
Published as a conference paper at ICLR 2024

ORACLE EFFICIENT ALGORITHMS FOR GROUPWISE RE-
GRET

Krishna Acharya1, Eshwar Ram Arunachaleswaran2, Sampath Kannan2, Aaron Roth2, Juba Ziani1
1Georgia Institute of Technology, 2University of Pennsylvania
1{kacharya33, jziani3}@gatech.edu, 2{eshwar,kannan,aaroth}@seas.upenn.edu

ABSTRACT

We study the problem of online prediction, in which at each time step t ∈
{1, 2, · · · , T}, an individual xt arrives, whose label we must predict. Each in-
dividual is associated with various groups, defined based on their features such as
age, sex, race etc., which may intersect. Our goal is to make predictions that have
regret guarantees not just overall but also simultaneously on each sub-sequence
comprised of the members of any single group. Previous work (Blum & Lykouris,
2020) provides attractive regret guarantees for these problems; however, these
are computationally intractable on large model classes (e.g., the set of all linear
models, as used in linear regression). We show that a simple modification of the
sleeping-experts-based approach of Blum & Lykouris (2020) yields an efficient
reduction to the well-understood problem of obtaining diminishing external regret
absent group considerations. Our approach gives similar regret guarantees com-
pared to Blum & Lykouris (2020); however, we run in time linear in the number of
groups, and are oracle-efficient in the hypothesis class. This in particular implies
that our algorithm is efficient whenever the number of groups is polynomially
bounded and the external-regret problem can be solved efficiently, an improvement
on Blum & Lykouris (2020)’s stronger condition that the model class must be
small. Our approach can handle online linear regression and online combinatorial
optimization problems like online shortest paths. Beyond providing theoretical
regret bounds, we evaluate this algorithm with an extensive set of experiments on
synthetic data and on two real data sets — Medical costs and the Adult income
dataset, both instantiated with intersecting groups defined in terms of race, sex,
and other demographic characteristics. We find that uniformly across groups, our
algorithm gives substantial error improvements compared to running a standard
online linear regression algorithm with no groupwise regret guarantees.

1 INTRODUCTION

Consider the problem of predicting future healthcare costs for a population of people that is arriving
dynamically and changing over time. To handle the adaptively changing nature of the problem,
we might deploy an online learning algorithm that has worst-case regret guarantees for arbitrary
sequences. For example, we could run the online linear regression algorithm of Azoury & Warmuth
(2001), which would guarantee that the cumulative squared error of our predictions is at most (up
to low-order terms) the squared error of the best fixed linear regression function in hindsight. Here
we limit ourselves to a simple hypothesis class like linear regression models, because in general,
efficient no-regret algorithms are not known to exist for substantially more complex hypothesis
classes. It is likely however that the underlying population is heterogenous: not all sub-populations
are best modeled by the same linear function. For example, “the best” linear regression model in
hindsight might be different for different subsets of the population as broken out by sex, age, race,
occupation, or other demographic characteristics. Yet because these demographic groups overlap —
an individual belongs to some group based on race, another based on sex, and still another based on
age, etc — we cannot simply run a different algorithm for each demographic group. This motives
the notion of groupwise regret, first studied by Blum & Lykouris (2020). A prediction algorithm
guarantees diminishing groupwise regret with respect to a set of groups G and a hypothesis class H ,
if simultaneously for every group in G, on the subsequence of rounds consisting of individuals who
are members of that group, the squared error is at most (up to low-order regret terms) the squared
error of the best model in H on that subsequence. Blum & Lykouris (2020) gave an algorithm for

1

Published as a conference paper at ICLR 2024

solving this problem for arbitrary collections of groups G and hypothesis classes H — see Lee et al.
(2022) for an alternative derivation of such an algorithm. Both of these algorithms have running times
that depend polynomially on |G| and |H| – for example, the algorithm given in Blum & Lykouris
(2020) is a reduction to a sleeping experts problem in which there is one expert for every pairing of
groups in G with hypotheses in H . Hence, neither algorithm would be feasible to run for the set H
consisting of e.g. all linear functions, which is continuously large — and which is exponentially large
in the dimension even under any reasonable discretization.
Our first result is an “oracle efficient” algorithm for obtaining diminishing groupwise regret1 for any
polynomially large set of groups G and any hypothesis class H: In other words, it is an efficient
reduction from the problem of obtaining groupwise regret over G and H to the easier problem of
obtaining diminishing (external) regret to the best model in H ignoring group structure. This turns
out to be a simple modification of the sleeping experts construction of Blum & Lykouris (2020).
Because there are efficient, practical algorithms for online linear regression, a consequence of this is
that we get the first efficient, practical algorithm for online linear regression for obtaining groupwise
regret for any reasonably sized collection of groups G (our algorithm needs to enumerate over the
groups at each round and so has running time linear in |G|).

0.0 0.2 0.4 0.6 0.8 1.0
Time / length of subsequence

1.5

1.0

0.5

0.0

0.5

Re
gr

et

Demographic groups: age(young, middle, old), sex(male, female)

Young (Baseline)
Young (Our Algorithm)
Middle (Baseline)
Middle (Our Algorithm)
Old (Baseline)
Old (Our Algorithm)
Male (Baseline)
Male (Our Algorithm)
Female (Baseline)
Female (Our Algorithm)

(a) Groups based on age, sex

0.0 0.2 0.4 0.6 0.8 1.0
Time / length of subsequence

0

1

2

3

4

5

Re
gr

et

Groups: smoker, non-smoker
Smoker (Baseline)
Smoker (Our Algorithm)
Non-Smoker (Baseline)
Non-Smoker (Our Algorithm)

(b) Groups based on smoking habits

Figure 1: Regret vs. time (as a frac-
tion of subsequence length), for 5 de-
mographic groups based on age, sex
in 1a, and 2 non-demographic groups
based on smoking habits in 1b

We can instantiate our algorithm for groupwise regret in any
setting in which we have an efficient no (external) regret learn-
ing algorithm. For example, we can instantiate it for online
classification problems when the benchmark class has a small
separator set, using the algorithm of Syrgkanis et al. (2016); for
online linear optimization problems, we can instantiate it using
the “Follow the Perturbed Leader” (FTPL) algorithm of Kalai
& Vempala (2005). For online linear regression problems, we
can instantiate it with the online regression algorithm of Azoury
& Warmuth (2001).
With our algorithm in hand, we embark on an extensive set
of experiments in which the learning task is linear regression,
both on synthetic data and on two real datasets. In the synthetic
data experiment, we construct a distribution with different in-
tersecting groups. Each group is associated with a (different)
underlying linear model; individuals who belong to multiple
groups have labels that are generated via an aggregation func-
tion using the models of all of the containing groups. We
experiment with different aggregation functions (such as us-
ing the mean, minimum, maximum generated label, as well
as the label of the first relevant group in a fixed lexicographic
ordering). We find that consistently across all aggregation rules,
our algorithm for efficiently obtaining groupwise regret when
instantiated with the online regression algorithm of Azoury &
Warmuth (2001) has substantially lower cumulative loss and
regret on each group compared to when we run the online re-
gression algorithm of Azoury & Warmuth (2001) alone, on the
entire sequence of examples. In fact, when using our algorithm,
the regret to the best linear model in hindsight when restricted to a fixed group is often negative,
which means we make predictions that are more accurate than that of the best linear model tailored
for that group, despite using linear learners as our underlying hypothesis class. This occurs because
there are many individuals who are members of multiple groups, and our algorithm must guarantee
low regret on each group separately, which requires ensembling different linear models across groups
whenever they intersect. This ensembling leads to an accuracy improvement.
We then run comparisons on two real datasets: the prediction task in the first is to predict patient
medical costs, and the task in the second is to predict income from demographic attributes recorded
in Census data. We define intersecting groups using attributes like age, sex, race etc. Here too,
our algorithm, instantiated with the online regression algorithm of Azoury & Warmuth (2001), has
consistently lower groupwise regret than the baseline of just running the algorithm of Azoury &
Warmuth (2001) alone on the entire sequence of examples. Thus, even though algorithms with worst-

1I.e., guaranteeing sub-linear groupwise regret in the number of time steps, implying that the time-average
regret vanishes and goes to 0

2

Published as a conference paper at ICLR 2024

case regret guarantees are not known for hypothesis classes substantially beyond linear regression,
we can use existing online linear regression algorithms to efficiently obtain substantially lower error
while satisfying natural fairness constraints by demanding groupwise regret guarantees.
In Figure 1, we plot the performance of our algorithm instantiated with the online linear regression
algorithm of Azoury & Warmuth (2001), compared to the baseline of running Azoury & Warmuth
(2001) alone on all data points, on a medical cost prediction task. We divide the population into a
number of intersecting groups, on the basis of age (young, middle, and old), sex (male and female)
and smoking status (smoker and non-smoker). We plot the regret (the difference between the squared
error obtained, and the squared error obtainable by the best linear model in hindsight) of our algorithm
compared to the baseline on each of these demographic groups (in the top panel for age and sex
groups, and in the bottom panel for smoking related groups). Since the number of individuals within
each group is different for different groups, we normalize the x axis to represent the fraction of
individuals within each group seen so far, which allows us to plot all of the regret curves on the same
scale. In these computations, the performance of our algorithm comes from a single run though the
data, whereas “the best model in hindsight” is computed separately for each group. The plot records
average performance over 10 runs. Here medical costs have been scaled to lie in [0, 1] and so the
absolute numbers are not meaningful; it is relative comparisons that are important. What we see is
representative on all of our experiments: the groupwise regret across different groups is consistently
both lower and growing with time at a lower rate than the regret of the baseline. The regret can even
be increasingly negative as seen in the age and sex groups.

