
Router-Tuning: A Simple and Effective Approach for Dynamic Depth

Anonymous ACL submission

Abstract001

The Mixture of Depths (MoD) was introduced002
to improve computational efficiency by dynam-003
ically skipping less important layers, reduc-004
ing redundant computation while maintaining005
model capacity. Despite its promise, existing006
MoD approaches remain under-explored and007
face two main challenges: (1) high training008
costs due to the need to train the entire model009
along with the routers that determine which010
layers to skip, and (2) performance degrada-011
tion when important layers are bypassed. In012
response to the first issue, we propose Router-013
Tuning, which fine-tunes only the routers on014
a small dataset, drastically reducing the com-015
putational overhead associated with full model016
training. For the second challenge, we inves-017
tigate Router-Tuning across different architec-018
tures and granularities, demonstrating its ef-019
fectiveness on Attention layers and MoE lay-020
ers. This method preserves the model’s perfor-021
mance while significantly enhancing compu-022
tational and memory efficiency. Extensive ex-023
periments demonstrate that our approach deliv-024
ers competitive results while dramatically im-025
proving the computation efficiency, e.g., 21%026
speedup and only a 0.2% performance drop.027
The code will be released upon acceptance.028

1 Introduction029

Large Language Models (LLMs) have shown030

promising performance across various domains031

(OpenAI et al., 2024; Team, 2024; DeepSeek-AI032

et al., 2024). However, the continuous increase in033

model size leads to substantial computational costs034

in real-world applications, making computation035

reduction a critical research focus for improving036

LLM efficiency (Sun et al., 2024; Lin et al., 2024).037

A promising approach to this challenge is the Mix-038

ture of Depths (MoD) (Raposo et al., 2024), which039

dynamically allocates computational resources for040

specific inputs. Instead of uniformly applying all041

layers to every input, MoD selectively activates042

only a subset of the model’s layers, skipping those 043

deemed less important. This targeted activation sig- 044

nificantly reduces computational overhead while 045

maintaining performance. 046

Despite its potential, current MoD methods are 047

still underexplored and face several critical chal- 048

lenges. On the one hand, the involvement of ad- 049

ditional router networks, which decide which lay- 050

ers to skip, often requires extra extensive training: 051

Raposo et al. (2024) train the entire model from 052

scratch while Tan et al. (2024) performs costly con- 053

tinual training. This creates a significant barrier to 054

efficiently integrating MoD with existing LLMs. 055

Furthermore, most prior MoD implementations 056

(Raposo et al., 2024; Tan et al., 2024) have been ap- 057

plied to transformer blocks and MLP layers, which 058

are sensitive to skipping. As a result, omitting 059

important components often leads to significant 060

performance degradation (He et al., 2024b). 061

These challenges prompt us to reflect on the two 062

key questions: (1) How can we implement dynamic 063

depth to improve efficiency without incurring exces- 064

sive training costs? (2) How can we preserve model 065

performance in the presence of dynamic depth? 066

To tackle the first challenge, we introduce 067

Router-Tuning, a novel method that fine-tunes only 068

the router network without updating the backbone 069

model’s parameters. As each router network is a 070

lightweight, single-layer projector that accounts for 071

less than 0.01% of the total parameters, the training 072

overhead is minimal and even significantly lower 073

than that of parameter-efficient finetuning methods 074

(Houlsby et al., 2019a; He et al., 2021) like LoRA 075

(Hu et al., 2022). Router-tuning requires only a 076

small-scale dataset and fewer training steps, elimi- 077

nating the need for large-scale pretraining or exten- 078

sive continual training. Meanwhile, by freezing the 079

backbone, Router-Tuning contributes to mitigat- 080

ing catastrophic forgetting and better retaining the 081

original model performance (Houlsby et al., 2019b; 082

Liu et al., 2024; Qiao and Mahdavi, 2024). These 083

1

properties make Router-Tuning a highly efficient084

and scalable solution for dynamic adaptation.085

To address the second challenge, we conduct086

a comprehensive investigation of target modules087

(e.g., Block, MLP, Attention, MoE), and various088

granularities (e.g., token and sequence). For dense089

transformer architectures, we propose Attention090

with Dynamic Depths, which selectively applies091

dynamic depth to attention layers. By focusing092

on attention layers known to exhibit high redun-093

dancy (He et al., 2024b), Router-Tuning not only094

preserves model accuracy but also alleviates com-095

putational and memory bottlenecks. In the case of096

Mixture-of-Experts (MoE) layers (Shazeer et al.,097

2017; Fedus et al., 2022), where efficiency is often098

hindered by the computational cost of activating099

multiple expert networks, we apply Router-Tuning100

at the expert level to enhance overall efficiency.101

Through extensive experiments, we demonstrate102

the effectiveness of our approach across multiple103

open-source language models, including Llama104

(Touvron et al., 2023), Mistral (Jiang et al., 2023),105

Qwen (Bai et al., 2023), Deepseek-MoE (Dai et al.,106

2024), and OLMoE (Muennighoff et al., 2024).107

Router-Tuning requires less than half an hour on108

an Nvidia RTX A6000, making it 1000 times faster109

than DLO (Tan et al., 2024). Router-Tuning main-110

tains a high percentage of the original model’s per-111

formance while significantly reducing memory us-112

age and accelerating inference, achieving, for ex-113

ample, a 21% inference speedup with only a 0.2%114

performance degradation. Furthermore, Router-115

Tuning can be seamlessly integrated with LoRA116

fine-tuning, further enhancing both efficiency and117

performance.118

In short, our contributions are as follows:119

• We introduce Router-Tuning, a lightweight120

method that fine-tunes only the router using121

a small dataset, effectively addressing the122

high computational cost of training the entire123

model with routers.124

• We systematically investigate routing scopes,125

deployment granularities, and model archi-126

tectures, demonstrating the effectiveness of127

Router-Tuning on Attention and MoE layers.128

• Through comprehensive experiments, Router-129

Tuning achieves competitive performance130

while delivering substantial improvements in131

training and inference efficiency.132

2 Related Work 133

Layer Redundancy While increasing the depth 134

of large language models has demonstrated promis- 135

ing performance across a wide range of tasks (Ope- 136

nAI et al., 2024; Team, 2024), it also introduces 137

layer redundancy (Gromov et al., 2024; He et al., 138

2024b), posing efficiency challenges. To address 139

this issue, several approaches have been proposed 140

to reduce model depth (Men et al., 2024) while 141

maintaining comparable performance. Surpris- 142

ingly, removing redundant layers has been shown to 143

preserve performance while significantly reducing 144

memory and computational costs (Gromov et al., 145

2024; He et al., 2024a,b). Specifically, Gromov 146

et al. (2024) suggest dropping continuous Trans- 147

former blocks, and He et al. (2024b) propose fine- 148

grained layer dropping to further improve the effec- 149

tiveness of layer reduction. However, these static 150

techniques fail to account for the varying com- 151

plexity of different input sequences, where exces- 152

sive layer removal can significantly degrade perfor- 153

mance on more complex tasks. Instead of statically 154

removing unimportant layers, our approach focuses 155

on dynamically skipping these layers based on the 156

specific inputs. 157

Dynamic Depth Dynamic Depth, which allo- 158

cates different layers based on the specific input, 159

is an effective technique for accelerating inference 160

while preserving performance (Han et al., 2021, 161

2022). Recent works primarily implement dynamic 162

depth through two key methods: Early-Exit (Bae 163

et al., 2023; Elhoushi et al., 2024) and Mixture 164

of Depths (MoD) (Raposo et al., 2024). Early- 165

exit strategies terminate computation in later lay- 166

ers once sufficient confidence is achieved, effec- 167

tively reducing redundant computations. In con- 168

trast, MoD offers greater flexibility by dynamically 169

skipping less critical layers, enhancing adaptability 170

and representational capacity. Despite their ad- 171

vantages, both Early-Exit and MoD often involve 172

significant training overhead. For instance, Lay- 173

erSkip (Elhoushi et al., 2024) and MoD (Raposo 174

et al., 2024) require training models from scratch or 175

extensive continual training, while Tan et al. (Tan 176

et al., 2024) extends pre-trained model training over 177

long schedules to achieve optimal performance. To 178

