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Abstract

Natural agents can effectively learn from multiple
data sources that differ in size, quality, and types
of measurements. We study this heterogeneity in
the context of offline reinforcement learning (RL)
by introducing a new, practically motivated semi-
supervised setting. Here, an agent has access
to two sets of trajectories: labelled trajectories
containing state, action, reward triplets at every
timestep, along with unlabelled trajectories that
contain only state and reward information. For
this setting, we develop and study a simple meta-
algorithmic pipeline that learns an inverse dynam-
ics model on the labelled data to obtain proxy-
labels for the unlabelled data, followed by the use
of any offline RL algorithm on the true and proxy-
labelled trajectories. Empirically, we find this
simple pipeline to be highly successful — on sev-
eral D4RL benchmarks (Fu et al., 2020), certain
offline RL algorithms can match the performance
of variants trained on a fully labelled dataset even
when we label only 10% trajectories from the
low return regime. To strengthen our understand-
ing, we perform a large-scale controlled empirical
study investigating the interplay of data-centric
properties of the labelled and unlabelled datasets,
with algorithmic design choices (e.g., choice of
inverse dynamics, offline RL algorithm) to iden-
tify general trends and best practices for training
RL agents on semi-supervised offline datasets.

1 Introduction
One of the key challenges with deploying reinforcement
learning (RL) agents is its prohibitive sample complexity for
real-world applications. Offline reinforcement learning (RL)
can significantly reduce the sample complexity by exploiting
logged demonstrations from auxiliary data sources (Levine
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et al., 2020). Standard offline RL assumes fully logged
datasets: the trajectories are complete sequences of obser-
vations, actions, and rewards. However, contrary to curated
benchmarks in use today, the nature of offline demonstra-
tions in the real world can be highly varied. For example,
the demonstrations could be misaligned due to frequency
mismatch (Burns et al., 2022), use of different sensors, ac-
tuators, or dynamics (Reed et al., 2022; Lee et al., 2022),
or lacking partial state (Ghosh et al., 2022; Rafailov et al.,
2021; Mazoure et al., 2021), or reward information (Yu
et al., 2022). Successful offline RL in the real world re-
quires embracing these heterogeneous aspects for maximal
data efficiency, similar to learning in humans.

In this work, we propose a new and practically motivated
semi-supervised setup for offline RL: the offline dataset
consists of some action-free trajectories (which we call un-
labelled) in addition to the standard action-complete trajec-
tories (which we call labelled). In particular, we are mainly
interested in the case where a significant majority of the
trajectories in the offline dataset are unlabelled, and the un-
labelled data might have different qualities than the labelled
ones. One motivating example for this setup is learning
from videos (Schmeckpeper et al., 2020a;b) or third-person
demonstrations (Stadie et al., 2017; Sharma et al., 2019).
There are tremendous amounts of internet videos that can
be potentially used to train RL agents, yet they are without
action labels and are of varying quality. Notably, our setup
has two key properties that differentiate it from traditional
semi-supervised learning:

• First, we do not assume that the distribution of the labelled
and unlabelled trajectories are necessarily identical. In
realistic scenarios, we expect these to be different with un-
labelled data having higher returns than labelled data e.g.,
videos of a human professional are easier to obtain than
installing actuators for continuous control tasks. We repli-
cate such varied data quality setups in some of our experi-
ments; Figure 1.1 shows an illustration of the difference in
returns between the labelled and unlabelled dataset splits
using the hopper-medium-expert D4RL dataset.

• Second, our end goal goes beyond labelling the actions
in the unlabelled trajectories, but rather we intend to use
the unlabelled data for learning a downstream policy that
is better than the behavioral policies used for generating
the offline datasets.
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Figure 1.1: An example of the return distribution of the
labelled and unlabelled datasets.

Correspondingly, there are two kinds of generalization chal-
lenges in the proposed setup: (i) generalizing from the la-
belled to the unlabelled data distribution and then (ii) going
beyond the offline data distributions to get closer to the
expert distribution. Regular offline RL is only concerned
with the latter, and standard algorithms such as Conservative
Q Learning (CQL; Kumar et al. (2020)), TD3BC (TD3BC;
Fujimoto & Gu (2021)) or Decision Transformer (DT; Chen
et al. (2021)), cannot directly operate on such unlabelled
trajectories. At the same time, naı̈vely throwing out the un-
labelled trajectories can be wasteful, especially when they
have high returns. Thus, our paper seeks to answer the
following question:

How can we best leverage the unlabelled data to im-
prove the performance of offline RL algorithms?

To answer this question, we study different approaches to
train policies in the semi-supervised setup described above,
and propose a meta-algorithmic pipeline Semi-Supervised
Offline Reinforcement Learning (SS-ORL). SS-ORL
contains three simple steps: (1) train an inverse dynamics
model (IDM) on the labelled data, which predicts actions
based on transition sequences, (2) fill in proxy-actions for
the unlabelled data, and finally (3) train an offline RL agent
on the combined dataset.

The main takeaway of our paper is:

Given low-quality labelled data, SS-ORL agents can
exploit unlabelled data containing high-quality trajecto-
ries to improve performance. The absolute performance
of SS-ORL is close to or even matches that of the oracle
agents, which have access to complete action information
of both labelled and unlabelled trajectories.

From a technical standpoint, we address the limitations of
the classic IDM (Pathak et al., 2017) by proposing a novel
stochastic multi-transition IDM that accounts for stochas-
tic MDPs and non-Markovian beahvior policies. To en-
able compute and data efficient learning, we conduct thor-
ough ablation studies to understand how the performance
of SS-ORL agents are affected by the algorithmic design
choices, and how it varies as a function of data-centric prop-
erties such as the size and return distributions of labelled
and unlabelled datasets. We highlight a few predominant
trends from our experimental findings below:

1. Proxy-labelling is an effective way to utilize unlabelled
data. For example, SS-ORL instantiated with DT as
the offline RL method, significantly outperforms an
alternative DT-based approach without proxy-labelling.

2. Simply training the IDM on the labelled dataset out-
performs more sophisticated semi-supervised protocols
such as self-training (Fralick, 1967).