1.1 RELATED WORK

The problem of obtaining diminishing groupwise regret in a sequential decision-making setting was
introduced by Blum & Lykouris (2020) (see also Rothblum & Yona (2021) who introduce a related
problem in the batch setting). The algorithm of Blum & Lykouris (2020) is a reduction to the sleeping
experts problem; Lee et al. (2022) derive another algorithm for the same problem from first principles
as part of a general online multi-objective optimization framework. Both of these algorithms have
running time that scales at least linearly with (the product of) the number of groups and the cardinality
of the benchmark hypothesis class. In the batch setting, Tosh & Hsu (2022) use an online-to-batch
reduction together with the sleeping-experts style algorithm of Blum & Lykouris (2020) to obtain
state-of-the-art batch sample complexity bounds. None of these algorithms are oracle efficient, and
as far as we are aware, none of them have been implemented — in fact, Tosh & Hsu (2022) explicitly
list giving an efficient version of Blum & Lykouris (2020) that avoids enumeration of the hypothesis
class as an open problem. Globus-Harris et al. (2022) derive an algorithm for obtaining group-wise
optimal guarantees that can be made to be “oracle efficient” by reduction to a ternary classification
problem, and they give an experimental evaluation in the batch setting—but their algorithm does not
work in the sequential prediction setting.
Multi-group regret guarantees are part of the “multi-group” fairness literature, which originates with
Kearns et al. (2018) and Hébert-Johnson et al. (2018). In particular, multicalibration Hébert-Johnson
et al. (2018) is related to simultaneously minimizing prediction loss for a benchmark class, on subsets
of the data Gopalan et al. (2022; 2023); Globus-Harris et al. (2023). One way to get groupwise
regret guarantees with respect to a set of groups G and a benchmark class H would be to promise
“multicalibration” with respect to the class of functions G×H . Very recently, Garg et al. (2023) gave
an oracle efficient algorithm for obtaining multicalibration in the sequential prediction setting by
reduction to an algorithm for obtaining diminishing external regret guarantees. However, to apply this
algorithm to our problem, we would need an algorithm that promises external regret guarantees over
the functions in the class G×H . We do not have such an algorithm: For example the algorithm of
Azoury & Warmuth (2001) can be used to efficiently obtain diminishing regret bounds with respect to
squared error and the class of linear functions: but even when H is the set of linear functions, taking
the Cartesian product of H with a set of group indicator functions will result in a class of highly
non-linear functions for which online regret bounds are not known. In contrast to Garg et al. (2023),
our approach can be used to give groupwise regret using a learning algorithm only for H (rather
than an algorithm for G×H), which lets us give an efficient algorithm for an arbitrary polynomial
collection of groups, and the benchmark class of linear functions.

2 MODEL

We study a model of online contextual prediction against an adversary in which we compare to bench-
marks simultaneously across multiple subsequences of time steps in {1, . . . , T}. Each subsequence

3

Published as a conference paper at ICLR 2024

is defined by a time selection function I : {1, . . . , T} → {0, 1} 2 which specifies whether or not
each round t is a member of the subsequence or not. In each round, the learner observes a context
xt ∈ X where X ⊆ [0, 1]d; based on this context, he chooses a prediction pt ∈ A ⊆ [0, 1]n. Then,
the learner observes a cost (chosen by an adversary) for each possible prediction in A. The learner is
aware of a benchmark class of policies H; each f ∈ H is a function from X to A and maps contexts
to predictions. The learner’s goal is to achieve loss that is as low as the loss of the best policy in
hindsight — not just overall, but also simultaneously on each of the subsequences (where “the best
policy in hindsight” may be different on different subsequences).
More precisely, the interaction is as follows. The loss function ℓ maps actions of the learner and the
adversary to a real valued loss in [0, 1]. The time selection functions I = {I1, I2, · · · I|I|} are the
indicator function for the corresponding subsequence. In rounds t ∈ {1, . . . , T}:

1. The adversary reveals context xt ∈ X (representing any features relevant to the prediction
task at hand), as well as I(t) for each I ∈ I, the indicator for whether each subsequence
contains round t.

2. The learner (with randomization) picks a policy pt : X → A 3 and makes prediction
pt(xt) ∈ A. Simultaneously, the adversary selects an action yt taken from a known set Y .

3. The learner learns the adversary’s action yt and obtains loss ℓ(pt(xt), yt) ∈ [0, 1].
We define the regret on any subsequence against a policy f ∈ H as the difference in performance of
the algorithm and that of using f in hindsight to make predictions. The regret of the algorithm on
subsequence I is measured against the best benchmark policy in hindsight (for that subsequence):

Regret on Subsequence I = E

[∑
t

I(t)ℓ(pt(xt), yt)

]
− min

fI∈H

∑
t

I(t)ℓ (fI(xt), yt) .

Here, E [
∑

t I(t)ℓ(pt(xt), yt)] is the expected loss obtained on subsequence I by an algorithm
that uses policy pt at time step t, and minfI∈H

∑
t I(t)ℓ (f(xt), yt) represents the smallest loss

achievable in hindsight on this subsequence given a fixed policy f ∈ H . This regret measures, on the
current subsequence, how well our algorithm is doing compared to what could have been achieved
had we known the contexts xt and the actions yt in advance—if we could have made predictions
for this subsequence in isolation. Of course the same example can belong to multiple subsequences,
which complicates the problem. The goal is to upper bound the regret on each subsequence I by
some sublinear function o(TI) where TI =

∑
t I(t) is the ‘length’ of I .

In the context of our original motivation, the subsequences map to the groups we care about—the
subsequence for a group is active on some round t if the round t individual is a member of that group.
Our benchmark class can be, e.g., the set of all linear regression functions. Obtaining low subsequence
regret would be straightforward if the subsequences were disjoint4. The main challenge is that in our
setting, the subsequences can intersect, and we cannot treat them independently anymore.
In aid of our techniques, we briefly describe the problem of external regret minimization, a problem
that is generalized by the setup above, but which consequently admits stronger results (better bounds
in running time/ regret) in various settings.
External Regret Minimization In this problem, the learner has access to a finite set of experts E,
and picks an expert et ∈ E with randomization in each round t ∈ {1, 2 · · ·T}, in each round. An
adversary then reveals a loss vector ℓt ∈ R|E| with the learner picking up a loss of ℓt(et). The
learner’s objective is to minimize the overall regret, called external regret, on the entire sequence as
measured against the single best expert in hindsight. Formally :

External Regret = E

[∑
t

ℓt(et)

]
−min

e∈E

∑
t

ℓt(e).

An online learning algorithm is called a no-regret algorithm if its external regret is sublinear in T , i.e.
o(T), and its running time and regret are measured in terms of the complexity of the expert set E.

2Our results hold without significant modification for fractional time selection, i.e., I : 1 . . . T → [0, 1].
3For most of our applications, the policy is in fact picked from the benchmark class, however in one of our

applications, online least regression, the analysis is simplified by allowing policies beyond the benchmark.
4One could just run a separate no-regret learning algorithm on all subsequences separately.

4

Published as a conference paper at ICLR 2024

3 SUBSEQUENCE REGRET MINIMIZATION VIA DECOMPOSITION

We outline our main algorithm for online subsequence regret minimization. Algorithm 1 maintains
|I| experts, each corresponding to a single subsequence, and aggregates their predictions suitably
at each round. Each expert runs their own external regret minimizing or no-regret algorithms (each
measuring regret against the concept class H). However and as mentioned above, the challenge is
that any given time step might belong simultaneously to multiple subsequences. Therefore, it is not
clear how to aggregate the different suggested policies corresponding to the several currently “active”
subsequences (or experts) to come up with a prediction. To aggregate the policies suggested by each
expert or subsequence, we use the AdaNormalHedge algorithm of Luo & Schapire (2015) with the
above no-regret algorithms forming the set of k meta-experts for this problem.

Parameters: Time Horizon T
1. Initialize an instance ZI of an external regret minimization algorithm for the subse-

quence corresponding to each time selection function I ∈ I, with the policy class H
as the set of experts.

2. Initialize an instance Z of AdaNormalHedge with {ZI}I∈I as the set of policies,
which we call meta-experts.

3. For t = 1, 2, · · ·T :
(a) Subsequence-level prediction step: Observe context xt. Each meta-expert ZI

recommends a randomized policy pI
t with realization zIt (from H).

(b) Prediction aggregation step: Using the information from the subsequence indi-
cators and fresh randomness, use AdaNormalHedge to sample a meta-expert ZI′
a. Set the policy pt of the algorithm to be policy ztI′ offered by this meta-expert
(i.e. pick action ztI′(xt)).

(c) Update step: Observe the adversary’s action yt. Update the state of algorithm Z
by treating the loss of meta-expert ZI as ℓ(zIt (xt), yt) For each subsequence I
that is ‘active’ in this round (i.e., with I(t) = 1), update the internal state of the
algorithm ZI using xt and yt.

aAdaNormalHedge in fact samples from only the set of meta-experts corresponding to active subse-
quences

Algorithm 1: Algorithm for Subsequence Regret Minimization

Theorem 1. For each subsequence I , assume there is an online learning algorithm ZI that picks
amongst policies in H mapping contexts to actions and has external regret (against H) upper bounded
by αI . Then, there exists an online learning algorithm (Algorithm 1), that given |I| subsequences
I , has total runtime (on a per round basis) equal to the sum of runtimes of the above algorithms
and a term that is a polynomial in |I| and d and obtains a regret of αI +O

(√
TI log |I||

)
for any

subsequence I with associated length TI .
In the interest of space, the proof has been moved to Appendix C. As an immediate consequence of
this theorem, we obtain the main result of our paper as a corollary (informally stated).
Theorem 2. Any online learning problem with a computationally efficient algorithm for obtaining
vanishing regret also admits a computationally efficient algorithm for vanishing subsequence regret
over subsequences defined by polynomially many time selection functions.

