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ABSTRACT

Molecular property prediction (MPP) plays a crucial role in biomedical applications,
but it often encounters challenges due to a scarcity of labeled data. Existing works
commonly adopt gradient-based strategy to update a large amount of parameter
for property-level adaptation. However, the increase of adaptive parameters can
cause overfitting and lead to poor performance. Observing that graph neural
network (GNN) performs well as both encoder and predictor, we propose PACIA,
a parameter-efficient GNN adapter for few-shot MPP. We design a unified adapter
to generate a few adaptive parameters to modulate the message passing process
of GNN. We then adopt hierarchical adaptation mechanism to adapt the encoder
on property-level and the predictor on molecule-level by the unified GNN adapter.
Extensive results show that PACIA obtains the state-of-the-art performance in
few-shot MPP problems, and our proposed hierarchical adaptation mechanism is
rational and effective.

1 INTRODUCTION

Molecular property prediction (MPP) (Wieder et al., 2020) which predicts whether desired properties
will be active on given molecules, can be naturally modeled as a few-shot learning problem (Waring
et al., 2015; Altae-Tran et al., 2017). As wet-lab experiments to evaluate the actual properties of
molecules are expensive and risky, usually only few labeled molecules are available for certain
property. While recently, Graph Neural Networks (GNN) are popularly used to learn molecular
representations (Xu et al., 2019; Yang et al., 2019; Xiong et al., 2019). Modeling molecules as
graphs, GNN can capture inherent structural information. Hence, GNN-based methods obtain better
performance than classical ones (Unterthiner et al., 2014; Ma et al., 2015), especially when they are
pretrained on self-learning tasks. As for tasks with only a few labeled molecules, the performance of
existing GNN-based methods is still far from desired.

Various few-shot learning (FSL) methods have been developed to handle few-shot MPP problem.
The earlier work IterRefLSTM (Altae-Tran et al., 2017) builds a metric-based model upon matching
network (Vinyals et al., 2016). Subsequent works mainly adopt gradient-based meta learning
strategy (Finn et al., 2017) to handle the standard few-shot MPP problem, which learns parameter
initialization with good generalizability across different properties and adapts parameters by gradient
descent for target property. Specifically, Meta-MGNN (Guo et al., 2021) brings chemical prior
knowledge in the form of molecular reconstruction loss, and optimizes all parameters by gradient
descents. PAR (Wang et al., 2021) introduces attention and relation graph module to better utilize
the labeled samples for property-adaptation with the awareness of target chemical property, and
conducts a selective gradient-based meta learning strategy. ADKF-IFT (Chen et al., 2022) takes a
gradient-based meta learning strategy with implicit function theorem to avoid computing expensive
hypergradients, and builds a Gaussian Process for each task as classifier. There are also works that
bring auxiliary information such as additional reference molecules from large molecule database
(Schimunek et al., 2023) and auxiliary properties (Zhuang et al., 2023) to improve the performance
of few-shot MPP (Schimunek et al., 2023; Zhuang et al., 2023).

There are two main problems in existing works. First, they ignore molecule-level difference. The
chemical space is enormous and the representations of molecules vary in a wide range. The molecule-
level difference should be addressed in few-shot MPP when classifying the encoded molecules.
When molecules are more similar to the labeled molecules in one certain class, they can be easily
classified. While others exhibit comparable similarity to both categories, they will be harder to
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Figure 1: Illustration of the proposed PACIA. (a), The adaptation ratio ( |adaptive params|
|total params| ) of different

methods and their testing performance on 1-shot tasks of Tox21. (b), Under the encoder-predictor
framework in few-shot MPP methods, PACIA use a unified GNN adapter, where hypernetwork
generates adaptive parameters (marked in blue) to modulate node embeddings and propagation depths
in both GNN encoder and predictor.

classify accurately. Thus, a fixed predictor can not fit all molecules even in a single task. Second,
gradient-based meta learning strategy requires updating a large number of parameters to adapt to each
few-shot task. This results in poor learning efficiency and is prone to overfit given insufficient labeled
samples (Rajeswaran et al., 2019; Yin et al., 2020), as shown in Figure 1 (a). With more task-specific
parameters, the model gets easier to overfit, which would be more severe in extreme few-shot cases.
Effective adaptation should be made in a parameter-efficient way, i.e, without modulating a large
amount of parameters.

In this paper, we propose PACIA, a PArameter-effiCIent Adapter for few-shot MPP problem. PACIA
applies hierarchical adaptation consisting of property-level adaptation which aims to obtain property-
adaptive molecular representations, and molecule-level adaptation which further adjust predictor to
be molecule-adaptive. The adapter is designed upon hypernetworks (Ha et al., 2017), which are
neural networks learned to generate parameters of the main network. In particular, we first summarize
existing works into encoder-predictor framework, where GNN performs well acting as both encoder
and predictor. Then, we design a unified GNN adapter to generate a few adaptive parameters to
modulate message passing process of GNN in two aspects: node embedding and propagation depth.
Consequently, the encoder is adapted on property-level and the predictor is adapted on molecule-
level. During learning, the parameters of hypernetwork and the main network (including encoder
and predictor) are meta-learned across tasks to capture shared knowledge. While the task-specific
and molecule-specific knowledge are captured by a few adaptive parameters generated via a single
forward pass of hypernetworks without taking optimization steps. In this way, the risk of overfitting
is alleviated (Figure 1 (a)). Extensive results show PACIA obtains the state-of-the-art performance on
benchmark few-shot MPP datasets MoleculeNet Wu et al. (2018) and FS-Mol Stanley et al. (2021).
We also closely examine and validate the effectiveness of our hierarchical adaptation mechanism.

2 RELATED WORKS

Few-Shot Learning. Few-shot learning (FSL) aims to generalize to a task with a few labeled
samples (Wang et al., 2020). In terms of adaptation mechanism, existing FSL methods can be
classified into three main categories: (i) gradient-based approaches (Finn et al., 2017; Grant et al.,
2018) which learn the model or optimizer that can fast optimize the parameter for new task, (ii) metric-
based approaches (Vinyals et al., 2016; Snell et al., 2017) which learn a model learn the embedding
function and metric where correct relations can be built between samples, and (iii) amortization-based
approaches (Requeima et al., 2019; Lin et al., 2021; Przewiezlikowski et al., 2022) which uses
hypernetworks to map the labeled samples in the task to a few parameters to adjust the main networks
to be task-specific. Recent works (Requeima et al., 2019) found that amortization-based approaches
can reduce overfitting compared with gradient-based methods. They also have faster inference speed
as the adapted parameters are generated by a single forward pass without taking optimization steps.
Besides, the main networks can approximate various functions in addition to distance-based ones.

Hypernetworks. Hypernetworks (Ha et al., 2017) refer to neural networks which learn to generate
parameters for another neural network. The main network learns to map some raw inputs to their
desired targets, whereas another group of inputs are fed to the hypernetwork to generate parameters
to adapt the main network. It has been successfully used to handle various applications like cold-
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start recommendation (Lin et al., 2021) and image classification (Przewiezlikowski et al., 2022)
Designing appropriate hypernetworks is challenging, requiring domain knowledge to decide what
information to be fed into hypernetworks, how to adapt the main network, and what is the appropriate
architecture of hypernetworks. There exist hypernetworks for general GNNs. Brockschmidt (2020)
builds hypernetworks taking target node as input to generate parameters to modulate weight matrix in
aggregation function in message passing. And Nachmani & Wolf (2020) design a hypernetwork for
node-specific message passing functions that can lead to a boost in performance. In contrast to them,
we particularly consider designing parameter-efficient modulators for GNNs used in encoder-predictor
framework for few-shot MPP.