3. Incorporating past information into the IDM to account
for non-Markovian policies improves generalization.

4. The performance of SS-ORL agents critically depend on
factors such as size and quality of the labelled and unla-
belled datasets, but the effect magnitudes depend on the
offline RL method. For example, we found that TD3BC
is less sensitive to missing actions then DT and CQL.

2 Related Work
Offline RL The goal of offline RL is to learn effective poli-
cies from fixed datasets which are generated by unknown
behavior policies. There are two main categories of model-
free offline RL methods: value-based methods and behavior
cloning (BC) based methods.

Value-based methods attempt to learn the value functions
based on temporal difference (TD) updates. There is a line
of work that aims to port existing off-policy value-based
online RL methods to the offline setting, with various types
of additional regularization components that encourage the
learned policy to stay close to the behavior policy. Several
representive techniques include specifically tailored policy
parameterizations (Fujimoto et al., 2019; Ghasemipour et al.,
2021), divergence-based regularization on the learned pol-
icy (Wu et al., 2019; Jaques et al., 2019; Kumar et al., 2019),
and regularized value function estimation (Nachum et al.,
2019; Kumar et al., 2020; Kostrikov et al., 2021a; Fujimoto
& Gu, 2021; Kostrikov et al., 2021b).

A growing body of recent work formulates offline RL as
a supervised learning problem (Chen et al., 2021; Janner
et al., 2021; Emmons et al., 2021). Compared with value-
based methods, these supervised methods enjoy several
appealing properties including algorithmic simplicity and
training stability. Generally speaking, these approaches can
be viewed as conditional behavior cloning methods (Bain &
Sammut, 1995), where the conditioning is based on goals
or returns. Similar to value-based methods, these can be
extended to the online setup as well (Zheng et al., 2022)
and demonstrate excellent performance in hybrid setups
involving both offline data and online interactions.

Semi-Supervised Learning Semi-supervised learning
(SSL) is a sub-area of machine learning that studies ap-
proaches to train predictors from a small amount of labelled
data combined with a large amount of unlabelled data. In
supervised learning, predictors only learn from labelled data.
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However, labelled training examples often require human
annotation efforts and are thus hard to obtain, whereas un-
labelled data can be comparatively easy to collect. The
research on semi-supervised learning spans several decades.
One of the oldest SSL techniques, self-training, was orig-
inally proposed in the 1960s (Fralick, 1967). There, the
predictor is first trained on the labelled data. Then, at each
training round, according to certain selection criteria such
as model uncertainty, a portion of the unlabelled data is
annotated by the predictor and added into the training set
for the next round. Such process is repeated multiple times.
We refer the readers to Zhu (2005); Chapelle et al. (2006);
Ouali et al. (2020); Van Engelen & Hoos (2020) for com-
prehensive literature surveys.

Imitation Learning from Observations There have been
several works in imitation learning (IL) which do not assume
access to the full set of actions, such as BCO (Torabi et al.,
2018a), MoBILE (Kidambi et al., 2021), GAIfO (Torabi
et al., 2018b) or third-person IL approaches (Stadie et al.,
2017; Sharma et al., 2019). The recent work of Baker et al.
(2022) also considered a setup where a small number of la-
belled actions are available in addition to a large unlabelled
dataset. A key difference between our work and these is that
the IL setup typically assumes that all trajectories are gen-
erated by an expert, unlike our offline setup. Further, some
of these methods even permit reward-free interactions with
the environment which is not possible in the offline setup.

Learning from Videos Several works consider training
agents with human video demonstrations (Schmeckpeper
et al., 2020a;b), which are without action annotations. Dis-
tinct from our setup, some of these works allow for online
interactions, assume expert videos, and more broadly, video
data typically specifies agents with different embodiments.

3 Semi-Supervised Offline RL
Preliminaries We model our environment as a Markov
decision process (MDP) (Bellman, 1957) denoted by
⟨S,A, p, P,R, γ⟩, where S is the state space, A is the
action space, p(s1) is the distribution of the initial state,
P (st+1|st, at) is the transition probability distribution,
R(st, at) is the deterministic reward function, and γ is the
discount factor. At each timestep t, the agent observes a state
st ∈ S and executes an action at ∈ A. The environment
then moves the agent to the next state st+1 ∼ P (·|st, at),
and also returns the agent a reward rt = R(st, at).

3.1 Proposed Setup

We assume the agent has access to a static offline dataset
Toffline. The dataset consists of trajectories collected by
unknown policies, which are generally suboptimal. Let τ
denote a trajectory and |τ | denote its length. We assume that
all the trajectories in Toffline contain complete rewards and

states. However, only a small subset of them contain actions.

We are interested in learning a policy by leveraging the of-
fline dataset without interacting with the environment. This
setup is analogous to semi-supervised learning, where ac-
tions serve the role of labels. Hence, we also refer to the
complete trajectories as labelled data (denoted by Tlabelled)
and the action-free trajectories as unlabelled data (denoted
by Tunlabelled). Further, we assume the labelled and unla-
belled data are sampled from two distributions Plabelled and
Punlabelled, respectively. In general, the two distributions can
be different. One case we are particularly interested in is
whenPlabelled generates low-to-moderate quality trajectories,
whereas Punlabelled generates trajectories of diverse qualities
including ones with high returns, see Fig 1.1.

Our setup shares some similarities with state-only imitation
learning (Ijspeert et al., 2002; Bentivegna et al., 2002; Torabi
et al., 2019) in the use of action-unlabelled trajectories.
However, there are two fundamental differences. First, in
state-only IL, the unlabelled demonstrations are from the
same distribution as the labelled demonstrations, and both
are generated by a near-optimal expert policy. In our setting,
Plabelled and Punlabelled can be different and are not assumed
to be optimal. Second, many state-only imitation learning
algorithms (e.g., Gupta et al. (2017); Torabi et al. (2018a;b);
Liu et al. (2018); Sermanet et al. (2018)) permit (reward-
free) interactions with the environments similar to their
original counterparts (e.g., Ho & Ermon (2016); Kim et al.
(2020)). This is not allowed in our offline setup, where the
agents are only provided with Tlabelled and Tunlabelled.