Improved computational efficiency compared to Blum & Lykouris (2020) We remark that
our method is similar to Blum & Lykouris (2020) in that it relies on using AdaNormalHedge to
decide between different policies. However, it differs in the set of actions or experts available to this
algorithm, allowing us to obtain better computational efficiency in many settings.
In our algorithm, we use exactly |I| experts; each of these experts corresponds to a single subsequence
and makes recommendations based on a regret minimization algorithm run only on that subsequence.
Their construction instead instantiates an expert for each tuple (f, I), where f ∈ H is a policy and
I ∈ I is a subsequence; a consequence is that their running time is polynomial in the size of the
hypothesis class. We avoid this issue by delegating the question of dealing with the complexity of
the policy class to the external regret minimization algorithm associated with each subsequence, and
by only enumerating |I| experts (one for each subsequence). Practical algorithms are known for the

5

Published as a conference paper at ICLR 2024

external regret minimization sub-problem (that must be solved by each expert) for many settings of
interest with large (or infinite) but structured policy classes (expanded upon in Section 4).

4 APPLICATIONS OF OUR FRAMEWORK

4.1 ONLINE LINEAR REGRESSION

Our first application is online linear regression with multiple groups. At each round t, a single
individual arrives with context xt and belongs to several groups; the learner observes this context and
group membership for each group and must predict a label.
Formally, the context domain is X = [0, 1]d where a context is an individual’s feature vector; the
learner makes a prediction ŷt in A = [0, 1], the predicted label ; the adversary, for its action, picks
yt ∈ Y = [0, 1] as his action, which is the true label; and the policy class H is the set of linear
regressors in d dimensions, i.e. H consists of all policies θ ∈ Rd where θ(xt) := ⟨θ, xt⟩ ∀xt ∈ X . 5

Each subsequence I corresponds to a single group g within the set of groups G = {g1, g2, · · · g|G|};
in each round the subsequence indicator functions I(t) are substituted by group membership indicator
functions g(t), for each g ∈ G. The goal is to minimize regret (as defined in Section 2) with respect
to the squared error loss: i.e., given that yt is the true label at round t, ŷt is the label predicted by the
learner, the loss accrued in round t is simply the squared error ℓ(ŷt, yt) = (ŷt − yt)

2.
The notion of subsequence regret measured against a policy θ ∈ H in this setting leads exactly to the
following groupwise regret metric for any given group g (against θ):

Regret of Group g against policy θ = E

[
T∑

t=1

g(t)(ŷt − yt)
2

]
−

T∑
t=1

g(t)(⟨θ, xt⟩ − yt)
2. (1)

Our goal is to bound this quantity for each group g in terms of Tg :=
∑

t g(t), which we refer to as the
length of subsequence associated with group g, and in terms of the size of θ. For each subsequence
I , we use the online ridge regression algorithm of Azoury & Warmuth (2001) to instantiate the
corresponding meta-expert ZI in Algorithm 1. We note that our algorithm obtains the following
groupwise regret guarantees as a direct corollary from Theorem 1.
Corollary 1. There exists an efficient algorithm with groupwise regret guarantees for online linear
regression with squared loss. This algorithm runs in time polynomial in |G| and d and guarantees
that the regret for group g as measured against any policy θ ∈ H is upper-bounded by

O

(
d ln(1 + Tg) +

√
Tg ln(|G|) + ∥θ∥22

)
,

where Tg denotes the length of group subsequence g.

4.2 ONLINE CLASSIFICATION WITH GUARANTEES FOR MULTIPLE GROUPS

We now study online multi-label classification under multiple groups. We perform classification on
an individual arriving in round t based upon the individual’s context xt and his group memberships.
Formally, the context domain is X ⊆ {0, 1}d and each context describes an individual’s feature
vector; the prediction domain is A ⊆ {0, 1}n, with the prediction being a multi-dimensional label;
and the adversary’s action domain is Y = {0, 1}n with the action being the true multi-dimensional
label that we aim to predict. Each subsequence I corresponds to a group g, with the set of groups
being denoted by G = {g1, g2, · · · g|G|}. We assume that the learner has access to an optimization
oracle that can solve the corresponding, simpler, offline classification problem: i.e., given t context-
label pairs {xs, ys}ts=1, an oracle that finds the policy f ∈ H that minimizes

∑t
s=1 ℓ(f(xs), ys) for

the desired loss function ℓ(.).
Our subsequence regret is equivalently the groupwise regret associated with group g. Formally:

Regret of Group g = E

[∑
t

g(t)ℓ(pt(xt), yt)

]
−min

f∈H

∑
t

g(t)ℓ (f(xt), yt) .

5While these predictions may lie outside [0, 1], we allow our instantiation of AdaNormalHedge to clip
predictions outside this interval to the nearest endpoint to ensure the final prediction lies in [0, 1], since this can
only improve its performance. We also note that the algorithm of Azoury & Warmuth (2001) has reasonable
bounds on the predictions, which is reflected in the corresponding external regret bounds (See Cesa-Bianchi &
Lugosi (2006) for details).

6

Published as a conference paper at ICLR 2024

We describe results for two special settings of this problem, introduced by Syrgkanis et al. (2016) for
the external regret minimization version of this problem.
Small Separator Sets: A set S ⊂ X of contexts is said to be a separator set of the policy class H
if for any two distinct policies f, f ′ ∈ H , there exists a context x ∈ S such that f(x) ̸= f ′(x). We
present groupwise regret bounds assuming that H has a separator set of size s – note that a finite
separator set implies that the set H is also finite (upper bounded by |A|s).
Transductive setting In the transductive setting, the adversary reveals a set S of contexts with |S| = s
to the learner before the sequence begins, along with the promise that all contexts in the sequence are
present in the set S. Note that the order and multiplicity of the contexts given for prediction can be
varied adaptively by the adversary.
When plugging in the online classification algorithm of Syrgkanis et al. (2016) as the regret minimiz-
ing algorithm ZI for each subsequence I (here, equivalently, for each group g) in Algorithm 1, we
obtain the following efficiency and regret guarantees:
Corollary 2. There exists an oracle efficient online classification algorithm (that runs in time
polynomial in |G|, d, n, and s) for classifiers with small separator sets (size s) with groupwise regret

upper bounded by O
(√

Tg(
√
(s3/2n3/2 log |H|+

√
log |G|)

)
for each group g.

Corollary 3. There exists an oracle efficient online classification algorithm (running in time polyno-
mial in |G|, d, n, and s) for classifiers in the transductive setting (with transductive set size s) with

groupwise regret upper bounded by O
(√

Tg(
√

s1/2n3/2 log |H|+
√
log |G|)

)
for each group g.

Note that in the above corollaries, “oracle efficient” means an efficient reduction to a (batch) ERM
problem—the above algorithms are efficient whenever the ERM problem can be solved efficiently.
We also briefly mention how the ideas of Blum & Lykouris (2020) lift the results in this section for
binary classification to the “apple-tasting model” where we only see the true label yt if the prediction
is pt = 1. For sake of brevity, this discussion is moved to Appendix G.

4.3 ONLINE LINEAR OPTIMIZATION

Our framework gives us subsequence regret guarantees for online linear optimization problems,
which, among other applications, includes the online shortest path problem. In each round t, the
algorithm picks a prediction at from A ⊆ [0, 1]d and the adaptive adversary picks cost vector yt
from Y ⊆ Rd as its action. The algorithm obtains a loss of ℓ(at, yt) = ⟨at, yt⟩. Unlike the previous
applications, there is no context, and the policy class H is directly defined as the set of all possible
predictions A.The algorithm is assumed to have access to an optimization oracle that finds some
prediction in argmina∈A⟨a, c⟩ for any c ∈ Rd. The objective is to bound the regret associated with
each subsequence I (described below) in terms of TI :=

∑
t I(t), the length of the subsequence.

Regret of Subsequence I = E

[∑
t

I(t)⟨at, yt⟩

]
−min

a∈A

∑
t

I(t)⟨a, yt⟩

Kalai & Vempala (2005) show an oracle efficient algorithm that has regret upper bounded by√
8CAdT where A = maxa,a′∈A ||a − a′||1 and C = maxc∈Y ||c||1. Using this algorithm for

minimizing external regret for each subsequence in Algorithm 1, we obtain the following corollary:
Corollary 4. There is an oracle efficient algorithm for online linear optimization (of polynomial time
in |I|) with the regret of subsequence I (of length TI) upper bounded by O(

√
TICAd+

√
TI log |I|)).

5 EXPERIMENTS

We empirically investigate the performance of our algorithm in an online regression problem. We
present our experimental results on two datasets in the main body. First, we run experiments on a
synthetic dataset in Section 5.2. Second, we perform experiments on real data in Section 5.3 using
dataset (Lantz, 2013) for medical cost prediction tasks. We provide additional experiments on the
census-based Adult income dataset 6 (Ding et al., 2021; Flood et al., 2020) in Appendix D.5.

