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Abstract—Wettability, characterized by the contact angle of
a liquid on a surface, is a critical property that influences
numerous natural and industrial applications. In this study, I
have developed a CNN-based model to predict the hydrophobicity
or super-hydrophobicity of copper-coated aluminum surfaces
treated with various reagents or etchants. The data set has been
created by analyzing copper-coated aluminum samples with a
3D non-contact profilometer, and contact angle measurements
were done to correlate surface properties with the resultant
contact angle values. After reagent treatments, the approach had
been to preprocess 3D profilometer images to extract surface
morphology and structure features. These images and associated
contact angle measurements were used as inputs to train the CNN
model to classify whether the treated surfaces are hydrophobic or
super-hydrophobic. Although the model may initially have limited
training accuracy, this study demonstrates the potential of deep
learning to predict wettability based on surface characteristics.
The results also highlight the need for improvements, such as data
set expansion, the inclusion of more varied reagent treatments,
and the exploration of hybrid modeling approaches to enhance
the model.

Index Terms—Artificial Intelligence, medical implants, mate-
rial science, surface engineering

I. INTRODUCTION

Wettability, the way a liquid interacts with a solid surface, is
crucial in natural and industrial settings [1]. It dictates whether
a liquid spreads across a surface or forms droplets, influencing
applications like self-cleaning surfaces, anti-fogging coatings,
water-repellent fabrics, biomedical implants, and microfluidic
devices [2]. Wettability is measured by the contact angle,
which forms at the point where the liquid, solid, and va-
por meet. A smaller contact angle means better wettability
(hydrophilicity), while a larger one suggests poor wettability
(hydrophobicity). Surfaces with contact angles above 150°
are super hydrophobic and show remarkable water-repelling
properties.

Nature offers fascinating examples of diverse wettability
traits shaped by evolution. For instance, the lotus leaf is a
classic example of superhydrophobicity. Its surface, covered
in microscopic and nanoscale structures, traps air and min-
imizes liquid-solid contact, allowing water droplets to roll
off and clean the surface — a phenomenon called the lotus
effect.” This natural design has inspired many innovations,
like water-repellent and self-cleaning materials. In contrast,

rose petals, while hydrophilic, show an interesting ability to
hold water droplets firmly on their surface due to unique
structural adaptations. These examples illustrate the intricate
relationship between surface energy, roughness, and structure
in determining wettability.[5]

Traditionally, wettability is studied by measuring contact
angles using methods like sessile-drop goniometry or the
Wilhelmy plate technique. While effective, these approaches
are time-intensive, require specialized equipment, and may not
fully capture the complexities of surfaces with intricate struc-
tures, such as those in nature. This limitation is particularly
evident in studying metals like copper and aluminum surfaces,
where unique textures and patterns significantly influence
wettability. [6]

Artificial intelligence advances offer exciting new ways to
analyze and predict wettability. Convolutional Neural Net-
works (CNNs), a type of deep learning model specialized
for image analysis, are particularly promising for identifying
complex surface features. These models can detect hierarchical
patterns in surface morphology, which are key to under-
standing wettability. CNNs, therefore, hold great potential
for exploring the relationship between surface features and
wettability. [7]

This research focuses on leveraging CNNs to predict the
wettability of copper-coated aluminum samples using various
etchants based on their morphological features. By analyzing
high-resolution non-contact 3D-profilometer images of copper-
coated aluminum surfaces, the study aimed to create a model
that connects specific characteristics, like surface roughness,
vein patterns, and textures, to measured contact angles.

II. APPLICATION OF SUPERHYDROPHOBICITY IN
BIOMEDICAL IMPLANTS

In the biomedical domain, controlling surface wettabil-
ity is crucial for applications like implant coatings, where
superhydrophobicity can minimize bacterial adhesion and
improve biocompatibility. Copper-coated aluminum surfaces,
when modified to exhibit controlled wettability, may of-
fer new avenues in implant design. This study’s methodol-
ogy—Ileveraging CNNs to correlate surface morphology with
wettability—can be extended to optimize implant surfaces by



predicting and tailoring their wetting properties. Thus, the pro-
posed Al-driven approach holds promise in developing next-
generation biomedical implants with enhanced performance
and reduced risk of infection.

