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Abstract

How do reasoning models verify their own answers? We study this ques-
tion by training a model using DeepSeek R1’s recipe on the CountDown
task. We leverage the fact that preference tuning leads to mode collapse,
yielding a model that always produces highly structured chain-of-thought
sequences. With this setup, we do top-down and bottom-up analyses to
reverse-engineer how the model verifies its outputs. Top-down, we find
Gated Linear Unit (GLU) weights encoding verification-related tokens, such
as “success” or “incorrect”. Bottom-up, we find that “previous-token heads”
are mainly responsible for self-verification in our setup. Our analyses meet
in the middle: drawing inspiration from inter-layer communication chan-
nels, we use the identified GLU weights to localize as few as six attention
heads that can disable self-verification, pointing to a necessary component
of a potentially larger verification circuit. Finally, we verify that similar
verification components exist in our base model and a general reasoning
DeepSeek-R1 model.

1 Introduction

Recent language models demonstrate impressive reasoning capabilities. Such models are
trained with reinforcement learning (RL) in which they are rewarded when their final
outputs are correct.

Behaviorally, these models generate long chain-of-thought (CoT) (Wei et al., 2022) reasoning
traces. There is an open question on whether monitoring their CoT is worthwhile, given a
growing line of work suggesting that their CoTs do not faithfully reflect the model’s inner
computations (Arcuschin et al., 2025; Lanham et al., 2023; Turpin et al., 2023). Can we
monitor their hidden states instead? We take a step towards investigating this question, by
studying a model’s inner mechanism for a crucial reasoning step, i.e., self-verification.

General reasoning entails a broad range of tasks, requiring a diverse set of skills. In order
to conduct a systematic study, we train and analyze a task-specific reasoning model using
the same recipes from DeepSeek R1. We limit the scope of our study to a specific task that
requires search – a core reasoning skill broadly applicable for many reasoning tasks. We
also select a task in which we can expect the verification mechanism ahead of time, making
our analyses easier. Namely, we study CountDown Gandhi et al. (2024; 2025); Qin et al.
(2025); Yao et al. (2023), in which a set of numbers (operands) and a target number is given,
and the model must find the right arithmetic combination using the operands to reach the
target number. Because the target number is specified in the context, we can expect attention
heads to play a role in verification and shed light onto other relevant weights and subspaces
pertaining to self-verification.

Studying a task-specific model has a second non-obvious benefit: training language models
with RL (i.e., with preference signals) can lead to mode collapse towards majority prefer-
ences, significantly reducing the diversity of their outputs (Kirk et al., 2024; Murthy et al.,
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2024; Padmakumar and He, 2024; Slocum et al., 2025). Luckily, in the context of model
interpretability, this means that our task-specific model converges to always generating
well-structured CoT sequences, allowing us to easily and systematically parse its reasoning
trace (e.g., see Table 1).

We conduct “top-down” and “bottom-up” analyses to reverse-engineer how the model
verifies its own outputs. Our two analyses meet in the middle, revealing key subspaces
relevant for model verification.

Going top-down, we leverage linear probes to find Gated Linear Unit (GLU) vectors in
late layers that often encode tokens relevant for verification. Interestingly, these vectors
also seem to correlate with English or Chinese tokens, like “success” or “不完” (“failed”).
Furthermore, the antipodal directions of these vectors also encode the antonyms of correct
or incorrect tokens.

Going bottom-up, given the nature of our task, we hypothesize and verify that attention
heads play a significant role. We find “previous-token heads” – attention heads that attend
to previous occurrences of the current token – that attend to the provided solution in the
context. Previous-token heads have been studied before, for instance in the context of
induction heads (Olsson et al., 2022). Through causal analyses, we find that disabling
previous-token heads disables model verification.

Our two analyses meet in the middle: we find that disabling previous-token heads also
deactivates our GLU vectors. Inspired by inter-layer communication channels (Elhage
et al., 2021; Merullo et al., 2024), we look for previous-token heads that most align with the
“receptive-field” of our GLU vectors, allowing us to localize as few as six attention heads
that reliably disables model verification. Thus our work finds necessary components for a
potentially larger verification circuit.

Finally, we verify that similar verification components exist in our base model prior to RL,
as well as in a general reasoning model, DeepSeek-R1-Distill-Qwen-14B.

Obviously, most reasoning tasks do not provide an easily verifiable solution in the context.
However, by illustrating a thorough mechanism of verification in our simplified setup,
we take a step towards the possibility of monitoring and interpreting a model’s inner
computations in its hidden states.

2 Notations, Key Terminologies

We first establish key terminologies and notations. A Transformer’s forward pass first
embeds the input using weights WE ∈ IRd×V . The embeddings go through L Transformer
blocks, yielding hidden states xℓ ∈ IRd, ℓ ∈ [L − 1]. The last layer, xL−1, is “unembedded”,
or projected back to the token embedding space using WE, and the nearest neighboring
token embedding of W⊤

E xL−1 is outputted. Each block consists of attention heads and Gated
Linear Units (GLUs) (Shazeer, 2020).