3 PRELIMINARIES OF FEW-SHOT MOLECULAR PROPERTY PREDICTION

3.1 PROBLEM SETUP

In a few-shot MPP task Tτ , each sample Xτ,i is a molecular graph and its label yτ,i ∈ {0, 1} records
whether the molecule is inactive or active on a certain property. Only a few labeled samples are
available in the task. Following earlier works (Altae-Tran et al., 2017; Stanley et al., 2021; Chen
et al., 2022; Schimunek et al., 2023), we model a few-shot MPP task as a 2-way classification task Tτ ,
where a support set Sτ = {(Xτ,s, yτ,s)}Nτ

s=1 contains labeled samples from inactive/active class and a
query set Qτ = {(Xτ,q, yτ,q)}Mτ

q=1 contains Mτ samples whose labels are only used for evaluation.
Note that this work covers both settings including balanced support sets, i.e., Sτ contains Nτ

2 samples
per class which is consistent with the standard N -way K-shot FSL setting (Altae-Tran et al., 2017),
and imbalanced support sets which exist in real-world applications (Stanley et al., 2021). This work
aims at learning a model from a set of tasks {Tτ}Nj=1 that can generalize to new task given the support
set. Specifically, the target properties are different across tasks.

3.2 ENCODER-PREDICTOR FRAMEWORK

Existing works adopt an encoder-predictor framework to solve the (few-shot) MPP problem. In the
past, molecules are encoded with certain properties (fingerprint vectors (Rogers & Hahn, 2010)) and
fed to deep networks for prediction (Unterthiner et al., 2014; Ma et al., 2015). While recently, GNNs
are popularly taken as molecular encoders (Li et al., 2018; Yang et al., 2019; Xiong et al., 2019; Hu
et al., 2019) due to their superior performance on learning from of topological data.

Given molecular graphs which are graphs of atoms connected by chemical bonds, a GNN encoder
maps them to molecular representations which are vectors with fixed length. Consider a molecular
graph X = {V, E} with node feature hv for each atom v ∈ V and edge feature bvu for each chemical
bond evu ∈ E between atoms v, u. At the lth layer, GNN updates atom embedding hl

v of v as

hl
v = UPDATEl

(
hl−1
v ,AGGl

(
{(hl−1

v ,hl−1
u ,bvu)|u ∈ H(v)}

))
, (1)

whereH(v) contains neighbors of v. AGG(·) and UPDATE(·) are aggregation and updating functions
respectively. After L layers, the molecule-level representation r for X is obtained as

r = READOUT
(
{hL

v |v ∈ V}
)
, (2)

where READOUT(·) function aggregates all atom embeddings. The encoder gets molecular represen-
tation rτ,i for each molecule Xτ,i, which is then fed to the predictor for classification.

Then, a predictor f(·) assigns label for a query molecule Xτ,q given support molecules in Sτ :

ŷτ,q = f(rτ,q|{rτ,s}s∈Sτ
). (3)

The specific choice of f(·) is diverse, e.g., pair-wise similarity (Altae-Tran et al., 2017), multi-
layer perceptron (MLP) (Guo et al., 2021; Wang et al., 2021) and Mahalanobis distance (Stanley
et al., 2021). Recently Wang et al. (2021) found that learning with relation graphs can effectively
compensate for the lack of supervised information. In particular, the molecular representations
are refined on relation graphs such that the similar molecules cluster closer. Initialize molecular
representations as the output of the encoder, i.e., h0

τ,i = rτ,i. Denote the set of Nτ + 1 molecules
as Rτ,q = (Xτ,q, yτ,q) ∪ Sτ , which contains all information to make prediction for query q. The
relation graph works by recurrently estimating the adjacency matrix and updating the molecular
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representations. At the lth layer, each element alij in the adjacent matrix Al
τ,q of the relation graph is

learned to represent pair-wise similarities between any two molecules inRτ,q:

alij =

{
MLP

(
|hl−1

τ,i − hl−1
τ,j |

)
if i ̸= j

1 otherwise
. (4)

Then, each molecular representation is refined as

hl
τ,i = MLP(

∑Nτ+1

j=1
alijh

l−1
τ,j ). (5)

After L layers of refinement, hL
τ,q and hL

τ,s (in place of rτ,q and rτ,s) are fed to (3) to obtain final
prediction ŷτ,q for query molecule Xτ .

4 HIERARCHICAL ADAPTATION OF ENCODER-PREDICTOR FRAMEWORK
To generalize across different tasks with a few labeled molecules, existing works (Wang et al., 2021;
Chen et al., 2022) usually conduct property-level adaptation by gradient-based meta learning (see
Appendix B). However, as discussed in Section 2, gradient-based meta learning optimizes most
parameters by a limited amount of supervised information, which is slow to optimize and easy to
overfit. As for molecule-level adaptation, gradient is not accessible for each query molecule in testing.
Therefore, we instead turn to hypernetworks to achieve parameter-efficient adaptation.

Our proposed PACIA is shown in Figure 1, and we provide a more detailed figure in Appendix D. As
both encoder and predictor introduced in Section 3.2 are based on GNN, we design a unified GNN
adapter to generate a few adaptive parameters to hierarchically adapt the encoder on property-level
and the predictor on molecule-level in a parameter-efficient manner. Next, we first introduce the
unified GNN adapter (Section 4.1), then describe how to learn the main networks (including encoder
and decoder) with the unified GNN adapter by episodic training (Section 4.2).
4.1 A UNIFIED GNN ADAPTER

To adapt GNN’s parameter-efficiently, we design a GNN adapter to modulate the node embedding
and propagation depth, which are essential in message passing process.

Modulating Node Embedding. Denote the node embedding at the lth layer as hl, which can be
atom embedding in encoder or molecular embedding in relation graph predictor. We obtain adapted
embedding ĥl as

ĥl = e(hl,γl), (6)

where e(·) is an element-wise function, and γl is adaptive parameter generated by the hypernetwork.
This adapted embedding ĥl is then fed to next layer of message passing.

Modulating Propagation Depth. Further, we manage to modulate the propagation depth, i.e., layer
number l of a GNN. Controlling l is challenging since it is discrete. We achieve this by training
a differentiable controller, which is a hypernetwork to generate a scalar pl corresponding to each
{l}Ll=1 where L is the maximum layer number. The value of pl estimates how likely the message
passing should stop after layer l. The hypernetwork is shared across all L layers. Finally, as there are
L layers in total, the vector

p = softmax([ p1, p2, · · · , pL ]), (7)
represents the plausibility of choosing each layer. During meta-training, p is used as adaptive parame-
ter to modulate GNN layers, so that gradients can be propagated to parameter in the hypernetwork to
generate p. Specifically, after propagation through all L layers, the final embedding of each node is

h̃ =
∑L

l=1
[p]lh

l, (8)

where [p]l is the lth element of p.

Generating Adaptive Parameters by Hypernetwork. We use hypernetworks to generate adap-
tive parameters {γl, pl}Ll=1. In particular, note that the generated adaptive parameter should be
permutation-invariant to the order of input samples in Sτ . Therefore, we first calculate class proto-
types rlτ,+ and rlτ,− of active class (+) and inactive class (-) for samples in Sτ by

rlτ,+ =
1

|S+τ ||Vτ,s|
∑

Xτ,s∈S+
τ

MLP(
[∑

v∈Xτ,s

hl
v | yτ,s

]
),

rlτ,− =
1

|S−τ ||Vτ,s|
∑

Xτ,s∈S−
τ

MLP(
[∑

v∈Xτ,s

hl
v | yτ,s

]
),

(9)
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where [·|·] means concatenating, S+τ and S−τ are the sets of active and inactive samples in Sτ , and
yτ,s is the one-hot encoding of label. Using rlτ,+ and rlτ,− allows subsequent steps to keep supervised
information while being permutation-invariant.

