
What Limits Agentic Systems Efficiency?

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large Language Models (LLMs), such as OpenAI-o1 and DeepSeek-R1, have1

demonstrated strong reasoning capabilities. To further enhance this process, recent2

agentic systems, such as Deep Research, incorporate web interactions into LLM3

reasoning to mitigate uncertainties and reduce potential errors. However, existing4

research predominantly focuses on reasoning performance, often neglecting the5

efficiency of these systems. In this work, we present a comprehensive empirical6

study that identifies efficiency bottlenecks in web-interactive agentic systems. We7

decompose end-to-end latency into two primary components: LLM API latency8

and web environment latency. Our findings show that both components signifi-9

cantly contribute to the overall system latency. To improve latency, we propose10

SpecCache, a caching framework augmented with speculative execution to reduce11

web environment overhead. Extensive evaluations on two standard benchmarks12

demonstrate that our approach reduces web environment overhead by up to 3.51×,13

without compromising agentic system performance.14

1 Introduction15

Large Language Models (LLMs) have become a cornerstone of modern artificial intelligence, achiev-16

ing outstanding performance across various downstream tasks. Their strengths in natural language17

understanding [52], and text generation [13, 64] have enabled significant breakthroughs across disci-18

plines. To further enhance performance, recent advances in large-scale reinforcement learning (RL)19

have enabled large language models to demonstrate strong long-horizon reasoning abilities. As exam-20

ples, OpenAI-o1 [37] and DeepSeek-R1 [21] leverage RL methods like PPO [42] and GRPO [43] to21

strengthen problem-solving capabilities, equipping them for complex reasoning tasks [22, 38].22

Although reasoning models can generate step-by-step reasoning chains, their reasoning processes23

remain constrained by insufficient knowledge [25, 39]. To address this limitation, recent work has24

proposed agentic systems that combine web interaction with LLM-based reasoning to retrieve external25

knowledge and access up-to-date information [36]. Existing web-interactive agentic systems can26

be categorized into the following two types: (1) employing prompt engineering to inject external27

knowledge into LLMs for complex task completion [31, 56]; (2) leveraging reinforcement learning28

to integrate search capabilities into LLMs [11, 47, 26]. While existing web-interactive agentic29

systems primarily focus on improving the reasoning capabilities of LLMs for complex tasks [54, 56],30

they largely neglect system efficiency. The latency of agentic systems is critical for applications31

with low-latency service-level objectives (SLOs), as it directly affects service reliability and user32

satisfaction [53, 16].33

To address this gap, we systematically benchmark the end-to-end latency of web-interactive agen-34

tic systems. We begin by sampling two queries from the WebWalkerQA [56] and Frames [28]35

benchmarks to evaluate the latency of a single iteration of the Reflexion-based agentic system [45].36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

WebWalkerQA Frames
Benchmark

0

5

10

15

20

La
te

nc
y

(s
)

o4-mini
Web Env

Figure 1: Average latency break-
down per iteration of a Reflexion-
based agentic system [45] for
sampled question answering.

As shown in Figure 1, both the LLM API and web environment37

contribute substantially to the latency of web-interactive agentic38

systems. Accordingly, we separately analyze the latency intro-39

duced by the LLM API and the web environment. To identify40

key contributors to LLM API latency, we analyze the impact of41

several factors, including geographic region (e.g., request ori-42

gin locations), output token length, model type (e.g., reasoning43

vs. non-reasoning), and API deployment mode (e.g., serverless44

vs. dedicated) across 15 models from 5 providers: Anthropic,45

DeepSeek, Google, OpenAI, and Together AI (§2.1). To mea-46

sure web environment latency, we use the WebWalkerQA bench-47

mark [56], which centers on queries related to international or-48

ganizations, conferences, and educational institutions, making49

it well-suited for assessing information retrieval performance50

(§2.2).51

Our empirical analysis reveals the following important observations: (1) High variability across 1552

models and 5 providers is observed in LLM response latency. Latency for fixed-length requests may53

differ by up to 69.21× based on the time they are issued (§2.1); (2) LLM response latency variance54

persists across dates and locations (§2.1); (3) Web environment latency can contribute as much as55

45.6% to the overall latency of agentic systems (§2.2).56

Motivated by the above observations, this paper focuses on reducing web environment latency as57

the primary strategy to improve the overall latency of agentic systems. This focus is grounded in58

the expectation that, as LLM deployment infrastructures rapidly advance, scheduling overheads and59

other system-level inefficiencies will continue to diminish, leading to lower LLM latency without60

compromising, and potentially even enhancing, model performance [2, 17, 35]. To reduce the web61

environment latency, we propose SpecCache (§3), a novel caching framework that uses speculative62

execution [30] to mitigate latency in web environments. Specifically, SpecCache implements a63

caching mechanism that stores LLM-generated actions along with a speculative execution path, which64

uses a draft model to predict the LLM’s next action and proactively populate the action cache. Using65

a draft model unlocks a new dimension that allows environment interaction costs to be concealed by66

overlapping them with model reasoning. Furthermore, SpecCache is designed upon the ReAct [60]67

abstraction; therefore, SpecCache can be applied to not only web-interactive agentic systems but68

also other turn-based agentic systems that interact with external environments.69

In summary, our key contributions are as follows:70

• We present a comprehensive end-to-end latency analysis of web-interactive agentic systems,71

decomposing latency into LLM API and web environment components. Our findings show72

that both contribute significantly to overall latency.73

• To reduce web environment overhead, we propose SpecCache, a caching framework74

that stores a small set of LLM-generated actions and corresponding results. In addition,75

SpecCache employs a model-driven strategy to enable the overlap of environment interac-76

tion costs with model reasoning.77

• We conduct extensive experiments to demonstrate the effectiveness and efficiency of78

SpecCache. Compared with existing agentic systems on WebWalkerQA and Frames,79

SpecCache achieves up to a 3.51× reduction in web environment overhead while maintain-80

ing performance. Our method does not change the results produced by the agentic system, as81

the caching framework operates on a separate path and does not interfere with the backbone82

LLM or the agentic system’s reasoning path.83

2 Latency Analysis84

Given that both the LLM API and the web environment significantly contribute to the latency of85

web-interactive agentic systems (Figure 1), we analyze their impacts separately to gain deeper insight.86

We begin with a detailed examination of LLM API latency in §2.1, followed by an analysis of web87

environment performance in §2.2.88

2

Llama-3.1-70B Llama-3.1-405B Qwen2.5-72B QwQ-32B GPT-4o Gemini-1.5-Pro Claude-3.7 DeepSeek-Chat100

101

102

103

La
te

nc
y

(s
)

Figure 2: In this figure, we evaluate the end-to-end latency of API calls offered by five AI companies
by querying the LLMs every hour. The evaluated models include: (i) Together AI: Llama-3.1-70B,
Llama-3.1-405B, Qwen2.5-72B, QwQ-32B; (ii) OpenAI: GPT-4o; (iii) Google: Gemini-1.5-Pro; (iv)
Anthropic: Claude-3.7-Sonnet. (v) DeepSeek: DeepSeek-Chat. This figure shows that LLM API
response times exhibit high variance, including occasional outliers.