IT1I. LITERATURE REVIEW
A. Surface-Wetting Characterization

Surface wettability is a crucial property influencing various
natural and industrial processes, such as self-cleaning surfaces,
anti-fog coatings, and biomedical applications. Wettability
is often quantified by measuring the contact angle, which
reflects the hydrophobicity or hydrophilicity of a material.
Several analytical techniques have been developed to evaluate
wettability, each offering specific strengths and limitations. [1]

B. Existing Methods in Wettability Analysis

1) Sessile-Drop Goniometry: Sessile-drop goniometry is
one of the most commonly employed optical methods for
measuring contact angles. The process involves placing a
droplet of liquid on a solid surface and capturing the profile
of the droplet using a high-resolution camera. The contact
angle is determined through image analysis, typically utilizing
Young’s equation. Modern goniometers are often integrated
with advanced image analysis software that provides detailed
measurements of advancing and receding contact angles, thus
offering valuable insights into the surface wettability and
dynamic behavior.

2) Tilting Plate Method: The tilting plate method is a
direct technique used to measure contact angles by analyzing
a droplet’s leading (advancing) and trailing (receding) edges
as it begins to slide on an inclined surface. Adjusting the tilt
angle of the plate allows for the evaluation of the droplet’s
mobility and its adhesion to the surface. The sliding angle,
a key parameter in this method, indicates the droplet’s mo-
bility, making this technique particularly useful for studying
dynamic wetting behaviors. This method is commonly applied
in research involving surface lubrication and fluid dynamics.

3) Wilhelmy Plate Technique: The Wilhelmy plate method
involves vertically immersing a thin solid plate into a lig-
uid and measuring the forces exerted on the plate as it is
submerged and withdrawn. The contact angle is calculated
based on these force measurements, providing an accurate and
reproducible method for determining wettability. This method
benefits large sample areas and can be easily automated
for high-throughput analysis. However, the Wilhelmy plate
technique is less effective on rough or textured surfaces, as
the challenges associated with defining the contact line can
lead to measurement inaccuracies.

4) Axisymmetric Drop Shape Analysis (ADSA-P): Axisym-
metric Drop Shape Analysis (ADSA-P) is a technique that
uses the shape of a droplet—either sessile or pendant—to
calculate the contact angle and liquid—solid interfacial ten-
sion. The experimental profile of the droplet is compared to
theoretical profiles derived from the Laplace equation. This
technique is particularly advantageous for measuring contact
angles on mineral surfaces or materials with relatively low

surface roughness. ADSA-P provides accurate measurements
of contact angles and surface tension, making it ideal for
materials that exhibit minimal surface heterogeneity.

5) Microscopy Techniques: Microscopy methods, such as
atomic force microscopy (AFM) and confocal microscopy,
measure contact angles on small particles or irregular sur-
faces. These techniques are beneficial for studying colloidal
particles in aqueous solutions and measuring forces between
a bubble and a colloidal particle. Although these methods
provide highly detailed data on surface interactions, they re-
quire complex experimental setups and extensive data analysis,
which limits their use for routine contact angle measurements.
Despite these challenges, they offer significant advantages for
nanoscale investigations and specialized applications.

C. Study of etchants used for making Cu surface hydrophobic

As part of the literature review, I compiled a list of papers
detailing the etchants that can render copper surfaces hy-
drophobic or super hydrophobic. These etchants are crucial for
the study as I have applied the etchants to modify the surfaces
and then conducted our analysis using various techniques. [3],

[4], [6]
D. Emerging Approaches in Wettability Analysis

While conventional methods for wettability analysis remain
crucial for understanding surface behavior, their limitations,
such as the need for large sample areas, susceptibility to human
error, and complexity, have led to the exploration of advanced
techniques, including artificial intelligence. In particular, deep
learning models, notably Convolutional Neural Networks, have
shown great promise in automating the analysis of surface
textures.