For property-level adaptation, we then map rlτ,+ and rlτ,− to {γl
τ , p

l
τ}Ll=1 as

[γl
τ , p

l
τ ] = MLP

([
rlτ,+ | rlτ,−

])
. (10)

As for molecule-level adaptation, information comes from both Sτ and the specific query molecule q.
Likewise, we use class prototypes rlτ,+ and rlτ,− to keep permutation-invariant. We then generate
{γl

τ,q, p
l
τ,q}Ll=1 as

[γl
τ,q, p

l
τ,q] = MLP

([
rlτ,+ | rlτ,− |

∑
v∈Xτ,q

hl
v

])
, (11)

where molecule-specific information in Xτ,q is considered together with Sτ . Note that parameters of
these MLPs in hypernetwork are meta-learned together with the encoder and predictor.

4.2 LEARNING AND INFERENCE

Denote the collection of all model parameters in main network((1)-(5)) and hypernetwork ((9)-(11))
as Θ, excluding adaptive parameters. The objective is to minimize

min
∑N

τ=1
Lτ , where Lτ = −

∑
xτ,q∈Qτ

y⊤
τ,qlog (ŷτ,q) . (12)

Lτ is the loss in task Tτ , yτ,q is one-hot true label vector and ŷτ,q is prediction obtained by (3).

Algorithm 1 Meta-training in PACIA.
Input: meta-training task set T train
1: initialize Θ randomly or use a pretrained one;
2: while not done do
3: for each task Tτ ∈ T train do
4: for l ∈ {1, 2, · · · , Lenc} do
5: + generate [γl

τ , p
l
τ ] by (10);

6: modulate atom embedding hl
v ←

e(hl
v,γ

l
τ );

7: * update atom embedding hl
v by (1);

8: end for
9: obtain atom embedding after message pass-

ing hLenc
v ←

∑Lenc
l=1 [pτ ]lh

l
v and obtain

molecular embeddings by (2);
10: end for
11: for each query (Xτ,q, yτ,q) ∈ Qτ do
12: for l ∈ {1, 2, · · · , Lrel} do
13: + generate [γl

τ,q, p
l
τ,q]s by (11);

14: modulate molecular embedding hl
τ,i ←

e(hl
τ,iγ

l
τ,q);

15: * update molecular embedding by (4)-(5);
16: end for
17: obtain molecular embedding after message

passing h
Lrel
τ,i ←

∑Lrel
l=1[pτ,q]lh

l
τ,i;

18: obtain prediction ŷτ,q by (3);
19: end for
20: calculate loss by (12)
21: update Θ by gradient descent;
22: end while
23: return learned Θ∗.

Algorithm 2 Meta-testing in PACIA.
Input: learned Θ∗, a meta-testing task Tτ ;
1: for each task Tτ ∈ T train do
2: for l ∈ {1, 2, · · · , Lenc} do
3: + generate [γl

τ , p
l
τ ] by (10);

4: modulate atom embedding hl
v ← e(hl

v,γ
l
τ );

5: * update atom embedding hl
v by (1);

6: end for
7: select propagation depth by (13) and obtain

atom embedding after message passing hLenc
v ←

hl′
v ;

8: end for
9: *obtain molecular embedding by (2);

10: for each query (Xτ,q, yτ,q) ∈ Qτ do
11: for l ∈ {1, 2, · · · , Lrel} do
12: + generate [γl

τ,q, p
l
τ,q]s by (11);

13: modulate molecular embedding hl
τ,i ←

e(hl
τ,iγ

l
τ,q);

14: * update molecular embeddings by (4)-(5);
15: end for
16: select propagation depth by (13) and obtain

molecular embedding after message passing
h
Lrel
τ,i ← hl′

τ,i;
17: obtain prediction ŷτ,q by (3).
18: end for

“*” (resp. “+”) indicates the line is executed by
the main network (resp. hypernetwork).

Algorithm 1 summarizes the training procedure of PACIA. As mentioned above, our unified GNN
adapter can modulate the node embedding and propagation depth simultaneously, and we cascade
the adaption in encoder and predictor. During training, molecular graphs Xτ,i are first processed by
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encoder (line 4-9). At each layer, adaptive parameters [γl
τ , p

l
τ ] are obtained by (10) (line 5). Then,

(6) immediately modulates all atom embeddings hl
v (line 6). After Lenc iterations of message passing

(1), (8) is applied before (2), to get property-adaptive molecular representations and initialize node
embeddings in relation graph h0

τ,i = rτ,i (line 9). Then in predictor, at each layer of GNN on relation
graph, adaptive parameters [γl

τ,q, p
l
τ,q] are obtained with (11) (line 13) and (6) immediately functions

on all node embeddings hl
τ,i (line 14). After Lrel iterations of message passing (4)(5) and modulation,

(8) is applied (line 17). And the final prediction ŷτ,q is obtained by (3).

Algorithm 2 provides the testing procedure. The process is similar. The node embeddings are adapted
by (6). The propagation depth are adapted by selecting the layer with maximal plausibility (line 7
and 16):

l′ = argmaxl∈{1,2,··· ,L} pl. (13)

Then, node embeddings hl′ are fed forward to the classifier (3).

Discussion. In PACIA, model parameter Θ is shared across all tasks, and the adaptive parameter
{γl}Ll=1 in (6) and {pl}Ll=1 in (7) are generated by hypernetworks. The size of adaptive parameter
is far smaller than the main network. This realizes parameter-efficient adaptation and mitigates the
risk of overfitting. Also, a pre-trained GNN can be incorporated in our method, which can provide a
better starting point to obtain better performance. More discussion about comparison with existing
works is provided in Appendix B.1.

5 EXPERIMENTS

In this section, we evaluate the proposed PACIA for few-shot molecular property prediction problems.
We run all experiments with 10 random seeds, and report the mean and standard deviations. Appendix
C provides more information of datasets, baselines, and implementation details.

5.1 PERFORMANCE COMPARISON ON MOLECULENET

Setting. We first conduct experiments on Tox21 (National Center for Advancing Translational
Sciences, 2017), SIDER (Kuhn et al., 2016), MUV (Rohrer & Baumann, 2009) and ToxCast (Richard
et al., 2016) from MoleculeNet (Wu et al., 2018), which are commonly used to evaluate the per-
formance on few-shot MPP (Altae-Tran et al., 2017; Wang et al., 2021). We adopt the public data
split provided by (Wang et al., 2021). The support sets are balanced, each of them contains K-shot
per class, where K = 1 and K = 10 are considered. The performance is evaluated by ROC-AUC
calculated on the query set of each meta-testing task and averaged across meta-testing tasks.

Baselines. We compare with the following baselines: 1) single-task methods: Random Forest,
and GNN-ST (Gilmer et al., 2017); 2) multi-task pretraining methods: GNN-MT (Corso et al.,
2020; Gilmer et al., 2017); 3) self-supervised pretraining methods: MAT (Maziarka et al., 2020);
and 4) meta-learning methods:Siamese (Koch et al., 2015), ProtoNet (Snell et al., 2017), MAML
(Finn et al., 2017), EGNN (Kim et al., 2019). 5) methods proposed for few-shot MPP, including
IterRefLSTM (Altae-Tran et al., 2017), PAR (Wang et al., 2021) and ADKF-IFT (Chen et al., 2022).
Note that MHNfs (Schimunek et al., 2023) is not included as it uses additional reference molecules
from external datasets, which leads to unfair comparison. GS-META (Zhuang et al., 2023) has not
been compared since that approach requires multiple properties of each molecule, which would be
not applicable when a molecule is accessible to only one property. Following earlier works Guo et al.
(2021); Wang et al. (2021), we use GIN (Xu et al., 2019) as encoder, which is trained from scratch.
We also provide results obtained with a pretrained GIN in Appendix C.3.