Attention. Each attention head consists of key (WK), query (WQ), value (WV), and output
(WO) weights. an attention pattern A is computed using key and query weights:

A = softmax(x⊤i W⊤
Q WKxj) (1)

where W⊤
Q WK is sometimes referred to as a “QK circuit”. A is used to scale the “OV circuit”

(WOWV) to produce an output for each head:

h(x) = (A ⊗ WOWV) · x (2)

Gated Linear Units and GLUOut Vectors. Given a Gated Linear Unit (GLU) block:

GLU(x) =
(
ϕ(Wgatex)⊙ Wupx

)
Wout (3)
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where ϕ is a non-linearity and Wgate, Wup, Wout ∈ IRdglu×d, we decompose it as following:

M = ϕ(Wgatex)⊙ Wupx, M ∈ IRdglu , (4)

GLU(x) = M⊤Wout =

dglu

∑
j

mjvj (5)

where mj is the j-th entry in M and vj is the j-th row of Wout.

Importantly, the output of each GLU block can be thought of as the weighted sum of v’s (the
rows of Wout), where the weights are determined by activations M. We refer to elements of
M as GLU neurons and vectors v as GLUOut vectors.

A conversation between User and Assistant. The user asks a question, and the Assistant
solves it. The assistant first thinks about the reasoning process and then provides the
user with the answer. User: Using the numbers [20, 14, 40], create an equation that
equals 28. You can use basic arithmetic operations (+, -, *, /) and each number can only
be used once. Show your work in <think> </think> tags. And return the final answer
in <answer> </answer> tags, for example <answer> (1 + 2) / 3 </answer>.
Assistant: Let me solve this step by step. <think> We have the numbers 20, 14, and 40.
We need to use these numbers to make an equation that equals 28 using basic arithmetic
operations. Let’s try different combinations:
40 - 14 - 20 = 10 - 20 = -10 (not 28)
40 - 14 + 20 = 26 + 20 = 46 (not 28)
40 + 14 - 20 = 54 - 20 = 34 (not 28)
40 + 14 + 20 = 54 + 20 = 74 (not 28)
40 * 14 / 20 = 560 / 20 = 28 (this works)
So, the equation that equals 28 is 40 * 14 / 20. </think> <answer> (40 * 14) / 20
</answer>

Table 1: CountDown Task. The model must find an arithmetic combination of the operands
to reach the specified target number. We leverage preference tuning leading to mode
collapse, resulting in a model that consistently generates structured CoT tokens.

3 Training Task-Specific Reasoning Models

We use DeepSeek R1-Zero’s setup with Qwen2.5-3B as our base model.1

Our task, CountDown, is a simple testbed frequently used to study recent reasoning mod-
els Gandhi et al. (2024; 2025); Qin et al. (2025); Yao et al. (2023) – given a set of 3 or 4
operands (e.g., 19, 36, 55, 7) and target number (e.g., 65), the task is to find the right
arithmetic combination of the operands to reach the target number (i.e., 55 + 36 - 7 - 19).

The model is given two rewards: accuracy reward for reaching the correct final answer, and
a format reward when it generates its CoT tokens in between “<think>” and “</think>”
tokens. For more details on how R1-Zero is trained, see (Guo et al., 2025). We refer to our
task-specific model as R1CountDown .

One advantage of studying a specific task is in that preference training leads to mode
collapse (Kirk et al., 2024; Murthy et al., 2024; Padmakumar and He, 2024; Slocum et al.,
2025), resulting in a reduction in generation diversity. In our context, this is desirable, as the
model converges to generating a highly structured CoT sequence. See Table 1.

This allows us to easily parse the model’s CoT. Namely, the model enumerates through
many attempts, while always marking each attempt as either “(this works)” or “(not {ans})”.
Thus, we can study the model’s hidden states at specific timesteps, such as right before

1We use TinyZero: https://github.com/Jiayi-Pan/TinyZero/tree/main
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Figure 1: Averaged LogitLens from 300 samples. We see tokens related to verification
(“success”, “不合”) in the last few layers. (a), (b) show the top tokens when (in)correct
solutions are reached. (c), (d) shows results from intervening on either GLU weights or
attention heads, given a correct solution. For (c), while the model is less certain (P(“this”)
drops from 0.98 to 0.54), we still see tokens such as “success” showing up. For (d), we no
longer see any tokens related to “success”, and the model’s final next-token predictions
closely resembles when the model has not found a solution (b).

it produces either “this” or “not”, which we refer to as tvalid and tinvalid. We refer to the
hidden states at these timesteps as xValid and xInvalid. We refer to the timestep in the prompt
at which the target number is specified as tans.

4 Components for Self-Verification in CountDown

Here we present a series of analyses to identify weights and subspaces relevant for veri-
fication. We do a “top-down” analysis to find relevant GLU vectors in late layers, and a
“bottom-up” analysis to find relevant attention heads in early layers. Our analyses meet
in the middle, to identify relevant subspaces for verification. We verify the role of such
weights and subspaces via causal experiments.

4.1 Top-Down: Finding Verification-Related GLU Vectors

LogitLens. We start by applying LogitLens (Nostalgebraist, 2020) to compare the hidden
states of xValid and xInvalid on a sample size of 300. We apply the unembedding layer at all
intermediate layers xℓ and inspect the resulting nearest neighboring tokens.