IV. OBJECTIVE OF THE STUDY

The primary objective of this research was to develop a
deep learning-based model designed to predict the wettability
of copper-coated aluminum surfaces. This was accomplished
through the use of convolutional neural networks (CNNs),
which are well suited for analyzing visual data due to their
powerful capabilities in feature extraction and pattern recog-
nition. The model was trained to process images of coated
surfaces and automatically identify visual patterns and char-
acteristics that are indicative of different levels of wettability.
By learning from a diverse set of image data, CNN was able
to make accurate predictions without the need for manual
interpretation or traditional measurement methods.

This approach was intended to provide a faster, more effi-
cient and more objective alternative to conventional analysis
techniques. Reduce human error and accelerate the evaluation
process, making it particularly useful in industrial and research
settings where time and accuracy are critical. The study aimed
to validate the use of CNNs in materials science applications,
showcasing their ability to assess surface properties from
visual input alone.

Through this work, the potential of deep learning techniques
in surface characterization was highlighted, demonstrating



their broader applicability in surface engineering and predic-
tive modeling. By bridging machine learning with materials
science, research contributes to the development of intelligent
systems capable of supporting material design, quality control,
and performance analysis. Ultimately, the study established a
robust, data-driven framework for predicting surface wettabil-
ity, paving the way for more advanced and automated analysis
tools in the field.

V. METHODOLOGY
A. Data Collection

I created a dataset on various copper-coated aluminum
samples obtained for my use. First, I took a sample, and then
I precisely cut it into the shape of squares and rectangles.
Then, the samples were etched using various combinations of
etchants [6]. The etchants I used, after referring to different
papers, are :-

e FeCl

« Hydrochloric acid

o 0.005 mol/L ethanol solution of stearic acid for 5 min

Fig. 1. Etchants used for etching the copper coated aluminum surface

Fig. 2. Copper coated Aluminum Samples

B. Wettability Measurements

Contact angle values measured through conducting experi-
mental setups. The methodology used to determine the contact
angle:

1) Surface Preparation and Droplet Deposition: The sur-
face had to be smooth to ensure accurate measurements. A
precise volume of liquid (typically water or another appro-
priate liquid) was dispensed onto the surface using a droplet
dispenser. The size of the droplet was controlled to ensure
consistent and accurate measurements. The droplet was placed
gently on the surface to avoid splashing or disturbing the
surface.

2) Imaging the Droplet: Once the droplet was placed on the
surface, a high-resolution camera captured the profile of the
droplet. The camera was positioned directly above the droplet
to obtain a clear image of the droplet resting on the surface.

3) Image Analysis Using Software: The software captured
the image of the droplet in real-time or from a series of
frames. A single image is typically sufficient for static contact
angle measurement. The software detects the edges of the
droplet, identifying the liquid-solid interface. The droplet’s
shape was then fitted to a theoretical model. (often a circular
or polynomial curve), allowing the software to analyze the
shape and determine the contact angle.

4) Contact Angle Calculation: After fitting the droplet
profile, the software calculates the contact angle. The contact
angle was formed between the tangent to the droplet at the
contact point and the material’s surface. The software outputs
the contact angle directly, providing a numerical value that
reflects the surface’s wettability.

e A contact angle less than 90° indicates a hydrophilic

surface, where the liquid spreads across the surface.

« A contact angle greater than 90° indicates a hydrophobic

surface, where the liquid beads up and resists spreading.

o A contact angle greater than 150° indicates a super hy-

drophobic surface, where the liquid beads up and resists
spreading.

C. 3D Profilometer images of etched Copper Surfaces

I have captured 3D profilometer images of the etched
surfaces to provide a more comprehensive analysis. The model
were fed these images to enhance its understanding of surface
properties and their correlation with surface morphologies.

