pretrained capabilities of the backbone.401

Table 2: Performance comparison against dynamic
dropping baselines, including DLO (Tan et al., 2024)
and Skip Transformer (Peroni and Bertsimas, 2024).

Method ARC-C HellaSwag MMLU WinoG Avg.

DLO 44.5 64.2 62.1 71.3 60.5
Skip Transformer 44.7 64.4 62.4 71.5 60.8
Router-Tuning 45.3 65.1 62.8 72.4 61.4

4.2 Efficiency Improvements402

In this part, we measure the efficiency in both train-403

ing and inference, focusing on computational and404

memory usage.405

Table 3: Comparison of training strategies of achiev-
ing dynamic layer skipping. The training time for MoD
is left blank as it was not conducted on LLaMA-3-8B.

Method Target Modules Granularity Training Stage Trainable Training Time

MoD (Raposo et al., 2024) Block Token Pretraining Full Model –
DLO (Tan et al., 2024) MLP Token Continual Pretraining Full Model 36h on NVIDIA A100
Router-Tuning Block / MLP / Attn Token / Sequence Finetuning Router 15m on NVIDIA A6000

Training Efficiency The training efficiency of406

our method lies in two perspectives: trainable407

parameters and training steps. Since the router408

projects the input from dimension d to 1, the num-409

ber of trainable parameters is d×1 per layer, and the410

total number of trainable parameters is fewer than411

0.01% of the whole model. Additionally, Router-412

Tuning only requires a few steps, which is verified413

in Section 5. Consequently, as shown in Table 3,414

Router-Tuning can be completed in under 15 min-415

utes on a single NVIDIA A6000 GPU—over 1000416

times faster than DLO (Tan et al., 2024), which417

performs large-scale training on full models and418

takes 36 hours on NVIDIA RTX A100 GPUs.419

Inference Speedup We also evaluate the run-420

time speed improvements achieved with Router-421

Tuning. The inference speed is measured through-422

out the entire generation process, including prefill-423

ing and generation. To ensure that our results accu-424

rately reflect the performance gains, we adhere to425

two key principles: (1) all operations are performed426

on a single Nvidia RTX A6000 Ada GPU, eliminat-427

ing any communication overhead from multi-GPU428

setups; and (2) we set the maximal sequence length429

as 2048 and increase batch sizes to fully utilize the 430

GPU for each model. 431

As shown in Table 1, skipping attention lay- 432

ers yields a more substantial speedup than skip- 433

ping MLP layers, which is primarily due to the 434

quadratic complexity of the attention mechanism 435

and the memory overhead associated with KV- 436

cache (Zhang et al., 2023; Singhania et al., 2024; 437

He et al., 2024b). On the other hand, different gran- 438

ularities contribute to different levels of speedup. 439

This variation is primarily due to attention layers, 440

where fine-grained token-level MoD introduces dif- 441

fering token lengths within a batch, necessitating 442

padding operations to standardize sequence lengths. 443

Instead, the speedups at the sequence level surpass 444

those at the token level, with Router-Tuning achiev- 445

ing a 21% improvement in inference speed. There- 446

fore, we set Router-Tuning on the sequence level 447

for attention layers as the default setting. 448

KV Cache The KV cache stores intermediate 449

representations of attention layers, accelerating in- 450

ference by eliminating redundant computations but 451

incurring substantial memory overhead. Our ap- 452

proach, which selectively skips attention layers, 453

significantly reduces KV cache size—for instance, 454

achieving an 8GB reduction when processing an in- 455

put sequence of length 2048 with a batch size of 64 456

on Llama-3-8B. In contrast, DLO (Tan et al., 2024) 457

operates exclusively on MLP layers and retains the 458

full KV cache, providing no memory savings. 459

5 Ablation Studies 460

Compatibility across different models Since 461

Router-Tuning can be seamlessly integrated into 462

pretrained language models, we extend our evalu- 463

ation to diverse architectures, including Llama-2 464

(Touvron et al., 2023), Mistral (Jiang et al., 2023), 465

and Qwen2.5 (Bai et al., 2023), covering a wide 466

range of model sizes. As shown in Table 4, we 467

deploy Router-Tuning in half of the attention lay- 468

ers while maintaining the total MoD capacity at 469

50%. Across all models, Router-Tuning preserves 470

performance compared to their original counter- 471

parts, demonstrating its effectiveness and adapt- 472

ability across different architectures. 473

Impact of number of MoD layers In the main 474

experiments, we deployed half of the layers with 475

MoD. In Figure 5, we further explore the effect of 476

the number of MoD layers. Our results indicate that 477

applying MoD to up to half of the attention layers 478
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Table 4: Ablation study of Router-Tuning across multiple model architectures and scales, highlighting its
robustness and consistent improvements.