Performance. Table 1 shows the results. Results of Siamese and IterRefLSTM are copied
from (Altae-Tran et al., 2017) as their codes are unavailable, and their results on ToxCast are
unknown. GNN-FiLM is designed as a GNN model rather than for few-shot MPP, which explains its
bad performance. TheName obtains the highest ROC-AUC scores on all cases except the 10-shot
case on MUV, where ADKF-IFT outperforms the others by a large margin. This can be a special
case where ADKF-IFT works very well but may not be generalizable. Moreover, depending on the
number of local-update steps of ADKF-IFT, PACIA is about 5 times faster than ADKF-IFT (both
meta-training and inference time is about 1/5). In terms of average performance, PACIA significantly
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outperforms the second-best method ADKF-IFT by 3.25%. Results in Appendix C shows that
methods with pretrained encoder exhibit similar performance, where our PACIA with pretrained
encoder (Pre-PACIA) performs the best. Results in Appendix C.6 shows the performance in a wider
range of support set size.

Table 1: Test ROC-AUC obtained on MoleculeNet. The best results are bolded, second-best results
are underlined.

Method Tox21 SIDER MUV ToxCast
10-shot 1-shot 10-shot 1-shot 10-shot 1-shot 10-shot 1-shot

Random Forest - - - - - - - -

GNN-ST 61.23(0.89) 55.49(2.31) 56.25(1.50) 52.98(2.12) 54.26(3.61) 51.42(5.11) 55.66(1.47) 51.80(1.99)

MAT 64.84(0.93) 54.90(1.89) 57.45(1.26) 52.97(3.00) 56.19(2.88) 52.01(4.05) 58.50(1.62) 52.41(2.34)

GNN-MT 69.56(1.10) 62.08(1.25) 60.97(1.02) 55.39(1.83) 66.24(2.40) 60.78(2.91) 65.72(1.19) 62.38(1.67)

ProtoNet 72.99(0.56) 68.22(0.46) 61.34(1.08) 57.41(0.76) 68.92(1.64) 64.81(1.95) 65.29(0.82) 63.73(1.18)

MAML 79.59(0.33) 75.63(0.18) 70.49(0.54) 68.63(1.51) 68.38(1.27) 65.82(2.49) 68.43(1.85) 66.75(1.62)

Siamese 80.40(0.29) 65.00(11.69) 71.10(1.68) 51.43(2.83) 59.96(3.56) 50.00(0.19) - -

EGNN 80.11(0.31) 75.71(0.21) 71.24(0.37) 66.36(0.29) 68.84(1.35) 62.72(1.97) 66.42(0.77) 63.98(1.20)

IterRefLSTM 81.10(0.10) 80.97(0.06) 69.63(0.16) 71.73(0.06) 49.56(2.32) 48.54(1.48) - -

PAR 82.13(0.26) 80.02(0.30) 75.15(0.35) 72.33(0.47) 68.08(2.23) 65.62(3.49) 70.01(0.85) 68.22(1.34)

ADKF-IFT 82.43(0.60) 77.94(0.91) 67.72(1.21) 58.69(1.44) 98.18(3.05) 67.04(4.86) 72.07(0.81) 67.50(1.23)

PACIA 84.25(0.31) 82.77(0.15) 82.40(0.26) 77.72(0.34) 72.58(2.23) 68.80(4.01) 72.38(0.96) 69.89(1.17)

5.2 PERFORMANCE COMPARISON ON FS-MOL

Setting. We also perform experiments on FS-Mol (Stanley et al., 2021), a new benchmark consisting
of a large number of diverse tasks for model pretraining and a set of few-shot tasks with imbalanced
classes. We adopt the public data split provided by (Stanley et al., 2021). Each support set contains
64 labeled molecules, and can be imbalanced where the number of labeled molecules from inactive
and active may not be equal. All remaining molecules in the task form the query set. Following
Schimunek et al. (2023), testing tasks are divided into categories with support size 16, which is
close to real-world scenario. The performance is evaluated by ∆AUPRC (change in area under the
precision-recall curve), averaged across meta-testing tasks.

Baselines. The set of baselines is the same with MoleculeNet’s.

Table 2: Test ∆AUPRC obtained on FS-Mol. Tasks are categorized by target protein type and the
number of tasks per category is reported in brackets. The best results are bolded, second-best results
are underlined.

Method All [157] Kinases [125] Hydrolases [20] Oxidoreductases [7]

Random Forest .092(.007) .081(.009) .158(.028) .080(.029)

GNN-ST .029(.004) .027(.004) .040(.018) .020(.016)

MAT .052(.005) .043(.005) .095(.019) .062(.024)

GNN-MT .093(.006) .093(.006) .108(.025) .053(.018)

MAML .159(.009) .177(.009) .105(.024) .054(.028)

PAR .164(.008) .182(.009) .109(.020) .039(.008)

ProtoNet .207(.008) .215(.009) .209(.030) .095(.029)

EGNN .212(.011) .224(.010) .205(.024) .097(.022)

Siamese .223(.010) .241(.010) .178(.026) .082(.025)

IterRefLSTM .234(.010) .251(.010) .199(.026) .098(.027)

ADKF-IFT .234(.009) .248(.020) .217(.017) .106(.008)

PACIA .236(.008) .251(.016) .219(.029) .106(.010)

Performance. Table 2 shows the results. We find that PACIA performs the best while ADKF-IFT
obtains comparable performance. However, the time-efficiency of PACIA is much higher since the
adaptation only needs a single forward pass. While ADKF-IFT takes multiple local-update steps
(about 5 times faster in both meta-training and testing, with default numbers of local-update steps).
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5.3 ABLATION STUDY

We consider various variants of PACIA, including (i) fine-tuning: use the same model structure and
fine-tuning all parameters to adapt to each property without hypernetworks; (ii) w/o P: removing
property-level adaptation, thus the GNN encoder will not be adapted by the hypernetwork for each
property; and (iii) w/o M: removing molecule-level adaptation, that all molecules are processed by
the same predictor.

(a) Different adaptation strategies. (b) Different modulation functions.

Figure 2: Ablation study on 10-shot tasks of Tox21.

Figure 2(a) provides performance comparison on Tox21. Observations are as follows: (i) The
performance gain of PACIA over “w/o M” shows the necessity of molecule-level adaptation; (ii)
The gap between PACIA and “w/o P” indicates the effect of adapting the model to be property-
specific; (iii) One can also notice that without molecule-level adaptation, “w/o M” still obtains better
performance than gradient-based baselines like PAR, which indicates the advantage of designing
the amortization-based hypernetwork; and (iv) The poor performance of “fine-tuning” is possibly
because of the overfitting caused by updating all parameters with only a few samples. In summary,
every component of PACIA is important to obtaining good performance.

Now that the effectiveness of property-level and molecule-level adaptation are validated, we further
investigate modulation functions, i.e, modulating node embedding (N), modulating propagation
depth (D), modulating both (ND), for encoder and predictor. There are 3× 3 combinations whose
performance is presented in Figure 2(b). We find that only modulating node embedding in encoder
while only modulating propagation depth in predictor obtains the best performance. We interpret
this result as the GIN encoder has highly non-linearity across layers, where truncation would lead
to non-explainability and somehow perturb the black-box. While the operation of relation graph in
predictor updates node embedding in a linear way (5), adapting the propagation depth is harmonious
with its message passing function.