6adult reconstruction.csv is available at https://github.com/socialfoundations/
folktables

7

https://github.com/socialfoundations/folktables
https://github.com/socialfoundations/folktables

Published as a conference paper at ICLR 2024

5.1 ALGORITHM DESCRIPTION AND METRIC

Learning task: In our experiments, we run online linear regression with the goal of obtaining
low subsequence regret. We focus on the case where subsequences are defined according to group
membership, and we aim to obtain low regret in each group for the sake of fairness. Our loss functions
and our regret metrics are the same as described in Section 4.1.
Our algorithm: We aim to evaluate the performance of Algorithm 1 for groupwise regret minimiza-
tion. Given |G| groups, our algorithm uses |G|+ 1 subsequences: for each group g ∈ G, there is a
corresponding subsequence that only includes the data of individuals in group g; further, we consider
an additional “always active” subsequence that contains the entire data history. We recall that our
algorithm uses an inner no-regret algorithm for each meta-expert or subsequence, and AdaNormal
Hedge to choose across active subsequences on a given time step. We choose online ridge regression
from Azoury & Warmuth (2001) for the meta-experts’ algorithm as per Section 4.1.
Baseline: We compare our results to a simple baseline. At every time step t, the baseline uses the
entire data history from the first t− 1 rounds, without splitting the data history across the |G|+ 1
subsequences defined above. (Recall that since the subsequences intersect, there is no way to partition
the data points by group). The baseline simply runs traditional online Ridge regression: at every t, it
estimates θ̂t ≜ argminθ{

∑t−1
τ=1(⟨θ, xτ ⟩ − yτ)

2 + ∥θ∥22}, then predicts label ŷt ≜ ⟨θ̂t, xt⟩.
Note that both our algorithm and the baseline have access to group identity (we concatenate group
indicators to the original features), thus the baseline can learn models for different groups that differ
by a linear shift7.

5.2 SYNTHETIC DATA

Feature and group generation Our synthetic data is comprised of 5 groups: 3 shape groups (circle,
square, triangle) and 2 color groups (red, green). Individual features are 20-dimensional; they
are independently and identically distributed and taken from the uniform distribution over support
[0, 1]20. Each individual is assigned to one of the 3 shape groups and one of the 2 color groups
randomly; this is described by vector at ∈ {0, 1}5 which concatenates a categorical distribution over
pshape = [0.5, 0.3, 0.2] and one over pcolor = [0.6, 0.4].
Label generation Individual labels are generated as follows: first, we draw a weight vector wg

for each group g uniformly at random on [0, 1]d. Then, we assign an intermediary label to each
individual in group g; this label is given by the linear expression w⊤

g x. Note that each individual has
two intermediary labels by virtue of being in two groups: one from shape and one from color. The
true label of an individual is then chosen to be a function of both intermediary labels, that we call
the label aggregation function. We provide experiments from the following aggregation functions:
mean of the intermediary labels; minimum of the intermediary labels; maximum of the intermediary
labels; and another aggregation rule which we call the permutation model (described in Appendix
D.3). Our main motivation for generating our labels in such a manner is the following: first, we
pick linear models to make sure that linear regression has high performance in each group, which
allows us to separate considerations of regret performance of our algorithm from considerations
of performance of the model class we optimize on. Second, with high probability, the parameter
vector wg significantly differs across groups; thus it is important for the algorithm to carefully
ensemble models for individuals in the intersection of two groups, which is what makes it possible to
out-perform the best linear models in hindsight and obtain negative regret.
Results Here, we show results for the mean aggregation function described in Section 5.2. Results for
the other three (min, max, and permutation) are similar and provided in Appendix D.1,D.2,and D.3
respectively. Across all the groups we can see that our algorithm has significantly lower regret than
the baseline, which in fact has linearly increasing regret. Note that this is not in conflict with the
no-regret guarantee of Azoury & Warmuth (2001) as the best fixed linear model in hindsight is
different for each group: indeed we see in box (f) that Azoury & Warmuth (2001) does have low
regret on the entire sequence, despite having linearly increasing regret on every relevant subsequence.
Further, we note that our algorithm’s groupwise regret guarantees sometimes vastly outperform our
already strong theoretical guarantees. In particular, while we show that our algorithm guarantees that
the regret evolves sub-linearly, we note that in several of our experiments, it is in fact negative and
decreasing over time (e.g. for the colors green and red). This means that our algorithm performs even
better than the best linear regressor in hindsight; This is possible because by necessity, our algorithm

7We know of no implementable algorithms other than ours that has subsequence regret guarantees for linear
regression (or other comparably large model class) that would provide an alternative point of comparison.

8

Published as a conference paper at ICLR 2024

0 10000 20000 30000 40000 50000
time

0

2

4

6

8

10

12

14

16

Re
gr

et

circle
Baseline
Our algorithm

(a) Shape: Circle

0 5000 10000 15000 20000 25000 30000
time

0

2

4

6

8

10

12

14

16

Re
gr

et

square
Baseline
Our algorithm

(b) Shape: Square

0 2500 5000 7500 10000 12500 15000 17500 20000
time

0

2

4

6

8

10

12

Re
gr

et

triangle
Baseline
Our algorithm

(c) Shape: Triangle

0 10000 20000 30000 40000 50000 60000
time

15

10

5

0

5

10

Re
gr

et

green
Baseline
Our algorithm

(d) Color: Green

0 5000 10000 15000 20000 25000 30000 35000 40000
time

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Re
gr

et

red
Baseline
Our algorithm

(e) Color: Red

0 20000 40000 60000 80000 100000
time

40

30

20

10

0

Re
gr

et

always_on
Baseline
Our algorithm

(f) Always on

Figure 2: Regret for the baseline (blue) & our algorithm (orange) on synthetic data with mean of intermediary
labels, our algorithm always has lower regret than the baseline.

is ensembling linear models for individuals who are members of multiple groups, giving it access to a
more expressive (and more accurate) model class.
Quantitatively, the rough 8 magnitude of the cumulative least-squared loss (for the best performing
linear model in hindsight) is 33. Our algorithm’s cumulative loss is roughly lower than the baseline
by an additive factor of 20, which represents a substantial improvement compared to the loss of the
baseline. This implies that our regret improvements in Figure 2 are of a similar order of magnitude as
the baseline loss itself, hence significant.

5.3 MEDICAL COST DATA

Dataset description The “Medical Cost” dataset Lantz (2013) looks at an individual medical cost
prediction task. Individual features are split into 3 numeric {age, BMI, #children} and
3 categoric features {sex, smoker, region}. The dataset also has a real-valued medical
charges column that we use as our label.
Data pre-processing All the numeric columns are min-max scaled to the range [0, 1] and all the
categoric columns are one-hot encoded. We also pre-process the data to limit the number of groups
we are working with for simplicity of exposition. In particular, we simplify the following groups:

1. We divide age into 3 groups: young (age ≤ 35), middle (age ∈ (35, 50]), old (age> 50)
2. For sex, we directly use the 2 groups given in the dataset : male, female
3. For smoker, we directly use the 2 groups given in the datset : smoker, non-smoker
4. We divide BMI (Body Masss Index) into 4 groups: underweight (BMI < 18.5), healthy

(BMI ∈ [18.5, 25)), overweight (BMI ∈ [25, 30)), obese (BMI ≥ 30)
Results The results for age, sex and smoker groups are discussed earlier, in Section 1, Figure 1. We
remark that the BMI group results are similar: the groupwise regret is consistently lower and growing
with time at a lower rate than the baseline. We provide detailed plots (including error bars) for all
groups in Appendix D.4. Quantitatively, the rough magnitude9 of the cumulative loss of the best
linear model in hindsight is ∼ 4.1, and our algorithm’s cumulative loss is ∼ 1.9 units lower than the
baseline, which is a significant decrease.

8Exact values provided in Appendix E table 1
9Exact values provided in Appendix E table 5

9

Published as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

We briefly describe information about the data sequence, data processing and algorithms. The code is
available at https://github.com/krishnacharya/multidecomp.
Data sequence: The sequence in which the online algorithms receive data can impact the empirical
regret. We fix ten random seeds and use these to shuffle each of our datasets. The mean and standard
deviation of regret across these shuffles is available in Appendix E.
Dataset specific processing: For the synthetic data we use a fixed seed (available in README.md)
to generate the 100k samples, the aggregate labels are then min-max scaled to [0, 1]. For the two real
datasets we min-max scale the numeric features to [0, 1] and one-hot encode the categoric features.
Algorithms: Online ridge regression and AdaNormalHedge are implemented in ORidge.py and
Anh.py respectively.

ACKNOWLEDGMENTS

Supported in part by NSF grant IIS-2147212 and the Simons Collaboration on Algorithmic Fairness.

REFERENCES

Katy S Azoury and Manfred K Warmuth. Relative loss bounds for on-line density estimation with
the exponential family of distributions. Machine learning, 43:211–246, 2001.

Avrim Blum and Thodoris Lykouris. Advancing subgroup fairness via sleeping experts. In Innovations
in Theoretical Computer Science Conference (ITCS), volume 11, 2020.

Avrim Blum and Yishay Mansour. From external to internal regret. Journal of Machine Learning
Research, 8(6), 2007.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for fair
machine learning. Advances in Neural Information Processing Systems, 34, 2021.

Sarah Flood, Miriam King, Renae Rodgers, Steven Ruggles, and J. Robert Warren. D030.V8.0 —
IPUMS — ipums.org. https://www.ipums.org/projects/ipums-cps/d030.v8.
0, 2020.