D. Feature Extraction

Morphological features are quantified using image process-
ing and microscopy techniques, focusing on:
o Surface roughness and micro-textural patterns.
o Surface geometry, which is crucial for predicting how
water interacts with the etched surface.

E. Prediction Model Used: Convolutional Neural Network

In this study, a convolutional neural network (CNN) was
employed to predict the wettability of copper surfaces by
analyzing their morphological characteristics. CNNs are par-
ticularly well-suited for handling image data due to their



Fig. 3. Kruss Drop Angle Analyzer
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Fig. 4. 2D view of an image taken by a 3D non contact profilometer
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ability to automatically extract and learn spatial hierarchies of
features from visual inputs. By examining images of the cop-
per surface, the CNN can identify intricate patterns, textures,
and structural details that influence wettability. This capability
makes CNNs a powerful tool for understanding and modeling
the relationship between surface morphology and wettability.
Unlike traditional image analysis methods that rely on manual
feature extraction, CNNs learn relevant features directly from
the data, enabling more accurate and efficient predictions. [7]

VI. PROCEDURE

Below is the procedure followed for implementing the code
based on the dataset compiled after contact angle measure-
ments and 3D Profilometer:-

o After receiving 300 images (12 samples) from the 3D
Profilometer I first separated the images into two folders,
one of hydrophobic and another of superhydrophobic.

o After the images were separated into two classes, I then
implemented the code which will extract the red regions
from the obtained images, this was done since I wanted
to relate the red regions with higher surface roughness
value.

o The bounding box implementation is a method to make
the model understand that it had to prioritize the red
regions and based on that red region area to total area
calculation, it would predict the provided image as being
hydrophobic or super hydrophobic.

o Next, to make the prediction accuracy stronger we im-
plemented a Convolutional Neural Network (CNN) to
read in the images with the bounding box to relate it
with the surface roughness based on the red region area
calculation. CNNs are extremely good at handling images
and because of our case I found it to suit our requirement
the best.

| from tensorflow.keras.layers import Tnput, Dense, Conv2D, MaxPooling2d, Flatten, Concatenate, Dropout
from tensorflow.keras.models import Model

def build_hybrid_model(image_shape):
image_input = Input(shape-image shape, name="image input")
X = Conv2D(32, (3,3), activation="relu')(image_input)
x = MaxPooling2D()(x)
x = Conv2D(64, (3,3), activation="relu')(x)
x = MaxPooling2D()(x)
x = Flatten()(x)
red_area_input = Input(shape=(1,), name="red_area_input"})
y = Dense(16, activation='relu’)(red_area_input)
combined = Concatenate()([x, y])
z = Dense(64, activation='relu’)(combined)
z = Dropout(@.5)(z)
output = Dense(2, activation='softmax')(z)
model = Model(inputs=[image_input, red_area_input], outputs-output)
model. compile(optimizer="adam’, loss='sparse categorical crossentropy’, metrics=['accuracy'])
return model

Fig. 6. Convolutional Neural Network Architecture Used

o The next step was to get these predictions from the
CNN and then link it up with our handmade CSV file
containing the information for each 12 samples regarding
the etchants used for them, time of etching, contact angle
measured, and ratio of the etchants used.

e This CSV helped in making the model understand the
relation between surface roughness, contact angle, use
of etchants etc. Due to this the model was able to



recommend based on the input of a 2D view of an image
taken by the 3D Profilometer.

o This recommendation contained the following parameters
— ratio of etchants, etchants that can be used, time of
etching, possible angle of contact, and also prediction on
the surface being hydrophobic or superhydrophobic.

o These were the steps I followed to implement the deep
learning code. This code was further optimized using
various other methods and techniques to make the pre-
diction faster which was my main objective since the
conventional methods lack this.