Models Speedup OBQA PIQA RTE WinoGrande BoolQ ARC-C HellaSwag MMLU Avg.

Llama-2-13B 1.00× 45.2 80.5 65.0 76.2 80.7 59.4 82.2 54.6 68.0
w/Router-Tuning 1.22× 45.4 80.6 64.6 76.2 80.5 59.3 82.2 54.7 67.9

Qwen-2.5-14B 1.00× 45.6 82.2 79.1 80.4 85.3 67.2 84.3 79.7 75.5
w/Router-Tuning 1.18× 45.4 82.4 77.9 78.5 85.0 66.2 83.8 78.0 74.7

Qwen-2.5-7B 1.00× 47.2 79.6 81.2 76.6 84.6 63.7 80.2 74.1 73.4
w/Router-Tuning 1.19× 47.0 80.1 76.9 76.1 83.2 62.3 79.8 73.3 72.3

Mistral-7B 1.00× 44.4 82.2 68.2 79.0 82.2 60.6 83.2 62.4 70.3
w/Router-Tuning 1.24× 44.0 81.8 67.6 78.2 81.7 59.9 82.6 61.8 69.7
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Figure 5: Ablation study on the impact of varying the
number of MoD layers on overall model performance.

still maintains comparable performance. A similar479

trend is observed in Figure 6 for smaller models.480

However, when further increasing the number of481

MoD layers, performance starts to degrade. We482

attribute this decline to the transformation of im-483

portant shallow layers, which negatively impacts484

overall performance (Men et al., 2024; He et al.,485

2024a,b). Therefore, preserving the density of shal-486

low layers while applying MoD to deeper layers487

ensures its effectiveness.488
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Figure 6: Performance of Router-Tuning on small
models, where “R.T.” denotes Router-Tuning and the
postfix “-n” indicates that MoD is applied to n layers.

Influence of Training Dataset In Table 5, we489

next examine the impact of using different training490

datasets for Router-Tuning. We consider a variety491

of datasets, including Alpaca (Taori et al., 2023),492

Evol-Instruct (Xu et al., 2023), ShareGPT (Zheng493

et al., 2023), and Llama-Pro (Wu et al., 2024).494

Since Router-Tuning only fine-tunes the routers495

while keeping the backbone of the language models496

intact, changes in the training dataset do not signif-497

icantly impact performance. However, Llama-Pro,498

which incorporates diverse training data from vari-499

ous domains, provides slightly better performance500

due to its broader data coverage.501
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Figure 7: Effect of varying the number of training sam-
ples on performance.

On the other hand, due to the small number 502

of trainable parameters, Router-Tuning does not 503

require a large amount of training samples. As 504

shown in Figure 7, MoD layers are initially dense- 505

activated and then sparsified. Although the initial 506

sparsification steps lead to a drop in performance, 507

subsequent Router-Tuning facilitates performance 508

recovery. Notably, just 5K training samples are 509

sufficient to effectively train the routers. 510

Table 5: Effectiveness across different training
datasets, where Router Tuning demonstrates robust-
ness to the varying datasets.

Dataset HellaSwag MMLU OBQA WinoGrande Avg.

Baseline 82.1 65.3 45.0 77.7 67.5

Alpaca 79.8 62.2 43.8 77.4 65.8
Evol-Instruct 80.4 64.0 44.4 77.6 66.6
ShareGPT 80.6 63.3 45.4 76.7 66.5
Llama-Pro 80.7 65.1 44.6 77.7 67.0

6 MoE and LoRA Integration 511

In this section, we further explore the integration of 512

Router-Tuning with other architectures and training 513

techniques. First, we implement Router-Tuning on 514

mainstream MoE architectures. Then, we combine 515

Router-Tuning with LoRA fine-tuning to enhance 516

both efficiency and performance. 517

Router-Tuning on MoE The Expert’s redun- 518

dancy in MoE has been widely demonstrated in 519

recent works (Lu et al., 2024; He et al., 2024a), e.g., 520

the model still maintains comparable performance 521

after removing certain layers. Therefore, we fur- 522

ther extend Router-Tuning to MoE, where we take 523

OLMoE (Muennighoff et al., 2024) and DeepSeek- 524
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Table 6: Performance of Router-Tuning on Mixture of Experts, where we take Expert Drop (He et al., 2024a) as
the baseline of static dropping for comparison.