2025-07-23 2025-07-24 2025-07-25 2025-07-26 2025-07-27100

101

102

103

La
te

nc
y

(s
)

Llama-3.1-70B
Llama-3.1-405B
GPT-4o

Figure 3: In this figure, we evaluate the end-to-end latency of API calls across different dates. Due to
space constraints, we report results from three representative models: Llama-3.1-70B and Llama-3.1-
405B provided by Together AI, and GPT-4o from OpenAI. This figure illustrates latency variance
over time for various models, with fixed input prompts and a uniform output length.

2.1 LLM API89

Although many popular models, such as LLaMA [50], Qwen [58], and DeepSeek [33], are open-90

weight, most agentic systems access LLMs through APIs in practice for two primary reasons. First,91

leading models, such as OpenAI’s GPT-4o [24], Anthropic’s Claude 3.5 [3], and Google’s Gemini92

2.5 [19], remain closed-source and are accessible only via proprietary APIs. Second, the substantial93

cost and technical complexity of deploying and operating LLMs at scale pose a major barrier for94

agentic system users [4, 27]. Therefore, in this section, we monitor API call latency over one week to95

evaluate its impact on agentic system performance.96

Setup. Our experiments evaluate LLM API calls from the following providers and their respective97

models: (i) Anthropic [2]: Claude-3.7-Sonnet, (ii) DeepSeek [17]: DeepSeek-Chat, (iii) Google [20]:98

Gemini-1.5-Pro, (iv) OpenAI [35]: GPT-4o, and (v) Together AI [1]: Llama-3.1-70B, Llama-3.1-99

405B, Qwen2.5-72B, and QwQ-32B. Unless otherwise specified, all experiments use identical input100

questions (listed in Appendix A), generate up to 512 output tokens, and are conducted with top-p = 1101

and temperature = 0. All experiments are conducted on a CloudLab [18] instance from Wisconsin.102

Experiments are conducted between July 23 and July 27, 2025.103

High Variability in Latency. We begin with a five-day study evaluating the end-to-end latency of104

LLM APIs across providers, including Together AI [1], OpenAI [35], Google [20], and Anthropic [2].105

Each provider is called once per hour for five consecutive days to collect measurement data. Figure 2106

illustrates the considerable variance in API latency. For example, the response time for Llama-3.1-107

405B provided by Together AI [1] ranges from 6.50 seconds to 449.89 seconds. As shown in Figure 3,108

LLM API call latency exhibits variance over all five days, with fluctuations differing from day to109

day. High variance in LLM API call latency may arise from constrained GPU resources on the110

provider side, leading to queuing delays [44], or from performance noise in the cloud infrastructure111

hosting the model [15, 46]. Due to the variability in LLM API call latency, larger models can112

3

Q1 Q2 Q3 Q4102

103

104

105

To
ke

ns

Qwen2.5-72B
QwQ-32B
GPT-4o
Gemini-1.5-Pro

(a) This figure shows the number of tokens generated for answering Q1–Q4 in Appendix B across four models:
Qwen2.5-72B, QwQ-32B, GPT-4o, and Gemini-1.5-Pro. It highlights that QwQ-32B produces significantly more
output tokens than the others when solving the sampled math problems.

Q1 Q2 Q3 Q4100

101

102

103

La
te

nc
y

(s
)

Qwen2.5-72B
QwQ-32B
GPT-4o
Gemini-1.5-Pro

(b) This figure reports the latency for answering Q1–Q4 in Appendix B across four models: Qwen2.5-72B,
QwQ-32B, GPT-4o, and Gemini-1.5-Pro. This indicates that QwQ-32B exhibits the highest end-to-end latency
among the evaluated models.
Figure 4: This figure shows the LLM API latency and the number of generated tokens for answering
Q1–Q4 from Appendix B. Following prior work [7], we set the temperature to 0.6 and top-p to 0.95
when solving the math problems. The results show that output token length significantly affects LLM
API end-to-end latency.

occasionally exhibit lower latency than smaller ones. For example, on July 24, 2025, Llama-113

3.1-405B had lower latency than Llama-3.1-70B. While Gemini-1.5-Pro maintains low variability114

(3.71%, coefficient of variation), the pronounced variability in Llama-3.1-70B and GPT-4o (135.21%115

and 36.81%, respectively) poses challenges for consistent performance in latency-sensitive tasks,116

including language agentic systems [60, 45] and code generation [12] which rely on LLM APIs.117

Output Tokens Affect Latency. Unlike the previous section which used fixed input and output118

token limits, we next randomly sample four questions from the MATH dataset [22] (listed in Ap-119

pendix B) and allow the LLMs to generate unrestricted-length responses. As shown in Figure 4,120

although QwQ-32B is faster than Qwen2.5-72B per output token (Figure 2), it produces more output121

tokens due to the reasoning process, leading to higher overall latency. Notably, both QwQ-32B and122

Gemini-1.5-Pro are reasoning-oriented models. While Gemini-1.5-Pro is slower than QwQ-32B123

with fixed input and output tokens, it demonstrates greater efficiency on sampled math questions by124

generating fewer output tokens per answer. Therefore, learning to generate correct answers using125

fewer tokens is an important consideration for model training.126

Due to limited space, we present more experimental results from varying model types, request127

locations, and number of output tokens in Appendix E. The following insights are derived from128

our extensive experiments: (1) With the fixed input question and output tokens, end-to-end API129

latency can vary by up to 69.21×, resulting in an unstable user experience; (2) Moreover, we observe130

variability in LLM API latency across different dates and three geographic regions. Specifically, the131

coefficient of variation in latency for Llama-3.1-70B API calls is 135.21% in Wisconsin, 42.61% in132

South Carolina, and 106.40% in Utah. (3) We observe that the number of output tokens significantly133

affects LLM API latency. Designing large language models that can solve tasks correctly with fewer134

output tokens presents a promising research direction.135

4

0 10 20 30 40 50 60
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Rootpage
Subpages

(a) Latency Distribution

0 200 400 600 800 10001200
Number of Subpages

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Subpages Distribution
Figure 5: The above two CDF figures illustrate the performance characteristics of the web environment
from the WebWalkerQA benchmark [56]. (a) The distribution of latency when fetching root URLs and
subpages, highlighting the initial overhead. (b) The distribution of the number of clickable subpages
available from a root URL, showing a large action space.