Yoav Freund, Robert E. Schapire, Yoram Singer, and Manfred K. Warmuth. Using and combining
predictors that specialize. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory
of Computing, STOC ’97, pp. 334–343, New York, NY, USA, 1997. Association for Computing
Machinery. ISBN 0897918886. doi: 10.1145/258533.258616. URL https://doi.org/10.
1145/258533.258616.

Sumegha Garg, Christopher Jung, Omer Reingold, and Aaron Roth. Oracle efficient online multicali-
bration and omniprediction. arXiv preprint arXiv:2307.08999, 2023.

Ira Globus-Harris, Michael Kearns, and Aaron Roth. An algorithmic framework for bias bounties. In
2022 ACM Conference on Fairness, Accountability, and Transparency, pp. 1106–1124, 2022.

Ira Globus-Harris, Declan Harrison, Michael Kearns, Aaron Roth, and Jessica Sorrell. Mul-
ticalibration as boosting for regression. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Confer-
ence on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp. 11459–11492. PMLR, 2023. URL
https://proceedings.mlr.press/v202/globus-harris23a.html.

Parikshit Gopalan, Adam Tauman Kalai, Omer Reingold, Vatsal Sharan, and Udi Wieder. Om-
nipredictors. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

Parikshit Gopalan, Lunjia Hu, Michael P Kim, Omer Reingold, and Udi Wieder. Loss minimization
through the lens of outcome indistinguishability. In 14th Innovations in Theoretical Computer
Science Conference (ITCS 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2023.

10

https://github.com/krishnacharya/multidecomp
https://www.ipums.org/projects/ipums-cps/d030.v8.0
https://www.ipums.org/projects/ipums-cps/d030.v8.0
https://doi.org/10.1145/258533.258616
https://doi.org/10.1145/258533.258616
https://proceedings.mlr.press/v202/globus-harris23a.html

Published as a conference paper at ICLR 2024

Ursula Hébert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration: Cali-
bration for the (computationally-identifiable) masses. In International Conference on Machine
Learning, pp. 1939–1948. PMLR, 2018.

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal of
Computer and System Sciences, 71(3):291–307, 2005.

Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerrymandering:
Auditing and learning for subgroup fairness. In International conference on machine learning, pp.
2564–2572. PMLR, 2018.

Brett Lantz. Medical Cost Personal Datasets — kaggle.com, 2013. URL https://www.kaggle.
com/datasets/mirichoi0218/insurance.

Daniel Lee, Georgy Noarov, Mallesh Pai, and Aaron Roth. Online minimax multiobjective optimiza-
tion: Multicalibeating and other applications. Advances in Neural Information Processing Systems,
35:29051–29063, 2022.

Haipeng Luo and Robert E. Schapire. Achieving all with no parameters: Adaptive normalhedge,
2015.

Guy N Rothblum and Gal Yona. Multi-group agnostic pac learnability. In International Conference
on Machine Learning, pp. 9107–9115. PMLR, 2021.

Vasilis Syrgkanis, Akshay Krishnamurthy, and Robert Schapire. Efficient algorithms for adversarial
contextual learning. In International Conference on Machine Learning, pp. 2159–2168. PMLR,
2016.

Christopher J Tosh and Daniel Hsu. Simple and near-optimal algorithms for hidden stratification
and multi-group learning. In International Conference on Machine Learning, pp. 21633–21657.
PMLR, 2022.

A ORGANIZATION

The Appendix is organized as follows. Appendix B contains a description of the sleeping experts
setting and the AdaNormalHedge algorithm. Appendix C contains the proof of Theorem 1. Regret
curves for the synthetic data with the 3 other label aggregations functions: min, max, permutation are
in Appendix D.1, D.2 and D.3 respectively. In Appendix D.4 and D.5 we provide detailed plots for
the 2 real datasets: Medical cost and Adult income respectively. Appendix E provides tables with
regret at the end of each subsequence, along with cumulative loss of the best linear model for all the
experiments. Appendix F compares including/excluding the always active expert in our algorithm.
Lastly, Appendix G contains the binary classification with apple-tasting feedback results.

B SLEEPING EXPERTS, ADANORMALHEDGE

For completeness, here we describe the sleeping experts setting (Freund et al., 1997) and the AdaNor-
malHedge algorithm of Luo & Schapire (2015) with its regret guarantee. Infact, AdaNormalHedge
provides a regret guarantee even in the confidence-rated setting i.e., I(t) ∈ [0, 1] (Blum & Mansour,
2007; Luo & Schapire, 2015), a generalization of sleeping experts. The following is the interaction
protocol in the sleeping experts setting.

1. At the start of each round t, each expert (I ∈ I) reports if it’s awake or asleep i.e., will it
make a prediction (I(t) = 1) or not (I(t) = 0) 10.

2. The learner plays each expert according to a probability distribution pt, with the natural
restriction that if the expert I is asleep pt,I = 0.

3. The loss ℓt,I for those experts who made predictions are revealed and the player suffers loss
ℓ̂t = ⟨pt, ℓt⟩. The instantaneous regret to expert I , rt,I ≜ I(t)(ℓ̂t − ℓt,I)

10We overload I to denote both the index of the sleeping expert as well as the indicator representing whether
the expert is awake or not.

11

https://www.kaggle.com/datasets/mirichoi0218/insurance
https://www.kaggle.com/datasets/mirichoi0218/insurance

Published as a conference paper at ICLR 2024

AdaNormalHedge (Sec 4, Luo & Schapire (2015)) sets the probability distribution

pt,I ∝ 1

|I|
· I(t) · w(Rt−1,I , Ct−1,I) (2)

Where Rt−1,I =
∑t−1

τ=1 rt,I is the sum of instantaneous regret; and Ct−1,I =
∑t−1

τ=1 |rt,I | is the sum
of absolute values of instantaneous regret. The weight function w(R,C) : R2 → R+ is defined as
w(R,C) ≜ 1

2

(
exp

(
max(0,R+1)2

3(C+1)

)
− exp

(
max(0,R−1)2

3(C+1)

))
. Note that at the start, i.e., t = 0, for all

experts R0,I = C0,I = 0
With the probability set as in equation 2, AdaNormalHedge provides the following regret guarantee
to each expert I , which scales sublinearly in the total number of times expert I is awake:

T∑
t=1

I(t) · ⟨pt, ℓt⟩ −
T∑

t=1

I(t) · ℓt,I ≤ O(
√

TI log(|I|)) (3)

C PROOF OF THEOREM 1
Our algorithm uses the AdaNormalHedge algorithm of Luo & Schapire (2015). AdaNormalHedge is
an online prediction algorithm, that given a finite benchmark set of |I| policies and |I| time selection
functions, guarantees a subsequence regret upper bound of O(

√
TI log |I|) with a running time that

is polynomial in |I| and the size of the contexts that arrive in each round. We refer to meta-experts
{ZI}I∈I as policies even though they are themselves algorithms, and not policies mapping contexts
to predictions, however, the output of each one of these algorithms in any time step are policies in H
mapping contexts to predictions. Therefore, when algorithm Z picks ZI as the policy to play in a
round, it is in fact picking the policy zIt that is the output of algorithm ZI in that round.
Thus, the running time claim follows from the construction of Algorithm 1.
We introduce notation separating the independent random coins used by each of the algorithms used
in our procedure. In the t-th round, each meta-expert algorithm ZI draws a randomized policy pI

t
using random coins DI . The instantiation of ANH picks a policy pt from among the above policies
based upon random coins D. Each algorithm’s random coins are independent of each other. By
appealing to the regret guarantees of each algorithm ZI and taking the expectation only over the
random coins used by these algorithms, we get the following for each subsequence I:(

EDI

[∑
t

I(t)ℓ(pI
t (xt), yt)

]
−min

f∈H

∑
t

I(t)ℓ(f(xt), yt)

)
≤ αI (4)

where pI
t is the (randomized) policy suggested by the algorithm ZI and TI =

∑
t I(t). Note that

the actual prediction pt(xt) made by Algorithm 1 might differ from pI
t (xt), however since the

regret guarantee holds for arbitrary adversarial sequences, we can still call upon it to measure the
expected regret of hypothetically using this algorithm’s prediction on the corresponding subsequence.
Importantly, we update the algorithm ZI with the true label yt on every round only where the
subsequence I is active.
Next, we appeal to the regret guarantee of algorithm Z . Before doing so, we fix the realization
of the offered expert pI

t as zIt from each meta-expert ZI i.e. we do the analysis conditioned upon
the draw of internal randomness used by each meta-expert. In particular, our analysis holds for
every possible realization of predictions pI

t offered by each of the meta-experts over all the rounds.
Since our algorithm updates the loss of each meta-expert with respect to these realized draws of
the meta-experts, therefore, we use the subsequence regret guarantee of Z (i.e the results about
AdaNormalHedge in Luo & Schapire (2015)) for each subsequence I to get:(

ED

[∑
t

I(t)ℓ(pt(xt), yt)

]
−
∑
t

I(t)ℓ(zIt (xt), yt)

)
≤ O

(√
TI log(|I|)

)
(5)

where the expectation is taken only over the random coins D used by A to select which meta-expert
to use in each round. Since the inequality 5 holds for every realization of the randomness used by
the meta-experts, the same inequality holds in expectation over the random coins DI used by the
corresponding meta-expert:

12

Published as a conference paper at ICLR 2024

(
E(D⊗DI)

[∑
t

I(t)ℓ(pt(xt), yt)

]
− EDI

[∑
t

I(t)ℓ(pI
t (xt), yt)

])
≤ O

(√
TI log(|I|)

)
(6)

Inequality 4 will also hold when we additionally take the expectation over the random coins D used
by the copy of ANH, since DI is independent of D.
Thus, putting together 4and 6 in this proof gives us (for each subsequence I):(

E(⊗IDI)⊗D

[∑
t

I(t)ℓ(pt(xt), yt)

]
−min

f∈H

∑
t

I(t)ℓ(f(xt), yt)

)
≤ αI +O

(√
TI log(|I|)

)
where the expectation is taken over the product distributions of random coins used by all the
algorithms.