Figure 1(a, b) shows our results in the late layers (see Appendix Figure 5 for more layers).
Interestingly, we see tokens such as “SUCCESS”, “yes”, “bingo” show up for xValid, and “不
符合” (“Does not conform”), “not”, “不合” (“Incompatible”) for xInvalid. Interestingly, we
often observe English tokens for xValid and Chinese tokens for xInvalid.
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Vector Nearest Neighbors

W[0] 不完 (unfinished), 不了 (unable), 不 (not), 不在 (absent), 不该 (should not)
W[1] Exactly, >(, =yes, =YES, =:, ===, quis, esac, ####

(26, 744) 未能 (failed), 不够 (not enough), nicht (not), 不像 (not like), 达不到 (can’t reach)
(26, 6619) 缺乏 (lack), 缺少 (lack), 不方便 (inconvenient), lacks, 难以 (difficult), 未能 (failed)
(27, 4971) inefficient, 没能 (failed), 不方便 (inconvenient), Danger, disadvantage, 不利于

(29, 6676) yes, Yes, Bindable, exactly, Yes, "Yes, yes, Yep, Exactly, included
(27, 10388) mirac, 乐观 (optimism), 安然 (safely), Relief, 幸 (fortunate), .isSuccess
(30, 8233) correctly, 正确 (correct), 恰当 (appropriate), accurately, 符合 (conform)

-1×(26, 744) 慎 (careful), 足 (sufficient), 同等 (equal), tend, ONDON, 足以 (enough)
-1×(26, 6619) 不仅能 (not only can), 不错的 (good), 具有良好 (have good), 总算 (finally)
-1×(27, 4971) successfully, successful, 顺利 (smooth), 成功 (successful), 删除成功

-1×(29, 6676) 都不 (neither), 不太 (not quite), neither, 不予 (not given), 没见过 (never seen)
-1×(27, 10388) 失败 (failure), failure, 不良 (bad), 不利 (unfavorable), 糟糕 (bad), 失误 (mistake)
-1×(30, 8233) wrong, 不良 (bad), incorrect, wrong, invalid, bad, inappropriate, invalid

Table 2: GLUOut vectors relevant to verification, and their nearest neighbors. W[0], W[1]
indicate our probe model. “(x, y)” indicates the GLUOut vector at layer x, index y. “−1 ×
(x, y)” (marked in red) indicates the antipodes of the GLUOut vector at layer x, index y.
Interestingly, we see a correlation between valid/invalid vectors and English and Chinese.

Probing. We train linear probes Wℓ ∈ IR2×d at every layer ℓ from timesteps right before
“this” or “not” is predicted.These timesteps correspond to when an answer is produced, and
an open parenthesis tokens “(” is being predicted next, as opposed to “this” or “not”.

Wℓ is a linear mapping from the hidden states, xℓ, to a binary label of whether the model
has found the solution. Our training data is D = {(xℓyi , yi)}N−1

i=0 , yi ∈ {0 (“not”), 1 (“this”)},

N=327,680. We solve for Wℓ to fit y = softmax(Wℓxℓ) using gradient descent (hyperparam-
eters in Appendix C).

Validation accuracy (N = 512) per layer is provided in the Appendix (Figure 6), with
accuracy usually staying above 90% after the first few layers. High accuracy suggests that
our probing vectors W[0], W[1] identify a direction in the model’s activation space that
linearly separates points of xValid and points of xInvalid (i.e., linearly separable subspaces).

Such vectors can steer the model. Simply adding W[0] or W[1] into hidden states can push
x towards xValid or xInvalid, and change the model’s output to indicate that it has (or has not)
found a solution, even when it has not (or has). We provide qualitative examples of steering
results in Appendix E.

GLUValid, GLUInvalid Vectors. Our probe W tells us that mid-layer activations can be
linearly separated to identify solved and unsolved cases (xValid, xInvalid)), but also serves a
secondary purpose. Namely, we can use W to identify GLUOut vectors of interest (Lee et al.,
2024).

Per layer, we select the top k(= 50) GLUOut vectors by how similar they are to Wℓ[0] or
Wℓ[1] using cosine similarity. One can consider these vectors as weights that contribute the
most towards Wℓ[0] (no solution) or Wℓ[1] (found solution) directions. We refer to them as
GLUInvalid and GLUValid vectors. This results in k × L × 2 GLUValid, Invalid vectors (0.9% of
the model’s GLUOut vectors).

Unembedding GLUValid/Invalid vectors reveal which tokens get promoted when they are
activated. Table 2 shows their nearest neighbors in the model’s token embedding space. We
observe that most interpretable GLUValid/Invalid neurons occur in the second half of layers.
Interestingly, we again note that there seems to be a correlation between GLUValid/Invalid
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and English versus Chinese tokens, hinting at the underlying geometry of xValid/Invalid and
the model’s embedding space.

While GLUValid/Invalid encode verification-related tokens, what role do they play? This can
be partially answered by applying LogitLens again on 300 samples, but now by “turning
off” GLUValid vectors (< 1% of total GLU vectors) by scaling them to zero. Figure 1(c) shows
the results: while the probability of verification-related tokens drop (e.g., P(“this”) drops
from 0.98 to 0.70 in layer 36), the end behavior remains the same (i.e., “this” is still the top-1
token). This tells us that GLUs do not fully explain self-verification. We demonstrate a more
thorough causal analysis in Section 4.4.