2.2 Web Environment136

In this section, we conduct a detailed analysis of the performance characteristics of external tool137

APIs and web crawlers. Our analysis reveals that these components introduce substantial overhead,138

potentially reducing deployment efficiency and diminishing user experience. Moreover, our analysis139

provides the empirical foundation for the caching and prefetching methodology introduced in §3.140

Setup. To understand the performance trade-offs for web-interactive agentic systems operating141

in a real-world environment, we ground our analysis in a practical case study. While gym-like142

environments such as WebArena [67] are valuable for reproducibility, they abstract away the noise143

and performance variability inherent in deploying a live web-interactive language agentic system.144

Therefore, we utilize the WebWalkerQA benchmark [56], which requires agentic systems to perform145

multi-step reasoning and synthesize answers by exploring multiple pages across various real-world146

websites. The benchmark’s focus on knowledge-intensive domains, such as international organiza-147

tions, conferences, and educational institutions, makes it an ideal testbed for evaluating information148

retrieval performance under realistic conditions. We analyze the performance of a Reflexion-based149

agentic system [45] using QwQ-32B as the backbone reasoning model, following the setup in [56].150

Due to resource constraints, we sample 30 tasks from distinct root domains for this case study.151

Web Crawl Latency Limits System Performance. An agentic system’s interaction cycle in a152

ReAct [60] or Reflexion-based agentic system [45] is composed of both reasoning (LLM inference)153

and action (web retrieval). We separately profiled the time spent on reasoning and on actions.154

Figure 5(a) shows the distribution of latencies for fetching and parsing the HTML of root URLs in our155

task sample (this includes various conference domains such as sigchi.org, international organization156

domains such as apec.org, and game producer websites such as rovio.com). As shown in Figure 5(a),157

the median latency is approximately 6 seconds, with a long tail extending to much higher values,158

accounting for as much as 45.6% of the total runtime of the agentic system. One potential solution is159

to use caching techniques [6] to reduce web crawl latency. However, as shown in Figure 5(b), the160

large and diverse space of subpages presents significant challenges for effective caching. Given these161

challenges, we introduce SpecCache in the next section as a solution for reducing web environment162

latency.163

3 SpecCache164

In this section, we will first outline the detailed challenges in designing a caching system aimed at165

reducing web environment overhead (§3.1). Next, we propose a caching framework that reduces166

the environment interaction cost by enabling parallelism between model inference and environment167

interaction, while preserving the original trajectory of the agentic system (§3.2). Finally, we provide168

a detailed discussion of our caching framework (§3.3).169

5

Model
Input

Reasoning

Candidate
Actions

Action

Cache Pool

Observation

Cache Hit
Cache Miss

Draft Model

Target Model

Figure 6: This figure shows the workflow of our SpecCache framework. In each iteration, the model
input is fed to two independent and non-blocking threads, one Reflexion-based thread and one caching
thread aimed at generating candidate actions. The caching thread updates the cache pool with its
candidate actions. When the Reflexion-based thread selects an action, it first queries the cache pool.
If the cache misses, it executes the action, retrieves the corresponding observation, and proceeds to
the next iteration, updating the cache pool with the new action-observation pair.

3.1 Challenges170

In standard LLM agentic system deployments, the agentic system waits for an environment response171

(e.g., a web page load) before invoking the LLM for the next reasoning step, and vice versa. To172

improve efficiency, our goal is to hide this environment interaction cost by overlapping it with model173

reasoning. A natural approach is to develop a caching mechanism that prefetches environment174

responses likely to be needed in future steps. However, designing an effective cache for language175

agentic systems is non-trivial due to the sheer size of the action space. For example, our analysis176

of the WebWalkerQA dataset [56] reveals that each of the 138 root pages contains a median of 81177

clickable subpages (Figure 5(b)), representing possible next actions. This high branching factor makes178

it difficult to accurately anticipate which observations will be needed, presenting a key challenge for179

prefetching and caching strategies aimed at improving runtime efficiency. Naive strategies, such as180

uniform action sampling, would result in a near-zero cache hit rate.181

3.2 Caching Framework182

In this section, we propose a caching and prefetching framework that decouples and overlaps183

model reasoning and environment interaction, significantly reducing wall-clock latency without184

compromising task success rates. Our method is a caching system that employs a model-based185

action-observation cache.186

Action-Observation Cache. The active-observation cache, following an LRU policy, is designed187

to store the outcomes of specific actions taken from a given state (e.g., a webpage). When the target188

LLM decides on an action, it first queries this cache. A cache hit signifies that the action has been189

previously executed, and the corresponding observation is immediately retrieved, bypassing the costly190

interaction with the environment. This on-demand caching of action-observation pairs is crucial for191

accelerating interactions within a session.192

Model-Based Prefetching. To build the action-observation cache, we introduce a model-based193

prefetching scheme. This component of our framework moves beyond reactive caching to proactively194

explore and cache potential future states. Leveraging ideas from speculative execution [10, 30], we195

use a draft model, a smaller LLM running asynchronously with the primary reasoning LLM (the196

target model). The role of the draft model is to predict the future actions that the target model is likely197

to take from the current state.198

The prefetching process unfolds as follows:199

1. Asynchronous Action Prediction: While the target LLM performs reasoning, the draft200

model generates candidate actions (e.g., web crawls), which are executed in parallel.201

2. Asynchronous Caching: The observations resulting from these speculative actions are202

stored in the action-observation cache.203

6

When the target LLM eventually determines its next action, it first consults the cache. If the draft204

model’s prediction is accurate, the observation is already present, and the agentic system can proceed205

instantaneously. This asynchronous prefetching effectively decouples the agentic system’s reasoning206

from the environment’s response time (dashed lines in Figure 6), enabling the design of more efficient207

agentic systems.208

3.3 Discussion209

Our speculative caching approach introduces new trade-offs that balance latency reduction with210

increased compute and environment load. The draft model introduces additional computation for211

running speculative rollouts asynchronously. We complete speculative actions even after the target212

model selects its next move. This preserves useful data in the cache for future steps. In cases where213

speculative actions are not used, the main agentic system flow is not interfered with.214

The principles underpinning our caching and prefetching framework are not limited to web-interactive215

agentic systems. This methodology can be generalized to any turn-based agentic system that operates216

in an environment where the feedback loop constitutes a significant portion of the overall latency. By217

decoupling reasoning from interaction and proactively exploring the action space, our approach offers218

a robust and scalable solution for accelerating a wide range of language agentic system applications219

based on the ReAct-style [60] agentic workflows.220

4 Experiments221

In this section, we begin by detailing our experimental setup (§4.1). We then evaluate our framework’s222

performance on web-based reasoning and retrieval tasks, analyzing its effectiveness in reducing223

end-to-end latency in real-world agentic system deployments (§4.2).224

4.1 Setup225

Agentic Systems. We evaluate a Reflexion-based agentic system using and o4-mini as backbone226

models. These models have demonstrated state-of-the-art performance on web exploration bench-227

marks, outperforming both open-sourced methods [48, 31, 32, 55] and proprietary agentic frameworks.228