D ADDITIONAL FIGURES

On the synthetic data with the 3 other aggregation rules: min, max, permutation; the plots and
qualitative inferences are similar to the mean aggregation in Section 5.2, i.e., across all the groups
we see that our algorithm has significantly lower regret than the baseline, which in fact has linearly
increasing regret 11. Thus, here, we only discuss quantitative values such as the magnitudes of the
cumulative loss, and difference between the cumulative loss of the baseline and our algorithm.

D.1 SYNTHETIC DATA - MIN

Recall here that the label of any individual is the minimum of the intermediary labels of the groups
it’s a part of. Quantitatively, the rough magnitude 12 of the cumulative loss of the best linear model in
hindsight is ∼ 79, and our algorithm’s cumulative loss is ∼ 48 units lower than the baseline, which is
a significant decrease.

0 10000 20000 30000 40000 50000
time

0

5

10

15

20

Re
gr

et

circle
Baseline
Our algorithm

(a) Shape: Circle

0 5000 10000 15000 20000 25000 30000
time

0

10

20

30

40

50

60

Re
gr

et

square
Baseline
Our algorithm

(b) Shape: Square

0 2500 5000 7500 10000 12500 15000 17500 20000
time

0

2

4

6

8

10

12

Re
gr

et

triangle
Baseline
Our algorithm

(c) Shape: Triangle

0 10000 20000 30000 40000 50000 60000
time

40

30

20

10

0

10

Re
gr

et

green
Baseline
Our algorithm

(d) Color: Green

0 5000 10000 15000 20000 25000 30000 35000 40000
time

15

10

5

0

5

10

15

20

Re
gr

et

red
Baseline
Our algorithm

(e) Color: Red

0 20000 40000 60000 80000 100000
time

80

60

40

20

0

Re
gr

et

always_on
Baseline
Our algorithm

(f) Always on

Figure 3: Regret for the baseline (blue) & our algorithm (orange) on synthetic data with minimum of intermediary
labels, our algorithm always has lower regret than the baseline.

D.2 SYNTHETIC DATASET - MAX

Recall here that the label of any individual is the maximum of the intermediary labels of the groups
it’s a part of. Quantitatively, the rough magnitude 13 of the cumulative loss of the best linear model in

11On the always on group, the baseline has sublinear growth, we have discussed this phenomenon in Sec 5.2
12Exact values provided in Appendix E table 2
13Exact values provided in Appendix E table 3

13

Published as a conference paper at ICLR 2024

hindsight is ∼ 59, and our algorithm’s cumulative loss is ∼ 34 units lower than the baseline, which is
a significant decrease.

0 10000 20000 30000 40000 50000
time

0

5

10

15

20

Re
gr

et

circle
Baseline
Our algorithm

(a) Shape: Circle

0 5000 10000 15000 20000 25000 30000
time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Re
gr

et

square
Baseline
Our algorithm

(b) Shape: Square

0 2500 5000 7500 10000 12500 15000 17500 20000
time

0

5

10

15

20

25

30

Re
gr

et

triangle
Baseline
Our algorithm

(c) Shape: Triangle

0 10000 20000 30000 40000 50000 60000
time

25

20

15

10

5

0

5

10

Re
gr

et

green
Baseline
Our algorithm

(d) Color: Green

0 5000 10000 15000 20000 25000 30000 35000 40000
time

25

20

15

10

5

0

5

10
Re

gr
et

red
Baseline
Our algorithm

(e) Color: Red

0 20000 40000 60000 80000 100000
time

70

60

50

40

30

20

10

0

Re
gr

et

always_on
Baseline
Our algorithm

(f) Always on

Figure 4: Regret for the baseline (blue) & our algorithm (orange) on synthetic data with maximum of intermediary
labels, our algorithm always has lower regret than the baseline.

D.3 SYNTHETIC DATASET - PERMUTATION

Recall here there is an underlying fixed ordering or permutation over the groups, and the label of any
individual is decided by the linear model corresponding to the first group in the ordering that this
individual is a part of. The permutation (chosen randomly) for experiments in Figure 5 is (1:green,
2:square, 3:red, 4:triangle, 5:circle). Let’s see two simple examples to understand this aggregation:
For an individual which is a red square we use the intermediary label for square, for an individual
which is a green square we use the intermediary label for green.
Quantitatively, the rough magnitude 14 of the cumulative loss of the best linear model in hindsight is
∼ 94, and our algorithm’s cumulative loss is ∼ 93 units lower than the baseline, which is a significant
decrease.

14Exact values provided in Appendix E table 4

14

Published as a conference paper at ICLR 2024

0 10000 20000 30000 40000 50000
time

40

30

20

10

0

10

20

30

Re
gr

et

circle
Baseline
Our algorithm

(a) Shape: Circle

0 5000 10000 15000 20000 25000 30000
time

0

20

40

60

80

Re
gr

et

square
Baseline
Our algorithm

(b) Shape: Square

0 2500 5000 7500 10000 12500 15000 17500 20000
time

15

10

5

0

5

10

Re
gr

et

triangle
Baseline
Our algorithm

(c) Shape: Triangle

0 10000 20000 30000 40000 50000 60000
time

0

10

20

30

40

50

60

70

80

Re
gr

et

green
Baseline
Our algorithm

(d) Color: Green

0 5000 10000 15000 20000 25000 30000 35000 40000
time

0

20

40

60

80

100

Re
gr

et

red
Baseline
Our algorithm

(e) Color: Red

0 20000 40000 60000 80000 100000
time

175

150

125

100

75

50

25

0

Re
gr

et

always_on
Baseline
Our algorithm

(f) Always on

Figure 5: Regret for the baseline (blue) & our algorithm (orange) on synthetic data with permutation aggregation
of intermediary labels, our algorithm always has lower regret than the baseline

D.4 MEDICAL COSTS DATASET

For the medical cost data we have already discussed the rough quantitative results in Section 5.3, for
exact values see Appendix E table 5. Here we discuss regret curves for the baseline and our algorithm
on all the groups.
Regret on age, sex groups On all three age groups: young, middle, old (Fig 6), and both sex groups:
male, female (Fig 7); our algorithm has significantly lower regret than the baseline, in fact, our
algorithm’s regret is negative and decreasing over time. i.e., our algorithm outperforms the best linear
regressor in hindsight. This qualitatively matches the same phenomenon occurring in the synthetic
data.

0 100 200 300 400 500 600
time

1.5

1.0

0.5

0.0

0.5

Re
gr

et

young
Baseline
Our algorithm

(a) Age: Young

0 50 100 150 200 250 300 350 400
time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Re
gr

et

middle
Baseline
Our algorithm

(b) Age: Middle

0 50 100 150 200 250 300 350
time

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Re
gr

et

old
Baseline
Our algorithm

(c) Age: Old

Figure 6: Age groups

15

Published as a conference paper at ICLR 2024

0 100 200 300 400 500 600 700
time

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Re
gr

et

male
Baseline
Our algorithm

(a) Sex: Male

0 100 200 300 400 500 600
time

1.5

1.0

0.5

0.0

0.5

Re
gr

et

female
Baseline
Our algorithm

(b) Sex: Female

Figure 7: Sex groups

Regret on smoker, bmi groups For both smokers and non smokers (Fig 8), and all four bmi groups:
underweight, healthyweight, overweight, obsese (Fig 9); our algorithm has significantly lower regret
than the baseline, which in fact has linearly increasing regret.

0 50 100 150 200 250
time

0

1

2

3

4

5

Re
gr

et

smoker
Baseline
Our algorithm

(a) Smoker: Yes

0 200 400 600 800 1000
time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Re
gr

et

non-smoker
Baseline
Our algorithm

(b) Smoker: No

Figure 8: Smoking groups

2.5 5.0 7.5 10.0 12.5 15.0 17.5
time

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Re
gr

et

underweight
Baseline
Our algorithm

(a) Bmi: Underweight

0 50 100 150 200
time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Re
gr

et

healthyweight
Baseline
Our algorithm

(b) Bmi: Healthyweight

0 50 100 150 200 250 300 350 400
time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Re
gr

et

overweight
Baseline
Our algorithm

(c) Bmi: Overweight

0 100 200 300 400 500 600 700
time

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
gr

et

obese
Baseline
Our algorithm

(d) Bmi: Obese

Figure 9: Bmi groups

Regret on the always-on group In Fig 10 our algorithm’s regret is negative and decreasing
with time, i.e., it outperforms the best linear regressor in hindsight. The baseline’s regret evolves
sublinearly, this matches the same phenomenon occurring in the synthetic data in Section 5.2 Fig 2
(f).