overcome these limitations, we propose Router- 179

Tuning, an efficient approach to dynamic layer 180

skipping that requires minimal additional offline 181

training, providing a more cost-effective solution. 182

2

3 Methodology183

In this section, we first review the challenges asso-184

ciated with deploying Mixture of Depths and then185

introduce Router-Tuning, addressing the implemen-186

tation of Mixture of Depths from both design and187

training perspectives.188

3.1 Motivation189

The Mixture of Depths (MoD) framework (Raposo190

et al., 2024), which dynamically adjusts layer depth191

based on input complexity to enhance computa-192

tional efficiency, was originally designed for inte-193

gration during the pretraining phase, where trans-194

former models are trained from scratch with MoD-195

enabled layers. More recently, Tan et al. (2024)196

applied MoD to pretrained Llama models (Tou-197

vron et al., 2023) through continual training. While198

these approaches have demonstrated promising re-199

sults, training with MoD remains computation-200

ally expensive and time-consuming, posing chal-201

lenges for scalability and real-world deployment.202

A more efficient alternative is to apply MoD di-203

rectly to existing pretrained models, followed by204

lightweight fine-tuning of a subset of parameters205

(Houlsby et al., 2019b; Hu et al., 2022), signifi-206

cantly reducing both computational costs and train-207

ing time.208

On the other hand, MoD has typically been im-209

plemented at the transformer block level. However,210

skipping entire transformer blocks has shown to211

be suboptimal to maintain the performance. In-212

spired by He et al. (2024b), we recognize that each213

transformer block contains layers of varying impor-214

tance. Aggressively skipping entire blocks risks215

omitting critical layers, potentially degrading per-216

formance. Instead, skipping fine-grained layers of-217

fers a more effective strategy for preserving model218

accuracy. Moreover, unlike blocks that generally219

share the same architecture, individual layers im-220

pose different computational costs. For instance,221

in dense transformer models, attention layers are222

particularly expensive, with computational com-223

plexity scaling quadratically with sequence length224

and additional memory needed for KV cache stor-225

age. In contrast, in MoE models, MLP layers hold226

the majority of the parameters, leading to substan-227

tial communication and computation overhead.228

Building on these insights, we propose Router-229

Tuning, a cost-effective formulation of MoD that230

achieves a favorable trade-off between performance231

and computational costs.232

3.2 Router-Tuning for Dynamic Depth 233

In this part, we propose Router-Tuning to address 234

the challenges outlined in Section 3.1. As illus- 235

trated in Figure 1, Router-Tuning incorporates an 236

additional trainable router that determines whether 237

to skip the layer. Specifically, Router-Tuning can 238

be deployed in two levels: (1) token-level, where 239

layers are dynamically skipped for individual to- 240

kens, and (2) sequence-level, where layers are dy- 241

namically skipped for the entire sequence. Given 242

an input x ∈ RL×d, the router first computes an 243

importance score for the input: 244

R(x)i =

{
GATE(xi), Token-level
GATE(1

L

∑L
i=1 xi), Sequence-level

, (1) 245

where R is a scoring router that assesses the im- 246

portance score of the input, GATE is the gating 247

function GATE(x) = Sigmoid(Wx). Based on 248

the computed importance scores, we further apply 249

a binarized mask M to determine whether to skip 250

a token or an entire sequence: 251

M =

{
1, if R(x) ≥ τ

0, otherwise
, (2) 252

where τ is the threshold. The score is set to zero for 253

skipped inputs and one for retained inputs, ensuring 254

stable outputs (Tan et al., 2024). 255

To enable a differentiable and trainable binary 256

decision process, we utilize the straight-through 257

estimator (STE) (Bengio et al., 2013), which allows 258

gradients to propagate through the binary selection 259

mechanism via ∂M
∂R = 1. The final output of MoD 260

is then computed as follows: 261

y = M ⊙ F (x) + x, (3) 262

where F denotes a given layer and y is the output. 263

This formulation ensures that the router is fully 264

trainable through the gradient calculations: 265

∂y

∂W
=

∂y

∂M

∂M

∂R

∂R

∂W
. (4) 266

During inference, without the need for gradient 267

calculations, we further enhance computational ef- 268

ficiency by completely bypassing computations for 269

skipped inputs: 270

y =

{
F (x) + x, if R(x) ≥ τ

x, otherwise
. (5) 271

This dynamic routing mechanism ensures that com- 272

putation is performed only when necessary, thereby 273

enhancing the computational efficiency. 274

3

𝑭(⋅)Input 𝒙 Output 𝒚+

Router 𝑹

𝑹 𝒙 ≥ 𝝉

𝑭(⋅)Input 𝒙 Output 𝒚+

Router 𝑹

𝑹 𝒙 < 𝝉

Figure 1: Overview of Router-Tuning. Router-Tuning involves a trainable router to determine whether a given
layer F (·) (e.g., Attention and MLP) would be skipped. Inputs with routing scores lower R(x) than the threshold τ
are skipped, and only the router R is trainable in the whole model.

3.3 Extension to Mixture of Experts275

Mixture of Experts (MoE) employs sparse acti-276

vation, dynamically selecting expert networks for277

each input, which delivers promising performance278

in various tasks (Jiang et al., 2024; Dai et al., 2024;279

Muennighoff et al., 2024). However, MoE also280

exhibits significant redundancy, allowing certain281

experts or layers to be skipped with minimal impact282

on performance (Lu et al., 2024; He et al., 2024a).283

Building on this, we extend Router-Tuning to MoE284

layers by implementing dynamic skipping within285

each expert:286

Êi(x) =

{
Ei(x), if R(x) ≥ τ

0, otherwise
, (6)287

where Ei denotes the i-th expert and Êi(x) is the288

corresponding output denotes the corresponding289

output, bypassing the skipped tokens. Given a col-290

lection of n experts, {E1,E2, . . . ,En}, the overall291

output of the MoE layer is as follows:292

K = TopK(Softmax(G(x)), k), (7)293

294

y =
∑

i∈K
G(x)i · Êi(x), (8)295

where K denotes the indices of the top-k selected296

experts, and G(x)i represents the selection score297

for the i-th expert. By dynamically skipping ex-298

perts within each layer, Router-Tuning significantly299

reduces computation costs.300

3.4 Training Objectives301

Given the computationally intensive nature of train-302

ing entire LLMs and the constraints of real-world303

computational resources, our goal is to implement304

dynamic depth while minimizing both computa-305

tional costs and time overhead. To achieve this,306

we focus exclusively on fine-tuning the routers, as307

illustrated in Figure 1, thereby eliminating the need308

for costly full-model training.309

Specifically, we optimize two training objectives:310

improving task-specific performance and lowering311

MoD capacity (the proportion of non-skipped in- 312

puts). On the one hand, Router-Tuning is designed 313

to maintain the performance of the original model, 314

which we enforce using the loss term Ltask during 315

fine-tuning. On the other hand, the model is en- 316

couraged to skip more tokens or sequences (i.e., 317

reduce MoD capacity) to enhance efficiency. To 318

achieve this, we introduce another loss term LMoD, 319

which drives the model to reduce MoD capacity 320

to a desired target sparsity level s, thereby lower- 321

ing computational costs and accelerating inference. 322

The overall training objective is as follows: 323

L = Ltask + λ · LMoD, (9) 324

325

LMoD = ReLU(∥M∥0 − s), (10) 326

where L represents the standard loss function (e.g., 327

cross-entropy), while LMoD is an l0-norm regular- 328

ization term that reduces MoD capacity. The co- 329

efficient λ acts as a scaling factor to balance the 330

trade-off between task performance and efficiency. 331

4 Main Results 332

In this section, we evaluate the effectiveness of 333

Router-Tuning on transformer architectures with 334

the deployment details in Appendix A. 335

4.1 Performance of Router-Tuning 336

Router-Tuning achieves superior performance 337

on Attention layers We first compare deploying 338

Router-Tuning to different modules, e.g., Block, 339

MLP, and Attention, as shown in Table 1. Based 340

on the observation that deeper layers are more re- 341

dundant than shallow layers (Gromov et al., 2024; 342

He et al., 2024b), we focus on deploying Router- 343

Tuning to the deepest layers except the last one, 344

leaving other layers unchanged. 345

While previous studies have primarily explored 346

layer dropping or skipping to Block and MLP lay- 347

ers (Bae et al., 2023; Gromov et al., 2024), skipping 348

these modules significantly degrades performance 349

when applied at either token or sequence level. In 350

4

Table 1: Router-Tuning at different granularities. We compare deployments on Attention, Block, and MLP layers.
The number of skippable layers is capped at 16, with 50% MoD capacity. SpeedUp denotes inference-time speedup.