For speculative execution, we employ GPT-4.1-mini as draft models.229

Benchmarks. Reasoning agentic systems capable of multi-hop, in-depth exploration of real-world230

web content remain a challenging research area, despite recent progress enabled by more powerful231

models [24, 2, 59]. As highlighted in [56], existing benchmarks such as GAIA [34], MMinA [65],232

and AssistantBench [62] primarily focus on breadth-wise reasoning, and do not sufficiently evaluate233

depth-wise web exploration capabilities.234

We conduct experiments on two benchmarks designed to capture both multi-hop reasoning and235

in-depth web exploration: WebWalkerQA [56] and Frames [28].236

• WebWalkerQA evaluates an agentic system’s ability to perform multi-hop web reasoning over237

a large set of websites. We sample a query from each distinct root URL for our evaluations,238

where the agentic system is provided with the root URL as a starting point.239

• Frames is a benchmark consisting of factual questions that require synthesizing information240

from 2 to 15 Wikipedia pages. To emphasize the multi-hop setting, we select a subset of241

queries that require information from at least 5 distinct sources. The agentic system is242

provided with only a single Wikipedia page as the seed URL.243

We cap the maximum number of iterations per task at 10, where each iteration consists of a reasoning244

step, an action step, and a critique step. Empirically, most tasks are completed within 5-6 iterations.245

Given budget constraints, we sample 10 questions from each benchmark to analyze the LLM and web246

environment overhead in agentic systems, as well as the acceleration achieved through SpecCache.247

Metric. We measure LLM latency for each Reflexion-based iteration across multiple workloads,248

averaging results over five runs. Because our caching mechanism operates asynchronously in a249

separate thread, is non-blocking, and leaves the backbone LLM output unchanged, latency remains250

7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Query

0

5

10

15

20

25

30

La
te

nc
y

(s
)

o4-mini
Web Env

(a) WebWalkerQA

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Query

0

5

10

15

20

25

30

La
te

nc
y

(s
)

o4-mini
Web Env

(b) Frames
Figure 7: This figure presents the iteration-wise latency breakdown of the Reflexion-based agentic
system when answering sampled questions from WebWalkerQA [56] and Frames [28]. We perform
five runs for each sampled question. The sampled questions are listed in Appendix C.

effectively constant in our experiments, with any variance stemming solely from the model APIs.251

Averaging mitigates noise and isolates the effects of environmental bottlenecks and the overhead252

reductions achieved by our approach.253

4.2 Experimental Results254

Figure 7 presents the iteration-wise latency breakdown of o4-mini and the web environment for255

each question sampled from WebWalkerQA [56] and Frames [28]. From Figure 7, we observe256

high API latency variance for o4-mini, and the web environment constitutes a major component of257

the Reflexion-based agentic system, consistent with our empirical findings. We then evaluate the258

acceleration achieved by the proposed SpecCache in Figure 8. As shown in Figure 8, SpecCache259

achieves up to a 3.51× reduction in web environment latency for answering sampled questions. These260

results reveal a new axis for accelerating agentic systems: allocating more compute to asynchronous261

assistant models allows environment overhead to be overlapped with LLM reasoning.262

5 Related Work263

Large Language Models. The Transformer architecture [51] has been successfully applied to a264

wide variety of tasks, including text classification [52, 41], text generation [64, 40], mathematical265

reasoning [14, 22], and code generation [5]. The development of GPT models [8] highlights how266

scaling up language models substantially improves their performance across a range of downstream267

tasks. Inspired by the success of GPT, several large-scale language models have been introduced,268

including LLaMA [50], Gemma [49], Qwen [58], and DeepSeek [33, 21].269

Web-Interactive Agentic Systems and Benchmarks. Recent web-interactive agentic systems,270

including Search-o1 [31], ReSeaerch [11], Search-R1 [26], and WebDancer [55], enhance the reason-271

ing capabilities of large language models by integrating web interaction into their decision-making.272

Concurrently, benchmarks such as GAIA [34], MMinA [65], AssistantBench [62], BrowseComp [54],273

and WebWalker [56] have been proposed to evaluate agentic system performance in real-world web274

environments.275

8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Query

0

2

4

6

8

10

La
te

nc
y

(s
)

w/o cache
SpecCache

(a) WebWalkerQA

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Query

0

2

4

6

8

10

La
te

nc
y

(s
)

w/o cache
SpecCache

(b) Frames
Figure 8: This figure shows the iteration-wise latency breakdown for the agentic systems accelerated
by SpecCache when answering sampled questions from WebWalkerQA [56] and Frames [28]. We
use o4-mini as the target model and GPT-4.1-mini as the draft model. We perform five runs for each
sampled question. The sampled questions are listed in Appendix C.

LLM Inference. A substantial body of systems research has focused on accelerating LLM inference,276

leading to notable advances such as Orca [63], PagedAttention [29], RadixAttention [66], and277

FlashInfer [61]. These approaches target improved LLM inference performance via more efficient278

hardware usage. Another line of work is speculative decoding [10, 30, 57], which accelerates LLM279

inference by employing a lightweight draft model to generate candidate outputs that the larger target280

model later verifies. The concept of speculative decoding builds upon speculative execution [9, 23],281

an optimization widely employed in processors to perform tasks concurrently with verifying their282

correctness. In this work, we generalize speculative execution to agentic systems by predicting283

agentic system actions to reduce web environment overhead.284

6 Limitations and Future Work285

First, we primarily focus on reducing latency arising from the web environment. We leave the286

reduction of LLM API latency and its variance to future work. Secondly, to control for the high287

variance and varying outputs of LLM API calls, we fix the API responses when measuring the288

acceleration achieved by SpecCache. Measuring the end-to-end speedup of the agentic system is left289

for future work. Thirdly, we do not evaluate other types of agentic systems, such as code-based and290

tool-based agentic systems, leaving their analysis for future work. Lastly, we believe a deeper dive291

into the API traffic analysis would be of independent research interest, shedding light on how much292

request batching, query priority scheduling, and LLM execution contribute to the end-to-end latency293

and variance, respectively.294

7 Conclusion295

In this paper, we provide a comprehensive empirical analysis of web-interactive agentic systems. Our296

findings reveal that both the LLM API and the web environment significantly contribute to agentic297

system latency. To reduce agentic system latency, we propose SpecCache, a caching technique298

designed to mitigate web environment overhead. Extensive evaluations demonstrate that SpecCache299

reduces web environment latency by up to 3.51×.300

9

References301

[1] T. AI. Together ai api. https://docs.together.ai/docs/introduction, 2025. Accessed302

