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Abstract
Open-source plays a vital role in machine learn-
ing research, yet projects focused on infras-
tructure and robustness often remain under-
recognized. We present DINOHash, an open-
source framework for robust perceptual image
hashing designed for the provenance detection of
AI-generated images. Unlike digital watermark-
ing methods—which are easily broken by com-
pression, cropping, or model leaks—DINOHash
does not modify the image, making it inherently
more secure, auditable, and resistant to transfor-
mations. DINOHash is built on top of the open-
sourced DINOv2 features and incorporates adver-
sarial training to ensure resilience against adver-
saries. DINOHash offers a reliable foundation
for researchers and practitioners to build secure
content verification systems. To promote ease of
adoption, the model is released in PyTorch and
ONNX formats as well as on npm.

Code: https://github.com/proteus
-photos/dinohash-perceptual-hash.

1. Introduction
Open-source software has become a cornerstone of ma-
chine learning research and deployment, yet there has been
no open source neural perceptual hash projects so far that
are reproducible and robust. In this work, we present DI-
NOHash, an open-source, adversarially robust perceptual
hashing framework designed for the provenance verification
of AI-generated images. DINOHash is engineered not only
as a state-of-the-art hashing method but also as a usable,
reproducible, and extensible software artifact to serve the
ML community.
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Figure 1. Deep neural feature extractor architecture. The
pipeline consists of a feature extractor network and a Locality
Sensitive Hashing (LSH) step. The PCA whitening decorrelates
components of the feature vector, so that the hashes of two ran-
domly selected images have the least probability of being identical.

The increasing prevalence of AI-generated media has made
content authenticity a pressing issue. Traditional solutions
like digital watermarking (Coalition for Content Prove-
nance and Authenticity, 2023; Wang et al., 2023a) often
fall short under real-world transformations (e.g., compres-
sion, cropping, screenshots), and introduce vulnerabilities
when model weights are publicly available. Furthermore,
watermarking modifies the image itself and typically re-
quires centralized infrastructure or secret keys, which limits
transparency and hinders open adoption.

In contrast, perceptual hashing computes compact,
transformation-invariant representations directly from im-
age semantics using deep neural networks. It enables match-
ing and moderation without altering content, making it a
better fit for open, decentralized provenance systems. How-
ever, existing deep hashing methods (Apple Inc., 2021) have
shown susceptibility to adversarial perturbations (Struppek
et al., 2022; Bhatia & Meng, 2022), which undermines their
trustworthiness.

DINOHash addresses these limitations by leveraging the
open-sourced self-supervised DINOv2 (Oquab et al., 2023)
vision transformer as a feature extractor, coupled with a
custom adversarial training strategy to enhance robustness
against both common and adversarial image transforma-
tions.
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2. Open-Source Development
Beyond the model itself, we emphasize sustainable develop-
ment practices: the codebase is open-sourced, with support
for both PyTorch and ONNX formats to ensure interoper-
ability across research and production environments. All
components—including the code, the base model (DINOv2),
the trained model (on HuggingFace), and the training dataset
(DiffusionDB)—are also publicly available, and our exper-
iments are designed for reproducibility and extensibility.
We include both clear instructions to re-train the model, as
well as npm packages for Javascript developers to use our
work. All our repositories are MIT licensed (note DINOv2
weights are CC-BY-SA-4.0; DiffusionDB is CC-BY-NCSA
and those licenses continue to apply). We include documen-
tation generated by DeepWiki that updates weekly.

3. Background and Related Work
In recent years, the field of deep hashing has seen signif-
icant advancements with numerous algorithms developed
based on convolutional neural networks (Liong et al., 2015;
Liu et al., 2016; Zhao et al., 2015; Zhang & Peng, 2019).
These methods promise more robust hash computation com-
pared to traditional hashing techniques. At their core, deep
hashing methods utilize deep neural networks to extract
salient image features, subsequently computing a compact
binary hash value based on these learned representations.
A notable example of deep perceptual hashing is Apple’s
NeuralHash (Apple Inc., 2021), which was developed for
client-side scanning aimed at detecting Child Sexual Abuse
Material (CSAM).

