
Adaptive learning acceleration for
nonlinear PDE solvers

Vinicius Luiz Santos Silva
Imperial College London

v.santos-silva19@imperial.ac.uk

Pablo Salinas
OpenGoSim

pablo.salinas@opengosim.com

Claire E Heaney
Imperial College London

c.heaney@imperial.ac.uk

Matthew D Jackson
Imperial College London

m.d.jackson@imperial.ac.uk

Christopher C Pain
Imperial College London
c.pain@imperial.ac.uk

Abstract

We propose a novel type of nonlinear solver acceleration for systems of nonlinear
partial differential equations (PDEs) that is based on online/adaptive learning. It
is applied in the context of multiphase porous media flow. The presented method
is built on four pillars: compaction of the training space using dimensionless
numbers, offline training in a representative simplistic (two-dimensional) numerical
model, control of the numerical relaxation (or other tuning parameter) of a classical
nonlinear solver, and online learning to improve the machine learning model in run
time (online training). The approach is capable of reducing the number of nonlinear
iterations by dynamically adjusting one single global parameter (the relaxation
factor) and by learning on-the-job the characteristics of each numerical model. Its
implementation is simple and general. In this work, we have also identified the key
dimensionless parameters required, compared the performance of different machine
learning models, showed the reduction in the number of nonlinear iterations obtained
by using the proposed approach in complex realistic (three-dimensional) models,
and for the first time properly coupled a machine learning model into an open-source
multiphase flow simulator achieving up to 85% reduction in computational time.

1 Introduction

The numerical solution of partial differential equations (PDEs) is an ubiquitous tool for modelling
physical phenomena. Among PDE problems, multiphase flow in porous media is of paramount
importance to understand, predict and manage subsurface reservoirs with applications to geothermal
energy resources, CO2 geological sequestration, hydrocarbon recovery, groundwater resources and
magma reservoirs. However, the nonlinear nature of the problem and the strong coupling between the
different equations make the numerical solution very challenging [Aziz, 1979, Jackson et al., 2015,
Li and Tchelepi, 2015]. To solve the discretised nonlinear equations, Newton methods in fully implicit
formulation have been used, although sequential methods have been gaining ground in recent years
[Salinas et al., 2017a, Jiang and Tchelepi, 2019, Freitas et al., 2020]. Sequential methods are attractive
because of their flexibility and extensibility, for example, each equation of the multiphysics problem can
be solved separately through specialised solvers. The Picard iterative solver can work as a sequential
approach, and can be seen as a sequential fixed-point iteration or a nonlinear block Gauss-Seidel

NeurIPS 2023 AI for Science Workshop.



process [Silva et al., 2021]. This kind of method requires fewer conditions to achieve convergence than
Newton methods [Elman et al., 2005, Lott et al., 2012], although Newton methods, in general, are faster
than Picard iterative processes [Ortega and Rheinboldt, 1970, Jenny et al., 2006, Wong et al., 2019].

A great deal of effort has been devoted to accelerating sequential methods. To this end, the use of
numerical relaxation (also known as backtracking) [Press et al., 2007] has shown promising results.
Salinas et al. [2017a] proposed an acceleration technique based on numerical relaxation that is applied
to the saturation field of multiphase porous media problems. Jiang and Tchelepi [2019] applied three
nonlinear acceleration techniques to the sequential-implicit fixed point method. Numerical relaxation
achieved the best overall performance compared to quasi-Newton and Anderson acceleration.

A promising approach in the field of machine learning comes in the form of learning from
online/evolving data streams [Read et al., 2012, Kirkpatrick et al., 2017, Gomes et al., 2017a, Chen and
Liu, 2018, Montiel et al., 2020, Hoi et al., 2021]. It can provide an attractive alternative to accelerate
nonlinear PDE solvers, since in each numerical simulation several nonlinear iterations are performed,
and they can be used to improve the convergence of the nonlinear solver. We can highlight two
main branches of algorithms to train the machine learning model, instance-incremental methods
[Cauwenberghs and Poggio, 2000, Oza and Russell, 2001, Losing et al., 2016, Hoi et al., 2021] and
batch-incremental methods [Breiman, 1999, Polikar et al., 2001, Wang et al., 2003, Montiel et al.,
2020]. Instance-incremental learning uses only one sample to update the machine learning model
at each time, where batch-incremental learning uses a batch of multiple samples to update the model
each time. Read et al. [2012] compared these two approaches for the task of classification of evolving
data streams. They showed that both methods perform similarly given a limited resource, and that
the optimal batch size depends on the problem in consideration.

In this work, we use an online learning approach to improve/update the machine learning model in run
time, with the aim of continuously adapting to changes in the numerical PDE simulation. To the best of
the authors’ knowledge, this is the first work to use online learning to accelerate a numerical PDE solver.
We list the contributions of our work as follows: (I) We propose an online/adaptive learning acceleration
for nonlinear PDE solvers, and apply it to a broad class of multiphase porous media problems. It is able
to control the convergence of the nonlinear solver by learning from previous nonlinear iterations of the
running numerical simulation. (II) We perform a thorough investigation to select the best set of features
(dimensionless numbers) used as input parameters for the proposed acceleration and compare different
machine learning models for controlling the convergence of the solver. (III) For the first time, we fully in-
tegrate a machine learning model into the nonlinear solver of an open-source multiphase flow simulator,
achieving up to 85% reduction in computational time. The source code, data and hardware configuration
used in this work are available at https://github.com/vlssanonymous/mlsolveracc.