2025.303

[2] Anthropic. Anthropic api. https://docs.anthropic.com/en/home, 2025. Accessed 2025.304

[3] Anthropic. Claude 3.5. https://www.anthropic.com/news/claude-3-5-sonnet, 2025.305

Accessed 2025.306

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,307

A. Rabkin, I. Stoica, et al. A view of cloud computing. Communications of the ACM, 53(4):50–308

58, 2010.309

[5] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,310

Q. Le, et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732,311

2021.312

[6] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Computer313

networks and ISDN systems, 30(1-7):107–117, 1998.314

[7] B. Brown, J. Juravsky, R. Ehrlich, R. Clark, Q. V. Le, C. Ré, and A. Mirhoseini. Large language315

monkeys: Scaling inference compute with repeated sampling. arXiv preprint arXiv:2407.21787,316

2024.317

[8] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,318

G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural319

information processing systems, 33:1877–1901, 2020.320

[9] F. W. Burton. Speculative computation, parallelism, and functional programming. IEEE321

Transactions on Computers, 100(12):1190–1193, 2012.322

[10] C. Chen, S. Borgeaud, G. Irving, J.-B. Lespiau, L. Sifre, and J. Jumper. Accelerating large323

language model decoding with speculative sampling. arXiv preprint arXiv:2302.01318, 2023.324

[11] M. Chen, T. Li, H. Sun, Y. Zhou, C. Zhu, H. Wang, J. Z. Pan, W. Zhang, H. Chen, F. Yang,325

et al. Learning to reason with search for llms via reinforcement learning. arXiv preprint326

arXiv:2503.19470, 2025.327

[12] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,328

N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv329

preprint arXiv:2107.03374, 2021.330

[13] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and K. Toutanova. Boolq:331

Exploring the surprising difficulty of natural yes/no questions. arXiv preprint arXiv:1905.10044,332

2019.333

[14] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,334

J. Hilton, R. Nakano, et al. Training verifiers to solve math word problems. arXiv preprint335

arXiv:2110.14168, 2021.336

[15] D. De Sensi, T. De Matteis, K. Taranov, S. Di Girolamo, T. Rahn, and T. Hoefler. Noise in the337

clouds: Influence of network performance variability on application scalability. Proceedings of338

the ACM on Measurement and Analysis of Computing Systems, 6(3):1–27, 2022.339

[16] J. Dean and L. A. Barroso. The tail at scale. Communications of the ACM, 56(2):74–80, 2013.340

[17] DeepSeek. Deepseek api. https://api-docs.deepseek.com/, 2025. Accessed 2025.341

[18] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide, L. Stoller, M. Hibler, D. John-342

son, K. Webb, et al. The design and operation of {CloudLab}. In 2019 USENIX annual343

technical conference (USENIX ATC 19), pages 1–14, 2019.344

[19] Google. Gemini 2.5. https://blog.google/technology/google-deepmind/345

gemini-model-thinking-updates-march-2025/, 2025. Accessed 2025.346

10

https://docs.together.ai/docs/introduction
https://docs.anthropic.com/en/home
https://www.anthropic.com/news/claude-3-5-sonnet
https://api-docs.deepseek.com/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/

[20] Google. Gemini api. https://ai.google.dev/gemini-api/docs, 2025. Accessed 2025.347

[21] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al.348

Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv349

preprint arXiv:2501.12948, 2025.350

[22] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Stein-351

hardt. Measuring mathematical problem solving with the math dataset. arXiv preprint352

arXiv:2103.03874, 2021.353

[23] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative approach. Elsevier,354

2011.355

[24] A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark, A. Ostrow, A. Welihinda,356

A. Hayes, A. Radford, et al. Gpt-4o system card. arXiv preprint arXiv:2410.21276, 2024.357

[25] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and P. Fung.358

Survey of hallucination in natural language generation. ACM computing surveys, 55(12):1–38,359

2023.360

[26] B. Jin, H. Zeng, Z. Yue, J. Yoon, S. Arik, D. Wang, H. Zamani, and J. Han. Search-r1:361

Training llms to reason and leverage search engines with reinforcement learning. arXiv preprint362

arXiv:2503.09516, 2025.363

[27] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. Occupy the cloud: Distributed364

computing for the 99%. In Proceedings of the 2017 symposium on cloud computing, pages365

445–451, 2017.366

[28] S. Krishna, K. Krishna, A. Mohananey, S. Schwarcz, A. Stambler, S. Upadhyay, and M. Faruqui.367

Fact, fetch, and reason: A unified evaluation of retrieval-augmented generation. arXiv preprint368

arXiv:2409.12941, 2024.369

[29] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H. Zhang, and I. Stoica.370

Efficient memory management for large language model serving with pagedattention. In371

Proceedings of the 29th symposium on operating systems principles, pages 611–626, 2023.372

[30] Y. Leviathan, M. Kalman, and Y. Matias. Fast inference from transformers via speculative373

decoding. In International Conference on Machine Learning, pages 19274–19286. PMLR,374

2023.375

[31] X. Li, G. Dong, J. Jin, Y. Zhang, Y. Zhou, Y. Zhu, P. Zhang, and Z. Dou. Search-o1: Agentic376

search-enhanced large reasoning models. arXiv preprint arXiv:2501.05366, 2025.377

[32] X. Li, J. Jin, G. Dong, H. Qian, Y. Zhu, Y. Wu, J.-R. Wen, and Z. Dou. Webthinker: Empowering378

large reasoning models with deep research capability. arXiv preprint arXiv:2504.21776, 2025.379

[33] A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, et al.380

Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.381

[34] G. Mialon, C. Fourrier, T. Wolf, Y. LeCun, and T. Scialom. Gaia: a benchmark for general ai382

assistants. In The Twelfth International Conference on Learning Representations, 2023.383

[35] OpenAI. Openai api. https://platform.openai.com/docs/api-reference/384

introduction, 2025. Accessed 2025.385

[36] OpenAI. Openai deep research. https://openai.com/index/386

introducing-deep-research/, 2025. Accessed 2025.387

[37] OpenAI. Openai-o1. https://openai.com/o1/, 2025. Accessed 2025.388

[38] L. Phan, A. Gatti, Z. Han, N. Li, J. Hu, H. Zhang, C. B. C. Zhang, M. Shaaban, J. Ling, S. Shi,389

et al. Humanity’s last exam. arXiv preprint arXiv:2501.14249, 2025.390

[39] V. Rawte, A. Sheth, and A. Das. A survey of hallucination in large foundation models. arXiv391

preprint arXiv:2309.05922, 2023.392

11

https://ai.google.dev/gemini-api/docs
https://platform.openai.com/docs/api-reference/introduction
https://platform.openai.com/docs/api-reference/introduction
https://platform.openai.com/docs/api-reference/introduction
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://openai.com/o1/