4.2 Bottom-Up: Previous-Token Attention Heads for Verification (APrev)

We next inspect the role of attention heads for verification. One benefit of CountDown is
that the task specifies the target number in the context. Thus we can posit that a Transformer
could verify its CoT tokens by comparing them against the specified target number (at
timestep tans). Such a hypothesis provides an entry way for our bottom-up analysis.

We test our hypothesis by inspecting the attention patterns whenever the model’s CoT
produces the correct answer. We filter for attention heads that spend at least 10% of its
attention on tans, and refer to these as previous-token heads (notated APrev). Previous-token
heads are not new: they were first discussed in the context of induction heads Olsson et al.
(2022). We identify 33 previous-token heads (out of a total of 576 heads). Interestingly, we
find that most previous-token heads occur roughly in the first half layers (except for one at
layer 31, all are at or before layer 22). In Section 4.4 we demonstrate via causal interventions
that disabling previous-token heads can disable model verification. But first, what is the
relationship between GLUValid/Invalid vectors and APrev heads? Below we adapt inter-layer
component channels to understand their relationship.

4.3 Putting GLUValid and APrev Together: Verification Subspaces (Polytopes)

We identify subspaces for self-verification by studying the relationship between GLUValid
vectors and APrev attention heads. As a reminder, we observe that APrev usually occurs in
the first half layers (1 to 22), while GLUValid vectors usually occur in the later half (18 to 36).
We hypothesize and empirically verify that APrev activates GLUValid vectors.

First, we borrow from neuroscience to define receptive fields (Olshausen and Field, 1997).
Consider a single neuron k, which computes an activation function f k : IRd → IR. A receptive
field of neuron k is defined as

Sk =
{

x ∈ IRd | f k(x) > 0
}

(6)

I.e., Sk is the subspace that triggers a neuron active. In the context of GLUs, this means

Sk =
{

x ∈ IRd | ϕ(Wk
gatex) · Wk

upx > 0
}

(7)

Now consider a set of neurons, K, and the intersection of all of their receptive fields: SK =⋂|K|
i Si. SK can be considered a polytope in the model’s activation space parameterized by{
Wi

gate, Wi
up

}|K|

i=1
. We use the receptive fields of GLUValid to further localize self-verification.

Namely, we identify a small subset of as few as six previous-token heads that disables
self-verification. To do so, we look for previous-token heads (as opposed to hidden states)
that activate GLUValid neurons the most. The output of each head is its OV-circuit (i.e.,
WOWV), scaled by to some attention distribution. Meanwhile, the strength of each GLUValid
activation is determined by Wgate and Wup.

We score each previous-token head h by first decomposing its OV-circuit using SVD:

(WOWV)
h = UΣV⊤, Σ = diag(σh,1 ≥ ... ≥ σh,k ≥ 0)
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where k = dhead because WOWV is low-rank. Let uh,j refer to the j-th left-singular vector.

Each head is then assigned the following score:

score(h, GLUValid) =
1
N

N

∑
i

k

∑
j

σ2
h,j

(
ϕ(Wi

gateuh,j) · Wi
upuh,j

)
(8)

where GLUValid = {Wi
gate, Wi

up}N−1
i=0 , N = |GLUValid|, Wi

gate, Wi
up, uh,j ∈ IRd.

Thus we decompose WOWV into singular vectors, and measure how well they each align
with the receptive fields of GLUValid (Wgate, Wup), weighted by their singular values.

Note that we only need the left singular vectors because we only need the output subspace
of WOWV , which is spanned by the left singular vectors. Also note that weighing by
σ2

h,j can be thought of as distributing the Frobenius norm of WOWV across each mode, as

||WOWV ||2F = ∑i σ2
i .

Our scoring mechanism is akin to inter-layer communication channels (Elhage et al., 2021;
Merullo et al., 2024), which scores how strongly two attention heads communicate with
each other using a “composition score”:

CS(W1, W2) =
∥W1W2∥F

∥W1∥F ∗ ∥W2∥F
(9)

where W1 is an OV component of one head and W2 the QK component of another at a later
layer. Our formulation can be considered a composition score between attention heads and
GLUs, using both Wgate and Wup in place of W2 with some additional steps in between.

Once we score each previous-token head using Eq. 8, we ablate one head at a time until we
achieve perfect intervention scores (Section 4.4). We identify as few as six attention heads
that can disable model verification. We notate this subset as AVerif.

To summarize, we claim that the model has subspace(s) (polytope(s)), SGLUValid , for self-
verification. The model’s hidden state enters this subspace when it has verified its solution.
In our setting, given the nature of our task, previous-token heads APrev take the hidden-state
into this subspace, while for other tasks, different components may be used. This subspace
also activates verification-related GLU weights, promoting the likelihood of tokens such as
“success” to be predicted (Figure 3).

We find that alternative hyperparameters or scoring functions can yield different subsets
of previous-token heads that also disable self-verification. We discuss these results in Ap-
pendix F. This suggests that we do not identify a full circuit, but rather a critical component
for verification. Also note that our scoring function makes simplifications by ignoring
possible interactive effects across heads, as well as transformations (layer norms, GLUs)
across layers. Regardless, our finding remains robust: a small subset of previous-token
heads can disable verification.