2 Related work

The success of machine learning in different fields has inspired recent applications with the aim of accel-
erating the convergence of the numerical PDE solutions. Greenfeld et al. [2019] proposed a new frame-
work for multigrid PDE solvers, where a single mapping from discretization matrices to prolongation
operators is learned using a neural network in an unsupervised learning procedure. Hsieh et al. [2019]
proposed an approach to learn a fast iterative PDE solver tailored to a specific domain. It achieved signif-
icant speedups compared to standard formulations; however, it only works for linear solvers. Oladokun
et al. [2020] used a random forest regression to determine the linear convergence tolerance of the nonlin-
ear solver, and was able to reduce the number of linear iterations. Silva et al. [2021] proposed a machine
learning approach to accelerate convergence of a nonlinear solver by dynamically controlling a relax-
ation parameter. The proposed approach was capable of reducing the number of nonlinear iterations,
including models more complex than the training case. Kadeethum et al. [2022] used the prediction from
a machine learning based reduced order model as a initial guess for the nonlinear solver iterations. Their
approach maintains the full order model accuracy while accelerating the nonlinear solver convergence.

2

https://github.com/vlssanonymous/mlsolveracc


3 Governing equations and nonlinear solver

We report the formulation for incompressible flow with gravity and capillary pressure. Considering
phase α of immiscible-fluid phases, the mass-balance equation is

ϕ
∂Sα

∂t
+∇·qα=Qα, (1)

where t is time. ϕ represents the rock porosity, Sα is the saturation of phase α, qα is the Darcy velocity,
and Qα is a source term.

The multiphase Darcy’s law for phase α is given by

qα=
krαK

µα
(−∇pα+ραg∇z), (2)

where µα, krα, and K are the viscosity, relative permeability, and permeability tensor, respectively.
ρ is the density, p is the pressure, g is the gravitational acceleration, and ∇z is the gravity direction.

Considering a wetting (w) and non-wetting (nw) phase and including capillary pressure, pc, the system
of equations is closed by the constraints

pc=pnw−pw, (3)

Sw+Snw=1. (4)

The discretised form of the nonlinear system of equations formed by Eqs. (1), (2), (3) and (4) is solved
by a Picard iterative method. It is implemented in the open-source code IC-FERST (Imperial College
Finite Element Reservoir SimulaTor) [Gomes et al., 2017b, Salinas et al., 2017a,b, Obeysekara et al.,
2021]. The solver comprises three main loops: the time loop, the coupling between saturation and
pressure (nonlinear outer loop), and the coupling between saturation and velocity (nonlinear inner
loop). Further details about the nonlinear solver can be found in Appendix A.

In order to accelerate the convergence of the nonlinear solver a relaxation parameter is used [Salinas
et al., 2017a, Jiang and Tchelepi, 2019, Silva et al., 2021]. The method involves updating the
saturation by weighting the new calculated field with the saturations obtained in previous inner loop
iterations. However, an important question is how the relaxation parameter is chosen in each outer
nonlinear iteration. A naive method could choose a static value for all outer iterations. Nevertheless,
the relaxation parameters needs to be small enough to avoid divergence and as large as possible to
accelerate convergence. The value of the relaxation factor plays an important role in the convergence
of the nonlinear loops but it is not known a-priori and is problem specific. Moreover, even the optimal
static value can result in more iterations than a suitable dynamic relaxation factor [Küttler and Wall,
2008, Jiang and Tchelepi, 2019, Silva et al., 2021].

4 Adaptive learning acceleration

The relaxation factor is of paramount importance to accelerate the convergence of nonlinear solvers.
Therefore, we propose a novel approach to control the relaxation parameter in each outer nonlinear
iteration, where we adapt the machine learning model to the changes in the numerical simulation
during run time, as shown in Figure 1. We start with an offline part, where the machine model is trained
using a dataset generated by a simple two-dimensional reservoir model. The machine learning model
inputs are dimensionless numbers, simulation properties, and the number of inner nonlinear iterations
at each outer nonlinear iteration. The output of the model is the value of the relaxation parameter. In
this work, we test different sets of dimensionless numbers as input parameters, and we analyse several
machine learning models in terms of accuracy, prediction time and simulation results.

After the offline stage, we use the machine learning model to determine the value of the numerical
relaxation for a number of outer nonlinear iteration that we call W (as in Figure 1). Following
that, we can update the machine learning model using a batch-incremental method (W > 1), or an
instance-incremental method (W =1). After updating, we run more W outer nonlinear iterations and
update the model again. The process continues until the end of the numerical simulation. Given that
batch-incremental and instance-incremental methods can perform similarly [Read et al., 2012], and
to avoid the cost added to the numerical simulation each time we update the machine learning model,

3



Figure 1: Adaptive learning acceleration for nonlinear PDE solvers.

(a) Test case 1 (2D - used for training). (b) Test case 2 (2D).

(c) Test case 3 (3D). (d) Test case 4 (3D).

Figure 2: Saturation of the displaced phase in one point in time during the numerical simulation. Blue
represents the injected phase and red the displaced phase. In all cases, we injected one phase on the
left and produce both phases on the right.

we choose to use batch-incremental methods here (or W > 1). We also test different batch sizes in
order to determine the best one for the multiphase porous media problem. It is worth mentioning that
since we have a fixed simulation time the number of updates of the machine learning model is finite,
different from classical online learning problems.

The main goal of the adaptive learning acceleration is to train the machine learning model offline using
a simple reservoir model (that is fast to run). Then apply the proposed acceleration to more complex
and challenge reservoirs, while still learning from them in run time. During the numerical simulation,
we learn from previous nonlinear iterations of the running reservoir model in order to better calculate
the relaxation factor for the coming iterations. Further details about the input parameters and the
offline training can be found in Appendixes B and C, respectively.

5 Numerical results

The adaptive learning acceleration is tested in four reservoir cases. All test cases represent two phase
immiscible flow in a porous medium. The first is the two-dimensional layered reservoir model used for
training. The second is a two-dimensional heterogeneous reservoir model with permeability varying

4



0.000 0.100 0.200 0.300

Random forest (original)

Adaboost

XGBoost random forest

XGBoost gradient boost

Random forest

Extra tree

Neural network (MLP)

Decision tree

Linear Regression

RMSE
0.000 0.002 0.004 0.006 0.008 0.010

Random forest (original)

Adaboost

XGBoost random forest

XGBoost gradient boost

Random forest

Extra tree

Neural network (MLP)

Decision tree

Linear Regression

Prediction time (s)

Figure 3: Comparison of different machine learning models. (left) The test root mean square error.
(right) The one-instance prediction time

in four quadrants. The third is a realistic three-dimensional channelized reservoir model, and the fourth
is a realistic three-dimensional faulted reservoir model. All reservoir models were tested with gravity
and capillary pressure. Figure 2 shows the saturation map for all cases. We inject one fluid on the
left and produce both fluids on the right. More details about the four numerical model can be found
in the Appendix D.