3.2 Training Pipeline

RL policies trained on low to moderate quality offline tra-
jectories are often sub-optimal, as many of the trajectories
might not have high returns and only cover a limited part
of the state space. Our goal is to find a way to combine the
action labelled trajectories and the unlabelled action-free
trajectories, so that the offline agent can exploit structures
in the unlabelled data to improve performance.

One natural strategy is to fill in proxy actions for those unla-
belled trajectories, and use the proxy-labelled data together
with the labelled data as a whole to train an offline RL agent.
Since we assume both the labelled and unlabelled trajec-
tories contain the states, we can train an inverse dynamics
model (IDM) ϕ that predicts actions using the states. Once
we obtain the IDM, we use it to generate the proxy actions
for the unlabelled trajectories. Finally, we combine those
proxy-labelled trajectories with the labelled trajectories, and
train an agent using the offline RL algorithm of choice. Our
meta-algorithmic pipeline is summarized in Algorithm 1.

Particularly, we propose a novel stochastic multi-transition
IDM that incorporates past information to enhance the treat-
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Algorithm 1: Semi-supervised offline RL (SS-ORL)
1 Input: trajectories Tlabelled and Tunlabelled, IDM transition size

k, offline RL algorithm ORL
// train a stochastic multi-transition

IDM using the labelled data

2 θ̂ ← argminθ

∑
(at,st,−k) in Tlabelled

[− log ϕθ(at|st,−k)]

// fill in the proxy actions for the
unlabelled data

3 Tproxy ← ∅
4 for each trajectory τ ∈ Tunlabelled do
5 ât ← µθ̂(st,−k), i.e. mean of

N
(
µθ̂(st,−k), Σθ̂(st,−k)

)
, t = 1, . . . , |τ |

6 τproxy ← τ with proxy actions {ât}|τ |t=1 filled in
7 Tproxy ← Tproxy

⋃
{τproxy}

// train an offline RL agent using the
combined data

8 π ← policy trained by ORL using dataset Tlabelled
⋃

Tproxy
9 Output: π

ment for stochastic MDPs and non-Markovian beahvior
policies. Section 3.2.1 discusses the details.

Of note, SS-ORL is a multi-stage pipeline, where the IDM
is trained only on the labelled data in a single round. There
are other possible ways to combine the labelled and unla-
belled data. In Section 3.2.2, we discuss several alternative
design choices and the key reasons why we do not employ
them. Additionally, we present the ablation experiments in
Section 4.2.

3.2.1 STOCHASTIC MULTI-TRANSITION IDM

In past work (Pathak et al., 2017; Burda et al., 2019; Henaff
et al., 2022), the IDM typically learns to map two subsequent
states of the t-th transition, (st, st+1), to at. In theory,
this is sufficient when the offline dataset is generated by
a single Markovian policy in a deterministic environment,
see Appendix D for the analysis. However, in practice, the
environment is usually stochastic and the offline dataset
might contain trajectories logged from multiple sources.

To provide better treatment for stochastic MDPs and datasets
generated by non-Markovian or multiple behavior poli-
cies, we introduce a multi-transition IDM that predicts
the distribution of at using the most recent k + 1 tran-
sitions. More precisely, let st,−k denote the sequence
smin(0,t−k), . . . , st, st+1. We model P(at|st,−k) as a multi-
variate Gaussian with a diagonal covariance matrix:

at ∼ N
(
µθ(st,−k), Σθ(st,−k)

)
. (1)

Let ϕθ(at|st,−k) be the probability density function of
N
(
µθ(st,−k), Σθ(st,−k)

)
. Given the labelled trajecto-

ries Tlabelled, we minimize the negative log-likelihood loss∑
(at,st,−k) in Tlabelled

[− log ϕθ(at|st,−k)]. We call k the tran-
sition size parameter. Note that the standard IDM which
predicts at from (st, st+1) under the ℓ2 loss, is a special

case subsumed by our model: it is equivalent to the case
k = 0 and the diagonal entries of Σθ (i.e., the variances
of each action dimension) are all the same. In essence, we
approximate P(at|st+1, . . . , s1) by P(at|st,−k), and choos-
ing k > 0 allows us to take account for non-Markovian or
multiple behaviour policies. Meanwhile, the theory also
indicates that incorporating future states like st+2 would
not help predicting at, see the analysis in Appendix D. For
all the experiments in this paper, we use k = 1. We ablate
this design choice in Section 4.2.

3.2.2 ALTERNATIVE DESIGN CHOICES

Training without Proxy Labelling SS-ORL fills in proxy
actions for the unlabelled trajectories before training the
agent. There, the policy learning task is defined on the
combined dataset of the labelled and unlabelled data. An
alternative approach is to only use the labelled data to
define the policy learning task, but create certain auxiliary
tasks using the unlabelled data. These auxiliary tasks do
not depend on actions, so that proxy-labelling is not needed.
Multi-tasks learning approaches can be employed to train
an agent that solves those tasks together. For example, Reed
et al. (2022) train a generalist agent that processes diverse
sequences with a single transformer model. In a similar vein,
we consider DT-Joint, a variant of DT, that trains on both
labelled and unlabelled data simultaneously. In a nutshell,
DT-Joint predicts actions for the labelled trajectories,
and states and rewards for both labelled and unlabelled
trajectories. See Appendix F for the implementation details.
Nonetheless, our ablation experiment in Section 4.2 shows
that SS-ORL significantly outperforms DT-Joint.

Self-Training for the IDM The annotation process in
SS-ORL, which involves training an IDM on the labelled
data and generating proxy actions for the unlabelled trajec-
tories, is similar to one step of self-training (Fralick, 1967,
Cf. Section 2), one commonly used approach in standard
semi-supervised learning. However, a key difference is that
we do not retrain the IDM but directly move to the next
stage of training the agent using the combined data. There
are a few reasons that we do not employ self-training for the
IDM. First, it is computationally expensive to execute multi-
ple rounds of training. More importantly, our end goal is to
obtain a downstream policy with improved performance via
utilizing the proxy-labelled data. As a baseline, we consider
self-training for the IDM, where after each training round
we add the proxy-labelled data with low predictive uncer-
tainties into the training set for the next round. Empirically,
we found that this variant underperforms our approach. See
Section 4.2 and Appendix E for more details.