Models SpeedUp OBQA PIQA RTE WinoGrande BoolQ ARC-C HellaSwag MMLU Avg.

DeepSeek-MoE 1.00× 43.6 80.5 62.8 73.4 72.4 52.7 79.9 44.5 63.7
w/Expert Drop 1.11× 42.2 80.2 59.9 70.0 74.0 48.1 75.6 38.9 61.1
w/Router-Tuning 1.10× 43.2 80.4 61.2 71.4 72.1 50.8 77.3 42.8 62.4

OLMoE 1.00× 45.6 80.1 53.7 71.2 74.7 54.5 79.4 52.5 64.0
w/Expert Drop 1.13× 34.0 66.6 51.6 59.3 67.6 39.0 40.5 42.7 50.2
w/Router-Tuning 1.12× 40.4 76.2 53.2 70.2 71.3 52.0 77.9 50.1 61.4

Table 7: Effectiveness of Router-Tuning integrated with LoRA finetuning, compared to deploying Router-
Tuning and LoRA separately.

Model Method SpeedUp OBQA PIQA RTE WinoGrande BoolQ ARC-C HellaSwag MMLU Avg.

Llama-3-8B

Baseline 1.00× 45.0 80.5 67.2 77.7 81.3 58.1 82.1 65.3 69.6

R.T. 1.21× 44.6 80.5 69.7 77.7 80.7 56.6 80.7 65.1 69.5
LoRA 1.00× 46.6 82.0 68.0 77.9 83.9 61.8 81.6 65.9 71.0

LoRA + R.T. 1.21× 47.2 82.2 67.4 77.8 83.9 61.5 81.7 65.8 70.9

Mistral-7B

Baseline 1.00× 44.4 82.2 68.2 79.1 82.2 60.6 83.2 62.4 70.3

R.T. 1.24× 44.2 81.9 68.5 78.6 81.7 60.4 82.5 61.8 70.0
LoRA 1.00× 45.2 83.0 68.9 79.4 84.7 60.7 83.7 62.8 71.1

LoRA + R.T. 1.24× 45.7 83.1 68.7 79.3 84.3 60.9 83.4 62.9 71.2

MoE (Dai et al., 2024) as the backbones and equip525

each Expert network with Router-Tuning. Since526

these models deploy MoE at the token level, we di-527

rectly apply the token-level Router-Tuning to these528

models. Here, we compare Router-Tuning with Ex-529

pert Drop (He et al., 2024a) that statically drops less530

important experts. To ensure a fair comparison, we531

fix the overall skipping ratio of Router-Tuning to532

25%, and drop the bottom 25% of experts globally533

by importance score in the Expert Drop baseline.534
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Figure 8: Normalized expert load before and after
applying router-based filtering, denoted as “Assigned
Tokens” and “Executed Tokens”, respectively. Expert
load values are normalized by the mean number of as-
signed tokens.