[40] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd393

schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.394

[41] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich. Superglue: Learning feature395

matching with graph neural networks. In Proceedings of the IEEE/CVF conference on computer396

vision and pattern recognition, pages 4938–4947, 2020.397

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization398

algorithms. arXiv preprint arXiv:1707.06347, 2017.399

[43] Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. Li, Y. Wu, et al.400

Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv401

preprint arXiv:2402.03300, 2024.402

[44] Y. Sheng, S. Cao, D. Li, B. Zhu, Z. Li, D. Zhuo, J. E. Gonzalez, and I. Stoica. Fairness in403

serving large language models. In 18th USENIX Symposium on Operating Systems Design and404

Implementation (OSDI 24), pages 965–988, 2024.405

[45] N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao. Reflexion: Language agents406

with verbal reinforcement learning. Advances in Neural Information Processing Systems,407

36:8634–8652, 2023.408

[46] P. Sinha, A. Guliani, R. Jain, B. Tran, M. D. Sinclair, and S. Venkataraman. Not all gpus409

are created equal: characterizing variability in large-scale, accelerator-rich systems. In SC22:410

International Conference for High Performance Computing, Networking, Storage and Analysis,411

pages 01–15. IEEE, 2022.412

[47] H. Song, J. Jiang, Y. Min, J. Chen, Z. Chen, W. X. Zhao, L. Fang, and J.-R. Wen. R1-413

searcher: Incentivizing the search capability in llms via reinforcement learning. arXiv preprint414

arXiv:2503.05592, 2025.415

[48] S. Sun, H. Song, Y. Wang, R. Ren, J. Jiang, J. Zhang, F. Bai, J. Deng, W. X. Zhao, Z. Liu, et al.416

Simpledeepsearcher: Deep information seeking via web-powered reasoning trajectory synthesis.417

arXiv preprint arXiv:2505.16834, 2025.418

[49] G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre, M. Rivière,419

M. S. Kale, J. Love, et al. Gemma: Open models based on gemini research and technology.420

arXiv preprint arXiv:2403.08295, 2024.421

[50] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,422

E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv423

preprint arXiv:2302.13971, 2023.424

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and425

I. Polosukhin. Attention is all you need. Advances in neural information processing systems,426

30, 2017.427

[52] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-428

task benchmark and analysis platform for natural language understanding. arXiv preprint429

arXiv:1804.07461, 2018.430

[53] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica. Cake: enabling high-level slos431

on shared storage systems. In Proceedings of the Third ACM Symposium on Cloud Computing,432

pages 1–14, 2012.433

[54] J. Wei, Z. Sun, S. Papay, S. McKinney, J. Han, I. Fulford, H. W. Chung, A. T. Passos, W. Fedus,434

and A. Glaese. Browsecomp: A simple yet challenging benchmark for browsing agents. arXiv435

preprint arXiv:2504.12516, 2025.436

[55] J. Wu, B. Li, R. Fang, W. Yin, L. Zhang, Z. Tao, D. Zhang, Z. Xi, Y. Jiang, P. Xie, et al.437

Webdancer: Towards autonomous information seeking agency. arXiv preprint arXiv:2505.22648,438

2025.439

12

[56] J. Wu, W. Yin, Y. Jiang, Z. Wang, Z. Xi, R. Fang, L. Zhang, Y. He, D. Zhou, P. Xie, et al.440

Webwalker: Benchmarking llms in web traversal. arXiv preprint arXiv:2501.07572, 2025.441

[57] M. Yan, S. Agarwal, and S. Venkataraman. Decoding speculative decoding. arXiv preprint442

arXiv:2402.01528, 2024.443

[58] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, et al.444

Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.445

[59] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, H. Lin,446

J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang,447

L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Tang, T. Xia, X. Ren, X. Ren,448

Y. Fan, Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu. Qwen2.5 technical report.449

arXiv preprint arXiv:2412.15115, 2024.450

[60] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing rea-451

soning and acting in language models. In International Conference on Learning Representations452

(ICLR), 2023.453

[61] Z. Ye, L. Chen, R. Lai, W. Lin, Y. Zhang, S. Wang, T. Chen, B. Kasikci, V. Grover, A. Krishna-454

murthy, et al. Flashinfer: Efficient and customizable attention engine for llm inference serving.455

arXiv preprint arXiv:2501.01005, 2025.456

[62] O. Yoran, S. J. Amouyal, C. Malaviya, B. Bogin, O. Press, and J. Berant. Assistantbench: Can457

web agents solve realistic and time-consuming tasks? arXiv preprint arXiv:2407.15711, 2024.458

[63] G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun. Orca: A distributed serving system459

for {Transformer-Based} generative models. In 16th USENIX Symposium on Operating Systems460

Design and Implementation (OSDI 22), pages 521–538, 2022.461

[64] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine really462

finish your sentence? arXiv preprint arXiv:1905.07830, 2019.463

[65] Z. Zhang, S. Tian, L. Chen, and Z. Liu. Mmina: Benchmarking multihop multimodal internet464

agents. arXiv preprint arXiv:2404.09992, 2024.465

[66] L. Zheng, L. Yin, Z. Xie, C. L. Sun, J. Huang, C. H. Yu, S. Cao, C. Kozyrakis, I. Stoica, J. E.466

Gonzalez, et al. Sglang: Efficient execution of structured language model programs. Advances467

in neural information processing systems, 37:62557–62583, 2024.468

[67] S. Zhou, F. F. Xu, H. Zhu, X. Zhou, R. Lo, A. Sridhar, X. Cheng, T. Ou, Y. Bisk, D. Fried,469

et al. Webarena: A realistic web environment for building autonomous agents. arXiv preprint470

arXiv:2307.13854, 2023.471

13

A Latency Test Question.472

This section introduces the question used to measure LLM API latency, with a fixed input and a473

controlled number of output tokens.474

QUESTION:
Tell a story about Blackberry. Make the story detailed, with rich descriptions, character
development, and dialogue. Aim for a story that would take at least n tokens to tell.

Table 1: The question used to measure LLM API latency.

where n can be set to 64, 128, 256, 512, or 1024, depending on the number of output tokens.475

B Examples of Math Questions476

This section presents the sampled math questions used to measure LLM API latency.477

QUESTION 1:
Find the constant term in the expansion of(

10x3 − 1

2x2

)5

QUESTION 2:
At what value of y is there a horizontal asymptote for the graph of the equation
y = 4x3+2x−4

3x3−2x2+5x−1?