In the following sections, we analyse and select the best machine learning models in terms of accuracy,
prediction time and simulation results (we also select the best set of dimensionless numbers as input
parameters, for more details see Appendix E). Following that, we apply and analyse the proposed
adaptive learning acceleration. Finally, we integrate the best machine learning model into IC-FERST
in order to actually generate a walltime reduction. As a baseline for comparison, we use here the
nonlinear solver acceleration presented by Silva et al. [2021]. They propose to use a random forest
to calculate the relaxation parameter, but using only an offline training. For the remainder of this paper,
the random forest model used in Silva et al. [2021] will be also referred as original random forest.

5.1 Machine Learning model selection

We compare several machine learning models for controlling the numerical relaxation. All of them
were implemented using Pedregosa et al. [2011], except for the xgboost models where we used Chen
and Guestrin [2016] and the neural network (multilayer perceptron - MLP) where we use Abadi et al.
[2015]. The input in all the models are the 17 features (Set 1) selected in Appendix E, except for the
original random forest that uses the 38 features in Table 4. For each model we run a hyperparameter
optimization using a grid search with a 3-fold cross-validation. Again, for the sake of comparison,
the results reported in this section only consider the offline training. Figure 3 shows a comparison
of the different models. In Figure 3 (left) we can see the test RMSE of the machine learning models.
Apart from the linear regression all the models present similar RMSE. Figure 3 (right) shows the
prediction time for one instance. For each model, we run the prediction 1000 times and average the
resulted prediction time. As we use the machine learning model to generate the relaxation parameter
in each outer nonlinear iteration, we want the prediction time to be as low as possible. We can notice
that the xgboost models, linear regression and decision tree exhibit the lowest prediction times.

Figure 4 shows the reduction in the number of nonlinear iterations (improvement) for all the machine
learning models, except for the adaboost and decision tree. This is because test case 4 failed to
converge when using them. The models that generate better results than the original random forest
are the xgboost random forest and the random forest (both using the Set 1). The cumulative number
of nonlinear iterations during the numerical simulation for all the machine learning models and the
case with no relaxation can be seen at Appendix F.

5.2 Online learning

In the previous section, we focused on the offline training. The two machine learning models that gener-
ated better results than the original random forest are the xgboost random forest and the random forest.
Adding that ensemble learners have the advantage of being flexible, as new learners can be selectively
added or removed, that they are usually easier to optimize, and that they are often used when learning

5



1.1%

-18.0%

1.5%

-3.4%
-8.9%

-62.6%

-80.0%

-60.0%

-40.0%

-20.0%

0.0%

20.0%

XGBoost random
forest

XGBoost gradient
boost Random forest Extra tree

Neural network
(MLP) Linear Regression

Av
er

ag
e 

im
pr

ov
em

en
t

Figure 4: Comparison of different machine learning models. Average improvement in the number
of nonlinear iterations compared with the original random forest.

Table 1: Adaptive learning acceleration using the random forest, and a bagging strategy for the online
learning. Improvement (reduction) in the number on nonlinear iterations compared with the original
random forest.

TEST CASE RF W=25 W=50 W=200

CASE 1 2.1% 2.8% 3.7% 1.2%
CASE 2 0.0% -1.8% 0.6% 0.5%
CASE 3 -0.4% 2.7% 0.9% 2.7%
CASE 4 4.3% 5.0% 4.5% 4.2%

AVG. REDUCTION 1.5% 2.2% 2.4% 2.1%

Table 2: Adaptive learning acceleration using the xgboost random forest, and a boosting strategy for
the online learning. Improvement (reduction) in the number on nonlinear iterations compared with
the original random forest.

TEST CASE XGBRF W=25 W=50 W=200

CASE 1 0.5% -0.4% 2.4% 0.8%
CASE 2 -0.6% -1.3% 0.0% 0.0%
CASE 3 1.8% -1.3% 0.4% 0.4%
CASE 4 2.8% 3.4% 3.3% 2.9%

AVG. REDUCTION 1.1% 0.1% 1.5% 1.0%

from evolving data streams [Oza and Russell, 2001, Read et al., 2012, Gomes et al., 2017a, Montiel
et al., 2020], we have selected these two models to test the online/adaptive learning shown in Figure 1.

Many state-of-the-art ensemble methods for data stream learning are adapted versions of bagging and
boosting strategies [Gomes et al., 2017a, Montiel et al., 2020]. In this work, given that the XGBoost
library [Chen and Guestrin, 2016] already supports a boosting strategy for training continuation, we
apply the online learning method Adaptive XGBoost, proposed by Montiel et al. [2020], to the xgboost
model. Nonetheless, we consider here that we already have the first learner trained offline. In the online
stage, as new outer nonlinear iterations arrive, they are stored in a buffer of sizeW . Once the buffer is full,
we train a new member of the ensemble with the residuals from the previous members. It is worth noting
that we do not reach the maximum ensemble size, unlike Montiel et al. [2020], because the time of the
numerical simulation is finite and consequently the number of updates (usually less than 10 updates by
numerical simulation). For the random forest, we modify the method proposed by Montiel et al. [2020]
to work as a bagging strategy, since this is the strategy supported by the random forest in the Scikit-learn
library [Pedregosa et al., 2011]. As in the Adaptive XGBoost method, as new outer nonlinear iterations
arrives, they are stored in a buffer of size W . The difference in the random forest is that once the buffer
is full, we train a new set of ensemble members with the samples in the buffer, and add it to the previous
ensemble. The hyperparameters used to configure this methods are described in Appendix G.

6



Figure 5: Average improvement (reduction) in the number of nonlinear iterations compared with the
original random forest. The Base case is considering no online updating.