(a) Without adaptation. (b) Property-level adap-
tated.

(c) With relation graph. (d) Molecule-level adap-
tated.

Figure 3: Molecular representation visualization for 10-shot case in task SR-p53 of Tox21. Pretrained
GIN is used as encoder.
Figure 3 shows the t-SNE visualization (Van der Maaten & Hinton, 2008) of molecular representations
learned on a 10-shot support set and a query molecule with ground truth label “active” in task SR-
p53 from Tox21. As shown, molecular representations obtained using pre-trained encoder without
adaptation (Figure 3(a)) are mixed up, since the encoder has not been adapted to the target property
of the task. Molecular representations being processed by our property-adaptive GNN encoder
(Figure 3(b)) becomes more distinguishable, indicating that adapting molecular representation in
property-level takes effect. Molecular representations in Figure 3(c) and Figure 3(d) form clear
clusters as we encourage similar molecules to be connected during relation graph refinement by
(5). The difference is that molecular representations in Figure 3(c) are refined by the best depth
number for all tasks in 10-shot case, while molecular representations in Figure 3(d) are refined by
4 layers which are selected for the specific query molecule. As shown, we can conclude that our
molecular-adaptive refinement layers help better separate molecules of different classes.

8
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We also have ablation study of configurations inside hypernetwork, provided in Appendix C.4.

5.4 A CLOSER LOOK AT HIERARCHICAL ADAPTATION MECHANISM

Table 3: Comparison of property-level adaptation ap-
proaches.

PACIA PAR

Total parameters 3.28M 2.31M

Adaptive parameters 3.00K 0.38M

Adaptation steps - 1 2 3 4 5

Testing ROC-AUC 84.26 82.07 81.85 80.32 79.09 77.25

Time (secs) 1.09 2.02 3.62 5.34 6.76 8.10

Property-level Adaptation. Our
parameter-efficient property-level
adaptation is achieved by using
hypernetworks to modulate the node
embeddings during message passing.
We compared this amortization-based
adaptation with gradient-based adap-
tation in PAR which has similar main
network with PACIA. The results are
shown in Table 3. We record their
adaptation process, i.e., time required
to process the support set and the test performance. PAR uses the molecules in support set to take
gradient steps, and updates all parameters in GNN. We record each of a maximum five steps, where
we can find that it overfits easily as the performance keeps dropping with more steps. The time
consumption also grows. In contrast, PACIA processes molecules in support set by hypernetwork,
which is much more efficient as only one single forward pass is needed. PACIA can obtain better
performance due to the reduction of adaptive parameters, which also leads to better generalization
and alleviates the risk of overfitting to the few shots. Table 3 and Figure 1(a) both indicate that the
underlying overfitting problem which can be mitigated by PACIA.

Molecule-level Adaptation. Here, we present a case study on molecule-level adaptation. More
experiments on validating the design of molecule-level adaptation is in Appendix C.5. We use a
1-shot support set and 3 query molecules in task SR-p53 of Tox21. In Figure 4 (a), x1 and x0 are
support molecules with different labels, q1, q2 and q3 are query molecules. As shown, classifying q1
and q3 is relatively easy and the adapted propagation depth will be 1, while classifying q2 is hard and
requires 4 layers to propagate. Considering the shared substructures (function groups), q1 and x1 are
visually similar, q3 and x0 are visually similar. While both x1 and x0 share substructures with q2, it
is hard to tell which of them is more similar to q2. Figure 4 (a) provides the cosine similarity based
on the molecule representations generated by Pre-GNN , which confirms our observation: q1 is much
more similar to x1, q3 is much more similar to x0, and q2 has close similarities with the both samples.
Intuitively, classifying q1 and q3 will be easier while q2 will be hard. In the dynamic propagation
of PACIA, we find different layers are taken: t′ = 1 for both q1 and q3 while t′ = 4 for q2. PACIA
achieves effective molecule-level adaptation by assigning more complex models for molecules that
are difficult to classify.

Figure 4: Illustration of molecule-level adaptation. (a), Molecular graphs of support molecules
x1, x0 and query molecules q1, q2, q3. (b), Cosine similarities between query molecules and support
molecules, and propagation depth taken to classify each query molecule.

6 CONCLUSION

We propose PACIA to handle few-shot MPP in a parameter-efficient manner. We investigate two
key factors in few-shot molecular property prediction with the common encoder-predictor frame-
work: adaptation-efficiency and molecular-level adaptation. Evidence shows that too much adaptive
parameter would lead to overfitting, thus we design a parameter-efficient GNN adapter, which can
modulate node embedding and propagation depth of message passing of GNN in a unified way. We
also notice the importance of capturing molecule-level difference and therefore propose hierarchical
adaptation mechanism, which is achieved by using unified GNN adapter in both encoder and predictor.
Empirical results show that PACIA achieves the best performance on both MoleculeNet and FS-Mol.
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A MORE DETAILS OF PACIA

A.1 ENCODER

Encoder for MoleculeNet. As the main network of the encoder, to process a molecule with GNN,
each node embedding hv represents an atom, and each edge evu represents a chemical bond. Here,
we use GIN (Xu et al., 2019) as the main network in encoder, which is a powerful GNN structure.
In GIN, the aggregation function in (1) is specified as adding all neighbors up: and for the update
function is adding the aggregated embeddings and the target node, and feeding to a MLP:

hl
v = MLPl

G

(
(1 + ϵ)hl−1

v +
∑

u∈H(v)
hl−1

u

)
, (14)
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where ϵ is a scalar parameter to distinguish the target node. To obtain the molecular representation,
the readout function in (2) is specified as

r = MLPR

(
MEAN({hL

v |v ∈ V})
)
. (15)

Encoder for FS-Mol. Following existing works (Chen et al., 2022; Schimunek et al., 2023), we
directly adopt the PNA (Corso et al., 2020) network provided in FS-Mol benchmark (Stanley et al.,
2021) as the molecular encoder.

A.2 PREDICTOR

The classifier needs to make prediction of the query ĥτ,q , according to the Nτ labeled support samples
{(hτ,s, yτ,s) | Xτ,s ∈ Sτ}. We adopt an adaptive classifier (Requeima et al., 2019), which map the
labeled samples in each class to the parameters of a linear classifier, i.e.,

w±=MLPw

( 1

|S±τ |
∑

Xτ,s∈S±
τ

hτ,s

)
, b±=MLPb

( 1

|S±τ |
∑

Xτ,s∈S±
τ

hτ,s

)
, (16)

where w± has the same dimension with hτ,q , and b± is a scalar. Then the prediction is made by

ŷτ,q = softmax([w⊤
−hτ,q + b−, w

⊤
+hτ,q + b+]), (17)

where softmax(x) = exp(x)/
∑

i exp ([x]i) and [x]i means the ith element in x.

A.3 UNIFIED GNN ADAPTER

The choice of e can be various (Wu et al., 2023), while in this work we adopt a simple feature-wise
linear modulation (FiLM) (Perez et al., 2018) function.

A.4 HYPERPARAMETERS

Here we provide the detailed hyperparameter setting of PACIA.