4.4 Causal Interventions

We study the role of each component above with causal intervention. Our test set consists
of 300 samples in which the model originally correctly finds and validates its solutions. For
each test case, the model generates 100 tokens. Every time an attempt for a solution is made
(i.e., “(this works)” or “(not ({ans})” is about to be predicted), we turn off some of the model
weights as described below. We measure intervention success rate: the percentage of times
the model fails to validate its solution, despite having found the solution within the 100
generated tokens. Interestingly, the model occasionally marks a correct attempt as invalid
(desired intervention result), but continues its generation to say it has found a solution (e.g.,
given target number 62, the model will output “68 - 11 + 5 = 62 (not 62) So, the answer is 68 -
11 + 5”). We mark these cases as partial successes.

We ablate a few components: (1) GLUValid: We zero-out 50 GLUValid vectors per layer from
layer 18 to 36 (the second half of the model; 0.45% of all GLU vectors). (2) GLUValid &
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Figure 2: Intervention Results: Disabling as few as 6 attention heads disables self-
verification, rendering the model to generate tokens indefinitely. APrev refers to 33 previous-
token heads. AVerif refers to a subset of 6 previous-token heads. APrev Baseline, AVerif
Baseline refer to the average of 5 runs, where each run randomly samples 33 (or 6) attention
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Figure 3: GLUValid activations before and after turning off 6 AVerif attention heads. Ad-
jacent pairs of blue and orange bars indicate the same GLUValid vector. Turning off our
identified attention heads leads to a significant drop in their activations.

GLUInvalid: We zero-out the top 50 GLUValid and top 50 GLUInvalid vectors per layer (0.9% of
all GLU vectors). (3) APrev: We turn off 33 previous-token heads (5.7% of all attention heads)
by zeroing-out their WO weights. (4) AVerif: We turn off 6 verification heads identified via
Eq. 8: L17H14, L17H11, L17H10. We also provide two baselines: APrev Baseline and AVerif
Baseline, which each report the average from 5 runs, where each run randomly samples 33
(or 6) attention heads.

Results are shown in Figure 2, with an example of an intervened output. We achieve near
perfect intervention rates when turning off 33 previous-token heads, or a smaller subset
of 6 heads. The model misclassifies correct solutions as invalid without these heads, and
continue its CoT indefinitely.

These attention heads directly affect the GLUValid vectors. Figure 3 demonstrates the
activations of the top GLUValid vectors before and after disabling the subset of 6 previous-
token heads. In most cases, we observe a large drop (to near 0, or often even negative values)
in GLUValid activations.

Antipodal GLUOut Vectors. While attention heads achieve near perfect interventions,
Figure 2 also indicates that disabling both GLUValid and GLUInvalid performs better than
disabling just GLUValid. Why should disabling GLUInvalid improve intervening, i.e., make
the model fail at verification?

This can be explained by two facts: (1) the geometry of GLUValid, GLUInvalid vectors, and (2)
the nonlinear activation used in GLU. Interestingly, the antipodal directions of GLUValid,
GLUInvalid also often encode tokens relevant for verification. The last 7 rows of Table 2
marked in red indicate the nearest neighbors of the antipodes of GLUValid and GLUInvalid.
In addition, Qwen2.5-3B uses SiLU activations (Hendrycks and Gimpel, 2016). Thus inactive
neurons take on small negative values (as opposed to zero, had ReLU been used).
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Figure 4: Intervention Results for the base model and R114B. In the base model, APrev
can similarly disable self-verification, while AVerif only plays a partial role for verification,
hinting at the effects of RL on their weights. In R114B, interventions mostly leads to partial
success, in which the model first marks a solution as incorrect but self-corrects itself, hinting
at a larger verification circuit. Also interestingly, the smaller subset of AVerif is more effective
at self-verification than APrev.

With that said, consider only zeroing out GLUValid neurons: given a correct CoT sequence,
GLUInvalid vectors are inactive. However, because of SiLU, the inactive GLUInvalid vectors
have negative activations, thus get scaled by a small negative value, flipping directions, and
therefore contribute towards the “success direction”. In the case of zeroing out both GLUValid
and GLUInvalid, we are further zeroing out the effects of inactive GLUInvalid neurons.

5 Similar Components in Base Model and DeepSeek-R1 Model

We verify that similar verification subspaces exist in our base model (Qwen2.5-3B), as well
as a general reasoning model, DeepSeek-R1-Distill-Qwen-14B (henceforth R114B).

For both models, we provide CountDown as an in-context learning (ICL) task, including
5 demonstrations of solving CountDown using the structured output of R1CountDown . We find
that both models can solve the ICL version of CountDown while following the same CoT
structure of R1CountDown , corroborating recent findings that reasoning capabilities often already
exist in pre-trained models (Gandhi et al., 2025; Yue et al., 2025).

We then repeat our intervention analyses above. In our ICL setting, our interventions
sometimes make the model generate “out-of-range”, by which we mean their generations
do not adhere to the structured CoT of R1CountDown . We mark these cases as out-of-range.

Base Model. Figure 4 (a) shows the interventions from Section 4.4 on our base model. Note
that previous-token heads still achieve near perfect (partial) intervention rates, suggesting
that they play a similar role for self-verification in the base model. Also note that the six AVerif
heads demonstrate a lower success rate. Similar to Prakash et al. (2024), which demonstrates
that fine-tuning enhances existing mechanisms in a base model, we hypothesize that RL
enhances an existing verification mechanism, thus resulting in highly localized attention
heads in R1CountDown that can control self-verification.