Llama-3-8B

Method Granularity Speedup ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline – 1.00× 58.1 81.3 82.1 65.3 45.0 80.5 67.2 77.7 69.7

Router-Tuning

Blocktoken 1.24× 44.2 77.9 63.1 64.4 34.0 70.4 65.4 71.6 61.4
Blockseq 1.26× 44.5 78.0 62.6 64.6 34.2 70.3 65.3 71.2 61.3

MLPtoken 1.05× 45.3 77.8 65.1 62.8 33.7 71.9 66.8 72.4 62.0
MLPseq 1.06× 45.1 77.7 65.4 62.4 33.4 71.6 66.4 72.1 61.8

Attntoken 1.18× 56.4 79.8 81.0 65.3 45.2 79.9 64.6 77.3 68.7
Attnseq 1.21× 56.6 80.5 80.7 65.1 44.6 80.5 69.7 77.7 69.4

Llama-3-8B-Instruct

Method Granularity Speedup ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline – 1.00× 62.1 83.2 78.8 65.7 42.8 78.7 67.5 75.9 69.3

Router-Tuning

Blocktoken 1.24× 44.6 80.9 54.1 60.2 31.2 64.8 67.7 65.1 58.6
Blockseq 1.26× 44.7 81.2 54.5 60.6 32.4 64.6 67.1 64.8 58.7

MLPtoken 1.05× 41.4 74.9 59.3 64.8 31.6 67.8 66.4 68.4 59.3
MLPseq 1.06× 41.8 75.1 59.3 64.5 31.2 68.2 66.7 68.8 59.5

Attntoken 1.18× 60.2 82.9 76.8 65.8 42.6 78.6 67.7 76.6 68.9
Attnseq 1.21× 60.4 83.3 76.9 65.7 43.0 78.2 68.2 76.9 69.1

ARC-C MMLU OBQA RTE
Dataset

30

40

50

60

70

A
cc

ur
ac

y
(%

)

MLP/Layer Drop MLP/Router-Tuning Attn/Layer Drop Attn/Router-Tuning

Figure 2: Comparison between Router-Tuning and
Layer Drop on MLP and Attention layers under a fixed
25% overall skipping ratio.
contrast, applying dynamic depth to Attention lay-351

ers maintains the performance of original models,352

e.g., 69.4 v.s. 69.7 in Llama-3-8B. These findings353

reinforce our motivation to target Attention layers,354

and we utilize Router-Tuning on Attention layers355

by default unless stated otherwise.356

Router-Tuning improves over static layer drop-357

ping While statically dropping attention layers358

(He et al., 2024b) has demonstrated promising per-359

formance, its static nature lacks flexibility and lim-360

its representational power. Here, we further inves-361

tigate the improvements offered by the dynamic362

mechanism. Figure 2 compares Router-Tuning363

with static Layer Drop (He et al., 2024b), where364

Router-Tuning consistently achieves superior per-365

formance. For more complex tasks that are more366

sensitive to layer skipping, as shown in Figure 3,367

we compare Router-Tuning with Layer Drop on368

attention layers (i.e., “Attention Drop”) under the369

same computation budget, e.g., dropping 4 lay-370

ers versus deploying MoD to 8 layers with 50%371

capacity. Under the same skipping ratios, Router-372

Tuning significantly outperforms Attention Drop373

on the GSM8K benchmark (Cobbe et al., 2021),374

e.g., 6.5% when the skipping ratio is 25.0%. In Fig-375

ure 4, we further visualize the layer-wise skipping376

12.5% 25.0%

32

36

40

44

48

P
er

fo
rm

an
ce

 (%
)

Attention Drop Router-Tuning

Figure 3: Comparison with Attention Drop on
GSM8K tasks under identical skipping ratios.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layer Index

0

20

40

60

80

100

S
ki

pp
in

g
R

at
io

 (%
)

Layer Drop Router Tuning

Figure 4: Layer-wise Skipping Ratios for Attention
layers after Layer Drop and Router-Tuning.

ratios of MoD versus Attention Drop. Unlike static 377

approaches that permanently remove certain layers, 378

Router-Tuning maintains the utilization of all lay- 379

ers by adaptively distributing skipping ratios across 380

them. This flexible allocation strategy contributes 381

to improved performance. 382

Router-Tuning outperforms dynamic skipping 383

methods Table 2 compares Router-Tuning with 384

dynamic skipping baselines, including DLO (Tan 385

et al., 2024) and Skip Transformer (Peroni and 386

Bertsimas, 2024). Following the setup of baselines, 387

we conduct the comparison on the token level for 388

MLP layers. Router-Tuning consistently outper- 389

forms these methods across most tasks, despite 390

operating under the router-only training constraint. 391

On the one hand, Router-Tuning freezes the model 392

backbones, which contributes to avoiding the risks 393

5

of catastrophic forgetting (Houlsby et al., 2019b;394

Liu et al., 2024; Qiao and Mahdavi, 2024). Addi-395

tionally, Router-Tuning is trained end-to-end with-396

out being constrained by precomputed labels (e.g.,397

token-level similarity scores in DLO) or stochas-398

tic gating mechanisms. This design enables more399

flexible and stable learning, while preserving the400

pretrained capabilities of the backbone.401

Table 2: Performance comparison against dynamic
dropping baselines, including DLO (Tan et al., 2024)
and Skip Transformer (Peroni and Bertsimas, 2024).

Method ARC-C HellaSwag MMLU WinoG Avg.

DLO 44.5 64.2 62.1 71.3 60.5
Skip Transformer 44.7 64.4 62.4 71.5 60.8
Router-Tuning 45.3 65.1 62.8 72.4 61.4

4.2 Efficiency Improvements402

In this part, we measure the efficiency in both train-403

ing and inference, focusing on computational and404

memory usage.405

Table 3: Comparison of training strategies of achiev-
ing dynamic layer skipping. The training time for MoD
is left blank as it was not conducted on LLaMA-3-8B.

Method Target Modules Granularity Training Stage Trainable Training Time

MoD (Raposo et al., 2024) Block Token Pretraining Full Model –
DLO (Tan et al., 2024) MLP Token Continual Pretraining Full Model 36h on NVIDIA A100
Router-Tuning Block / MLP / Attn Token / Sequence Finetuning Router 15m on NVIDIA A6000