Hyperparameters on MoleculeNet. The maximum layer number of the GNN Lenc = 5, the
maximum depth of the relation graph Lrel = 5, During training, for each layer in GNN, we set
dropout rate as 0.5 operated between the graph operation and FiLM layer. The dropout rate of MLP
in (9) (10) and (11) is 0.1. For all baselines, we use Adam optimizer (Kingma & Ba, 2015) with
learning rate 0.006 and the maximum episode number is 25000. In each episode, the meta-training
tasks are learned one-by-one, query set size M = 16. The ROC-AUC is evaluated every 10 epochs
on meta-testing tasks and the best performance is reported. Table 4 shows the details of the other
parts. Experiments are conducted on a 24GB NVIDIA GeForce RTX 3090 GPU, with Python 3.8.13,
CUDA version 11.7, Torch version 1.10.1.

Hyperparameters on FS-Mol. The maximum layer number of the GNN Lenc = 8, the maximum
depth of the relation graph Lrel = 5, During training, the dropout rate of MLPL is 0.1. We use Adam
optimizer (Kingma & Ba, 2015) with learning rate 0.0001 and the maximum episode number is 3000.
In each episode, the meta-training tasks are learned with batch size 16, support set size Nτ = 64, and
the others are used as queries. The average precision s evaluated every 50 epochs on validation tasks
and the the model with best validation performance is tested and reported. Table 5 shows the details
of the other parts.

B ADOPTING MAML FOR PROPERTY-LEVEL ADAPTATION

Denote all model parameter as Θ. The model first predict samples in support set and get loss to
do local-update. Denote the loss for local-update as LS

τ (Θ) =
∑

Xτ,s∈Sτ
y⊤
τ,slog (ŷτ,s), where

ŷτ,s is the prediction made by the main network with parameter Θ. The loss for global-update is
calculated with samples in query set, denoted as , LQ

τ (Θ
′
τ ) =

∑
Xτ,q∈Qτ

y⊤
τ,qlog (ŷτ,q), where ŷτ,q

is the prediction made by the main network with parameter Θ′
τ . Then Algorithm 3 can be adopted

for meta-training, and Algorithm 4 for meta-testing.
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Table 4: Details of model structure for MoleculeNet.

Layers Output Dimension

MLP in (9) input 1
|Vτ,s|

∑
v∈Xτ,s

[
hl
v | yτ,s

]
, fully connected, LeakyReLU 300

2×fully connected with with residual skip connection, 1
K
[
∑

Xτ,s∈S+
τ
(·) |

∑
Xτ,s∈S−

τ
(·)] 300

MLP in (10) 3×fully connected with residual skip connection 601

MLP in (11) 3×fully connected with residual skip connection 257

MLPl
G in (14)

input (1 + ϵ)hl−1
v + hl−1

agg , fully connected, ReLU 600

fully connected 300

MLPL in (15) input READOUT
(
{hT

v |v ∈ Vt,i}
)
, fully connected, LeakyReLU 128

fully connected 128

MLP in (4)
input exp(|hl−1

τ,i − hl−1
τ,i |), fully connected, LeakyReLU 256

fully connected, LeakyReLU 128

fully connected 1

MLP in (5) fully connected, LeakyReLU 256

fully connected, LeakyReLU 128

MLPw in (16)
input 1

K

∑
yτ,s=c hτ,s, fully connected with residual skip connection, LeakyReLU 128

2× (fully connected with residual skip connection, LeakyReLU) 128

fully connected 128

MLPb in (16)
input 1

K

∑
yτ,s=c hτ,s, fully connected with residual skip connection, LeakyReLU 128

2× (fully connected with residual skip connection, LeakyReLU) 128

fully connected 1

Table 5: Details of model structure for FS-Mol.

Layers Output Dimension

MLP in (9) input 1
|Vτ,s|

∑
v∈Xτ,s

[
hl
v | yτ,s

]
,, fully connected, LeakyReLU 512

2× fully connected with with residual skip connection,[ 1

|S+
τ |

∑
Xτ,s∈S+

τ
(·) | 1

|S−
τ |

∑
Xτ,s∈S−

τ
(·)] 512

MLP in (10) 3×fully connected with residual skip connection 1025

MLP in (11) 3×fully connected with residual skip connection 513

MLP in (4)
input exp(|hl−1

τ,i − hl−1
τ,i |), fully connected, LeakyReLU 256

fully connected, LeakyReLU 128

fully connected 1

MLP in (5) fully connected, LeakyReLU 256

fully connected, LeakyReLU 256

MLPw in (16)
input 1

|S±
τ |

∑
yτ,s=c hτ,s, fully connected with residual skip connection, LeakyReLU 256

2× (fully connected with residual skip connection, LeakyReLU) 256

fully connected 256

MLPb in (16)
input 1

|S±
τ |

∑
yτ,s=c hτ,s, fully connected with residual skip connection, LeakyReLU 256

2× (fully connected with residual skip connection, LeakyReLU) 256

fully connected 1

Algorithm 3 Meta-training with MAML

Input: meta-training task set T train
1: initialize Θ randomly;
2: while not done do
3: for each task Tτ ∈ T train do
4: evaluate∇ΘLS

τ (Θ) with respect to all samples in Sτ ;
5: compute adapted parameters with gradient descent: Θ′

τ = Θ−∇ΘLS
τ (Θ);

6: end for
7: update Θ← Θ−∇Θ

∑
Tτ∈T train

LQ
τ (Θ

′
τ );

8: end while
9: return learned Θ∗.
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Algorithm 4 Meta-testing with MAML

Input: learned Θ∗, a meta-testing task Tτ ;
1: evaluate ∇ΘLS

τ (Θ) with respect to all samples in Sτ ;
2: compute adapted parameters with gradient descent: Θ′

τ = Θ−∇ΘLS
τ (Θ);

3: make prediction yτ,q for Xτ,q ∈ Qτ with adapted parameter Θ′
τ ;

B.1 COMPARISON WITH EXISTING WORKS

We compare the proposed PACIA with existing few-shot MPP approaches in Table 6. As shown, we
manage to compare in perspectives of support of pre-training, property-level adaptation, molecule-
level adaptation. fast-adaptation and adaptation strategy. With the help of hypernetworks, our method
not only introduces novel molecule-level adaptation, but also can adapt on property-level more
effectively and efficiently.

Table 6: Comparison of the proposed PACIA with existing few-shot MPP methods.

Method Support Hierarchical adaptation Fast Adaptation
Pre-training Property-level molecule-level adaptation Strategy

IterRefLSTM ×
√

×
√

Pair-wise similarity

Meta-MGNN
√ √

× × Gradient

PAR
√ √

× × Attention+Gradient

ADKF-IFT
√ √

× × Gradient+statistical learning

MHNfs
√ √ √ √

Attention+pair-wise similarity

GS-META
√

×
√ √

Message passing

PACIA
√ √ √ √

Hypernetwork

From the perspective of hypernetwork, the usage of the hypernetwork for encoder is related to GNN-
FiLM (Brockschmidt, 2020), which considers a GNN as main network. It builds hypernetwork with
target node as input to generate parameters of FiLM layers, to equip different nodes with different
aggregation functions in the GNN. What and how to adapt are similar to ours, but it is different that
the input of our hypernetwork for encoder is Sτ and how we encode a set of labeled graphs.

In few-shot learning, some recent works (Requeima et al., 2019; Lin et al., 2021) use hypernetworks
to process the task context to make the model task-adaptive. Their hypernetworks have similar
functionality of our hypernetwork for encoder, that are used to map the support set to parameter to
modulate the main network, but their main networks are convolutional neural network (CNN) and
MLP respectively, there is significant difference about what to modulate. As for the usage of the
hypernetwork for predictor, which is used to evaluate an unlabeled sample with a set of labeled ones
to encode model architecture, did not appear in the literature.