DeepSeek-R1 Model. In the case of R114B, we repeat the procedures in Sections 4.1∼4.4.
However, a probe vector W is required to identify GLUValid/Invalid. Thus we apply
EMB2EMB (Lee et al., 2025), a simple technique to transfer and re-use steering vectors
across language models (see Appendix G for a brief explanation). Applying EMB2EMB on
R1CountDown ’s probe, W, results in a probe vector WR1 for R114B, allowing us to repeat our analyses
from Section 4.1 on R114B.

We find similar GLUValid, Invalid vectors in R114B, analogous to Table 2 (see Appendix H),
hinting at similar verification subspaces in R114B. We identify and intervene on previous-
token heads (APrev) in R114B, following Section 4.2. We use an attention threshold of 5% (as

9



Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

opposed to 10% in R1CountDown ) to compensate for the longer context induced from our ICL setup,
which yields 552 (out of 1920) previous-token heads. We discuss results from different
hyperparameters (thresholds) in Appendix I.

We also replicate Section 4.3 to identify a smaller subset of 351 attention heads that achieve
near perfect (partial) intervention success rates.

Results are in Figure 4 (b). Interestingly, our interventions mostly lead to partial successes in
R114B, in which the model initially fails at self-verification (labels a correct solution as “(not
{ans})”), but corrects itself (generates “Wait, 68 - 11 + 5 is 62 so that works.”). This hints at a
larger verification circuit for R114B. We also note that AVerif has a higher success rate than
APrev, despite being a smaller set, suggesting that not all previous-token heads (or their
interactions) are helpful in self-verification. We leave further exploration for future work.

6 Related Work

Decoding Interpretable Representations. A growing line of work focuses on decoding
and manipulating interpretable representations in model activations (Zou et al., 2023).
Conveniently, many concepts take on linear representations (Mikolov et al., 2013; Nanda
et al., 2023; Park et al., 2023), in which simple vectors encode human-interpretable concepts.
This allows for easily manipulating such representations to steer the model’s behavior.
Examples include refusal (Arditi et al., 2024), sycophancy (Rimsky et al., 2024), toxicity (Lee
et al., 2024), or even user representations (Chen et al., 2024). Most recently, concurrent
work (Venhoff et al., 2025; Zhang et al., 2025) also investigate how models solve reasoning
tasks. Zhang et al. (2025) find that models know when they have reached a solution, while
Venhoff et al. (2025) decode directions that mediate behaviors such as handling uncertainty.

Circuit Analysis. A growing line or work decomposes the forward pass of a neural
network as “circuits” (Olah et al., 2020), or computational graphs. This allows researchers
to identify key components and their causal effects for a given forward pass. A common
approach to construct computational graphs is to replace model components with dense
activations with a sparsely-activating approximation (Ameisen et al., 2025; Dunefsky et al.,
2024). Lindsey et al. (2025) uses Cross-layer Transcoders to conduct circuit analyses for
a wide range of behaviors, such as multi-step reasoning (for factual recall) or addition,
and also investigate when a model’s CoT is (un)faithful. In our work, we identify key
components for self-verification without the need for separate sparse approximations.

7 Discussion

We studied how a task-specific model verifies its own outputs. We repurposed mode
collapse as a feature, not a bug: by leveraging the fact that preference tuning leads to mode
collapse, we train a model with highly structured CoT, making it easy to parse its reasoning
trace. With this setup, we found GLU weights that encode verification-related tokens, and
previous-token heads that can disable verification. We offer a simple extension to inter-layer
communication channels that allow us to localize as few as six attention heads that can
also disable verification. Finally, we verify the existence of similar components in our base
model and a general reasoning DeepSeek-R1 model. We view our work as a step towards
understanding the inner mechanisms of recent reasoning models.

Limitations. Note that we do not claim to have uncovered a full verification circuit, but
rather critical components for verification. We also reiterate the scope of our work: we
study a specific task that allows for context-based verification. Obviously, not all reasoning
tasks share this property: many tasks likely require prior-based verification using general
knowledge. We speculate that similar subspaces are used for prior-based verification, but is
less obvious where they show up.
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A Hyperparameters for R1

Here we provide the hyperparameters used to train R1CountDown .

Parameter Value

Train Batch Size 256
Validation Batch Size 1312
Max Prompt Length 256
Max Response Length 1024
Actor Learning Rate 1e-6
PPO Mini Batch Size 128
PPO Micro Batch Size 8
Log Prob Micro Batch Size 8
Tensor Model Parallel Size 2
Critic Learning Rate 1e-5
KL Coefficient 0.001

Table 3: Training Hyperparameters.

B LogitLens on More Layers

Figure 5 demonstrates LogitLens as described in Section 4.1 on more layers.

C Hyperparameters for Probing

We use a batch size of 8, validation size of 256, weight decay of 0.01, and learning rate of
1e-4. We validate every 50 gradient steps, and terminate training when validation loss has
not improved after a patience value of 10.

D Probe Accuracy

Figure 6 shows probing results. The model has a linear separation in its hidden states given
correct versus incorect CoT tokens.