Training Efficiency The training efficiency of406

our method lies in two perspectives: trainable407

parameters and training steps. Since the router408

projects the input from dimension d to 1, the num-409

ber of trainable parameters is d×1 per layer, and the410

total number of trainable parameters is fewer than411

0.01% of the whole model. Additionally, Router-412

Tuning only requires a few steps, which is verified413

in Section 5. Consequently, as shown in Table 3,414

Router-Tuning can be completed in under 15 min-415

utes on a single NVIDIA A6000 GPU—over 1000416

times faster than DLO (Tan et al., 2024), which417

performs large-scale training on full models and418

takes 36 hours on NVIDIA RTX A100 GPUs.419

Inference Speedup We also evaluate the run-420

time speed improvements achieved with Router-421

Tuning. The inference speed is measured through-422

out the entire generation process, including prefill-423

ing and generation. To ensure that our results accu-424

rately reflect the performance gains, we adhere to425

two key principles: (1) all operations are performed426

on a single Nvidia RTX A6000 Ada GPU, eliminat-427

ing any communication overhead from multi-GPU428

setups; and (2) we set the maximal sequence length429

as 2048 and increase batch sizes to fully utilize the 430

GPU for each model. 431

As shown in Table 1, skipping attention lay- 432

ers yields a more substantial speedup than skip- 433

ping MLP layers, which is primarily due to the 434

quadratic complexity of the attention mechanism 435

and the memory overhead associated with KV- 436

cache (Zhang et al., 2023; Singhania et al., 2024; 437

He et al., 2024b). On the other hand, different gran- 438

ularities contribute to different levels of speedup. 439

This variation is primarily due to attention layers, 440

where fine-grained token-level MoD introduces dif- 441

fering token lengths within a batch, necessitating 442

padding operations to standardize sequence lengths. 443

Instead, the speedups at the sequence level surpass 444

those at the token level, with Router-Tuning achiev- 445

ing a 21% improvement in inference speed. There- 446

fore, we set Router-Tuning on the sequence level 447

for attention layers as the default setting. 448

KV Cache The KV cache stores intermediate 449

representations of attention layers, accelerating in- 450

ference by eliminating redundant computations but 451

incurring substantial memory overhead. Our ap- 452

proach, which selectively skips attention layers, 453

significantly reduces KV cache size—for instance, 454

achieving an 8GB reduction when processing an in- 455

put sequence of length 2048 with a batch size of 64 456

on Llama-3-8B. In contrast, DLO (Tan et al., 2024) 457

operates exclusively on MLP layers and retains the 458

full KV cache, providing no memory savings. 459

5 Ablation Studies 460

Compatibility across different models Since 461

Router-Tuning can be seamlessly integrated into 462

pretrained language models, we extend our evalu- 463

ation to diverse architectures, including Llama-2 464

(Touvron et al., 2023), Mistral (Jiang et al., 2023), 465

and Qwen2.5 (Bai et al., 2023), covering a wide 466

range of model sizes. As shown in Table 4, we 467

deploy Router-Tuning in half of the attention lay- 468

ers while maintaining the total MoD capacity at 469

50%. Across all models, Router-Tuning preserves 470

performance compared to their original counter- 471

parts, demonstrating its effectiveness and adapt- 472

ability across different architectures. 473

Impact of number of MoD layers In the main 474

experiments, we deployed half of the layers with 475

MoD. In Figure 5, we further explore the effect of 476

the number of MoD layers. Our results indicate that 477

applying MoD to up to half of the attention layers 478

6

Table 4: Ablation study of Router-Tuning across multiple model architectures and scales, highlighting its
robustness and consistent improvements.

Models Speedup OBQA PIQA RTE WinoGrande BoolQ ARC-C HellaSwag MMLU Avg.

Llama-2-13B 1.00× 45.2 80.5 65.0 76.2 80.7 59.4 82.2 54.6 68.0
w/Router-Tuning 1.22× 45.4 80.6 64.6 76.2 80.5 59.3 82.2 54.7 67.9

Qwen-2.5-14B 1.00× 45.6 82.2 79.1 80.4 85.3 67.2 84.3 79.7 75.5
w/Router-Tuning 1.18× 45.4 82.4 77.9 78.5 85.0 66.2 83.8 78.0 74.7

Qwen-2.5-7B 1.00× 47.2 79.6 81.2 76.6 84.6 63.7 80.2 74.1 73.4
w/Router-Tuning 1.19× 47.0 80.1 76.9 76.1 83.2 62.3 79.8 73.3 72.3

Mistral-7B 1.00× 44.4 82.2 68.2 79.0 82.2 60.6 83.2 62.4 70.3
w/Router-Tuning 1.24× 44.0 81.8 67.6 78.2 81.7 59.9 82.6 61.8 69.7

0 4 8 12 16 20 24
MoD Layers

67

69

71

73

P
er

fo
rm

an
ce

 (%
)

Qwen2.5-7B: 73.4

Mistral-7B: 70.3

Qwen2.5-7B Mistral-7B

Figure 5: Ablation study on the impact of varying the
number of MoD layers on overall model performance.

still maintains comparable performance. A similar479

trend is observed in Figure 6 for smaller models.480

However, when further increasing the number of481

MoD layers, performance starts to degrade. We482

attribute this decline to the transformation of im-483

portant shallow layers, which negatively impacts484

overall performance (Men et al., 2024; He et al.,485

2024a,b). Therefore, preserving the density of shal-486

low layers while applying MoD to deeper layers487

ensures its effectiveness.488

Qwen-2.5-1.5B
w/ R.T.-10

w/ R.T.-14

Qwen-2.5-3B
w/ R.T.-12

w/ R.T.-16
56

58

60

62

64

66

Av
er

ag
e

P
er

fo
rm

an
ce

63.4 63.2 62.8

67.7 67.4
66.7

Figure 6: Performance of Router-Tuning on small
models, where “R.T.” denotes Router-Tuning and the
postfix “-n” indicates that MoD is applied to n layers.

Influence of Training Dataset In Table 5, we489

next examine the impact of using different training490

datasets for Router-Tuning. We consider a variety491

of datasets, including Alpaca (Taori et al., 2023),492

Evol-Instruct (Xu et al., 2023), ShareGPT (Zheng493

et al., 2023), and Llama-Pro (Wu et al., 2024).494

Since Router-Tuning only fine-tunes the routers495

while keeping the backbone of the language models496

intact, changes in the training dataset do not signif-497

icantly impact performance. However, Llama-Pro,498

which incorporates diverse training data from vari-499

ous domains, provides slightly better performance500

due to its broader data coverage.501

0 1K 2K 5K 10K
Number of Training Samples

40

50

60

70

80

P
er

fo
rm

an
ce

 (%
)

HellaSwag MMLU OBQA WinoGrande

Figure 7: Effect of varying the number of training sam-
ples on performance.

On the other hand, due to the small number 502

of trainable parameters, Router-Tuning does not 503

require a large amount of training samples. As 504

shown in Figure 7, MoD layers are initially dense- 505

activated and then sparsified. Although the initial 506

sparsification steps lead to a drop in performance, 507

subsequent Router-Tuning facilitates performance 508

recovery. Notably, just 5K training samples are 509

sufficient to effectively train the routers. 510

Table 5: Effectiveness across different training
datasets, where Router Tuning demonstrates robust-
ness to the varying datasets.

Dataset HellaSwag MMLU OBQA WinoGrande Avg.

Baseline 82.1 65.3 45.0 77.7 67.5

Alpaca 79.8 62.2 43.8 77.4 65.8
Evol-Instruct 80.4 64.0 44.4 77.6 66.6
ShareGPT 80.6 63.3 45.4 76.7 66.5
Llama-Pro 80.7 65.1 44.6 77.7 67.0

6 MoE and LoRA Integration 511

In this section, we further explore the integration of 512

Router-Tuning with other architectures and training 513

techniques. First, we implement Router-Tuning on 514

mainstream MoE architectures. Then, we combine 515

Router-Tuning with LoRA fine-tuning to enhance 516

both efficiency and performance. 517

Router-Tuning on MoE The Expert’s redun- 518

dancy in MoE has been widely demonstrated in 519

recent works (Lu et al., 2024; He et al., 2024a), e.g., 520

the model still maintains comparable performance 521

after removing certain layers. Therefore, we fur- 522

ther extend Router-Tuning to MoE, where we take 523

OLMoE (Muennighoff et al., 2024) and DeepSeek- 524

7

Table 6: Performance of Router-Tuning on Mixture of Experts, where we take Expert Drop (He et al., 2024a) as
the baseline of static dropping for comparison.

Models SpeedUp OBQA PIQA RTE WinoGrande BoolQ ARC-C HellaSwag MMLU Avg.