16

Published as a conference paper at ICLR 2024

0 200 400 600 800 1000 1200 1400
time

3

2

1

0

1

Re
gr

et

always_on
Baseline
Our algorithm

Figure 10: Always on

D.5 ADULT INCOME DATASET

Dataset description The Adult income dataset 15 is targeted towards income prediction based
on census data. Individual features are split into: 5 numeric features, {hours-per-week,
age, capital-gain, capital-loss, education-num}; and 8 categoric features,
{workclass, education, marital-status, relationship, race, sex,
native-country, occupation}. The dataset also contains a real-valued income column
that we use as our label.
Data pre-processing All the numeric columns are min-max scaled to [0, 1], while all the categoric
columns are one-hot encoded
We also pre-process the data to limit the number of groups we are working with for simplicity of
exposition. In particular, we simplify the following groups:

1. We divide the age category into three groups: young (age ≤ 35), middle (age ∈ (35, 50]),
old (age> 50)

2. We divide the education level into 2 groups: at most high school versus college or more.
3. For sex, we directly use the 2 groups given in the dataset: male, female.
4. For race, we directly use the 5 groups given in the dataset: White, Black, Asian-Pac-Islander,

Amer-Indian-Eskimo, Other.
Quantitatively, the rough magnitude 16 of cumulative loss of the best linear model in hindsight is
∼ 568, and our algorithm’s cumulative loss is ∼ 14 units lower than the baseline, so there is a
decrease but not as significant as for the other datasets. This may be because in this case, conditional
on having similar features, group membership is not significantly correlated with income; in fact, we
observe in our data that different groups have relatively similar best fitting models. This explains why
a one-size-fits-all external regret approach like Azoury & Warmuth (2001) has good performance:
one can use the same model for all groups and does not need to fit a specific, different model to each
group.
Regret on age groups On all three age groups: young, middle, old (Fig 11); our algorithm has lower
regret than the baseline.

0 5000 10000 15000 20000
time

0

5

10

15

20

25

30

35

40

Re
gr

et

young
Baseline
Our algorithm

(a) Age: young

0 2500 5000 7500 10000 12500 15000 17500
time

0

5

10

15

20

Re
gr

et

middle
Baseline
Our algorithm

(b) Age: middle

0 2000 4000 6000 8000 10000
time

15

10

5

0

5

10

15

20

25

Re
gr

et

old
Baseline
Our algorithm

(c) Age: old

Figure 11: Age groups

Regret on education level groups For both the education level groups: atmost high school and
college or more (Fig 12), our algorithm has lower regret than the baseline.

15adult reconstruction.csv at https://github.com/socialfoundations/folktables
16Exact values provided in Appendix E table 6

17

https://github.com/socialfoundations/folktables

Published as a conference paper at ICLR 2024

0 5000 10000 15000 20000
time

5

10

15

20

25

30

35

Re
gr

et

HighSchool&less
Baseline
Our algorithm

(a) Education: at most High school

0 5000 10000 15000 20000 25000
time

5

10

15

20

25

30

Re
gr

et

College&more
Baseline
Our algorithm

(b) Education: college or more

Figure 12: Education level groups

Regret on sex groups On both the sex groups: male and female (Fig 13), our algorithm has lower
regret than the baseline

0 5000 10000 15000 20000 25000 30000
time

0

5

10

15

20

Re
gr

et

Male
Baseline
Our algorithm

(a) Sex: male

0 2000 4000 6000 8000 10000 12000 14000 16000
time

5

0

5

10

15

20

Re
gr

et

Female
Baseline
Our algorithm

(b) Sex: female

Figure 13: Sex groups

Regret on race groups On all 5 race groups: White, Black, Asian-Pac-Islander, Amer-Indian-Eskimo,
Other (Fig 14) our algorithm has lower regret than the baseline.

0 10000 20000 30000 40000
time

100

75

50

25

0

25

50

Re
gr

et

White
Baseline
Our algorithm

(a) Race: White

0 1000 2000 3000 4000
time

2

0

2

4

6

8

Re
gr

et

Black
Baseline
Our algorithm

(b) Race: Black

0 200 400 600 800 1000 1200 1400
time

2

1

0

1

2

3

4

5

6

Re
gr

et

Asian-Pac-Islander
Baseline
Our algorithm

(c) Race: Asian-Pac-Islander

0 100 200 300 400
time

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Re
gr

et

Amer-Indian-Eskimo
Baseline
Our algorithm

(d) Race: Amer-Indian-Eskimo

0 50 100 150 200 250 300 350 400
time

4

2

0

2

4

Re
gr

et

Other
Baseline
Our algorithm

(e) Race: Other

Figure 14: Race groups

Regret on always-on group In Fig 15 our algorithm’s regret is negative and decreasing with time,
i.e., it outperforms the best linear regressor in hindsight. The baseline’s regret evolves sublinearly,
this matches the same phenomenon occurring in the synthetic data in Section 5.2 Fig 2 (f).

18

Published as a conference paper at ICLR 2024

0 10000 20000 30000 40000 50000
time

20

15

10

5

0

5

10

15

20

Re
gr

et

always_on
Baseline
Our algorithm

Figure 15: Always on

E TABLES

In these tables, for a given group we record: its size, regret for the baseline, regret for our algorithm,
and the cumulative loss of the best linear model in hindsight. Since the baseline and our algorithm
are online algorithms we feed the data one-by-one using 10 random17 shuffles, recording the mean
and standard deviation. Note that the cumulative loss of the best linear model in hindsight will be the
same across all the shuffles, since it’s just solving for the least squares solution on the entire group
subsequence.

Group name Group size Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

circle 49857 15.25 ± 0.22 0.73 ± 0.09 23.57
square 30044 15.43 ± 0.13 0.63 ± 0.06 14.12
triangle 20099 12.13 ± 0.10 0.76 ± 0.04 9.43
green 59985 10.02 ± 0.15 -14.13 ± 0.19 38.81
red 40015 14.75 ± 0.16 -1.80 ± 0.17 26.37
always on 100000 0.76 ± 0.06 -39.93 ± 0.10 89.18

Table 1: Synthetic data with mean of intermediary labels

Group name Group size Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

circle 49857 21.62 ± 0.28 0.81 ± 0.10 63.49
square 30044 64.21 ±0.31 0.94 ± 0.05 15.17
triangle 20099 12.47 ± 0.13 0.57 ± 0.07 26.37
green 59985 14.55 ± 0.19 -43.10 ± 0.23 97.42
red 40015 21.64 ± 0.20 -16.69 ± 0.23 69.72
always on 100000 1.04 ± 0.06 -94.94 ± 0.08 202.29

Table 2: Synthetic data with min of intermediary labels

17available at https://github.com/krishnacharya/multidecomp

19

https://github.com/krishnacharya/multidecomp

Published as a conference paper at ICLR 2024

Group name Group size Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

circle 49857 22.78 ± 0.32 0.91 ± 0.07 32.46
square 30044 17.86 ± 0.14 0.52 ± 0.08 36.92
triangle 20099 29.51 ± 0.22 0.87 ± 0.05 9.42
green 59985 8.65 ± 0.20 -23.25 ± 0.24 65.38
red 40015 12.48 ± 0.22 -23.46 ± 0.29 62.42
always on 100000 0.86 ± 0.08 -66.98 ± 0.13 148.08

Table 3: Synthetic data with max of intermediary labels

Group name Group size Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

circle 49857 28.84 ± 0.45 -38.63 ± 0.17 77.14
square 30044 92.10 ± 0.64 -0.28 ± 0.27 54.87
triangle 20099 12.03 ± 0.20 -15.15 ± 0.09 30.67
green 59985 75.89 ± 0.89 1.31 ± 0.07 28.95
red 40015 112.49 ± 0.88 0.04 ± 0.26 78.32
always on 100000 1.26 ± 0.09 -185.77 ± 0.25 294.39

Table 4: Synthetic data with permutation of intermediary labels

Group name Group size Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

young 574 0.55 ± 0.14 -1.58 ± 0.18 5.40
middle 408 0.38 ± 0.15 -0.97 ± 0.16 3.34
old 356 0.44 ± 0.18 -0.64 ± 0.19 3.13
underweight 20 0.16 ± 0.02 0.11 ± 0.02 0.03
healthyweight 225 1.59 ± 0.14 0.36 ± 0.07 1.00
overweight 386 1.55 ± 0.17 0.43 ± 0.07 1.84
obese 707 3.42 ± 0.31 1.25 ± 0.12 3.65
smoker 274 5.06 ± 0.17 1.47 ± 0.09 0.90
non-smoker 1064 1.70 ± 0.15 0.73 ± 0.13 5.57
male 676 0.65 ± 0.21 -1.75 ± 0.21 6.11
female 662 0.59 ± 0.24 -1.57 ± 0.24 5.88
always on 1338 1.13 ± 0.09 -3.43 ± 0.13 12.10

Table 5: Medical costs data

20

Published as a conference paper at ICLR 2024

Group name Group size Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

young 22792 37.40 ± 1.04 14.01 ± 0.41 421.89
middle 16881 20.11 ± 1.11 14.93 ± 0.63 608.15
old 9858 22.99 ± 0.74 14.81 ± 0.75 414.61
HighSchool&less 22584 33.02 ± 1.21 14.38 ± 0.51 499.55
College&more 26947 28.67 ± 1.54 10.55 ± 1.08 963.92
Male 33174 20.95 ± 0.86 -2.17 ± 0.77 1171.06
Female 16357 18.82 ± 0.54 5.19 ± 0.69 314.32
White 42441 14.67 ± 0.76 -17.42 ± 0.98 1325.50
Asian-Pac-Islander 1519 5.82 ± 0.23 4.66 ± 0.21 55.05
Amer-Indian-Eskimo 471 3.55 ± 0.12 3.48 ± 0.44 9.04
Other 406 3.28 ± 0.24 3.21 ± 0.24 7.50
Black 4694 6.16 ± 0.39 2.79 ± 0.36 94.58
always on 49531 18.25 ± 0.66 -18.51 ± 0.94 1506.92

Table 6: Adult income data

F EFFECT OF ADDING AN ALWAYS ACTIVE EXPERT OR NOT ON OUR
ALGORITHM

Throughout in the earlier sections, we include an “always on” expert in Algorithm 1, as in terms of
theory, doing so provides a regret bound over the entire sequence, which does not follow generically
from having regret bounds for subsequences18. Here in tables 7 - 12 we compare the regret of our
algorithm when including/excluding the “always on” expert and see that the effect is marginal, with
both these variants being much better than the baseline.