Formally, a perceptual hash function H can be defined
as a mapping H : RH×W×C → {0, 1}k, taking an
image x (with dimensions height H , width W , and
channels C) to a k-bit binary hash vector, H(x) =(
h1(x), . . . , hk(x)

)
. Perceptual hashing algorithms typi-

cally comprise two main components. First, a deep fea-
ture extractor D(x) : RH×W×C → Rk processes the input
image x to produce a real-valued feature vector z ∈ Rk.
This vector numerically encodes the image’s semantic and
structural content. Second, a binarization or fuzzy hashing
technique is applied to convert the feature vector z into the
k-bit binary hash. A common approach for this binarization
is locality-sensitive hashing (LSH) (Wei et al., 2024; Jafari
et al., 2021), which aims to assign similar feature vectors
to the same or nearby hash buckets with high probability.
For binary hashing, this often involves defining random
hyperplanes in the feature space, where each hash bit is de-
termined by which side of the corresponding hyperplane the
feature vector z lies on. This can be done using a Heaviside
step function. Although NeuralHash (Apple Inc., 2021) is
claimed to be robust to standard image transformations, its
design did not explicitly account for adversarial robustness

during training, rendering the system susceptible to such
manipulations. Given the widespread deployment of hash-
ing systems, accounting for adversarial efforts (Szegedy
et al., 2014; Goodfellow et al., 2015) is crucial to ensure
their trustworthiness and reliability. While deep perceptual
hashing promises robustness to standard transformations,
previous research (Struppek et al., 2022; Bhatia & Meng,
2022; Prokos et al., 2023; Madden et al.) has compellingly
demonstrated that these algorithms are vulnerable to adver-
sarial manipulations.

4. DINOHash: Increasing Robustness of
Perceptual Hashing

To improve deep perceptual hashing robustness, we pro-
pose DINOHash, a novel system with adversarial training.
Figure 1 shows its architecture, detailed below.

Architecture: At its core, our method leverages
DINOv2 (Oquab et al., 2023), a powerful self-supervised
vision transformer (Dosovitskiy et al., 2021) trained to pro-
duce rich feature embeddings that are inherently invariant to
common image transformations such as cropping, color jit-
tering, Gaussian blur, and polarization. Motivated by analy-
ses demonstrating the strong performance of self-supervised
models—particularly DINOv2’s ability to capture robust
and semantically meaningful features (Jiang et al., 2023;
Darcet et al., 2024)—we chose it as the feature extractor
backbone for DINOHash.

Our DINOHash architecture begins by utilizing a pre-trained
DINOv2 ViT-B/14 model (with register tokens) to extract
a real-valued feature embedding from the input image. To
obtain the final binary hash, we apply two subsequent steps.
First, Principal Component Analysis (PCA) is used to de-
correlate the feature components and simultaneously reduce
the dimensionality of the vector from 768 to 96. Second, we
apply Locality-Sensitive Hashing (LSH) to binarize the re-
duced feature vector, yielding a 96-bit binary string. While
our framework is flexible and can support different hash
lengths, we configure the default output to 96 bits for direct
comparability with systems like NeuralHash. Next, we de-
scribe our fine-tuning procedure to increase the adversarial
robustness of the system.

Adversarial Training: Given a perceptual hashing
model H , we aim to fine-tune its feature extractor such
that an adversarially perturbed image x′ receives the same
hash as the original image x. The perturbation is constrained
within an ℓ∞-norm ball of radius ϵ, i.e., ∥x− x′∥∞ ≤ ϵ.
Ideally, we want H(x′) = H(x). A naive loss function for
this goal could be defined as:

Lnaive = max
∥x′−x∥∞≤ϵ

∥H(x′)−H(x)∥1. (1)

However, optimizing this loss risks the collapse of the hash-
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ing function, causing it to produce a constant output.

To overcome this, we leverage the original feature extraction
network to provide a training signal, akin to knowledge
distillation (Hinton et al., 2015) in an adversarial setting.
We fine-tune a copy of the original model, referred to as the
student model Hstud. The loss function targets the output of
the original model Horig:

Lrobust = max
∥x′−x∥∞≤ϵ

∥Hstud(x
′)−Horig(x)∥1. (2)

Here, Horig denotes the original hashing model before fine-
tuning. Minimizing this objective ensures that the robust
model Hstud maintains the hashing capabilities of the origi-
nal model under adversarial perturbations, increasing robust-
ness without collapsing. The inner maximization to find the
adversarial example (that maximizes the hash difference)
x′ is solved using APGD (Croce & Hein, 2020), a strong
adversarial attack algorithm.