DeepSeek-MoE 1.00× 43.6 80.5 62.8 73.4 72.4 52.7 79.9 44.5 63.7
w/Expert Drop 1.11× 42.2 80.2 59.9 70.0 74.0 48.1 75.6 38.9 61.1
w/Router-Tuning 1.10× 43.2 80.4 61.2 71.4 72.1 50.8 77.3 42.8 62.4

OLMoE 1.00× 45.6 80.1 53.7 71.2 74.7 54.5 79.4 52.5 64.0
w/Expert Drop 1.13× 34.0 66.6 51.6 59.3 67.6 39.0 40.5 42.7 50.2
w/Router-Tuning 1.12× 40.4 76.2 53.2 70.2 71.3 52.0 77.9 50.1 61.4

Table 7: Effectiveness of Router-Tuning integrated with LoRA finetuning, compared to deploying Router-
Tuning and LoRA separately.

Model Method SpeedUp OBQA PIQA RTE WinoGrande BoolQ ARC-C HellaSwag MMLU Avg.

Llama-3-8B

Baseline 1.00× 45.0 80.5 67.2 77.7 81.3 58.1 82.1 65.3 69.6

R.T. 1.21× 44.6 80.5 69.7 77.7 80.7 56.6 80.7 65.1 69.5
LoRA 1.00× 46.6 82.0 68.0 77.9 83.9 61.8 81.6 65.9 71.0

LoRA + R.T. 1.21× 47.2 82.2 67.4 77.8 83.9 61.5 81.7 65.8 70.9

Mistral-7B

Baseline 1.00× 44.4 82.2 68.2 79.1 82.2 60.6 83.2 62.4 70.3

R.T. 1.24× 44.2 81.9 68.5 78.6 81.7 60.4 82.5 61.8 70.0
LoRA 1.00× 45.2 83.0 68.9 79.4 84.7 60.7 83.7 62.8 71.1

LoRA + R.T. 1.24× 45.7 83.1 68.7 79.3 84.3 60.9 83.4 62.9 71.2

MoE (Dai et al., 2024) as the backbones and equip525

each Expert network with Router-Tuning. Since526

these models deploy MoE at the token level, we di-527

rectly apply the token-level Router-Tuning to these528

models. Here, we compare Router-Tuning with Ex-529

pert Drop (He et al., 2024a) that statically drops less530

important experts. To ensure a fair comparison, we531

fix the overall skipping ratio of Router-Tuning to532

25%, and drop the bottom 25% of experts globally533

by importance score in the Expert Drop baseline.534

1 8 15 22 29 36 43 50 57 64
Expert Index

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

No
rm

al
ize

d
Ex

pe
rt

Lo
ad

Assigned Tokens
Executed Tokens

Figure 8: Normalized expert load before and after
applying router-based filtering, denoted as “Assigned
Tokens” and “Executed Tokens”, respectively. Expert
load values are normalized by the mean number of as-
signed tokens.

In Table 6, instead of removing a subset of ex-535

perts like Expert Drop, Router-Tuning maintains536

the potential of all experts, which contributes to537

a superior performance. In Figure 8, we further538

investigate how Router-Tuning affects the infer-539

ence behavior of expert networks by visualizing540

the expert load within a specific layer from two per-541

spectives: the number of tokens initially assigned542

to each expert (“Assigned Tokens”) and the number543

of tokens that pass the router and are actually exe-544

cuted (“Executed Tokens”). Router-tuning prompts545

the experts to skip less important tokens and signif-546

icantly lower the load of overloaded experts, which547

alleviates the imbalanced distribution of token as-548

signments. Consequently, this approach fosters a 549

more balanced utilization across the entire set of 550

experts (Fedus et al., 2022; He et al., 2025) and 551

thus enhances the efficiency. 552

Integration with LoRA Router-Tuning enables 553

dynamic depth to improve computational efficiency, 554

whereas parameter-efficient fine-tuning (PEFT) 555

methods aim to update a small subset of param- 556

eters to enhance downstream task performance. To 557

examine whether Router-Tuning is complementary 558

to PEFT, we propose jointly conducting Router- 559

Tuning with LoRA fine-tuning (Hu et al., 2021), 560

targeting improvements in both efficiency and task 561

performance. As shown in Table 7, this joint train- 562

ing strategy preserves the efficiency benefits of 563

Router-Tuning while maintaining the performance 564

gains achieved by LoRA. Together, the integra- 565

tion of Router-Tuning and LoRA offers a more ad- 566

vanced fine-tuning paradigm that further enhances 567

overall model capability. 568

7 Conclusion 569

In this work, we investigate the dynamic depth 570

mechanism from both design and training perspec- 571

tives. We propose Router-Tuning, which effectively 572

implements dynamic depth by fine-tuning only a 573

minimal number of parameters in just a few steps. 574

Additionally, we explore Router-Tuning across a 575

variety of modules and granularities to evaluate 576

its effectiveness across a wide range of models 577

and tasks. These advancements provide valuable 578

insights and practical solutions for deploying dy- 579

namic depth and enhancing the efficiency of large 580

language models. 581

8

Limitations582

Despite the progress achieved in this work, sev-583

eral limitations remain. First, while we have ad-584

vanced MoD through Router-Tuning, other, poten-585

tially more sophisticated training strategies may586

further improve performance and merit future in-587

vestigation. Second, due to computational resource588

constraints, our experiments were limited to a small589

set of models and tasks. Extending this approach590

to a broader range of architectures and applications591

would provide deeper insight into its generalizabil-592

ity and full potential.593

References594

2019. Winogrande: An adversarial winograd schema595
challenge at scale.596

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-597
Young Yun. 2023. Fast and robust early-exiting598
framework for autoregressive language models with599
synchronized parallel decoding. In Proceedings of600
the 2023 Conference on Empirical Methods in Natu-601
ral Language Processing, pages 5910–5924.602

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,603
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei604
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,605
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,606
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,607
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong608
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang609
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian610
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi611
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,612
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin-613
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023.614
Qwen technical report. Preprint, arXiv:2309.16609.615

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.616
2013. Estimating or propagating gradients through617
stochastic neurons for conditional computation.618
Preprint, arXiv:1308.3432.619

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng620
Gao, and Yejin Choi. 2019. Piqa: Reasoning about621
physical commonsense in natural language. Preprint,622
arXiv:1911.11641.623

Christopher Clark, Kenton Lee, Ming-Wei Chang,624
Tom Kwiatkowski, Michael Collins, and Kristina625
Toutanova. 2019. Boolq: Exploring the surpris-626
ing difficulty of natural yes/no questions. Preprint,627
arXiv:1905.10044.628

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,629
Ashish Sabharwal, Carissa Schoenick, and Oyvind630
Tafjord. 2018. Think you have solved question631
answering? try arc, the ai2 reasoning challenge.632
Preprint, arXiv:1803.05457.633

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 634
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 635
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 636
Nakano, Christopher Hesse, and John Schulman. 637
2021. Training verifiers to solve math word prob- 638
lems. arXiv preprint arXiv:2110.14168. 639

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. 640
Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding 641
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, 642
Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui, 643
and Wenfeng Liang. 2024. Deepseekmoe: Towards 644
ultimate expert specialization in mixture-of-experts 645
language models. CoRR, abs/2401.06066. 646

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx- 647
uan Wang, Bochao Wu, Chengda Lu, Chenggang 648
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, 649
Damai Dai, Daya Guo, Dejian Yang, Deli Chen, 650
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, 651
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei 652
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng 653
Wang, Haowei Zhang, Honghui Ding, Huajian Xin, 654
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, 655
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, 656
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie 657
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, 658
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean 659
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, 660
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, 661
Mingchuan Zhang, Minghua Zhang, Minghui Tang, 662
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, 663
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu 664
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, 665
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin 666
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao 667
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, 668
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu 669
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, 670
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, 671
W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, 672
Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, 673
Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, 674
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, 675
Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, 676
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin 677
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, 678
Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, 679
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, 680
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yan- 681
hong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao 682
Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, 683
Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, 684
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yix- 685
uan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, 686
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue 687
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan 688
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxi- 689
ang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. 690
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, 691
Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan 692
Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhi- 693
gang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, 694
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, 695