4 Experiments
Our main objectives are to answer four sets of questions:
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Q1. How close can SS-ORL agents match the performance
of fully supervised offline RL agents, especially when
only a small subset of trajectories are labelled?

Q2. How do the SS-ORL agents perform under different
design choices for training the IDM, or even avoiding
proxy-labelling completely?

Q3. How does the performance of SS-ORL agents vary as
a function of the size and quality of the labelled and
unlabelled datasets?

Q4. Do different offline RL methods respond differently to
various setups of the dataset size and quality?

We focus on two Gym locomotion tasks, hopper and
walker, with the v2 medium-expert, medium and
medium-replay datasets from the D4RL benchmark
(Fu et al., 2020). Due to space constraints, the results on
medium and medium-replay datasets are deferred to
Appendix C. We respond to the above questions in Sec-
tion 4.1, 4.2, 4.3 and 4.4, respectively. For all experiments,
we train 5 instances of each method with different seeds,
and for each instance we roll out 30 evaluation trajectories.

4.1 Main Evaluation (Q1)

Data Setup We subsample 10% of the total offline trajec-
tories whose returns are from the bottom q% as the labelled
trajectories, 10 ≤ q ≤ 100. The actions of the remaining
trajectories are discarded to create the unlabelled ones. We
refer to this setup as the coupled setup, since the labelled
data distribution Plabelled and the unlabelled data distribution
Punlabelled will change simultaneously as we vary the value of
q. As q increases, the labelled data quality increases and the
distributions Plabelled and Punlabelled are getting closer. When
q = 100, our setup is equivalent to sampling the labelled
trajectories uniformly and Plabelled = Punlabelled. Note that
under our setup, we always have 10% trajectories labelled
and 90% unlabelled, and the total amount of data used to
train the offline RL agent is the same as the original offline
dataset. This allows for easy comparison with results under
the standard, fully labelled setup. In Section 4.3, we will
decouple Plabelled and Punlabelled for a in-depth understanding
of their individual influences on the SS-ORL agents.

Inverse Dynamics Model We train an IDM as described
in Section 3 with k = 1. That is, the IDM predicts at using
3 consecutive states: st−1, st and st+1, where the mean
and the covariance matrix are predicted by two independent
multilayer perceptrons (MLPs), each containing two
hidden layers and 1024 hidden units per layer. To prevent
overfitting, we randomly sample 10% of the labelled
trajectories as the validation set, and use the IDM that
yields the best validation error within 100k iterations.

Offline RL Methods We instantiate Algorithm 1 with DT,
CQL and TD3BC as the underlying offline RL methods. DT

is a recently proposed conditional behavior cloning (BC)
method that uses sequence modeling tools to model the tra-
jectories. CQL is a representative value-based offline RL
method. TD3BC is a hybrid method which adds a BC term to
regularize the Q-learning updates. We refer to these instan-
tiations as SS-DT, SS-CQL and SS-TD3BC, respectively.
See Appendix A for the implementation details.

Results We compare the performance of the SS-ORL
agents with corresponding baseline and oracle agents. The
baseline agents are trained on the labelled trajectories only,
and the oracle agents are trained on the full offline dataset
with complete action labels. Intuitively, the performances
of the baseline and the oracle agents can be considered as
the (estimated) lower and upper bounds for the performance
of the SS-ORL agents. We consider 6 different values of q:
10, 30, 50, 70, 90 and 100, and we report the average return
and standard deviation after 200k iterations. Figure 4.1 plots
the results on the medium-expert datasets. On both
datasets, the SS-ORL agents consistently improve upon the
baselines. Remarkably, even when the labelled data quality
is low, the SS-ORL agents are able to obtain decent returns.
As q increases, the performance of the SS-ORL agents also
keeps increasing and finally matches the performance of the
oracle agents.

To quantitatively measure how a SS-ORL agent tracks the
performance of the corresponding oracle agent, we define
the relative performance gap of SS-ORL agents as

Perf(Oracle-ORL)− Perf(SS-ORL)

Perf(Oracle-ORL)
, (2)

and similarly for the baseline agents. Figure 4.2 plots the
average relative performance gap of these agents. Compared
with the baselines, the SS-ORL agents notably reduce the
relative performance gap.

Our results generalize to even fewer percentage of labelled
data. Figure 4.3 plots the relative performance gap of the
agents trained on walker-medium-expert datasets,
when only 1% of the total trajectories are labelled. See Ap-
pendix C.3 for more experiments. Similar observations can
be found in the results of medium and medium-replay
datasets, see Figure C.1 and C.2.

4.2 Comparison with Alternative Design Choices (Q2)

Training without Proxy-Labelling Figure 4.4 plots the
performance of DT-Joint and the SS-ORL agents on
the hopper-medium-expert dataset, using the coupled
setup as in Section 4.1. Since DT-Joint is a variant of
DT, the left panel compares DT-Joint with SS-DT as
well as the DT baseline and the DT oracle. DT-Joint
only marginally outperforms the DT baseline and performs
significantly worse than SS-DT. In addition, the right panel
shows that SS-CQL, SS-DT and SS-TD3BC all perform
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Figure 4.1: Return (average and standard deviation) of
SS-ORL agents trained on the D4RL medium-expert
datasets. The SS-ORL agents are able to utilize the unla-
belled data to improve their performance upon the baselines
and even match the performance of the oracle agents.
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Figure 4.2: Relative performance gap of SS-ORL agents
and corresponding baselines on hopper- and walker-
medium-expert datasets.
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Figure 4.3: Relative performance gap of SS-ORL agents
and corresponding baselines with 1% labelled trajectories.

much better than DT-Joint. The implementation details
of DT-Joint can be found in Appendix F.
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Figure 4.4: (L) SS-DT significantly outperforms
DT-Joint on the hopper-medium-expert dataset.
The latter only slightly improves upon the baseline. (R)
SS-CQL and SS-TD3BC also outperform DT-Joint.