In Table 6, instead of removing a subset of ex-535

perts like Expert Drop, Router-Tuning maintains536

the potential of all experts, which contributes to537

a superior performance. In Figure 8, we further538

investigate how Router-Tuning affects the infer-539

ence behavior of expert networks by visualizing540

the expert load within a specific layer from two per-541

spectives: the number of tokens initially assigned542

to each expert (“Assigned Tokens”) and the number543

of tokens that pass the router and are actually exe-544

cuted (“Executed Tokens”). Router-tuning prompts545

the experts to skip less important tokens and signif-546

icantly lower the load of overloaded experts, which547

alleviates the imbalanced distribution of token as-548

signments. Consequently, this approach fosters a 549

more balanced utilization across the entire set of 550

experts (Fedus et al., 2022; He et al., 2025) and 551

thus enhances the efficiency. 552

Integration with LoRA Router-Tuning enables 553

dynamic depth to improve computational efficiency, 554

whereas parameter-efficient fine-tuning (PEFT) 555

methods aim to update a small subset of param- 556

eters to enhance downstream task performance. To 557

examine whether Router-Tuning is complementary 558

to PEFT, we propose jointly conducting Router- 559

Tuning with LoRA fine-tuning (Hu et al., 2021), 560

targeting improvements in both efficiency and task 561

performance. As shown in Table 7, this joint train- 562

ing strategy preserves the efficiency benefits of 563

Router-Tuning while maintaining the performance 564

gains achieved by LoRA. Together, the integra- 565

tion of Router-Tuning and LoRA offers a more ad- 566

vanced fine-tuning paradigm that further enhances 567

overall model capability. 568

7 Conclusion 569

In this work, we investigate the dynamic depth 570

mechanism from both design and training perspec- 571

tives. We propose Router-Tuning, which effectively 572

implements dynamic depth by fine-tuning only a 573

minimal number of parameters in just a few steps. 574

Additionally, we explore Router-Tuning across a 575

variety of modules and granularities to evaluate 576

its effectiveness across a wide range of models 577

and tasks. These advancements provide valuable 578

insights and practical solutions for deploying dy- 579

namic depth and enhancing the efficiency of large 580

language models. 581
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Limitations582

Despite the progress achieved in this work, sev-583

eral limitations remain. First, while we have ad-584

vanced MoD through Router-Tuning, other, poten-585

tially more sophisticated training strategies may586

further improve performance and merit future in-587

vestigation. Second, due to computational resource588

constraints, our experiments were limited to a small589

set of models and tasks. Extending this approach590

to a broader range of architectures and applications591

would provide deeper insight into its generalizabil-592

ity and full potential.593
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A Experiment Setup1179

Models We conduct experiments on Llama (Tou-1180

vron et al., 2023; Grattafiori et al., 2024), Qwen1181

(Bai et al., 2023), and Mistral (Jiang et al.,1182

2023) due to their competitive performance and1183

widespread adoption. Additionally, we leverage1184

OLMoE (Muennighoff et al., 2024) and Deepseek-1185

MoE (Dai et al., 2024) as the backbone to deploy1186

Router-Tuning on the Mixture of Experts frame-1187

work.1188

Datasets For the training dataset, we used Llama-1189

Pro (Wu et al., 2024), given it spanning general in-1190

struction, math, and code for the SFT process and1191

offering a wealth of instruction data with varying1192

complexity levels. To evaluate model performance,1193

we report normalized zero-shot or few-shot accu-1194

racy on the LM-Harness benchmark. The number1195

of shots for each task is detailed in Table 8, which1196

includes multiple tasks: ARC-C (Clark et al., 2018),1197

BoolQ (Clark et al., 2019), HellaSwag (Zellers1198

et al., 2019), MMLU (Hendrycks et al., 2021),1199

OBQA (Mihaylov et al., 2018), PIQA (Bisk et al.,1200

2019), RTE (Wang et al., 2019), WinoGrande (ai2,1201

2019) and GSM8K (Cobbe et al., 2021). The eval-1202

uation code is based on EleutherAI’s LM Harness1203

framework (Gao et al., 2023).1204

Table 8: Experimental settings for evaluation tasks.
“Norm” refers to the normalization performed with re-
spect to the length of the input.

Task Number of few-shot Metric

BoolQ 0 Accuracy
RTE 0 Accuracy
OBQA 0 Accuracy (Norm)
PIQA 0 Accuracy (Norm)
MMLU 5 Accuracy
WinoGrande 5 Accuracy
GSM8K 5 Exact Match
HellaSwag 10 Accuracy (Norm)
ARC-C 25 Accuracy (Norm)

Hyperparameters We set τ as 0.5, which corre-1205

sponds to the midpoint of the sigmoid function. To1206

ensure that training starts from dense models, we1207

initialize W to zero, ensuring that R(x) ≥ τ ini-1208

tially, i.e., training from dense models. To achieve1209

the desired MoD capacity, we perform a grid search1210

over the learning rate from {1e-5, 2e-5, 5e-5, 1e-4,1211

2e-4} and the scale factor λ from {0, 0.1, 0.01,1212

0.001}, respectively.1213
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