E Examples of Steering Verification with Probe

Once we identify a direction that encodes solved versus unsolved states (i.e., Wprobe), we
can simply add this direction into the model’s hidden states to make the model believe that
it has found a solution:

xℓ = xℓ + αWprobe (10)

where xℓ, Wprobe ∈ IRd and α ∈ IR. Some hyperparameters include ℓ (which layers to steer
on) and α, where a larger α amplifies the target behavioral effect.

While an extensive hyperparameter search and a systematic experiment may be useful,
steering is not a core component but rather a tangential experiment. We thus provide
qualitative examples using ℓ = {n | 24 ≤ n ≤ 36} and α = 20 (after normalizing Wprobe) in
Table 5.

F Alternative Subsets of Previous-Token Heads

Of the 25 previous-token heads that we identify, there are many ways to identify subsets
that disable verification. We offer a few examples, and document how many heads are
needed to disable verification with perfect success rates (including partial successes).
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Figure 5: Averaged LogitLens from 300 samples (Same as Figure 1 but demonstrating more
layers). We see tokens related to verification (“success”, “incorrect”) in the last few layers.
(A), (B) show the top tokens when a correct / incorrect solution is reached. (C), (D) shows
results from intervening on either GLU weights or attention heads, given a correct solution.
For (C), while the model is less certain (P(“this”) versus P(“not”) becomes 0.51 vs. 0.49 in
last layer), we still see tokens such as “success” showing up. For (D), we no longer see
any tokens related to “success” show up, and the model is certain that it has not found a
solution.
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1Figure 6: Probe Accuracy. The model has a linear separation in its hidden states given
correct versus incorrect CoT tokens.

Attention Density. The simplest method is to sort the heads based on how much they
attend to the target token that timestep tans.

Varying Hyperparameters. Given our approach (Section 4.3), we try different parameters
for N.

Sort by Similarity to Wgate, Wup. An alternative approach is to sort the attention heads
based on how similar their OV circuits are to the Wgate and Wup weights of the GLUValid
weights. We simply take the mean of {Wi

gate, Wi
up}N

i vectors from our N GLUValid weights.
We then sort attention heads based on how similar they are to the resulting mean vector.

Sort by Probe WProbe. An alternative is to sort the attention heads based on how similar
their OV circuits are to the probe vector WProbe.

Table 6 demonstrates how many heads are needed from each approach to disable verification
with perfect accuracy.

G Brief Explanation of EMB2EMB

Language models represent numerous concepts using linear representations (Nanda et al.,
2023; Park et al., 2023), by which we mean one can add a single vector that encodes a specific
concept into the activations during inference-time to raise the probability for the model
to exhibit such concept or behavior (Lee et al., 2024; Li et al., 2023; Rimsky et al., 2024).
Researchers often refer to such vectors as “steering vectors”.

In other words, during the forward pass, imagine the activations at layer i. One can simply
add a steering vector W (scaled by some hyperparameter α) to control the model’s behavior:

xi+1 = xi + Fi(xi) + αW (11)

where xi and Fi are the hidden state and transformer block at layer i.

EMB2EMB (Lee et al., 2025) is a simple method that transfers a steering vector from one
language model to another, by leveraging the fact that the unembedding spaces of language
models are often quite similar.

EMB2EMB works as following. Given a “source” and “target” language model, MS and MT ,
first randomly sample a set of N (= 100,000) tokens, notating their token (un)embeddings as
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Vector Nearest Neighbors

(36, 10079) 不失 (not losing), NotNull, 得起 (can afford), 得住 (can endure), 不惜 (not hesitate)
(32, 497) 删除成功 (deletion successful), successes, Success, success, succeeded, favorable

(35, 6041) 的强大 (powerful), excellent, powerful, 强大的 (powerful), 很棒 (great), strong, 优异
(37, 5399) 等于(equal), equal, 同样的(same), 相同(same), equals, 相同的 (same), 同等 (equal)

(32, 13572) successfully, 成功 (success), 解决了 (solved), 实现了 (achieved), 顺利 (smoothly)
(30, 10150) 没问题 (no problem), 无忧 (no worries), .NoError, harmless, 不变 (unchanged)

(45, 6650) 没有 (do not have), 不存在 (does not exist), 没有任何 (do not have any), 不需要
(39, 6070) never, 不会 (will not), doesn, not, 不能 (cannot), nowhere, cannot, neither

(46, 12380) neither, none, nowhere, None, Neither, none, nobody, cannot
(44, 12793) não (not), 不 (not), nicht (not), tidak (no),не(not), ikke (not), niet (not)
(41, 12498) 不在 (not present), 不再 (no longer), non, 非 (non-), 不再是 (is no longer), 不属于
(37, 7636) 不合适 (inappropriate), 不足 (insufficient), 达不到 (cannot reach), 不够 (not enough)
(31, 5164) 没能 (did not), fails, 未能 (failed), 不够 (not enough), 做不到 (cannot), 不及
(35, 2509) 不 (not), 不含 (does not contain), 不对 (incorrect), 不影响 (does not affect),

Table 4: GLUOut vectors relevant to verification in R114B.

ES and ET . Then, learn a linear transformation, T, to map points ES to ET , using something
as simple as least squares minimization. Note that T maps between spaces with different
dimensions.