Since the step function used for binarization is non-
differentiable, we optimize the model in the logit space
prior to binarization. Specifically, we use a cross-entropy
loss LCE on the logits. We also found that adding a clean loss
term on the same batch—penalizing differences between the
student and original models on clean images—helped stabi-
lize training and speed up convergence. Let Ĥstud and Ĥorig
denote the logit outputs of the robust and original models,
respectively. The final loss function used to train the robust
model Ĥstud on image x is:

Ltotal(x) = LCE

(
Ĥstud(x

′), Ĥorig(x)
)

+ α · LCE

(
Ĥstud(x), Ĥorig(x)

)
,

(3)

where α is a hyperparameter balancing adversarial and clean
consistency losses.

Statistical Test: Let H ∈ {0, 1}k be the hash of an image x
in the database, and let H ′ be the corresponding hash of a
query image x′. The detection test compares the number of
matching bits M between H and H ′ against a threshold τ ,
i.e., if

M (H,H ′) ≥ τ where τ ∈ {0, . . . , k}, (4)

then the two images are considered a match. This formula-
tion is necessary to define a decision boundary for visual
similarity. When x and x′ are unrelated images, we as-
sume the hash bits h1, . . . , hk are i.i.d. Bernoulli random
variables with parameter 0.5. Then M(H,H ′) follows a
binomial distribution with parameters (k, 0.5).

The False Positive Rate (FPR) is the probability that
two different images falsely pass the detection test, i.e.,
M(H,H ′) ≥ τ . The False Negative Rate (FNR) is the
probability that two transformations of the same image fail

the detection test. Varying τ creates a trade-off between FPR
and FNR, which should be tuned based on the sensitivity of
the application.

5. Experimental Evaluation
To directly improve the robustness of deep perceptual hash-
ing, we propose DINOHash, a novel system whose re-
silience is significantly enhanced through an adversarial
training procedure.

5.1. Experimental Setup

Models: We compare the performance of DINOHash
against several perceptual hashing algorithms: NeuralHash,
DCT-DWT, and Stable Signature. DCT-DWT is a classi-
cal image hashing algorithm known for its robustness to
color distortions. Stable Signature (Wang et al., 2023a), a
state-of-the-art watermarking method designed for image
generation, is included as a baseline for comparison.

Datasets and Hyperparameters: We use 2 million ran-
domly sampled images from the DiffusionDB dataset (Wang
et al., 2023b) as our primary benchmark for evaluating the
hashing systems. For evaluating the Stable Signature wa-
termarking method, we generate 2 million images using
prompts sampled from DiffusionDB, then apply the water-
marking process. We fine-tune DINOHash on DiffusionDB
for 20,000 steps with a batch size of 256, using the AdamW
optimizer (Loshchilov & Hutter, 2017) with a weight decay
of 10−4. Adversarial examples are generated using APGD
with 10 steps.

Metrics: We evaluate the systems using the True Positive
Rate (TPR) and False Positive Rate (FPR) at various thresh-
olds τ for the similarity score M . The threshold τ is varied
from 0 to 96. The score M is defined as the number of
matching bits (i.e. 96 − Hamming distance) between two
hashes. Higher values indicate stronger similarity. We also
report the average bit accuracy, defined as the percentage of
matching bits between the hash or watermark of the trans-
formed image and that of the original image.

Image Transformations: To evaluate robustness, we apply
complex image transformation pipelines designed to sim-
ulate common image editing operations, including JPEG
compression, crops, text overlays, and Gaussian blurs. Exact
details along with a visualization of these complex trans-
formation pipelines and their effects on sample images is
provided in Figure 4.

5.2. Robustness to Image Transformations

Figure 2 presents the mean bit accuracy of the evaluated
algorithms, while Figure 3 shows the Receiver Operating
Characteristic (ROC) curves for each hashing or watermark-
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Figure 2. Bit Accuracy Comparison. The mean bit accuracy of
different methods after a simulated screenshot followed by the
respective transformations.

Figure 3. Detection results. TPR/FPR curves for different methods
after a simulated screenshot operation, followed by the full trans-
formation pipeline, including random erasing and text overlay.

ing method under various image transformations. We ex-
clude the TPR-FPR plot for DCT-DWT due to its near-
random performance across all settings.