C MORE DETAILS OF EXPERIMENTS

C.1 DATASETS

MoleculeNet. There are four sub-datasets for few-shot MPP: Tox21 (National Center for Advancing
Translational Sciences, 2017), SIDER (Kuhn et al., 2016), MUV (Rohrer & Baumann, 2009) and
ToxCast (Richard et al., 2016), which are included in MoleculeNet (Wu et al., 2018). We adopt
the task splits provided by existing works(Altae-Tran et al., 2017; Wang et al., 2021). Tox21 is a
collection of nuclear receptor assays related to human toxicity, containing 8014 compounds in 12
tasks, among which 9 are split for training and 3 are split for testing. SIDER collects information
about side effects of marketed medicines, and it contains 1427 compounds in 21 tasks, among
which 21 are split for training and 6 are split for testing. MUV contains compounds designed to be
challenging for virtual screening for 17 assays, containing 93127 compounds in 17 tasks, among
which 12 are split for training and 5 are split for testing. ToxCast collects compounds with toxicity
labels, containing 8615 compounds in 617 tasks, among which 450 are split for training and 167 are
split for testing.
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FS-Mol. FS-Mol benchmark, which contains a set of few-shot learning tasks for molecular property
prediction carefully collected from ChEMBL27 (Mendez et al., 2019) by Stanley et al. (2021).
Following existing works (Chen et al., 2022; Schimunek et al., 2023), we use the same 10% of all
tasks which contains 233,786 unique compounds, split into training (4,938 tasks), validation (40
tasks), and test (157 tasks) sets. Each task is associated with a protein target.

C.2 BASELINES

We compare our method with following baselines:

• Siamese (Koch et al., 2015): It learns two neural networks which are symmetric on structure to
identity whether the input molecule pairs are from the same class. The performance is copied
from (Altae-Tran et al., 2017) due to the lack of code.

• ProtoNet1 (Snell et al., 2017): It makes classification according to inner-product similarity between
the target and the prototype of each class. This method is incorporated as a classifier after the GNN
encoder.

• MAML2 (Finn et al., 2017): It learns a parameter initialization and the model is adapted to each
task via few gradient steps on the support set. We adopt this method for all parameters in a model
composed of a GNN encoder and a linear classifier.

• EGNN3 (Kim et al., 2019): It builds a relation graph that samples are refined, and it learns to
predict edge-labels in the relation graph. This method is incorporated as the predictor after the
GNN encoder.

• GNN-FiLM(Brockschmidt, 2020): GNN-FiLM has built hypernetwork with target node as input
to generate parameters of FiLM layers, which equips different nodes with different aggregation
functions in the GNN. We adopt this as encoder and a MLP as classifier and train on all samples in
meta-training tasks and samples in support set of all meta-testing tasks;

• IterRefLSTM (Altae-Tran et al., 2017): It introduces matching networks combined with long
short-term memory (LSTM) to refine the molecular representations according to the task context.
The performance is copied from (Altae-Tran et al., 2017) due to the lack of code.

• PAR4 (Wang et al., 2021): It introduces an attention mechanism to capture task-dependent property
and an inductive relation graph between samples, and incorporates MAML to train.

• ADKF-IFT5 (Wang et al., 2021): It adopt gradient-based strategy to learn the encoder where it
proposes Implicit Function Theory to avoid computing the hyper-gradient. And a Gaussian Process
is learned from scratch in each task as classifier.

• Pre-GNN6 (Hu et al., 2019): It trains a GNN encoder on ZINC15 dataset with graph-level and
node-level self-supervised tasks, and fine-tunes the pre-trained GNN on downstream tasks. We
adopt the pre-trained GNN encoder and a linear classifier.

• GraphLoG7 (Xu et al., 2021): It introduces hierarchical prototypes to capture the global semantic
clusters. And adopts an online expectation-maximization algorithm to learn. We adopt the pre-
trained GNN encoder and a linear classifier.

• MGSSL8 (Hu et al., 2019): It trains a GNN encoder on ZINC15 dataset with graph-level, node-
level and motif-level self-supervised tasks, and fine-tunes the pre-trained GNN on downstream
tasks. We adopt the pre-trained GNN encoder and a linear classifier.

• GraphMAE9 (Hou et al., 2022): It presents a masked graph autoencoder for generative self-
supervised graph pre-training and focus on feature reconstruction with both a masking strategy and
scaled cosine error. We adopt the pre-trained GNN encoder and a linear classifier.

1https://github.com/jakesnell/prototypical-networks
2https://github.com/learnables/learn2learn
3https://github.com/khy0809/fewshot-egnn
4https://github.com/tata1661/PAR-NeurIPS21
5https://github.com/Wenlin-Chen/ADKF-IFT
6http://snap.stanford.edu/gnn-pretrain
7http://proceedings.mlr.press/v139/xu21g/xu21g-supp.zip
8https://github.com/zaixizhang/MGSSL
9https://github.com/THUDM/GraphMAE
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• Meta-MGNN10 (Guo et al., 2021): It incorporates self-supervised tasks such as bond reconstruction
and atom type prediction to be jointly optimized via MAML. It uses the pre-trained GNN encoder
provided by (Hu et al., 2019).

• Pre-PAR: The same as PAR but uses the pre-trained GNN encoder provided by (Hu et al., 2019).

• Pre-ADKF-IFT: The same as ADKF-IFT but uses the pre-trained GNN encoder provided by (Hu
et al., 2019).

C.3 PERFORMANCE COMPARISON WITH PRE-TRAINING

Baselines with Pre-training. We compare with the following baselines with (w/) pre-training:
(i) Methods which fine-tune pre-train GNN encoders, including Pre-GNN (Hu et al., 2019),
GraphLoG (Xu et al., 2021), MGSSL (Zhang et al., 2021), GraphMAE (Hou et al., 2022); (ii)
Few-shot MPP methods incorporating pre-trained encoders provided by (Hu et al., 2019), including
Meta-MGNN (Guo et al., 2021), Pre-PAR (Wang et al., 2021) and Pre-ADKF-IFT Chen et al.
(2022). All encoders have the same structure (Hu et al., 2019) and are pre-trained on ZINC15
dataset (Sterling & Irwin, 2015). We equip our PACIA with the same pre-trained encoder, and name
it as Pre-PACIA.

Table 7: Test ROC-AUC obtained with pre-trained GNN encoder.

Method Tox21 SIDER MUV ToxCast
10-shot 1-shot 10-shot 1-shot 10-shot 1-shot 10-shot 1-shot

Pre-GNN 83.02(0.13) 82.75(0.09) 77.55(0.14) 67.34(0.30) 67.22(2.16) 65.79(1.68) 73.03(0.67) 71.26(0.85)

GraphLoG 81.61(0.35) 79.23(0.93) 75.18(0.27) 67.52(1.40) 67.83(1.65) 66.56(1.46) 73.92(0.15) 73.10(0.39)

MGSSL 83.24(0.09) 83.21(0.12) 77.87(0.18) 69.66(0.21) 68.58(1.32) 66.93(1.74) 73.51(0.45) 72.89(0.63)

GraphMAE 84.01(0.27) 81.54(0.18) 76.07(0.15) 67.60(0.38) 67.99(1.28) 67.50(2.12) 74.15(0.33) 72.67(0.71)

Meta-MGNN 83.44(0.14) 82.67(0.20) 77.84(0.34) 74.62(0.41) 68.31(3.06) 66.10(3.98) 74.69(0.57) 73.29(0.85)

Pre-PAR 84.95(0.24) 83.01(0.28) 78.05(0.15) 75.29(0.32) 69.88(1.57) 66.96(2.63) 75.48(0.99) 73.90(1.21)