Figure 6: Comparison of the number of inner nonlinear iteration over the simulation period, for test
case 1. The horizontal axes are the outer nonlinear iterations and the vertical axes the number of inner
nonlinear iterations.

We applied these two strategies to the four test cases shown in Figure 2. Tables 1 and 2 show the
percentage reduction (improvement) in the number of nonlinear iterations compared with the original
random forest (state-of-the-art results from Silva et al. [2021]). The columns RF and XGBRF represent
the two machine learning models selected from the previous section, but without the online learning
stage. In the batch-incremental learning, the size of the batch must be chosen to provide a balance
between accuracy (large batches) and response to new instances (smaller batches) [Read et al., 2012]. In
this context, we test different buffer sizes (W ) represented in the remaining columns of Tables 1 and 2.
Figure 5 also shows the average reduction of each one of these strategies. We also notice that the strategy
with buffer size equals 50 (W =50) produced the best average performance for both machine learning
models. Also for the strategy with buffer size equals 25 (W =25), the number of nonlinear iterations
became worse than the original random forest for some test cases. This can indicate that updating the
machine learning model with short buffer sizes does not necessarily improve the final results.

Figure 6 shows the comparison of the number of inner nonlinear iterations over the simulation period,
for the test case 1. The horizontal axes represent the outer nonlinear iterations. We can notice from
the blue box on the left, that for the first 50 outer nonlinear iterations the results from the random forest
with the online/adaptive learning and the one without it are the same. This is because the buffer has size
50 (W =50), then until it is full no update is performed in the machine learning model. We can also see
a clear reduction in the inner nonlinear iterations from the original random forest to the online/adaptive
learning. It is worth noting that approximately after 300 outer nonlinear iterations the shock front
(the interface between the two fluids in the porous media) has passed the simulation domain, making
the nonlinear solver convergence much easier for the three strategies, only one inner nonlinear iteration
is required to reach the convergence criteria.

7



Table 3: Reduction in run time and number of nonlinear iterations. Comparison between the proposed
method (with no online update) and the default dynamic relaxation presented in IC-FERST [Salinas
et al., 2017a].

CASE RUN TIME NONLINEAR ITERATIONS

TEST CASE 1 19% 13%
TEST CASE 2 34% 37%
TEST CASE 3 9% 10%
TEST CASE 4 85% 81%

5.3 Direct coupling

All of the previous models, including the original random forest [Silva et al., 2021], were not properly
coupled with the numerical simulator in Fortran. An external Python script was called in each outer
nonlinear iteration to generate the relaxation factor and it was passed “on the fly” to the numerical
simulator. For that reason, no actual reduction in walltime was observed. Analysing the prediction time
(Figure 3), the reduction in the number of nonlinear iterations (Figure 4), and considering the viability to
integrate the machine learning code with the numerical simulator (IC-FERST) in Fortran, we chose the
xgboost random forest to perform the coupling. A Fortran API for the xgboost was developed (available
at https://github.com/vlssanonymous/mlsolveracc/tree/master/xgboost_coupling),
and we were able to load the machine learning model in memory and call it in each outer nonlinear
iteration using a Fortran code. Although, the online training of the machine learning model was not yet
supported in the API, thus the results in this section consider W =∞, which means no online update
(the online update would further improve the results). Table 3 shows the reduction in the number of
nonlinear iterations and walltime, when we compare the proposed method with the default dynamic
relaxation presented in IC-FERST [Salinas et al., 2017a]. It is a dynamic relaxation that adjusts the
relaxation parameter mainly based on the CFL number. It has demonstrated great improvements in
the convergence rate of the solver for a wide range of cases [Salinas et al., 2017a], and up to this point
was the best available approach to calculate the relaxation in IC-FERST. The method proposed here
is able to outperform this approach, showing actual run time improvements. The results in table 3
show that the reduction in walltime is, in some cases, even greater than the reduction in the number
of nonlinear iterations. It means that for some cases, the proposed method not only reduces the number
of nonlinear iterations, but also makes faster the solution of each nonlinear iteration.

6 Conclusion

We propose a robust and efficient online/adaptive learning acceleration for nonlinear PDE solvers. The
proposed approach was applied to complex/realistic two and three-dimentional subsurface reservoirs
and was capable of reducing the number of nonlinear iterations without compromising on the accuracy
of the results. We also present a thorough analysis of the performance of the presented acceleration
technique. This analysis includes the use of different machine learning models, different dimensionless
parameters, and different online learning strategies. In this study, we were able to select the most
appropriate number of features (dimensionless numbers) used as inputs, and the most suitable machine
learning models in terms of accuracy, prediction time and simulation results. Furthermore, for the first
time we integrated a machine learning model into the nonlinear solver of an open-source, multiphase
flow simulator (IC-FERST) and applied it to a set of challenging multiphase porous media flow
problems. We were able to reduce simulation time by 37% on average, and up to 85% in the best case.
Compared to other approaches our method is simple to implement and does not require retraining
the machine learning model (offline training) when applied to other simulation domains or sets of
parameters. Furthermore, not only does it learn offline, but also learns during the simulation to which
it is applied. We believe that the online/adaptive learning acceleration is not limited to the multiphase
porous media flow. It is applicable to any other system for which a relaxation technique (or other
tuning parameter) can be used to stabilise the nonlinear solver.

8

https://github.com/vlssanonymous/mlsolveracc/tree/master/xgboost_coupling


References
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensorflow.org.

K. Aziz. Petroleum reservoir simulation. Applied Science Publishers, 476, 1979.

L. Breiman. Pasting small votes for classification in large databases and on-line. Machine learning,
36(1):85–103, 1999.

R. Brooks and T. Corey. Hydraulic properties of porous media. Hydrology Papers, Colorado State
University, 24:37, 1964.

G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine learning.
Advances in neural information processing systems, 13, 2000.

T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery and data mining, pages 785–794, 2016.