QUESTION 3:
How many zeroes are at the end of 42! (42 factorial)? (Reminder: The number n! is the product
of the integers from 1 to n. For example, 5! = 5 · 4 · 3 · 2 · 1 = 120.)

QUESTION 4:
Suppose that ABCD is a trapezoid in which AD||BC. Given AC ⊥ CD, AC bisects angle
∠BAD, and [ABCD] = 42, then compute [△ACD].

Table 2: The sampled math questions used to measure LLM API latency.

14

C Sampled Questions478

C.1 WebWalkerQA479

In this section, we present the sampled WebWalkerQA Questions used to measure LLM and Web480

API latency in Table 3.481

QUESTION 1:
During the 7th China International Import Expo (CIIE) in 2024, when will the National
Exhibition and Convention Center (Shanghai) be closed for security measures, and who is
permitted to access the venue during this period?

QUESTION 2:
Who were the recipients of the POMS Fellows Award in 2006 and the Wickham Skinner Award
for Teaching Innovation in 2018?

QUESTION 3:
For ACL 2024, what is the deadline for students requiring financial assistance to apply for
discounted virtual registration, and by what date will they be notified about the selection for D&I
subsidies?

QUESTION 4:
What was the specific schedule for the social event held on the evening after the ACL 2023 best
paper awards ceremony?

QUESTION 5:
When is the paper submission deadline for the ACL 2025 Industry Track, and what is the venue
address for the conference?

QUESTION 6:
Where is the Web Conference 2024 Welcome Reception held and what is the nearest
transportation method from the Resorts World Convention Centre?

QUESTION 7:
Which event has a higher total reward pool, the SHIBUYA Y3K event on October 2, 2024, or the
upcoming The Smurfs: Gargamel’s Castle experience?

QUESTION 8:
What is the official launch date of Junkworld on Apple Arcade, and what new feature was
introduced in the January 2024 update?

QUESTION 9:
Find the first IGG recruitment contact email in Asia in alphabetical order.

QUESTION 10:
Who was the chair of the 12th APEC Tourism Ministerial Meeting held in Urubamba on June 9,
2024?

Table 3: The sampled WebWalkerQA Questions used to measure LLM and Web API latency.

15

C.2 Frames482

In this section, we present the sampled Frames Questions used to measure LLM and Web API latency483

in Table 4.484

QUESTION 1:
I have an element in mind and would like you to identify the person it was named after. Here’s a
clue: The element’s atomic number is 9 higher than that of an element discovered by the scientist
who discovered Zirconium in the same year.

QUESTION 2:
As of July 1, 2024, what is the parent company of the current record label of the singer of Edge
of Seventeen?

QUESTION 3:
According to the 1990 United States census, what was the total population of the cities in
Oklahoma that had at least 100,000 residents according to the 2020 United States census?

QUESTION 4:
The oldest extant football team in Italy plays in a stadium. The stadium is named after a person.
Who was the emperor of China when that person was 5 years old?

QUESTION 5:
Of the four main characters on Seinfeld, which actor is the oldest?

QUESTION 6:
Which species from the genus mulona are both found in the same country?

QUESTION 7:
I am moving to the G40 postcode area - what train stations are nearby, as of 2024?

QUESTION 8:
Which player scored more than 15 goals in Eredevisie during the 21-22 season and had
previously played for Auxerre?

QUESTION 9:
Which MP standing as the leader of a major party in the 2019 United Kingdom General Election
was also an MP for Henley?

QUESTION 10:
What is the etymology of the name of the province to the east of the province in which Hazrati
Sultan District is located?

Table 4: The sampled Frames Questions used to measure LLM and Web API latency.

16

D Prompts and Trajectory485

D.1 Target LLM Prompts486

We evaluate SpecCache on top of a Reflexion [45] agentic system. Table 5-7 outline the prompts487

used for each component of Reflexion.488

TARGET MODEL ACTION PROMPT:
Digging through the buttons to find quality sources and the right information. You have access to
the following tools:
<Tool Description>
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [<Tool Names>]
Action Input: the input to the action
Observation: the result of the action
Action: the action to take, should be one of [<Tool Names>]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can be repeated zero or more 20 times)
Notice:
- You must take action at every step. When you take action, you must use the tool with the
correct format and output the action input.
- You can not say "I’m sorry, but I cannot assist with this request."!!! You must explore.
- When you have sufficient information to answer the query, provide your final answer in the
format: "Final Answer: <your answer>"
- Action Input should be valid JSON.
- IF YOU DO NOT HAVE SUFFICIENT INFORMATION, CONTINUE EXPLORING BY
TAKING ACTION.
- YOU MUST TAKE ACTION AT EVERY STEP UNLESS YOU ARE PRODUCING YOUR
FINAL ANSWER. WHEN YOU TAKE ACTION, YOU MUST USE THE TOOL WITH THE
CORRECT FORMAT AND OUTPUT THE ACTION INPUT. THEREFORE, YOU MUST
OUTPUT AN ACTION AND AN ACTION INPUT.
- IF YOU ARE PRODUCING YOUR FINAL ANSWER, YOU MUST OUTPUT THE FINAL
ANSWER IN THE FORMAT: "Final Answer: <your answer>"
Begin!
<Query>

Table 5: The prompt for the backbone LLM to take an action.

489

TARGET MODEL SELF-REFLECTION PROMPT:
You are an information extraction agent. Your task is to analyze the given observation and extract
ANY information that could help answer the query, including:
- Direct facts and data
- Reasoning and conclusions made by the model
- Historical information that could be relevant
- Any insights that contribute to solving the query
- Background knowledge that supports the answer
Input:
- Query: "<Query>"
- Observation: "<Current Observation>"
Output (JSON):

17

{
"usefulness": true,
"information": "<Extracted Useful Information> using string format"

}
Or, if the observation contains NO potentially useful information at all:
{

"usefulness": false
}
Guidelines:
- Be generous in what you consider "useful information"
- Include reasoning, conclusions, and background knowledge
- If the observation contains ANY information that could contribute to solving the query, mark it
as useful
- Only mark as false if the observation is completely irrelevant
Only respond with valid JSON.

Table 6: The prompt for the target model to perform self-reflection.

490

MAIN MODEL EVALUATOR PROMPT:
You are a query answering agent. Your task is to evaluate whether the accumulated useful
information is sufficient to answer the current query with HIGH CONFIDENCE. If it is sufficient
and you are very confident in the answer, return a JSON object with a "judge" value of true and
an "answer" field with the answer. If the information is insufficient or you have doubts, return a
JSON object with a "judge" value of false.
Input:
- Query: "<Query>"
- Accumulated Information: "<Accumulated Useful Information>"
Output (JSON):
{

"judge": true,
"answer": "<Generated Answer> using string format"

}
Or, if the information is insufficient or you have doubts:
{

"judge": false
}
Guidelines:
- Only mark as sufficient if you are VERY CONFIDENT in the answer
- If you have any doubts about facts, reasoning, or completeness, mark as insufficient
- Consider whether you need more information to verify your answer
- The answer should be clear, complete, and directly address the query
- When in doubt, prefer to continue exploring rather than give a potentially wrong answer
Only respond with valid JSON.