Self-Training for the IDM We consider a variant of
SS-ORLwhere self-training is used to train the IDM. Recall
that self-training involves an initial training round using only
the labelled data, followed by multiple additional rounds
using the augmented training sets. After each training round,
we need to measure the uncertainties of our action predic-
tions and add the most ones into the training set. To do this,
we use the ensemble based method (Lakshminarayanan
et al., 2017) where we train m independent stochastic IDMs.
We model the action distribution as the mixture of those m
estimated distributions. The whole self-training algorithm
is presented in Algorithm 2 in Appendix E.

We compare SS-CQL, SS-DT with their self-training
variant on the walker-medium-expert datasets. We
have tested the variant with ensemble size 2 and 3, and with
3 and 5 augmentation rounds. As before, we use the coupled
setup with 6 different q varying between 10 and 100. To
take account of different models and different data setups,
we report the 95% stratified bootstrap confidence intervals
(CIs) of the interquartile mean (IQM)1 of the return for all
these cases and training instances (Agarwal et al., 2021).
We use 50000 bootstrap replications to generate the CIs.
Compared with the other statistics like the mean or the
median, the IQM is robust to outliers and also a good
representative of the overall performance. The stratified
bootstrapping is a handy tool to obtain CIs with descent cov-
erage rate, even if one only have a small number of training
instances per setup. We refer the readers to Agarwal et al.
(2021) for the complete introduction. Figure 4.5 plots the
95% bootstrap CIs of the IQM return across all the setups.
Our approach notably outperforms the other variants.

It is intriguing to investigate the MSE of action predictions
for different IDMs. Figure 4.6 shows that our IDM is fa-
vorable when the labelled data quality is relatively high
(q = 70, 90 and 100), yet it is comparable with the self-
training IDMs when the labelled data quality is low or mod-
erate (q = 10, 30 or 50). Interestingly, we have found that
the final performance of SS-ORL still clearly outperforms
in those cases, see Figure 4.7.

1The interquartile mean of a list of sorted numbers is the mean
of the middle 50% numbers.
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Figure 4.5: The 95% bootstrap CIs of the IQM return ob-
tained by the SS-ORL agents and the variants with self-
training IDMs.
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Figure 4.6: The action prediction MSE of different IDMs.
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Figure 4.7: The 95% bootstrap CIs of the IQM return, when
the labelled data is of low or moderate quality.
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Figure 4.8: The 95% bootstrap CIs of the IQM return of the
SS-ORL agents with different IDM architectures.

IDM Architecture We consider the multi-transition IDM
with transition window size k = 0, 1, 2, respectively. To
verify the influence of future states on predicting the actions,
we also consider the variant that incorporates future k tran-
sitions. We refer to those models symmetric IDMs and our
IDMs asymmetric IDMs. When k = 2, the symmetric IDM
will predict at using the states st−2, . . . , st, st+1, . . . , st+3,
while our asymmetirc IDM will only use states up to st+1.
We train SS-CQL and SS-DT agents on the walker-
medium-expert datasets using those IDMs. Again, we
use the coupled set with 6 different values of q. Figure 4.8
plots the 95% bootstrap CIs of the IQM return across all the
setups and training instances. The symmetric IDMs perform
comparably as the asymmetric IDMs, providing empirical
justifications that the future states beyond timestep t + 1
are independent of at given state st+1, see Appendix D. Be-
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Figure 4.9: The 95% bootstrap CIs of the IQM return of the
SS-ORL agents with varying labelled data quality.

0.90 0.96 1.02 1.08
Unlabelled - High
Unlabelled - Med
Unlabelled - Low

Normalized Return

Figure 4.10: The 95% bootstrap CIs of the IQM return of
the SS-ORL agents with varying unlabelled data quality.

sides, the choice k = 1 clearly wins the other two options.

4.3 Albation Study for Data-Centric Properties (Q3)

We conduct experiments to investigate the performance of
SS-ORL in variety of data settings. To enable a systematic
study, we depart from the coupled setup in Section 4.1 and
consider a decoupling of Plabelled and Punlabelled. We will
vary four configurable values: the quality and size of both
the labelled and unlabelled trajectories, individually while
keeping the other values fixed. We examine how the perfor-
mance of the SS-ORL agents change with these variations.

Quality of Labelled Data We divide the offline trajectories
into 3 groups, whose returns are the bottom 0% to 33%,
33% to 67%, and 67% to 100%, respectively. We refer to
them as Low, Medium, and High groups. We evaluate the
performance of SS-ORL when the labelled trajectories are
sampled from three different groups: Low, Med, and High.
To account for different environment, offline RL methods,
and the unlabelled data qualities, we consider a total of 12
cases that cover:

• 2 datasets hopper-medium-expert and walker-
medium-expert,

• 2 agents SS-CQL and SS-DT, and

• 3 quality setups where the unlabelled trajectories are sam-
pled from Low, Med, and High groups.

Both the number of labelled and unlabelled trajectories
are set to be 10% of the total number of offline trajectories.
Figure 4.9 report the 95% bootstrap CIs of the IQM return
for all the 12 cases and 5 training instances per case. Clearly,
as the labelled data quality goes up, the performance of
SS-ORL significantly increases by large margins.

Quality of Unlabelled Data Similar to the above experi-
ment, we sample the unlabelled trajectories from one of the
three groups, and train the SS-ORL agents under 12 differ-
ent cases where the labelled data quality varies. Figure 4.10
reports the 95% bootstrap CIs of the IQM return. The perfor-
mance of SS-ORL agents increases as the unlabelled data
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quality increases, and using high quality unlabelled data
significantly outperforms the other two cases.

Size of Labelled Data We vary the number of labelled
trajectories as 10%, 25%, and 50% of the offline dataset
size, while the number of unlabelled trajectories is fixed to
be 10%. We train SS-CQL and SS-DT on the walker-
medium-expert dataset under 9 data quality setups,
where the labelled and unlabelled trajectories are respec-
tively sampled from Low, Med, and High groups. Fig-
ure 4.11 plots the CIs of the IQM return. Specifically, we
consider the results aggregated over all the cases, and also
for each individual labelled data quality setup. For all these
cases, the performance of both SS-CQL and SS-DT remain
relatively consistent regardless of the number of labelled
trajectories. The evaluation performance of SS-CQL and
SS-DT over the course of training for each individual envi-
ronment and data setup, can be found in Figure G.1.