We find that all methods perform similarly under bright-
ness and contrast adjustments, likely due to the relatively
non-destructive nature of these transformations. In con-
trast, DINOHash consistently outperforms both NeuralHash
and Stable Signature across the full range of transforma-
tions and evaluation metrics, demonstrating substantially
higher robustness. We omit results for the untransformed
(clean) setting, as all hashing methods trivially achieve 100%
matching accuracy in the absence of perturbations. Notably,
this assumption does not necessarily hold for watermark-
ing techniques, where discrepancies between the watermark
generation and extraction models can lead to mismatches
even without transformations.

5.3. Adversarial Robustness

We evaluate the adversarial robustness of DINOHash com-
pared to various baseline models in Table 1 by performing a

ϵ DINOHash
DINOHash
(untrained) NeuralHash

Stable
Signature

4
255 72.2% 0.3% 0.1% 0.0%

8
255 64.8% 0.0% 0.0% 0.0%

Table 1. Adversarial robustness of models under adversarial per-
turbations with the APGD attack performed using 100 steps.

100-step white-box APGD attack on each model and calcu-
lating its bit accuracy. Across all baseline systems, the attack
is highly effective, driving the TPR down to near-zero. This
indicates a complete collapse in matching capability under
even moderate perturbations, reflecting a severe lack of ad-
versarial robustness. In stark contrast, DINOHash maintains
a high TPR, highlighting its resilience to gradient-based
adversarial attacks. This suggests that DINOHash is sub-
stantially more reliable in adversarial settings, where image
tampering may be subtle and intentionally obfuscated.

We also report results for an untrained version of DINO-
Hash, where the feature extractor has not been fine-tuned.
This variant performs significantly worse than the trained
version, validating that the robustness is not an artifact of the
backbone alone but stems from meaningful learning during
fine-tuning.

These findings underscore two key points: (1) that non-
adversarially trained perceptual hash functions are highly
vulnerable to targeted manipulation, and (2) that DINO-
Hash’s learning-based approach offers both semantic fidelity
and robustness to adversarial perturbations, making it a more
secure choice for real-world applications involving content
provenance or tamper detection.

6. Conclusion
We introduce DINOHash, the first open-source deep percep-
tual hashing algorithm that explicitly incorporates adversar-
ial training to achieve robust and reliable image matching
under a wide range of perturbations. By leveraging self-
supervised representations from DINOv2 and introducing
a tailored adversarial fine-tuning procedure, DINOHash
achieves significantly improved robustness over existing
baselines. Importantly, DINOHash is released as an open-
source framework, supporting adoption and fostering repro-
ducibility and future research into robust perceptual hashing
systems.

As concerns over provenance and content integrity grow,
DINOHash offers a practical and extensible foundation for
real-world applications. Future work could explore inte-
grating fully homomorphic encryption to further enhance
the privacy and security of hash comparisons in sensitive or
decentralized environments.
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Impact Statement
This paper’s goal is to advance the field of image prove-
nance and perceptual hashing. DINOHash enables reli-
able provenance checks for AI-generated imagery to curb
misinformation and copyright abuse. However, the same
technology can be used for large-scale automated content
filtering or political censorship. False positives—especially
on under-represented demographics—can lead to unjust ac-
count suspensions or information suppression. Because
our pretrained weights are open, adversaries may craft hash-
evasion attacks; our adversarial training improves—but does
not eliminate—this risk, so we recommend combining DI-
NOHash with complementary defences (e.g. watermarks)
and retraining the model from scratch for proprietary pro-
duction usecases.
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A. Visualization of Image Augmentations.
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Figure 4. Transformations used to benchmark hashing and watermarking methods. Pre-processing is screenshot simulation, followed by
random erasing, text overlay, and random erasing as post-processing. Each pipeline begins with a base transformation consisting of:

•••••••• A 20% crop from each side (top, bottom, left, and right), resulting in a 60%× 60% center crop.
• JPEG compression with a quality factor of 30%.

We then apply one of the following operations:
• Brightness adjustment by a random factor of ±30%.
• Contrast adjustment by a random factor of ±30%.
• Gaussian blur with standard deviation σ = 2.

To further stress-test the models, we apply two additional augmentations after the above sequence:
• Random erasing: a square region with side length 20% of the image dimension is erased.
• Random text overlay: a string of 10 random alphanumeric characters is placed over the image.
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