Z. Chen and B. Liu. Lifelong machine learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 12(3):1–207, 2018.

Y. Debbabi, M. D. Jackson, G. J. Hampson, P. J. Fitch, and P. Salinas. Viscous crossflow in layered
porous media. Transport in Porous Media, 117(2):281–309, 2017a.

Y. Debbabi, M. D. Jackson, G. J. Hampson, and P. Salinas. Capillary heterogeneity trapping and
crossflow in layered porous media. Transport in Porous Media, 120(1):183–206, 2017b.

Y. Debbabi, M. D. Jackson, G. J. Hampson, and P. Salinas. Impact of the buoyancy–viscous force bal-
ance on two-phase flow in layered porous media. Transport in Porous Media, 124(1):263–287, 2018a.

Y. Debbabi, D. Stern, G. J. Hampson, and M. D. Jackson. Use of dimensionless scaling groups to
interpret reservoir simulation results. Journal of Petroleum Science and Engineering, 163:270–282,
2018b.

H. Elman, D. Silvester, and A. Wathen. Finite Elements and Fast Iterative Solvers: With Applications
in Incompressible Fluid Dynamics. Oxford University Press, first edition, 2005.

M. M. d. Freitas, G. d. Souza, and H. P. A. Souto. A Picard-Newton approach for simulating two-phase
flow in petroleum reservoirs. International Journal of Advanced Engineering Research and Science,
7(4):428–457, 2020. doi: 10.22161/ijaers.74.53.

H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck, B. Pfharinger, G. Holmes, and
T. Abdessalem. Adaptive random forests for evolving data stream classification. Machine Learning,
106(9):1469–1495, 2017a.

J. Gomes, D. Pavlidis, P. Salinas, Z. Xie, J. R. Percival, Y. Melnikova, C. C. Pain, and M. D. Jackson. A
force-balanced control volume finite element method for multi-phase porous media flow modelling.
International Journal for Numerical Methods in Fluids, 83(5):431–445, 2017b.

D. Greenfeld, M. Galun, R. Basri, I. Yavneh, and R. Kimmel. Learning to optimize multigrid PDE
solvers. In International Conference on Machine Learning, pages 2415–2423. PMLR, 2019.

S. C. Hoi, D. Sahoo, J. Lu, and P. Zhao. Online learning: A comprehensive survey. Neurocomputing,
459:249–289, 2021.

H. Hoteit and A. Firoozabadi. Numerical modeling of two-phase flow in heterogeneous permeable
media with different capillarity pressures. Advances in water resources, 31(1):56–73, 2008.

J.-T. Hsieh, S. Zhao, S. Eismann, L. Mirabella, and S. Ermon. Learning neural PDE solvers with
convergence guarantees. In International conference on learning representations, 2019.

9



M. Jackson, J. Percival, P. Mostaghimi, B. Tollit, D. Pavlidis, C. Pain, J. Gomes, A. H. Elsheikh,
P. Salinas, A. Muggeridge, et al. Reservoir modeling for flow simulation by use of surfaces, adaptive
unstructured meshes, and an overlapping-control-volume finite-element method. SPE Reservoir
Evaluation & Engineering, 18(02):115–132, 2015.

P. Jenny, S. H. Lee, and H. A. Tchelepi. Adaptive fully implicit multi-scale finite-volume method for
multi-phase flow and transport in heterogeneous porous media. Journal of Computational Physics,
217(2):627–641, 2006.

J. Jiang and H. A. Tchelepi. Nonlinear acceleration of sequential fully implicit (SFI) method for
coupled flow and transport in porous media. Computer Methods in Applied Mechanics and
Engineering, 352:246–275, 2019.

T. Kadeethum, D. O’Malley, F. Ballarin, I. Ang, J. N. Fuhg, N. Bouklas, V. L. S. Silva, P. Salinas,
C. E. Heaney, C. C. Pain, et al. Enhancing high-fidelity nonlinear solver with reduced order model.
Scientific Reports, 12(1):1–15, 2022.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan,
T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

U. Küttler and W. A. Wall. Fixed-point fluid–structure interaction solvers with dynamic relaxation.
Computational mechanics, 43(1):61–72, 2008.

B. Li and H. A. Tchelepi. Nonlinear analysis of multiphase transport in porous media in the presence
of viscous, buoyancy, and capillary forces. Journal of Computational Physics, 297:104–131, 2015.

V. Losing, B. Hammer, and H. Wersing. KNN classifier with self adjusting memory for heterogeneous
concept drift. In 2016 IEEE 16th international conference on data mining (ICDM), pages 291–300.
IEEE, 2016.

P. Lott, H. Walker, C. Woodward, and U. Yang. An accelerated Picard method for nonlinear systems
related to variably saturated flow. Advances in Water Resources, 38:92–101, 2012.

J. Montiel, R. Mitchell, E. Frank, B. Pfahringer, T. Abdessalem, and A. Bifet. Adaptive XGBoost
for evolving data streams. In 2020 International Joint Conference on Neural Networks (IJCNN),
pages 1–8. IEEE, 2020.

A. Obeysekara, P. Salinas, C. E. Heaney, L. Kahouadji, L. Via-Estrem, J. Xiang, N. Srinil, A. Nicolle,
O. K. Matar, and C. C. Pain. Prediction of multiphase flows with sharp interfaces using
anisotropic mesh optimisation. Advances in Engineering Software, 160:103044, 2021. doi:
10.1016/j.advengsoft.2021.103044.

E. Oladokun, S. Sheth, T. Jönsthövel, and K. Neylon. Machine-learning informed prediction of linear
solver tolerance for non-linear solution methods in numerical simulation. In ECMOR XVII, volume
2020, pages 1–10. European Association of Geoscientists & Engineers, 2020.

J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several variables. In
Computer science and applied mathematics, 1970.

N. C. Oza and S. J. Russell. Online bagging and boosting. In International Workshop on Artificial
Intelligence and Statistics, pages 229–236. PMLR, 2001.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

R. Polikar, L. Upda, S. S. Upda, and V. Honavar. Learn++: An incremental learning algorithm
for supervised neural networks. IEEE transactions on systems, man, and cybernetics, part C
(applications and reviews), 31(4):497–508, 2001.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes: The Art of
Scientific Computing. Cambridge University Press, 2007.