Given transformation T and a steering vector WS from the source model MS, one can steer
the target model MT by simply applying transformation T to WS:

xi+1
T = xi

T + Fi
T(x

i
T)+αTWS, (12)

where xT is the activations and FT is the transformer block of target model MT . In our
work, we use EMB2EMB to transfer our probe vector W from R1CountDown to a general reasoning
R1 model, R114B.

H GLUValid, Invalid in DeepSeek-R1-Distill-Qwen-14B

Table 4 contains GLUOut weights in R114B related to verification.

I Alternative Hyperparameters for R1

We add a quick note on using alternative hyperparameters for the experiment on R114B in
Section 5. Namely, there are two hyperparameters, the attention threshold to categorize
an attention head as a previous-token head (APrev), and the number of GLUValid vectors to
include to identify a smaller subset of attention heads (AVerif).

For the first hyperparameter (attention threshold), we use 5% as our threshold, as reported
in the main text. We find that using a higher threshold (10%) is too constrained and perhaps
yields too small of a set of previous-token heads, leading to a lower intervention success
rate (0.4%, with 25% partial success rate). We believe this is because there are still many
attention heads that attends to the correct solution (say, with an attention pattern < 10% but
> 5%) to offset our intervention.

Using a smaller threshold (2.5%) yields too large of a set of previous-token heads. In this
case, interventions now lead to a much higher rate of “out-of-range” results – i.e., the model
no longer adheres to the structured CoT sequence after our interventions.

Regarding the number of GLUValid vectors, we see our results converge to the same results
after 200 vectors, which is what we use in our experiments.
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Operands Target Type Output

3, 87, 38 46 Orig.

<think>
87 - 38 - 3 = 116 - 3 = 113 (not 46)
87 - 38 + 3 = 49 + 3 = 52 (not 46)
87 - 38 + 3 = 49 + 3 = 52 (not 46)
87 + 38 - 3 = 125 - 3 = 122 (not 46)
38 + 38 - 3 = 76 - 3 = 73 (not 46)...

3, 87, 38 46 Steer

<think>
87 - 38 - 3 = 116 - 3 = 113 (not 46)
87 - 38 + 3 = 49 + 3 = 52 (not 46)
87 - 38 + 3 = 49 + 3 = 52! Yes, we got it!
87 - 38 + 3 = 49 + 3 = 52.
</think>
<answer> 87 - 38 + 3 </answer>

60, 62,
12, 34 68 Orig.

<think>
60 - 62 + 12 + 34 = 54 + 12 + 34 = 66 + 34 = 100 (not 68)
60 + 62 - 12 - 34 = 122 - 12 - 34 = 108 - 34 = 74 - 34 = 40 (not 68)
60 + 62 - 34 + 12 = 122 - 34 + 12 = 88 + 12 = 100 - 34 = 66 (not 68)
60 + 34 + 12 - 62 = 94 + 12 - 62 = 106 - 62 = 44 (not 68)...

60, 62,
12, 34 68 Steer

<think>
60 - 62 + 12 + 34 = 54 + 12 + 34 = 66 + 34 = 100 (not 68)
60 + 62 - 12 - 34 = 122 - 12 - 34 = 108 - 34 = 74 - 34 = 40 (not 68)
60 + 62 - 34 + 12 = 122 - 34 + 12 = 88 + 12 = 100 - 34 = 66 exactly!
So the equation that equals 68 is:
60 + 62 - 34 + 12
</think>
<answer> 60 + 62 - 32 + 12 </answer>

30, 90,
27, 19 74 Orig.

<think>
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52 (not 74)
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52 (not 74)
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52 (not 74)
90 + 27 + 19 - 30 = 117 + 19 - 30 = 136 - 30 = 106 (not 74)...

30, 90,
27, 19 74 Steer

<think>
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52 (not 74)
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52!
Indeed, 90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52
So, let’s try another combination:
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52
No luck. Let’s try this:
90 - 30 - 27 + 19 = 60 - 27

Table 5: Steering with probe Wprobe.

J LLM Usage

We used LLMs to proof read our draft and polish our notations.
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Method Num.
Heads Heads

Eq. 8 (N=200) 6 L17H14, L22H14, L3H13, L5H15, L17H11, L17H10

Eq. 8 (N=50) 15
L12H3, L12H8, L11H8, L17H1, L17H3, L10H5, L17H10,
L17H11, L17H13, L21H10, L19H8, L13H3, L13H6,
L5H15, L17H14

Eq. 8 (N=100) 100 L17H3, L17H1, L12H8, L17H10, L17H14, L17H11

Eq. 8 (N=300) 12 L17H14, L5H15, L19H13, L5H14, L13H6, L17H11, L15H8,
L13H3, L19H8, L4H5, L17H3, L17H10

Attention Density 8 L17H14, L17H10, L13H3, L13H6, L5H14, L19H8, L4H3,
L22H14

Sort by Wgate, Wup 17
L18H3, L21H7, L12H8, L21H14, L22H14, L11H8, L21H10,
L12H3, L15H15, L17H3, L17H14, L15H8, L5H15, L13H6,
L17H11, L19H13, L19H8

Sort by WProbe 17
L18H7, L21H2, L22H12, L17H13, L17H11, L17H10, L4H5,
L15H8, L17H14, L5H14, L22H14, L13H5, L5H15, L10H5,
L15H15, L19H13, L13H6

Table 6: Alternative approaches to localize attention heads that disable verification, and
the number of heads required to disable verification.
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