Pre-ADKF-IFT 86.06(0.35) 80.97(0.48) 70.95(0.60) 62.16(1.03) 95.74(0.37) 67.25(3.87) 76.22(0.13) 71.13(1.15)

Pre-PACIA 86.40(0.27) 84.35(0.14) 83.97(0.22) 80.70(0.28) 73.43(1.96) 69.26(2.35) 76.22(0.73) 75.09(0.95)

Performance with Pre-training. Table 7 shows the results. We can see that Pre-PACIA obtains
significantly better performance except the 10-shot case on MUV, surpassing the second-best method
Pre-ADKF-IFT by 3.10%. MGSSL defeats the other methods which fine-tune pre-trained GNN
encoders, i.e., Pre-GNN, GraphLoG, and GraphMAE. However, it still performs worse than Pre-
PACIA equipped with Pre-GNN, which validates the necessity of designing a few-shot MPP method
instead of simply fine-tuning a pre-trained GNN encoder. Moreover, comparing Pre-PACIA and
PACIA in Table 1, the pre-trained encoder brings 3.05% improvement in average performance due to
a better starting point of learning.

C.4 ABLATION STUDY OF HYPERNETWORK

For the specific settings, please refer to Table 4 and Table 5 for hyperparameters chosen on Molecu-
leNet and FS-Mol, where the configuration of hypernetwork is included.

For ablation studies, hereresults concerning with three aspects in hypernetwork:

C.4.1 EFFECT OF CONCATENATING LABEL

We show effect of concatenating label yτ,s. Table 8 shows the testing ROC-AUC obtained on
SIDER. As shown, ”w/ Label” helps keeping the label information in support set, which improves
the performance.

10https://github.com/zhichunguo/Meta-Meta-MGNN
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Table 8: Effect of concatenating label yτ,s, testing ROC-AUC obtained on SIDER.

10-shot 1-shot

w/ Label 82.40(0.26) 77.72(0.34)

w/o Label 76.91(0.17) 74.10(0.41)

C.4.2 DIFFERENT WAYS OF COMBINING PROTOTYPES

We show performance with different ways of combining active prototype rlτ,+ and inactive prototype
rlτ,− in Equation (10)—(11). Table 9 show the results. As ”Concatenating” active and inactive
prototypes allows MLP to capture more complex patterns, it obtains better performance on SIDER as
shown in Table 9.

Table 9: Different ways of combining active prototype rlτ,+ and inactive prototype rlτ,−, testing
ROC-AUC obtained on SIDER.

10-shot 1-shot

Concatenating 82.40(0.26) 77.72(0.34)

Mean-Pooling 79.67(0.23) 75.08(0.29)

C.4.3 EFFECT OF DIFFERENT MLP LAYERS

We show performance with different layers of MLP in hypernetwork. Table 10 shows the testing
ROC-AUC obtained on SIDER. Here, we constrain that the MLPs in Equation (9)(10)(11) have the
same layer number. As shown, using 3 layers reaches the best performance. Please note that although
we can set different layer numbers for MLPs used in Equation (9)(10)(11) which further improves
performance, setting the same layer number already obtains the state-of-the-art performance. Hence,
we set layer number as 3 consistently.

Table 10: Effect of layers of MLP in hypernetwork, testing ROC-AUC obtained on SIDER.

1 layer 2 layer 3 layer 4 layer

10-shot 79.98(0.35) 81.85(0.33) 82.40(0.26) 82.43(0.28)

1-shot 75.02(0.40) 76.56(0.36) 77.72(0.34) 77.59(0.31)

C.5 A CLOSER LOOK AT MOLECULE-LEVEL ADAPTATION

In this section, we pay a closer look at our molecule-level adaptation mechanism, proving evidence
of its effectiveness.

C.5.1 PERFORMANCE UNDER DIFFERENT PROPAGATION DEPTH

Figure 5 compares Pre-PACIA with “w/o M” (introduced in Section 5.3) using different fixed layers
of relation graph refinement on Tox21, where the maximum DepthL = 5. As can be seen, Pre-PACIA
equipped performs much better than “w/o M” which takes the same depth of relation graph refinement
as in PAR. This validates the necessity of molecule-level adaptation.

C.5.2 DISTRIBUTION OF PROPAGATION DEPTH

Figure 6(a) plots the distribution of learned l′ for query molecules in meta-testing tasks for 10-shot
case of Tox21. The three meta-testing tasks contain different number of query molecules in scale:
6447 in task SR-HSE, 5790 in task SR-MMP, and 6754 in task SR-p53. We can see that Pre-PACIA
choose different tl for query molecules in the same task. Besides, the distribution of learned l′

varies across different meta-testing tasks: molecules in task SR-MPP mainly choose smaller depth
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(a) 10-shot case. (b) 1-shot case.

Figure 5: Comparing Pre-PACIA with “w/o M” using different fixed propagation depth of relation
graph on Tox21.

while molecules in the other two tasks tend to choose greater depth. This can be explained as most
molecules in task SR-MPP are relatively easy to classify, which is consistent with the fact that
Pre-PACIA obtains the highest ROC-AUC on SR-MPP among the three meta-testing tasks (83.75 for
SR-HSE, 88.79 for SR-MPP and 86.39 for SR-p53).

Further, we pick out molecules with l′ = 1 (denote as Group A) and l′ = 4 (denote as Group B) as
they are more extreme cases. We then apply “w/o M” with different fixed depth for Group A and
Group B, and compare them with Pre-PACIA. Figure 6(b) shows the results. Different observations
can be made for these two groups. Molecules in Group A have good performance with smaller depth
relation graph, they can achieve higher ROC-AUC score than the average of all molecules using
Pre-PACIA. These indicate they are easier to classify and it is reasonable that Pre-PACIA choose
l′ = 1 for them. While molecules in Group B are harder to classify and requires l′ = 4.

(a) Distribution of learned l′. (b) Performance comparison.

Figure 6: Examine molecule-level adaptation of Pre-PACIA on 10-shot tasks of Tox21.

C.6 PERFORMANCE GIVEN MORE TRAINING SAMPLES

PACIA can handle general MPP problems. We conduct experiments on SIDER to validate PACIA
given increasing labeled samples per task. We compare with GIN (Xu et al., 2019), which is a
powerful encoder to handle MPP problems. To make fair comparison, we adapt the commonly used
pretraining and fine-tuning strategy. We first pretrain GIN on samples from all meta-training tasks,
then use the support set of meta-testing task to fine-tune the classifier. Figure 7 shows the results.
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As can be seen, PACIA outperforms GIN for 1, 10, 16, 32, 64-shot tasks, and is on par with GIN for
128-shot tasks. The performance gain of PACIA is more significant when fewer labeled samples are
provided. Note that all parameters of GNN are fine-tuned, while PACIA only uses a few adaptive
parameters to modulate the message passing process of GNN. The empirical evidence shows that
PACIA nicely achieves its goal: handling few-shot MPP problem in a parameter-efficient way.

Figure 7: Testing ROC-AUC of PACIA and GIN on SIDER, with different number of labeled samples
(shot) per task.

D ILLUSTRATION FIGURE

Here we provide a more detailed illustration of our proposed PACIA, shown as Figure 8.

Figure 8: A more detailed illustration of the model of PACIA. The right part shows the proposed
unified GNN adapter, which functions by modulating mode embedding and propagation depth of
GNN. The left part shows the architecture of PACIA. There are two GNNs in the In the main-
network. Hypernetwork perform property-level adaptation on encoder and molecule-level adaptation
on predictor.
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