10



J. Read, A. Bifet, B. Pfahringer, and G. Holmes. Batch-incremental versus instance-incremental
learning in dynamic and evolving data. In International symposium on intelligent data analysis,
pages 313–323. Springer, 2012.

P. Salinas, D. Pavlidis, Z. Xie, A. Adam, C. Pain, and M. Jackson. Improving the convergence
behaviour of a fixed-point-iteration solver for multiphase flow in porous media. International
Journal for Numerical Methods in Fluids, 84(8):466–476, 2017a.

P. Salinas, D. Pavlidis, Z. Xie, C. Jacquemyn, Y. Melnikova, M. D. Jackson, and C. C. Pain. Improving
the robustness of the control volume finite element method with application to multiphase porous
media flow. International Journal for Numerical Methods in Fluids, 85(4):235–246, 2017b.

V. L. S. Silva, P. Salinas, M. Jackson, and C. Pain. Machine learning acceleration for nonlinear
solvers applied to multiphase porous media flow. Computer Methods in Applied Mechanics and
Engineering, 384:113989, 2021.

H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers.
In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 226–235, 2003.

Z. Y. Wong, F. Kwok, R. N. Horne, and H. A. Tchelepi. Sequential-implicit Newton method for
multiphysics simulation. Journal of Computational Physics, 391:155–178, 2019.

11



A Nonlinear solver

We use a Picard iterative method to solve the discretised form of the nonlinear system of equations
formed by Eqs. (1), (2), (3) and (4). Figure 7 describes the overall method. The solver comprises
three main loops. The solid line represents the time loop, the dotted line denotes the coupling between
saturation and pressure (nonlinear outer loop), and the dashed line iterates over saturation and velocity
(nonlinear inner loop). In the inner loop, after calculating the saturation the velocity is updated. A new
saturation is estimated using the new velocity. The process continues until convergence or the maximum
number of iterations are reached. Following that, a new pressure is estimated in the outer loop based on
the new saturation, and a new velocity is calculated from the pressure estimation. Then, a new inner loop
iteration starts. We repeat the process until convergence or the maximum number of iterations is reached.

Figure 7: Flow chart of the nonlinear solver iterations. Reprinted from [Salinas et al., 2017a].

In order to accelerate the convergence of the nonlinear solver a relaxation parameter is used [Salinas
et al., 2017a, Jiang and Tchelepi, 2019, Silva et al., 2021]. The method involves updating the saturation
by weighting the new calculated field with the saturations obtained in previous inner loop iterations.
The new saturation is calculated as

Sk=ωkS̃k+(1−ωk)Sk−1+(1−ωk)β+1ωk(Sk−2−Sk−1), (5)

where Sk is the new saturation after relaxation, S̃k is the saturation obtained after (4) in Figure 7, and
k is the index representing the inner-loop current iteration. ω is the relaxation parameter, and β is
the exponent that controls the relative importance of Sk−1 and Sk−2. In this work, β is considered
constant with the value of 0.4 as in Salinas et al. [2017a].

For each outer nonlinear iteration, having the initial value of w0 the subsequent relaxation parameters
(wk) are calculated to yield the best convergence ratio reducing the residual of the saturation [Salinas
et al., 2017a]. An important question is how w0 is chosen in each outer nonlinear iteration. A naive
method could choose a static value for all outer iterations. Nevertheless, the relaxation parameters
needs to be small enough to avoid divergence and as large as possible to accelerate convergence. The
value ofw0 plays an important role in the convergence of the nonlinear loops but it is not known a-priori

12



and is problem specific. Moreover, even the optimal static value can result in more iterations than a
suitable dynamic relaxation factor [Küttler and Wall, 2008, Jiang and Tchelepi, 2019, Silva et al., 2021].

B Input parameters and dimensionless numbers

The combination of the viscous, capillary and gravitational forces drives the spatial distribution
of fluids during multiphase flow in porous media [Hoteit and Firoozabadi, 2008, Li and Tchelepi,
2015, Debbabi et al., 2017a,b, 2018b]. The relative importance of these mechanisms depends on the
combination of the fluid rock properties, the system length-scales and flow rates [Debbabi et al., 2018b].
For that reason, we choose the inputs of the machine learning model to be the dimensionless numbers
presented on Debbabi et al. [2017a,b, 2018a]. Using dimensionless parameters to train and control the
machine learning acceleration allow us to use a simple two-dimensional layered reservoir for training,
while also exploring a large portion of the physical space. Table 4 summarizes all the input parameters.

Table 4: Input parameters for the machine learning model. CFL stands for Courant–Friedrichs–Lewy
(CFL). The features where MIN, MAX and AVERAGE applies are defined control-volume wise.

FEATURES SILVA ET AL. [2021] SET 1 SET 2

EFFECTIVE ASPECT RATIO ONE VALUE ONE VALUE ONE VALUE
DARCY VELOCITY AVERAGE, MAX AND MIN AVERAGE AVERAGE
TOTAL MOBILITY AVERAGE, MAX AND MIN AVERAGE AVERAGE
CFL NUMBER MAX VALUE MAX VALUE MAX VALUE
SHOCK-FRONT CFL NUMBER MAX VALUE MAX VALUE MAX VALUE
SHOCK-FRONT NUMBER RATIO ONE VALUE ONE VALUE ONE VALUE
SHOCK-FRONT MOBILITY RATIO AVERAGE, MAX AND MIN AVERAGE AVERAGE
LONGITUDINAL CAPILLARY AVERAGE, MAX AND MIN AVERAGE AVERAGE
TRANSVERSE CAPILLARY AVERAGE, MAX AND MIN AVERAGE ×
BUOYANCY NUMBER AVERAGE, MAX AND MIN AVERAGE ×
LONGITUDINAL BUOYANCY AVERAGE, MAX AND MIN AVERAGE AVERAGE
TRANSVERSE BUOYANCY AVERAGE, MAX AND MIN AVERAGE ×
VANISHING ARTIFICIAL DIFFUSION AVERAGE, MAX AND MIN AVERAGE AVERAGE
TRANSPORT EQUATION RESIDUAL ONE VALUE ONE VALUE ONE VALUE

NUMBER OF FEATURES: 38 17 14

C Training dataset

We run the offline training using results from a multiphase flow simulation in a simple two-dimensional
layered model, as shown in Figure 8. We inject one phase on the left side and produce both phases
on the right side. The aim is for the injected phase to push the displaced phase through the porous
media. Because the reservoir model must be run numerous times to generate the dataset for training,
employing a simple reservoir model considerably simplifies the training process.