9

https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066

Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi696
Gao, and Zizheng Pan. 2024. Deepseek-v3 technical697
report. Preprint, arXiv:2412.19437.698

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,699
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas700
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed701
Roman, Ahmed A Aly, Beidi Chen, and Carole-Jean702
Wu. 2024. Layerskip: Enabling early exit inference703
and self-speculative decoding.704

William Fedus, Barret Zoph, and Noam Shazeer. 2022.705
Switch transformers: Scaling to trillion parameter706
models with simple and efficient sparsity. Preprint,707
arXiv:2101.03961.708

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,709
Sid Black, Anthony DiPofi, Charles Foster, Laurence710
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,711
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,712
Jason Phang, Laria Reynolds, Hailey Schoelkopf,713
Aviya Skowron, Lintang Sutawika, Eric Tang, An-714
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.715
2023. A framework for few-shot language model716
evaluation.717

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,718
Abhinav Pandey, Abhishek Kadian, Ahmad Al-719
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-720
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh721
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-722
tra, Archie Sravankumar, Artem Korenev, Arthur723
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-724
driguez, Austen Gregerson, Ava Spataru, Baptiste725
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,726
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,727
Chris Marra, Chris McConnell, Christian Keller,728
Christophe Touret, Chunyang Wu, Corinne Wong,729
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-730
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,731
Danny Wyatt, David Esiobu, Dhruv Choudhary,732
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,733
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,734
Elina Lobanova, Emily Dinan, Eric Michael Smith,735
Filip Radenovic, Francisco Guzmán, Frank Zhang,736
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-737
derson, Govind Thattai, Graeme Nail, Gregoire Mi-738
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,739
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan740
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-741
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,742
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,743
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,744
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,745
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,746
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,747
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-748
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,749
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth750
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,751
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal752
Lakhotia, Lauren Rantala-Yeary, Laurens van der753
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,754
Louis Martin, Lovish Madaan, Lubo Malo, Lukas755
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline756

Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar 757
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew 758
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam- 759
badur, Mike Lewis, Min Si, Mitesh Kumar Singh, 760
Mona Hassan, Naman Goyal, Narjes Torabi, Niko- 761
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, 762
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick 763
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va- 764
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, 765
Praveen Krishnan, Punit Singh Koura, Puxin Xu, 766
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj 767
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, 768
Robert Stojnic, Roberta Raileanu, Rohan Maheswari, 769
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron- 770
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan 771
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa- 772
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo- 773
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha- 774
ran Narang, Sharath Raparthy, Sheng Shen, Shengye 775
Wan, Shruti Bhosale, Shun Zhang, Simon Van- 776
denhende, Soumya Batra, Spencer Whitman, Sten 777
Sootla, Stephane Collot, Suchin Gururangan, Syd- 778
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek 779
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias 780
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal 781
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh 782
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir- 783
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro- 784
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit- 785
ney Meers, Xavier Martinet, Xiaodong Wang, Xi- 786
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin- 787
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold- 788
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, 789
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, 790
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing 791
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri- 792
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, 793
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, 794
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei 795
Baevski, Allie Feinstein, Amanda Kallet, Amit San- 796
gani, Amos Teo, Anam Yunus, Andrei Lupu, An- 797
dres Alvarado, Andrew Caples, Andrew Gu, Andrew 798
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan- 799
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara- 800
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, 801
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz- 802
dan, Beau James, Ben Maurer, Benjamin Leonhardi, 803
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi 804
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han- 805
cock, Bram Wasti, Brandon Spence, Brani Stojkovic, 806
Brian Gamido, Britt Montalvo, Carl Parker, Carly 807
Burton, Catalina Mejia, Ce Liu, Changhan Wang, 808
Changkyu Kim, Chao Zhou, Chester Hu, Ching- 809
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe- 810
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, 811
Daniel Kreymer, Daniel Li, David Adkins, David 812
Xu, Davide Testuggine, Delia David, Devi Parikh, 813
Diana Liskovich, Didem Foss, Dingkang Wang, Duc 814
Le, Dustin Holland, Edward Dowling, Eissa Jamil, 815
Elaine Montgomery, Eleonora Presani, Emily Hahn, 816
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este- 817
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, 818
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat 819
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank 820

10

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://doi.org/10.18653/v1/2024.acl-long.681
https://doi.org/10.18653/v1/2024.acl-long.681
https://doi.org/10.18653/v1/2024.acl-long.681
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836

Seide, Gabriela Medina Florez, Gabriella Schwarz,821
Gada Badeer, Georgia Swee, Gil Halpern, Grant822
Herman, Grigory Sizov, Guangyi, Zhang, Guna823
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-824
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun825
Habeeb, Harrison Rudolph, Helen Suk, Henry As-826
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim827
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,828
Irina-Elena Veliche, Itai Gat, Jake Weissman, James829
Geboski, James Kohli, Janice Lam, Japhet Asher,830
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-831
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy832
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe833
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-834
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,835
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-836
delwal, Katayoun Zand, Kathy Matosich, Kaushik837
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-838
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle839
Huang, Lailin Chen, Lakshya Garg, Lavender A,840
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng841
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-842
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,843
Martynas Mankus, Matan Hasson, Matthew Lennie,844
Matthias Reso, Maxim Groshev, Maxim Naumov,845
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.846
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-847
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,848
Mike Macey, Mike Wang, Miquel Jubert Hermoso,849
Mo Metanat, Mohammad Rastegari, Munish Bansal,850
Nandhini Santhanam, Natascha Parks, Natasha851
White, Navyata Bawa, Nayan Singhal, Nick Egebo,852
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich853
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,854
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin855
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-856
dro Rittner, Philip Bontrager, Pierre Roux, Piotr857
Dollar, Polina Zvyagina, Prashant Ratanchandani,858
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel859
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu860
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,861
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky862
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,863
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara864
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,865
Satadru Pan, Saurabh Mahajan, Saurabh Verma,866
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-867
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,868
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,869
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,870
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,871
Stephanie Max, Stephen Chen, Steve Kehoe, Steve872
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,873
Summer Deng, Sungmin Cho, Sunny Virk, Suraj874
Subramanian, Sy Choudhury, Sydney Goldman, Tal875
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,876
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim877
Matthews, Timothy Chou, Tzook Shaked, Varun878
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai879
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad880
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,881
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-882
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng883
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo884

Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, 885
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, 886
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, 887
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary 888
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, 889
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd 890
of models. Preprint, arXiv:2407.21783. 891

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, 892
Paolo Glorioso, and Daniel A. Roberts. 2024. The 893
unreasonable ineffectiveness of the deeper layers. 894
Preprint, arXiv:2403.17887. 895

Qi Han, Zejia Fan, Qi Dai, Lei Sun, Ming-Ming Cheng, 896
Jiaying Liu, and Jingdong Wang. 2022. On the con- 897
nection between local attention and dynamic depth- 898
wise convolution. In International Conference on 899
Learning Representations. 900

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui 901
Wang, and Yulin Wang. 2021. Dynamic neural net- 902
works: A survey. IEEE Transactions on Pattern Anal- 903
ysis and Machine Intelligence, 44(11):7436–7456. 904

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg- 905
Kirkpatrick, and Graham Neubig. 2021. Towards a 906
unified view of parameter-efficient transfer learning. 907
arXiv preprint arXiv:2110.04366. 908

Shwai He, Weilin Cai, Jiayi Huang, and Ang Li. 909
2025. Capacity-aware inference: Mitigating the 910
straggler effect in mixture of experts. Preprint, 911
arXiv:2503.05066. 912

Shwai He, Daize Dong, Liang Ding, and Ang Li. 913
2024a. Demystifying the compression of mixture- 914
of-experts through a unified framework. Preprint, 915
arXiv:2406.02500. 916

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. 917
2024b. What matters in transformers? not all atten- 918
tion is needed. Preprint, arXiv:2406.15786. 919

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 920
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 921
2021. Measuring massive multitask language under- 922
standing. Preprint, arXiv:2009.03300. 923