Size of Unlabelled Data As before, we vary the percent-
age of unlabelled trajectories as 10%, 25%, and 50%, while
fixing the labelled data percentage to be 10%. We use the
same data quality setups as in the previous experiment. Fig-
ure 4.12 reports the 95% bootstrap CIs of the IQM return.
Interestingly, we found that SS-DT and SS-CQL respond
slightly differently. SS-CQL is relatively insensitive to
changes in the size of the unlabelled data, as is SS-DT
when the labelled data quality is low or moderate. However,
when labelled data is of high quality, the performance of
SS-DT deteriorates as the unlabelled data size increases.
To gain a better understanding of this phenomenon, we in-
vestigate the performance for SS-DT for each of the 9 data
quality setups. As shown in Figure G.2a, when the labelled
data is of high quality but the unlabelled data is of lower
quality, growing the unlabelled data size harms the perfor-
mance. Our intuition is that, in these cases, the combined
dataset will have lower quality than the labelled dataset, and
supervised learning approaches like DT can be sensitive to
this. More detaileds can be found in Figure G.2.

4.4 The Choice of Offline RL Algorithm (Q4)

For a chosen offline RL method, the relative perfor-
mance gap between the corresponding SS-ORL and ora-
cle agents, as defined in Equation (2), illustrates how sen-
sitive to missing actions this offline RL method is. We
train SS-CQL, SS-DT and SS-TD3BC on 6 datasets (the
hopper,walker environments with medium-expert,
medium, and medium-replay datasets), using the cou-
pled setup as in Section 4.1 with 6 different values of q:
10, 30, 50, 70, 90 and 100. The aggregated results, shown in
Figure 4.13, indicate that SS-TD3BC has smallest relative
performance gap. This suggests that TD3BC is less sensitive
to missing actions then both DT and CQL. The performance
gaps of SS-CQL and SS-DT are more similar, suggesting
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Figure 4.11: The 95% bootstrap CIs of the IQM return of
SS-DT and SS-CQL when the size of the labelled data
changes. We fix the unlabelled data size to be 10% of the
offline dataset size.
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Figure 4.12: The 95% bootstrap CIs of the IQM return of
SS-DT and SS-CQL when the size of the unlabelled data
changes. We fix the labelled data size to be 10% of the
offline dataset size.
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Figure 4.13: The 95% bootstrap CIs of the the relative
performance gap of the SS-ORL agents instantiated with
different offline RL methods.

that DT and CQL have similar sensitivity to missing actions.

5 Conclusion
We proposed a novel semi-supervised setup for offline RL
where we have access to trajectories with and without action
information. For this setting, we introduced a simple multi-
stage meta-algorithmic pipeline. Our experiments identified
key properties that enable the agents to leverage unlabelled
data and show that near-optimal learning can be done with
only 10% of the actions labelled for low-to-moderate quality
trajectories. Our work is a step towards creating intelligent
agents that can learn from diverse types of auxiliary demon-
strations like online videos, and it would be interesting to
study other heterogeneous data setups for offline RL in the
future, including reward-free or pure state-only settings.
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A Experiment Details
In this section, we provide more details about our experiments. For all the offline RL methods we consider, we use our own
implementations adopted from the following codebases:

DT https://github.com/facebookresearch/online-dt
TD3BC https://github.com/sfujim/TD3_BC
CQL https://github.com/scottemmons/youngs-cql

We use the stochastic DT proposed by Zheng et al. (2022). For offline RL, its performance is similar to the deterministic
DT (Chen et al., 2021). The policy parameter is optimized by the LAMB optimizer (You et al., 2019) with ε = 10−8.
The log-temperature parameter is optimized by the Adam optimzier (Kingma & Ba, 2014). The architecture and other
hyperparameters are listed in Tabel A.1. For TD3BC, we optimize both the critic and actor parameters by the Adam optimizer.
The complete hyperparameters are listed in Table A.2. For CQL, we also use the Adam optimizer to optimize the critic, actor
and the log-temperature parameters. The architecture of critic and actor networks and the other hyperparameters are listed in
Table A.3. We use batch size 256 and context length 20 for DT, where each batch contains 5120 states. Correspondingly, we
use batch size 5120 for CQL and TD3BC.

Hyperparameter Value

number of layers 4
number of attention heads 4
embedding dimension 512
context length 20
dropout 0.1
activation function relu
batch size 256
learning rate for policy 0.0001
weight decay for policy 0.001
learning rate for log-temperature 0.0001
gradient norm clip 0.25
learning rate warmup linear warmup for 104 steps
target entropy −dim(A)
evaluation return-to-go 3600 Hopper

5000 Walker
6000 HalfCheetah

Table A.1: The hyperparameters used for DT.

Hyperparameter Value

discount factor 0.99
target update rate 0.005
policy noise 0.2
policy noise clipping (−0.5, 0.5)
policy update frequency 2
critic learning rate 0.0003
critic hidden dim 256
critic hidden layers 2
actor learning rate 0.0003
actor hidden dim 256
actor hidden layers 2
activation function ReLU
regularization parameter α 2.5

Table A.2: The hyperparameters used for TD3BC.

https://github.com/facebookresearch/online-dt
https://github.com/sfujim/TD3_BC
https://github.com/scottemmons/youngs-cql
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Hyperparameter Value

discount factor 0.99
target update rate 0.005
critic learning rate 0.0003
critic hidden dim 256
critic hidden layers 3
actor learning rate 0.0001
actor hidden dim 256
actor hidden layers 3
log-temperature learning rate 0.0003
activation function ReLU
number of sampled actions 10
target entropy −dim(A)
minimum Q weight value 5
Lagrange False
Importance Sampling True

Table A.3: The hyperparameters used for CQL.

B The Return Distributions of the D4RL Datasets
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Figure B.1: The distributions of the normalized returns of the D4RL datasets.