Figure 8: Two-dimensional homogeneous layered reservoir used for training. It shows the saturation of
the displaced phase in one point in time during the numerical simulation. Blue represents the injected
phase and red the displaced phase.

In order to perturb the physical parameters presented in Table 4 for generating the offline training set,
we generate 6500 simulations changing the following simulations inputs: porosities, horizontal and

13



vertical permeabilities, time step, relative permeability, capillary pressure, viscosity, gravity magnitude
and direction, and the relaxation factor. Figure 9 shows the learning curve for one of the machine
learning models tested (a random forest). The dataset comprises 6500 simulations, that represents
nearly 1.8×106 instances (outer nonlinear iterations), and were used for the training (80%) and test
set (20%). In Figure 9, it can be observed that the rate at which errors decrease becomes marginal
once we surpass this number of instances. Therefore, the inclusion of additional training simulations
would not lead to a substantial reduction in errors.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Training instances 1e6

0.00

0.01

0.02

0.03

0.04
M
ea

n 
sq

ua
re
 e
rro

r Training error
Validation error

Figure 9: Learning curve. The vertical axis is the error of the machine learning model, and the
horizontal axis represents the size of the dataset used for training.

In the online stage (online/adaptive learning), for each outer nonlinear iteration we store: the
dimensionless number in Table 4, the relaxation factor used, and the number of inner nonlinear
iterations performed. After running W outer nonlinear iterations, we then run the online training. We
repeat this process every W nonlinear iterations until the end of the numerical simulation.

D Test case description

We evaluated the adaptive learning acceleration across four distinct reservoir models. Each of them
represents a two-phase immiscible flow within a porous medium:

1. Test case 1: two-dimensional layered reservoir model used for training.

2. Test case 2: heterogeneous two-dimensional model with distinct permeabilities across its
four quadrants.

3. Test case 3: more intricate three-dimensional model simulating channelized formations.

4. Test case 4: complex three-dimensional model with faulted structures.

For all models, both gravity and capillary pressure were considered. Figure 2 provides a saturation map
for each case. The capillary pressure and relative permeability were modeled using the Brooks–Corey
framework Brooks and Corey [1964]. In our tests, we injected one phase from the left and extracted
both phases from the right.

We use as convergence criteria for the nonlinear solver that the relative mass conservation of the system
has to be below 10−3 and the infinite norm of the saturation difference between two consecutive
nonlinear iterations has to be below 10−2, within a time step. Furthermore, the maximum thresholds
for the outer and inner nonlinear iterations are 30 and 10, respectively. When contrasting different
scenarios, we calculate the total number of nonlinear iterations as the sum of the outer iterations and
a third of the inner iterations. This method is consistent with the approaches described by Salinas
et al. [2017a] and Silva et al. [2021].

14



D.1 Test case 1

Test case 1 is the same reservoir model used to generate the dataset for the offline training. It is a
two-dimensional model with two layers (Figure 10). The porosity in the top layer is 10% and the
horizontal permeability is 200 mD. The bottom layer has 20% of porosity and 100 mD of horizontal
permeability. The vertical permeability is equal to 10% of the horizontal. The viscosity ratio between
the injected and the displaced fluid is 5, the density contrast between phases is 300 kg/m3, and the
entry capillary pressure is 1000 Pa.

Figure 10: Test case 1 permeability field in m2.

D.2 Test case 2

Test case 2 is a two-dimensional reservoir with four domains arranged as quadrants (Figure 11). The
permeabilities in the top layer are 200 mD and 20 mD, whereas the permeabilities in the bottom layer
are 10 mD and 100 mD. The vertical permeability is equal to the horizontal and the porosity is 20%
in all layers. The viscosity ratio between the displaced and the injected fluid is 5, the density contrast
between phases is 300 kg/m3, and the entry capillary pressure is 1000 Pa.

Figure 11: Test case 2 permeability field in m2.

D.3 Test case 3

A more realistic three-dimensional model of fluvial sandstone channels embedded in a low permeability
mudstone background is also tested (Figure 12). The channels are divided in three sets, thin channels,
medium size channels, and wide channels. The permeabilities in each set of channels are 1000 mD,
200 mD, and 100 mD, respectively. The vertical permeability is equal to the horizontal and the porosity
is 20% in all channels. The viscosity ratio between the displaced and the injected fluid is 5, the density
contrast between phases is 289 kg/m3, and the entry capillary pressure is 100 Pa.

D.4 Test case 4

Test case 4 is a second more realistic three-dimensional model of a faulted reservoir (Figure 13). The
reservoir comprises a sequence of alternated sandstone and mudstone layers. The porosity in the
sandstone layers is 10% and the horizontal permeability is 1000 mD. The mudstone layers have 20%
porosity and 1 mD of horizontal permeability. The vertical permeability is equal to the horizontal. The
viscosity ratio between the displaced and the injected fluid is 5, the density contrast between phases
is 300 kg/m3, and the entry capillary pressure is 10000 Pa.

15



Figure 12: Test case 3 permeability field in m2.

Figure 13: Test case 4 permeability field in m2.