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 924
Bruna Morrone, Quentin de Laroussilhe, Andrea 925
Gesmundo, Mona Attariyan, and Sylvain Gelly. 926
2019a. Parameter-efficient transfer learning for nlp. 927
Preprint, arXiv:1902.00751. 928

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 929
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges- 930
mundo, Mona Attariyan, and Sylvain Gelly. 2019b. 931
Parameter-efficient transfer learning for nlp. ArXiv, 932
abs/1902.00751. 933

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 934
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 935
Weizhu Chen. 2021. Lora: Low-rank adaptation of 936
large language models. Preprint, arXiv:2106.09685. 937

11

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://openreview.net/forum?id=L3_SsSNMmy
https://openreview.net/forum?id=L3_SsSNMmy
https://openreview.net/forum?id=L3_SsSNMmy
https://openreview.net/forum?id=L3_SsSNMmy
https://openreview.net/forum?id=L3_SsSNMmy
https://arxiv.org/abs/2503.05066
https://arxiv.org/abs/2503.05066
https://arxiv.org/abs/2503.05066
https://arxiv.org/abs/2406.02500
https://arxiv.org/abs/2406.02500
https://arxiv.org/abs/2406.02500
https://arxiv.org/abs/2406.15786
https://arxiv.org/abs/2406.15786
https://arxiv.org/abs/2406.15786
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/1902.00751
https://api.semanticscholar.org/CorpusID:59599816
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan938
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and939
Weizhu Chen. 2022. LoRA: Low-rank adaptation of940
large language models. In International Conference941
on Learning Representations.942

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-943
sch, Chris Bamford, Devendra Singh Chaplot, Diego944
de las Casas, Florian Bressand, Gianna Lengyel, Guil-945
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,946
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,947
Thibaut Lavril, Thomas Wang, Timothée Lacroix,948
and William El Sayed. 2023. Mistral 7b. Preprint,949
arXiv:2310.06825.950

Albert Q. Jiang, Alexandre Sablayrolles, Antoine951
Roux, Arthur Mensch, Blanche Savary, Chris952
Bamford, Devendra Singh Chaplot, Diego de las953
Casas, Emma Bou Hanna, Florian Bressand, Gi-954
anna Lengyel, Guillaume Bour, Guillaume Lam-955
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-956
Anne Lachaux, Pierre Stock, Sandeep Subramanian,957
Sophia Yang, Szymon Antoniak, Teven Le Scao,958
Théophile Gervet, Thibaut Lavril, Thomas Wang,959
Timothée Lacroix, and William El Sayed. 2024. Mix-960
tral of experts. Preprint, arXiv:2401.04088.961

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,962
Wei-Ming Chen, Wei-Chen Wang, Guangxuan963
Xiao, Xingyu Dang, Chuang Gan, and Song Han.964
2024. Awq: Activation-aware weight quantization965
for llm compression and acceleration. Preprint,966
arXiv:2306.00978.967

Shuo Liu, Jacky Keung, Zhen Yang, Fang Liu, Qilin968
Zhou, and Yihan Liao. 2024. Delving into parameter-969
efficient fine-tuning in code change learning: An970
empirical study. Preprint, arXiv:2402.06247.971

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan972
Huang, Bo Zhang, Junchi Yan, and Hongsheng Li.973
2024. Not all experts are equal: Efficient expert974
pruning and skipping for mixture-of-experts large975
language models. In Proceedings of the 62nd Annual976
Meeting of the Association for Computational Lin-977
guistics (Volume 1: Long Papers), pages 6159–6172,978
Bangkok, Thailand. Association for Computational979
Linguistics.980

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,981
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng982
Chen. 2024. Shortgpt: Layers in large language mod-983
els are more redundant than you expect. Preprint,984
arXiv:2403.03853.985

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish986
Sabharwal. 2018. Can a suit of armor conduct elec-987
tricity? a new dataset for open book question answer-988
ing. Preprint, arXiv:1809.02789.989

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld,990
Kyle Lo, Jacob Morrison, Sewon Min, Weijia Shi,991
Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling992
Gu, Shane Arora, Akshita Bhagia, Dustin Schwenk,993
David Wadden, Alexander Wettig, Binyuan Hui, Tim994

Dettmers, Douwe Kiela, Ali Farhadi, Noah A. Smith, 995
Pang Wei Koh, Amanpreet Singh, and Hannaneh 996
Hajishirzi. 2024. Olmoe: Open mixture-of-experts 997
language models. Preprint, arXiv:2409.02060. 998

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, 999
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale- 1000
man, Diogo Almeida, Janko Altenschmidt, Sam Alt- 1001
man, Shyamal Anadkat, Red Avila, Igor Babuschkin, 1002
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim- 1003
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir- 1004
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, 1005
Christopher Berner, Lenny Bogdonoff, Oleg Boiko, 1006
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock- 1007
man, Tim Brooks, Miles Brundage, Kevin Button, 1008
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany 1009
Carey, Chelsea Carlson, Rory Carmichael, Brooke 1010
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully 1011
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben 1012
Chess, Chester Cho, Casey Chu, Hyung Won Chung, 1013
Dave Cummings, Jeremiah Currier, Yunxing Dai, 1014
Cory Decareaux, Thomas Degry, Noah Deutsch, 1015
Damien Deville, Arka Dhar, David Dohan, Steve 1016
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, 1017
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, 1018
Simón Posada Fishman, Juston Forte, Isabella Ful- 1019
ford, Leo Gao, Elie Georges, Christian Gibson, Vik 1020
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo- 1021
Lopes, Jonathan Gordon, Morgan Grafstein, Scott 1022
Gray, Ryan Greene, Joshua Gross, Shixiang Shane 1023
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, 1024
Yuchen He, Mike Heaton, Johannes Heidecke, Chris 1025
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, 1026
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin 1027
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, 1028
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun 1029
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee- 1030
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka- 1031
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, 1032
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, 1033
Christina Kim, Yongjik Kim, Jan Hendrik Kirch- 1034
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, 1035
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon- 1036
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal 1037
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan 1038
Leike, Jade Leung, Daniel Levy, Chak Ming Li, 1039
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz 1040
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, 1041
Anna Makanju, Kim Malfacini, Sam Manning, Todor 1042
Markov, Yaniv Markovski, Bianca Martin, Katie 1043
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer 1044
McKinney, Christine McLeavey, Paul McMillan, 1045
Jake McNeil, David Medina, Aalok Mehta, Jacob 1046
Menick, Luke Metz, Andrey Mishchenko, Pamela 1047
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel 1048
Mossing, Tong Mu, Mira Murati, Oleg Murk, David 1049
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, 1050
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, 1051
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex 1052
Paino, Joe Palermo, Ashley Pantuliano, Giambat- 1053
tista Parascandolo, Joel Parish, Emy Parparita, Alex 1054
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel- 1055
man, Filipe de Avila Belbute Peres, Michael Petrov, 1056
Henrique Ponde de Oliveira Pinto, Michael, Poko- 1057

12

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2402.06247
https://arxiv.org/abs/2402.06247
https://arxiv.org/abs/2402.06247
https://arxiv.org/abs/2402.06247
https://arxiv.org/abs/2402.06247
https://doi.org/10.18653/v1/2024.acl-long.334
https://doi.org/10.18653/v1/2024.acl-long.334
https://doi.org/10.18653/v1/2024.acl-long.334
https://doi.org/10.18653/v1/2024.acl-long.334
https://doi.org/10.18653/v1/2024.acl-long.334
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2409.02060

rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-1058
ell, Alethea Power, Boris Power, Elizabeth Proehl,1059
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,1060
Cameron Raymond, Francis Real, Kendra Rimbach,1061
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-1062
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,1063
Girish Sastry, Heather Schmidt, David Schnurr, John1064
Schulman, Daniel Selsam, Kyla Sheppard, Toki1065
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav1066
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,1067
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin1068
Sokolowsky, Yang Song, Natalie Staudacher, Fe-1069
lipe Petroski Such, Natalie Summers, Ilya Sutskever,1070
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,1071
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,1072
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-1073
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,1074
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,1075
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,1076
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-1077
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,1078
Clemens Winter, Samuel Wolrich, Hannah Wong,1079
Lauren Workman, Sherwin Wu, Jeff Wu, Michael1080
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-1081
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong1082
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao1083
Zheng, Juntang Zhuang, William Zhuk, and Bar-1084
ret Zoph. 2024. Gpt-4 technical report. Preprint,1085
arXiv:2303.08774.1086