C Additional Experiments Under the Coupled Setup

C.1 Experiments on medium and medium-replay and all halfcheetah Datasets

We conduct experiments on the medium and medium-replay datasets of D4RL benchmark for the hopper and
walker environments, using the same setup as in Section 4.1. Figure C.1 and C.2 reports the results. For completeness,
we also report the results on medium-expert, medium, and medium-replay datasets for the halfcheetah
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environment in Figure C.3. We found relatively suboptimal results for DT on the halfcheetah environment, consistent
with prior results in Zheng et al. (2022). The general trend is as the same as that in Figure 4.1. We note that the results
on the halfcheetah-medium dataset are less informative than the others. This is because the data distributions of
halfcheetah-medium is very concentrated, similar to a Gaussian distribution with small variance, see Figure B.1. In
such a case, varying the value of q does not drastically change the labelled data distribution. To verify our hypothesis, we
conduct experiments on a subsampled dataset in the next subsection.
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Figure C.1: The return (average and standard deviation) of SS-ORL agents trained on the D4RL medium datasets for
hopper and walker.
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Figure C.2: The return (average and standard deviation) of SS-ORL agents on the D4RL medium-replay datasets for
hopper and walker.
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Figure C.3: The return (average and standard deviation) of SS-ORL agents on the halfcheetah D4RL datasets.

C.2 Performance of SS-ORL on a Subsampled Dataset with Wide Return Distribution

One may notice that for the hopper-medium-replay and walker-medium-replay datasets, SS-ORL does not
catch up with the oracle as quickly as on the other datasets as q increases. Our intuition is that the return distributions of
these two datasets concentrate on extremely low values, as shown in Figure B.1. In our experiments, the labelled trajectories
for those two datasets have average return small than 0.1 even when q = 70. In contrast, the return distributions of the other
datasets concentrate on larger values. In contrast, for the other datasets, increasing the value of q will greatly change the
returns of labelled trajectories, see Table C.1.

dataset q=10 q=30 q=50 q=70 q=90 q=100

hopper-medium-replay 0.007 0.022 0.05 0.074 0.109 0.149
walker2d-medium-replay -0.002 0.005 0.023 0.048 0.087 0.156

halfcheetah-medium-replay 0.001 0.092 0.179 0.202 0.269 0.275
hopper-medium 0.231 0.310 0.355 0.388 0.418 0.443

walker2d-medium 0.135 0.287 0.44 0.557 0.599 0.618
halfcheetah-medium 0.361 0.383 0.397 0.396 0.406 0.405

hopper-medium-expert 0.252 0.341 0.394 0.451 0.594 0.645
walker2d-medium-expert 0.201 0.469 0.605 0.732 0.791 0.827

halfcheetah-medium-expert 0.377 0.397 0.405 0.537 0.604 0.638

Table C.1: The average return of the labelled trajectories in our experiments. Results aggregated over 5 seeds.

To demonstrate the performance of SS-ORL on dataset with a more wide return distribution, we consider a subsampled
dataset for the walker environment generated as follows.
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1. Combine the walker-medium-replay and walker-medium datasets.

2. Let Rmin and Rmax denote the minimum and maximum return in the dataset. We divide the trajectories into 40
bins, where the maximum returns within each bin are linear spaced between Rmin and Rmax. Let ni be the number
trajectories in bin i.

3. We randomly sample 1000 trajectories. To sample a trajectory, we first first sample a bin i ∈ [1, . . . , 40] with weights
proportional to 1/ni, then sample a trajectory uniformly at random from the sampled bin.

Figure C.4 plots the return distribution of the subsampled dataset. It is wide and has 3 modes. We run the same experiments
as before on this subsampled dataset, and Figure C.5 plots the results. The general trend is the same as we have found in the
above experiments.
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Figure C.4: The density of a randomly subsampled dataset of the walker environment.
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Figure C.5: The return (average and standard deviation) of SS-ORL agents on the subsampled dataset.

C.3 Results on Low Percentages of Labelled Data

We present the results when the number of the labelled trajectories are 1%, 3%, 5%, and 8% of the total offline dataset size.
Figure C.6 plots the absolute returns and Figure C.7 plots the relative performance gaps. We observe the same trend as the
experiments in Section 4.1.
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Figure C.6: The return (average and standard deviation) of SS-ORL agents trained on the walker-medium-expert
dataset, when 1%, 3%, 5% and 8% of the offline trajectories are labelled.
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Figure C.7: The relative performance gap of the SS-ORL agents and corresponding baselines when 1%, 3%, 5% and 8% of
the offline trajectories are labelled.

D Analysis of the Multi-Transition Inverse Dynamics Model
Given all the past states, we can write

P(at|st+1, . . . , s1) =
P(at, st+1, . . . , s1)

P(st+1, . . . , s1)

=
P(st+1|at, st, . . . , s1)P(at|st, . . . , s1)

P(st+1|st, . . . , s1)

=
P(st+1|at, st)P(at|st, . . . , s1)

P(st+1|st, . . . , s1)

=
P(st+1|at, st)P(at|st, . . . , s1)∫

a∈A P(st+1|at, st)P(at|st, . . . , s1)
,

(3)

where the last two lines follow from the the Markovian transition property P(st+1|at, st, . . . , s1) = P(st+1|at, st) inherent
to a Markov Decision Process.

Let β denote the behavior policy. If β is Markovian, then we have P(at|st, . . . , s1) = β(at|st) and it holds that

P(at|st+1, . . . , s1) =
P(st+1|at, st)β(at|st)∫

a∈A P(st+1, a|st)β(at|st)
= P(at|st+1, st).

(4)
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Similarly, if β is non-Markovian and takes account of the previous k states as well, we have

P(at|st+1, . . . , s1) = P(at|st+1, st, . . . , st−k). (5)

While the past work commonly models P(at|st+1, st) (Pathak et al., 2017; Burda et al., 2019; Henaff et al., 2022), in practice,
the offline dataset might contain trajectories generated by multiple behaviour policies and it is unknown if any of them is
Markovian. Therefore, choosing k > 0 allows us to take into account past information before timestep t. Moreover, the past
work usually predicts at via a deterministic function of (st, st+1), which implicitly assumes a deterministic environment. In
the contrary, our approach accounts for the stochastic environment.