Group name Group size Baseline’s
regret

Regret of
our algorithm
including
always active

Regret of
our algorithm
excluding
always active

Cuml loss
of best linear
model

circle 49857 15.25 ± 0.22 0.73 ± 0.09 0.66 ± 0.09 23.57
square 30044 15.43 ± 0.13 0.63 ± 0.06 0.56 ± 0.06 14.12
triangle 20099 12.13 ± 0.10 0.76 ± 0.04 0.73 ± 0.04 9.43
green 59985 10.02 ± 0.15 -14.13 ± 0.19 -14.23 ± 0.16 38.81
red 40015 14.75 ± 0.16 -1.80 ± 0.17 -1.86 ± 0.14 26.37
always on 100000 0.76 ± 0.06 -39.93 ± 0.10 -40.10 ± 0.09 89.18

Table 7: Synthetic data with mean of intermediary labels

Group name Group size Baseline’s
regret

Regret of
our algorithm
including
always active

Regret of
our algorithm
excluding
always active

Cuml loss
of best linear
model

circle 49857 21.62 ±0.28 0.81 ± 0.10 0.77 ± 0.10 63.49
square 30044 64.21 ± 0.31 0.94 ± 0.05 0.83 ± 0.05 15.17
triangle 20099 12.47 ± 0.13 0.57 ± 0.07 0.60 ± 0.06 26.37
green 59985 14.55 ± 0.19 -43.10 ± 0.23 -43.19 ± 0.21 97.42
red 40015 21.64 ± 0.20 -16.69 ± 0.23 -16.72 ± 0.21 69.72
always on 100000 1.04 ± 0.06 -94.94 ± 0.08 -95.06 ± 0.08 202.29

Table 8: Synthetic data with min of intermediary labels

18If there are subsequences that partition the entire sequence, then one gets a regret bound on the entire
sequence that follows from summing up the regret bounds on the partition, but this is wasteful. If the subsequences
do not partition the space, then there is not necessarily a regret bound on the entire sequence without including
the “always on” expert

21

Published as a conference paper at ICLR 2024

Group name Group size Baseline’s
regret

Regret of
our algorithm
including
always active

Regret of
our algorithm
excluding
always active

Cuml loss
of best linear
model

circle 49857 22.78 ± 0.32 0.91 ±0.07 0.86 ± 0.07 32.46
square 30044 17.86 ± 0.14 0.52 ± 0.08 0.45 ±0.07 36.92
triangle 20099 29.51 ± 0.22 0.87 ± 0.05 0.80 ± 0.05 9.42
green 59985 8.65 ± 0.20 -23.25 ± 0.24 -23.30 ± 0.23 65.38
red 40015 12.48 ± 0.22 -23.46 ± 0.29 -23.59 ± 0.28 62.42
always on 100000 0.86 ± 0.08 -66.98 ± 0.13 -67.17 ± 0.12 148.08

Table 9: Synthetic data with max of intermediary labels

Group name Group size Baseline’s
regret

Regret of
our algorithm
including
always active

Regret of
our algorithm
excluding
always active

Cuml loss
of best linear
model

circle 49857 28.84 ± 0.45 -38.63 ± 0.17 -38.66 ± 0.21 77.14
square 30044 92.10 ± 0.64 -0.28 ± 0.27 -0.33 ± 0.32 54.87
triangle 20099 12.03 ± 0.20 -15.15 ± 0.09 -15.11 ± 0.08 30.67
green 59985 75.89 ± 0.89 1.31 ± 0.07 1.27 ± 0.07 28.95
red 40015 112.49 ± 0.88 0.04 ± 0.26 0.05 ± 0.27 78.32
always on 100000 1.26 ± 0.09 -185.77 ± 0.25 -185.81 ± 0.25 294.39

Table 10: Synthetic data with permutation of intermediary labels

Group name Group size Baseline’s
regret

Regret of
our algorithm
including
always active

Regret of
our algorithm
excluding
always active

Cuml loss
of best linear
model

young 574 0.55 ± 0.14 -1.58 ± 0.18 -1.63 ± 0.18 5.40
middle 408 0.38 ± 0.15 -0.97 ± 0.16 -0.99 ± 0.17 3.34
old 356 0.44 ± 0.18 -0.64 ± 0.19 -0.64 ± 0.19 3.13
underweight 20 0.16 ± 0.02 0.11 ± 0.02 0.11 ± 0.02 0.03
healthyweight 225 1.59 ± 0.14 0.36 ± 0.07 0.34 ± 0.06 1.00
overweight 386 1.55 ± 0.17 0.43 ± 0.07 0.40 ± 0.06 1.84
obese 707 3.42 ± 0.31 1.25 ± 0.12 1.24 ± 0.12 3.65
smoker 274 5.06 ± 0.17 1.47 ± 0.09 1.43 ± 0.09 0.90
non-smoker 1064 1.70 ± 0.15 0.73 ± 0.13 0.71 ± 0.14 5.57
male 676 0.65 ± 0.21 -1.75 ± 0.21 -1.79 ± 0.21 6.11
female 662 0.59 ± 0.24 -1.57 ± 0.24 -1.59 ± 0.24 5.88
always on 1338 1.13 ± 0.09 -3.43 ± 0.13 -3.49 ± 0.13 12.10

Table 11: Medical costs data

22

Published as a conference paper at ICLR 2024

Group name Group size Baseline’s
regret

Regret of
our algorithm
including
always active

Regret of
our algorithm
excluding
always active

Cuml loss
of best linear
model

young 22792 37.40 ± 1.04 14.01 ± 0.41 13.79 ± 0.40 421.89
middle 16881 20.11 ± 1.11 14.93 ± 0.63 14.70 ± 0.82 608.15
old 9858 22.99 ± 0.74 14.81 ± 0.75 14.59 ± 0.97 414.61
HighSchool&less 22584 33.02 ± 1.21 14.38 ± 0.51 14.05 ± 0.42 499.55
College&more 26947 28.67 ± 1.54 10.55 ± 1.08 10.21 ± 1.03 963.92
Male 33174 20.95 ± 0.86 -2.17 ± 0.77 -3.46 ± 0.63 1171.06
Female 16357 18.82 ± 0.54 5.19 ± 0.69 5.81 ± 0.81 314.32
White 42441 14.67 ± 0.76 -17.42 ± 0.98 -19.10 ± 0.93 1325.50
Asian-Pac-Islander 1519 5.82 ± 0.23 4.66 ± 0.21 5.06 ± 0.42 55.05
Amer-Indian-Eskimo 471 3.55 ± 0.12 3.48 ± 0.44 3.80 ± 0.41 9.04
Other 406 3.28 ± 0.24 3.21 ± 0.24 3.41 ± 0.27 7.50
Black 4694 6.16 ± 0.39 2.79 ± 0.36 2.88 ± 0.44 94.58
always on 49531 18.25 ± 0.66 -18.51 ± 0.94 -19.18 ± 0.99 1506.92

Table 12: Adult income data

G APPLE TASTING MODEL

In the apple tasting model for binary classification (n = 1), we only see the label yt at the end of the
t-th round if the prediction pt is to “accept”, i.e.,pt = 1. We present results in a generalization of this
model, introduced by Blum & Lykouris (2020), called the Pay-for-feedback model. In this model, the
algorithm is allowed to pay the maximum possible loss of 1 at the end of the t-th round to see the
label yt. The sum of all the payments is added to the regret expression to create a new objective that
we wish to upper bound. For some notation - vt is the indicator variable that is set to 1 if we pay to
view the label at the end of round t. This new objective is written down below -

Groupwise Regret with Pay-for-feeback =

(
E

[∑
t

gi(t)(ℓ(pt, yt) + vt)

]
− min

f∈Fi

∑
t

gi(t)ℓ(f(xt), yt)

)
Blum & Lykouris (2020) introduce a blackbox method that converts any online algorithm with

regret for group g upper bounded by O(
√

Tg) (other terms not dependent on Tg can multiply with
this expression) into an algorithm with a corresponding bound in the pay-for-feedback model. This
method is based upon splitting the time interval T into a number of equal length contiguous sub-
intervals and randomly sampling a time step in each sub-interval for which it pays for feedback.
Using this method on top of our algorithm, we derive the following corollary.
Corollary 5. There exists an oracle efficient online classification algorithm in the pay-for-feedback
model for concept classes with small separator sets (size s) with groupwise regret upper bounded by
O
(
T 1/6

√
Tgi(

√
s3/2 log |Fi|+

√
log |G|)

)
(for group gi).

23

	Introduction
	Related Work

	Model
	Subsequence Regret Minimization via Decomposition
	Applications of our Framework
	Online Linear Regression
	Online Classification with Guarantees for Multiple Groups
	Online Linear Optimization

	Experiments
	Algorithm description and metric
	Synthetic Data
	Medical Cost Data

	Organization
	Sleeping experts, AdaNormalHedge
	Proof of Theorem 1
	Additional figures
	Synthetic Data - Min
	Synthetic Dataset - Max
	Synthetic Dataset - Permutation
	Medical costs dataset
	Adult income dataset

	tables
	Effect of adding an always active expert or not on our algorithm
	Apple Tasting Model