VII. OPTIMIZATION

My main objective of going for deep learning was to make
the entire process of prediction faster than the traditional
method, so to ensure this I had implemented various opti-
mization methods as part of the code.

o Dropout - is a regularization technique where, during
training, a random subset of neurons in a layer is tem-
porarily deactivated (i.e., their output is set to zero).
Each neuron normally receives inputs, applies weights
and an activation function, and passes the result forward.
By randomly turning off neurons, dropout prevents the
network from becoming overly reliant on specific neu-
rons, forcing it to distribute learning across many. This
leads to more robust internal representations and helps
reduce overfitting. During testing, all neurons are active,
but their outputs are scaled to account for the dropout
applied during training.

e ReduceLROnPlateau - This tool slows down learning
when your model stops getting better. If the model’s
performance (like validation loss) doesn’t improve for a
few rounds (epochs), it lowers the learning rate so the
model can make finer adjustments.

o EarlyStopping - This stops training if the model hasn’t
improved after a few tries. It helps save time and prevents
the model from overfitting (memorizing the training data
too much).

o Data Augmentation - is a technique used to improve
a machine learning model’s performance by creating
modified versions of the existing training data. In image
tasks, this often involves transformations like flipping, ro-
tating, zooming, cropping, or adjusting brightness. These
changes help the model learn to recognize patterns under
different conditions, making it more general and less
likely to overfit. Even though the data is artificially
changed, the meaning or label stays the same, which helps
the model learn what features truly matter.

Using the above techniques I was able to make the code run
and execute much faster in comparison to the conventional
methods which was my main objective when starting out.

VIII. RESULTS

To validate the model performance, I used various metrics
like training accuracy and validation accuracy to understand

the model’s performance. A little bit more on the metrics I
used:-

o Training accuracy is the percentage of correct predictions
the model makes on the data it was trained with. It shows
how well the model is learning that specific dataset.

o Validation accuracy, on the other hand, is the percentage
of correct predictions on a separate set of data the
model hasn’t seen before, used to check how well it can
generalize to new inputs.

« If training accuracy is high but validation accuracy is low,
it often means the model is overfitting — it memorizes
the training data but doesn’t perform well on new data.

These below results were achieved over 11 epochs (training
steps) and attached is the output screenshot for the perfor-
mance seen over 11 epochs showing the training and validation
accuracy values over each run the model performs.

e Training Accuracy = 65
¢ Validation Accuracy = 60

Epoch 1/38
8/8

105 1s/step - accuracy: 0.5176 - loss: 576.0433 - val accuracy: 0.5560 - val_loss: 17.1098 - learning_rate: ©.0010

1

Epoch 2/38
8/8

65 725ms/step - accuracy: 0.5869 - loss: 17.426 - val_accuracy: 0.5500 - val_loss: 2.0740 - learning_rate: .0010

Epoch 3/38
8/8

125 879ms/step - accuracy: 0.5455 - loss: 1.4151 - val_accuracy: 0.5500 - val_loss: 3.7349 - learning_rate: 0.0010

Epoch 4/38
8/8

95 84ims/step - accuracy: 0.5560 - loss: 3.5318 - val accuracy: 0.5560 - val _loss: 6.7146 - learning rate: .0016

Epoch 5/38

95 692ms/step - accuracy: 0.6355 - loss: 0.6954 - val accuracy: 0.5509 - val_loss: .7142 - learning rate: ©.0016

8/8
Epoch 6/38

8 991ms/step - accuracy: 0.6186 - loss: 0.6923 - va - val_loss: .7029 - learning rate: .0010

Epoch 7/38

85 702ms/step - accuracy: 0.6424 - loss: 0.6714 - va - val_loss: ©.6927 - le:

8/8
Epoch 8/38

115 816ms/step - accuracy: 0.5638 - loss: 0.6717 - val_accuracy: 0.5167 - val_loss: .6924 - learning_rate: .0010

8/8
£poch 9/38
8/8 .6471 - val_accuracy: ©.6000 - val_loss: 0.6937 - learning_rate: 0.0010

105 726ms/step - accuracy: 0.6819 - loss:

Epoch 16/30
8/8 loss: 0.6119 -

75 o27ms/step - learning_rate: ©.6010

accuracy: 0.6435 -

val_accuracy: 0.5667 - val_loss: 6.7232 -

Epoch 11/30

95 728ms/step - accuracy: 0.6379 - loss: 0.5878 - val_accuracy: 0.5560 - val_loss: 8.7290 -
g i ©.5500

Fig. 7. Output screenshot of model performance (Training and validation
accuracy)

Based on the 3D Profilometer image provided by the
user, I have made a recommendation deep learning model
which can possibly comment on the nature of the surface
i.e. Hydrophobic or Superhydrophobic, etchants ratios that
can be used, the time for etching, and the angle of contact.
This recommendation code was implemented based on the
CSV which contains the information regarding the experiments
performed by me as part of the dataset creation process. The
output screenshot below shows the abilty of the model to
suggest such parameter values based on the 2D view image
provided by the user. This ensures that the implemented model
can be used by other researchers to get accurate predictions.

1/1 B8s S8ms/step

Predicted Class: Hydrophobic

Recommended Contact Angle: 138.8°

Recommended Etchants: FeCl3=8.8, Hcl=1.8, Stearic Acid=1.8
Recommended Time: 48.8 seconds

<ipython-input-78-53c85b95bdcd>:6: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

Fig. 8. Recommendation code of the model

learning_rate: 5.0000e-



The model can also draw bounding box to specify the red
regions which are crucial for predicting the contact angle
and surface roughness. The red regions correspond to higher
surface roughness and more red regions implies that the 2D
view image of the sample is superhydrophobic. Below is the
output screenshot where the model has drawn bounding boxes
to highlight the red regions.

Prediction: Superhydrophobic

-

Fig. 9. Bounding box of superhydrophic 2D view image around red and
yellow regions for higher surface roughness detection

IX. CONCLUSION

o Investigated the use of chemical etchants to engineer
superhydrophobic copper-coated aluminum surfaces and
evaluate their wettability using deep learning, specifically
convolutional neural networks (CNNs).

o To understand how chemical modifications of copper’s
surface morphology affect its wetting behavior. This was
done by modifying micro and nanoscale features of
copper surfaces using different chemical etchants and
their ratios.

o Captured high-resolution images of the chemically treated
surfaces and used CNNs to analyze these images. CNNs
are highly effective at recognizing complex patterns and
extracting features from images, it can detect morpholog-
ical differences that traditional image analysis may miss.

« Explored the correlation between surface topography and
wettability. I aimed to develop a predictive model to
estimate contact angles or superhydrophobicity levels
based on images.

o Demonstrated the potential of machine learning in ma-
terials science. I was able to develop an efficient and

automated method for predicting and designing surface
properties. These findings can benefit fields like coatings,
sensors, and microfluidics.

This was my first attempt at trying to figure out how to
use Al to predict superhyrdophobic surfaces, though this
is an attempt at exploring the field in detail, I want to
extend my idea further to SEM images.

X. FUTURE SCOPE

The application of deep learning techniques, particularly
convolutional neural networks (CNNs), in predicting the wet-
tability of copper-coated aluminum surfaces opens several
promising avenues for future research and technological ad-
vancement.

[1]

[2]

[3]
[4]

[5]

[6]

[7]

Integration with Advanced Imaging Techniques: Future
work can explore combining deep learning models with
high-resolution imaging tools such as scanning electron
microscopy (SEM) or atomic force microscopy (AFM) to
gain deeper insights into surface morphology and enhance
prediction accuracy.

Real-Time  Wettability  Prediction: Developing
lightweight, optimized CNN models suitable for
deployment on edge devices could allow for real-time,
on-site wettability assessment in industrial environments.
Scalability to Other Materials: The approach demon-
strated for copper-coated aluminum surfaces can be ex-
tended to study wettability in a wide range of materials
like aluminum, which is mainly used in the aerospace
industry, to make it more corrosion resistant.
Standardization and Dataset Expansion: Creating large,
standardized datasets of surface images and wettability
measurements will support broader adoption of deep
learning methods and enable more accurate benchmark-
ing across models.
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