E Machine learning feature selection

We investigate different sets of features, in order to evaluate their effect on the proposed method.
In Silva et al. [2021] a set of 38 features were chosen, and among them the average, minimum
and maximum were calculated for the parameters defined control-volume wise, excepted for the
Courant–Friedrichs–Lewy (CFL) number where it is already known that the maximum value plays
an important role in the nonlinear solver convergence [Salinas et al., 2017a, Obeysekara et al., 2021].
In this work, we test two new sets of features as shown in Table 4. We notice that the average, minimum
and maximum values are highly correlated when considering the same parameter. Therefore, in the
first set (Set 1) we consider only the average. For the second set (Set 2), we have looked the feature
importance of the original random forest, and for the capillary and buoyancy numbers we included only
the most important features. As for the original random forest, we run a hyperparameter optimization
using a grid search with a 3-fold cross-validation for the two new sets of features. The implementation
of the random forests used here is the one in Pedregosa et al. [2011]. For the sake of comparison, the
results reported in this section only consider the offline training.

Figure 14 shows a comparison of the different number of features. In Figure 14a we can see the test root
mean square error (RMSE) of the random forest models for the three sets of features. No significant
difference in the RMSE can be spotted when comparing the models. However, in Figures 14b and
14c we can notice that the reduction in the number of nonlinear iterations (improvement) is greater
for Set 1 (fewer features). Set 2 (many fewer features) increased the average number of nonlinear

16



0.000 0.020 0.040 0.060 0.080 0.100

All features

SET 1

SET 2

RMSE

(a)

-9.0%

-6.0%

-3.0%

0.0%

3.0%

6.0%

SET 1 SET 2

Im
pr
ov
em

en
t

Test case 1 Test case 2 Test case 3 Test case 4

(b)

1.5%

-1.5%
-2.0%

-1.0%

0.0%

1.0%

2.0%

SET 1 SET 2

Av
er

ag
e 

im
pr

ov
em

en
t

(c)

Figure 14: Comparison of different number of features. (a) the test root mean square error of the
trained random forest models. (b) the improvement in the number on nonlinear iterations compared
with the original random forest. (c) average improvement (reduction) in the number of nonlinear
iterations compared with the original random forest.

iterations. The results show that the acceleration using the random forest with Set 1 performed better
than the original random forest and the one with Set 2.

F Machine learning model selection

The cumulative number of nonlinear iterations during the numerical simulation for all the machine
learning models and the case with no relaxation can be seen in Figure 15.

G Online training hyperparameters

For the xgboost with the boosting strategy and the random forest with the bagging strategy, we have
tested different hyperparameters and the best results were achieved using the values in Tables 5 and
6, respectively.

Table 5: Hyperparameters used for the online training of the xgboost with the boosting strategy.

PARAMETER VALUE

NUMBER OF NEW BOOSTING TREES 1
LEARNING RATE 0.01
MAXIMUM DEPTH 3
SUBSAMPLE OF INSTANCES 1.0
SUBSAMPLE OF COLUMNS 1.0
BUFFER SIZE 50

17



0 20 40 60 80 100
Simulation time (days)

0

200

400

600

800

Cu
m
ul
at
iv
e 
no
nl
in
ea
r i
te
ra
tio

ns

No Relaxation
XGB Random Forest
XGB Gradient Boosting
Random Forest
Neural Network
Linear Regression
Extra Trees
Decision Trees
Ada Boosting
Random Forest (Original)

(a) Test case 1.

0 20 40 60 80 100 120 140
Simulation time (days)

0

250

500

750

1000

1250

1500

1750

2000

Cu
m

ul
at

iv
e 

no
nl

in
ea

r i
te

ra
tio

ns

No Relaxation
XGB Random Forest
XGB Gradient Boosting
Random Forest
Neural Network
Linear Regression
Extra Trees
Decision Trees
Ada Boosting
Random Forest (Original)

(b) Test case 2.

0 20 40 60 80 100
Simulation time (days)

0

500

1000

1500

2000

2500

Cu
m
ul
at
iv
e 
no
nl
in
ea
r i
te
ra
tio
ns

No Relaxation
XGB Random Forest
XGB Gradient Boosting
Random Forest
Neural Network
Linear Regression
Extra Trees
Decision Trees
Ada Boosting
Random Forest (Original)

(c) Test case 3.

0 25 50 75 100 125 150 175 200
Simulation time (days)

0

200

400

600

800

1000

1200

1400

Cu
m

ul
at

iv
e 

no
nl

in
ea

r i
te

ra
tio

ns

No Relaxation
XGB Random Forest
XGB Gradient Boosting
Random Forest
Neural Network
Linear Regression
Extra Trees
Decision Trees
Ada Boosting
Random Forest (Original)

(d) Test case 4.

Figure 15: Cumulative number of nonlinear iterations for different machine learning models and for
the case with no relaxation.

Table 6: Hyperparameters used for the online training of the random forest with the bagging strategy.

PARAMETER VALUE

NUMBER OF NEW TREES 70
MAXIMUM DEPTH 30
MAXIMUM NUMBER OF FEATURES 0.2
BUFFER SIZE 50

H Hardware configuration

A Linux (Ubuntu 18.04.6 LTS) workstation was used to train the machine learning models and run
all the numerical simulations. Table 7 shows the hardware configuration.

Table 7: Hardware configuration.
Description Quantity

16GB DDR4 3200 MHz RAM Memory 16
Samsung 970 EVO PLUS 2TB SSD/Solid State Drive 1
Seagate IronWolf PRO 4TB SATA HDD/Hard Drive 3
Nvidia Quadro RTX 4000 Video Card 1
AMD 32 Core 2nd Gen EPYC 7452 CPU/Processor 2
AMD EPYC 7000 EATX Gigabit Server Motherboard 1

18


	Introduction
	Related work
	Governing equations and nonlinear solver
	Adaptive learning acceleration
	Numerical results
	Machine Learning model selection
	Online learning
	Direct coupling

	Conclusion
	Nonlinear solver
	Input parameters and dimensionless numbers
	Training dataset
	Test case description
	Test case 1
	Test case 2
	Test case 3
	Test case 4

	Machine learning feature selection
	Machine learning model selection
	Online training hyperparameters
	Hardware configuration