Matthew Peroni and Dimitris Bertsimas. 2024. Skip1087
transformers: Efficient inference through skip-1088
routing. In NeurIPS 2024 Workshop on Fine-Tuning1089
in Modern Machine Learning: Principles and Scala-1090
bility.1091

Fuli Qiao and Mehrdad Mahdavi. 2024. Learn more,1092
but bother less: parameter efficient continual learning.1093
In The Thirty-eighth Annual Conference on Neural1094
Information Processing Systems.1095

David Raposo, Sam Ritter, Blake Richards, Timothy1096
Lillicrap, Peter Conway Humphreys, and Adam San-1097
toro. 2024. Mixture-of-depths: Dynamically allocat-1098
ing compute in transformer-based language models.1099
Preprint, arXiv:2404.02258.1100

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,1101
Andy Davis, Quoc Le, Geoffrey Hinton, and1102
Jeff Dean. 2017. Outrageously large neural net-1103
works: The sparsely-gated mixture-of-experts layer.1104
Preprint, arXiv:1701.06538.1105

Prajwal Singhania, Siddharth Singh, Shwai He, So-1106
heil Feizi, and Abhinav Bhatele. 2024. Loki: Low-1107
rank keys for efficient sparse attention. ArXiv,1108
abs/2406.02542.1109

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter.1110
2024. A simple and effective pruning approach for1111
large language models. Preprint, arXiv:2306.11695.1112

Zhen Tan, Daize Dong, Xinyu Zhao, Jie Peng,1113
Yu Cheng, and Tianlong Chen. 2024. Dlo: Dynamic1114
layer operation for efficient vertical scaling of llms.1115
Preprint, arXiv:2407.11030.1116

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 1117
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 1118
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 1119
An instruction-following llama model. https:// 1120
github.com/tatsu-lab/stanford_alpaca. 1121

Gemini Team. 2024. Gemini 1.5: Unlocking multi- 1122
modal understanding across millions of tokens of 1123
context. Preprint, arXiv:2403.05530. 1124

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 1125
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 1126
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 1127
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 1128
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 1129
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 1130
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 1131
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 1132
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 1133
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 1134
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 1135
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 1136
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 1137
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 1138
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 1139
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 1140
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 1141
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 1142
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 1143
Melanie Kambadur, Sharan Narang, Aurelien Ro- 1144
driguez, Robert Stojnic, Sergey Edunov, and Thomas 1145
Scialom. 2023. Llama 2: Open foundation and fine- 1146
tuned chat models. Preprint, arXiv:2307.09288. 1147

Alex Wang, Amanpreet Singh, Julian Michael, Felix 1148
Hill, Omer Levy, and Samuel R. Bowman. 2019. 1149
GLUE: A multi-task benchmark and analysis plat- 1150
form for natural language understanding. In the Pro- 1151
ceedings of ICLR. 1152

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao 1153
Wang, Ye Feng, Ying Shan, and Ping Luo. 2024. 1154
Llama pro: Progressive llama with block expansion. 1155
Preprint, arXiv:2401.02415. 1156

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 1157
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 1158
Jiang. 2023. Wizardlm: Empowering large language 1159
models to follow complex instructions. Preprint, 1160
arXiv:2304.12244. 1161

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 1162
Farhadi, and Yejin Choi. 2019. Hellaswag: Can 1163
a machine really finish your sentence? Preprint, 1164
arXiv:1905.07830. 1165

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong 1166
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan- 1167
dong Tian, Christopher Re, Clark Barrett, Zhangyang 1168
Wang, and Beidi Chen. 2023. H2o: Heavy-hitter ora- 1169
cle for efficient generative inference of large language 1170
models. In Thirty-seventh Conference on Neural In- 1171
formation Processing Systems. 1172

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 1173
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 1174

13

https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=gdMJlwTcSQ
https://openreview.net/forum?id=gdMJlwTcSQ
https://openreview.net/forum?id=gdMJlwTcSQ
https://openreview.net/forum?id=gdMJlwTcSQ
https://openreview.net/forum?id=gdMJlwTcSQ
https://openreview.net/forum?id=ZxtaNh5UYB
https://openreview.net/forum?id=ZxtaNh5UYB
https://openreview.net/forum?id=ZxtaNh5UYB
https://arxiv.org/abs/2404.02258
https://arxiv.org/abs/2404.02258
https://arxiv.org/abs/2404.02258
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://api.semanticscholar.org/CorpusID:270226131
https://api.semanticscholar.org/CorpusID:270226131
https://api.semanticscholar.org/CorpusID:270226131
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2407.11030
https://arxiv.org/abs/2407.11030
https://arxiv.org/abs/2407.11030
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2401.02415
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO

Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,1175
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-1176
ing llm-as-a-judge with mt-bench and chatbot arena.1177
Preprint, arXiv:2306.05685.1178

14

https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A Experiment Setup1179

Models We conduct experiments on Llama (Tou-1180

vron et al., 2023; Grattafiori et al., 2024), Qwen1181

(Bai et al., 2023), and Mistral (Jiang et al.,1182

2023) due to their competitive performance and1183

widespread adoption. Additionally, we leverage1184

OLMoE (Muennighoff et al., 2024) and Deepseek-1185

MoE (Dai et al., 2024) as the backbone to deploy1186

Router-Tuning on the Mixture of Experts frame-1187

work.1188

Datasets For the training dataset, we used Llama-1189

Pro (Wu et al., 2024), given it spanning general in-1190

struction, math, and code for the SFT process and1191

offering a wealth of instruction data with varying1192

complexity levels. To evaluate model performance,1193

we report normalized zero-shot or few-shot accu-1194

racy on the LM-Harness benchmark. The number1195

of shots for each task is detailed in Table 8, which1196

includes multiple tasks: ARC-C (Clark et al., 2018),1197

BoolQ (Clark et al., 2019), HellaSwag (Zellers1198

et al., 2019), MMLU (Hendrycks et al., 2021),1199

OBQA (Mihaylov et al., 2018), PIQA (Bisk et al.,1200

2019), RTE (Wang et al., 2019), WinoGrande (ai2,1201

2019) and GSM8K (Cobbe et al., 2021). The eval-1202

uation code is based on EleutherAI’s LM Harness1203

framework (Gao et al., 2023).1204

Table 8: Experimental settings for evaluation tasks.
“Norm” refers to the normalization performed with re-
spect to the length of the input.

Task Number of few-shot Metric

BoolQ 0 Accuracy
RTE 0 Accuracy
OBQA 0 Accuracy (Norm)
PIQA 0 Accuracy (Norm)
MMLU 5 Accuracy
WinoGrande 5 Accuracy
GSM8K 5 Exact Match
HellaSwag 10 Accuracy (Norm)
ARC-C 25 Accuracy (Norm)

Hyperparameters We set τ as 0.5, which corre-1205

sponds to the midpoint of the sigmoid function. To1206

ensure that training starts from dense models, we1207

initialize W to zero, ensuring that R(x) ≥ τ ini-1208

tially, i.e., training from dense models. To achieve1209

the desired MoD capacity, we perform a grid search1210

over the learning rate from {1e-5, 2e-5, 5e-5, 1e-4,1211

2e-4} and the scale factor λ from {0, 0.1, 0.01,1212

0.001}, respectively.1213

15

	Introduction
	Related Work
	Methodology
	Motivation
	Router-Tuning for Dynamic Depth
	Extension to Mixture of Experts
	Training Objectives

	Main Results
	Performance of Router-Tuning
	Efficiency Improvements

	Ablation Studies
	MoE and LoRA Integration
	Conclusion
	Experiment Setup