A natural question to ask is whether we should incorporate any future states such as st+2. Figure D.1 depicts the graphical
model of the state transitions under a MDP. It is easy to see that given st and st+1, at is independent of st+2 and all the
future states (Koller & Friedman, 2009).

st−k

at−k

st−1

at−1

st

at

st+1

at+1

st+2

at+2

. . . . . .

. . .

. . .

. . .

Figure D.1: Graphical model of a Markovian behavior policy (curved) within the transition dynamics of an MDP (straight).
For non-Markovian behavioral policies, we will have additional arrows from st−k to at for k > 0.

In the experiments in Section 4.2, we empirically verify that including future states do not help predicting the actions.
Meanwhile, the transition window size k is a hyperparameter we need to choose. For all our experiments, we use k = 1 and
hence incorporate information about st−1 as well. We ablate this choice in Section 4.2, see Figure 4.8.
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E Self-Training for IDM
We present the self-training algorithm used to train the IDM in Algorithm 2. In each training round, we randomly sample
10% of the training data as the validation set. During the training of each individual IDM, we select the model that yields
the best validation error in 100k iterations.

Algorithm 2: Self-Training for the Inverse Dynamics Model

1 Input: labelled data Dlabelled, unlabelled data Dunlabelled, IDM transition size k, ensemble size m, number of
augmentation rounds N
// initialize the training set

2 D ← Dlabelled
// train m independent IDMs using the labelled data under the randomness of

initialization and data shuffling

3 θ̂i ← argminθ
∑

(at,st,−k) in D [− log ϕθ(at|st,−k)], i ∈ [m]

// compute the augmentation size
4 naug ← |Dunlabelled| /N
5 for round 1, . . . , N do

// compute the estimation uncertainty
6 for every (at, st,−k) ∈ Dunlabelled do
7 νt ← variance of the Gaussian mixture 1

m

∑m
i=1N

(
µθ̂i

(st,−k), Σθ̂i
(st,−k)

)
// move examples with lowest uncertainties into the training set

8 Dsubset ← {(at, st,−k)|νt among the lowestnaug in Dunlabelled}
9 D ← D

⋃
Dsubset

10 Dunlabelled ← Dunlabelled\Dsubset

// train IDMs again

11 θ̂i ← argminθ
∑

(at,st,−k) in D [− log ϕθ(at|st,−k)], i ∈ [m]

12 Output: θ̂1, . . . , θ̂m

F Implementation Details of DT-Joint
Inspired by GATO, the multi-task and multi-modal generalist agent proposed by Reed et al. (2022), we consider DT-Joint,
a variant of DT that can incorporate the unlabelled data into policy training. DT-Joint is trained on the labelled and
unlabelled data simultaneously. The implementation details are:

• We form the same input sequence as DT, where we fill in zeros for the missing actions for unlabelled trajectories.

• For the labelled trajectories, DT-Joint predicts the actions, states and rewards; for the unlabelled ones, DT-Joint
only predicts the states and rewards.

• We use the stochastic policy as in online decision transformer (Zheng et al., 2022) to predict the actions.

• We use deterministic predictors for the states and rewards, which are single linear layers built on top of the Transformer
outputs.

Let gt =
∑|τ |i

t′=t rt′ be the return-to-go of a trajectory τ at timestep t. Let HPlabelled
θ denotes the policy entropy included on

the labelled data distribution. For simplicity, we assume the context length of DT-Joint is 1, and Equation (6) shows the
training objective of DT-Joint. (We refer the readers to Zheng et al. (2022) for the formulation with a general context
length and more details.)

min
θ

E(at,st,rt,gt)∼Plabelled

{
− log π(at|st, gt, θ) + λs∥st − ŝt(θ)∥22 + λr∥rt − r̂t(θ)∥22

}
+ E(st,rt,gt)∼Punlabelled

{
λs∥st − ŝt(θ)∥22 + λr∥rt − r̂t(θ)∥22

}
s.t. HPlabelled

θ [a|s, g] ≥ ν

(6)
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IQM

Normalized Return
Figure F.1: The 95% stratified bootstrap CIs of the interquartile mean of the returns obtained by DT-Joint agents, with
different combinations of regularization parameters.

The constant ν, λs and λr are prefixed hyper-parameters, where ν is the target policy entropy, and λs and λr are regularization
parameters used to balance the losses for actions, states, and rewards. We use ν = −dim(A) as for DT (see Appendix A). To
choose the regularization parameters λs and λr for DT-Joint, we test 16 combinations where λs and λr are 1.0, 0.1, 0.01
and 0.001 respectively. We run experiments as in Section 4.1 for q = 10, 30, 50, 70, 90, 100, and compute the confidence
intervals for the aggregated results. Figure F.1 shows that λs = 0.01 and λr = 0.1 yield the best performance, and we use
them in our experiments for Figure 4.4.
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G Influences of the Labelled and Unlabelled Data Size
Figure G.1 plots the average return of SS-DT and SS-CQL when we vary the number of labelled trajectories while fixing the
number of unlabelled trajectories. As described in Section 4.3, we consider 9 data setups where the labelled and unlabelled
trajectories are sampled from Low, Medium and High groups. In all the plots, L x H denotes the setup where the labelled
data are sampled from Low group and the unlabelled data are sampled from High group. Similarly, Figure G.2 plots the
results when we vary the number of unlabelled trajectories, while the number of labelled ones is fixed.
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(a) Results of SS-DT.
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(b) Results of SS-CQL.

Figure G.1: The return (average and standard deviation) of SS-DT and SS-CQL agents trained on the walker-
medium-expert datasets with different sizes of labelled data. The unlabelled data size is fixed to be 10% of the
offline dataset size. Results aggregated over 5 instances with different seeds.
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(a) Results of SS-DT.
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(b) Results of SS-CQL.

Figure G.2: The return (average and standard deviation) of SS-DT and SS-CQL agents trained on the walker-
medium-expert datasets with different sizes of unlabelled data. The labelled data size is fixed to be 10% of the
offline dataset size. Results aggregated over 5 instances with different seeds.