Table 7: The evaluator prompt for the target model to create internal
feedback.

491

18

D.2 Draft Model Prompt492

In this section, we present the prompt for the draft model to predict action in Table 8.493

DRAFT MODEL ACTION PREDICTION PROMPT:
Digging through the buttons to find quality sources and the right information. You have access to
the following tools:
<Tool Description>
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [<Tool Names>]
Action Input 1: {{"button": "About"}}
Action Input 2: {{"button": "Contact"}}
Action Input 3: {{"button": "Application"}}
Observation: the result of the action
Action: the action to take, should be one of [<Tool Names>]
Action Input 1: {{"button": "News"}}
Action Input 2: {{"button": "Info"}}
Action Input 3: {{"button": "Faculty"}}
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can be repeated zero or more 20 times)
Notice:
- You must take action at every step. When you take action, you must use the tool with the correct
format and output 3 action inputs.
- You must always output three Action Input lines (Action Input 1, Action Input 2, Action Input
3) for each Action, unless there are fewer than three distinct valid inputs available.
- If there are fewer than three, output as many as are available.
- When you can not find the information you need, you should visit page of previous page
recursively until you find the information you need.
- You can not say "I’m sorry, but I cannot assist with this request."!!! You must explore.
- If you do not have sufficient information, continue exploring.
- Action Input should be a valid JSON.
- Do not recommend navigation buttons such as "About Wikipedia", "Search", "Create account",
"Log in", "View source", "Print/export", "Navigation".
- Focus on content-specific buttons that are likely to contain information relevant to your query,
such as:

- Names of people, places, events, or topics
- Years, dates, or time periods
- Specific categories or sections
- Links to related articles or detailed pages

Begin!
<Query>

Table 8: The prompt for the draft model that performs speculative action
prediction in SpecCache.

494

D.3 Trajectory Example495

In this section, we show an example of a trajectory. We use {Action} to indicate a cache hit and496

{Action} to indicate cache exists and the content will not be retrieved.497

Query:498

19

When is the paper submission deadline for the ACL 2025 Industry Track, and what is the venue499

address for the conference?500

Root URL:501

https://2025.aclweb.org/502

Draft LLM:503

Thought: The "Call for Industry Track" button will likely provide details on submission deadlines for504

the Industry Track. For the venue address, "Participants Info" or similar buttons may give explicit505

venue details. Starting by exploring the "Call for Industry Track" for the specific deadline and the506

other buttons for venue information.507

Action: visit_page508

Action Input 1: {"button": "Call for Industry Track"}509

Action Input 2: {"button": "Participants Info"}510

Action Input 3: {"button": "Program"}511

Target LLM:512

Thought: Question: When is the paper submission deadline for the ACL 2025 Industry Track, and513

what is the venue address for the conference? Thought: To find the Industry Track deadline, click the514

{{Call for Industry Track}} button; to find the venue address, click {{Participants Info. }},515

Action: visit_page,516

Action Input: {"button": "Call for Industry Track"}517

Observation: <Content retrieved from https://2025.aclweb.org/calls/industry_track/>518

Draft LLM:519

Thought: I have found the paper submission deadline for the Industry Track (21 March 2025). Next,520

I need to find the venue address. It is most likely in sections such as "Participants Info", "FAQ", or521

"Visa". I will explore these buttons to locate the venue address.522

Action: visit_page523

Action Input 1: {"button": "Participants Info"}524

Action Input 2: {"button": "FAQ"}525

Action Input 3: {"button": "Visa"}526

Target LLM:527

Thought: Question: When is the paper submission deadline for the ACL 2025 Industry Track, and528

what is the venue address for the conference? Thought: We already extracted the paper submission529

deadline (21 March 2025) from the Industry Track page. Next, we need to find the venue address by530

navigating to the {{ Participants Info }} section via the conference menu. Action: visit_page Action531

Input: {b̈utton:̈ T̈oggle menu}̈ Observation: The conference menu has appeared, showing entries532

including {{Participants Info.}},533

Action: visit_page,534

Action Input: {"button": "Participants Info"}535

Observation: <Content retrieved from https://2025.aclweb.org/venue/>536

Target LLM:537

Final Answer: The paper submission deadline for the ACL 2025 Industry Track is 21 March 2025,538

and the conference will be held at Austria Center Vienna, Bruno-Kreisky-Platz 1, 1220 Wien, Austria.539

20

https://2025.aclweb.org/
https://2025.aclweb.org/calls/industry_track/
https://2025.aclweb.org/venue/

E Additional LLM API Latency Measurement Results540

In this section, we present further experimental results from our inference latency measurements.541

We follow the experimental setup mentioned in Section 2.1. For the regional ablation study, we use542

CloudLab [18] instances located in Madison, Clemson, and Utah. The results are shown in Figure 9.543

Figure 9 shows that LLM API latency exhibits variance regardless of the city from which requests are544

issued. Furthermore, we also measure the end-to-end latency of LLM API calls by fixing the input545

questions and varying the number of output tokens. The results are shown in Figure 10. As shown546

in Figure 10, LLM API latency tends to increase with the number of output tokens, although some547

variance is observed. Furthermore, as shown in Figure 11, dedicated mode1 reduces the variance of548

API calls compared to serverless mode; however, it is also more expensive due to per-minute billing.549

Finally, we present additional end-to-end latency measurements of LLM API calls across a broader550

range of models, as shown in Figure 12. The results in Figure 12 support the conclusion that LLM551

API calls exhibit high variability.552

Madison Clem Utah100

101

102

103

La
te

nc
y

(s
)

Llama-3.1-70B
Llama-3.1-405B
GPT-4o
Gemini-1.5-Pro
Claude-3.7

Figure 9: This figure shows the latency variance across regions for models including Llama-3.1-70B,
Llama-3.1-405B, GPT-4o, Gemini-1.5-Pro, and Claude-3.7-Sonnet. All requests use the same input
and a fixed number of output tokens. Latency is measured by sending requests from machines located
in Wisconsin (Madison), South Carolina (Clemson), and Utah.

64 128 256 512 1024
Output Tokens

10 1

100

101

102

103

La
te

nc
y

(s
)

Llama-3.1-70B
Llama-3.1-405B

GPT-4o
Gemini-1.5-Pro

Figure 10: From July 23 to July 27, 2025, we evaluated the end-to-end latency of API calls provided
by two AI companies by fixing the input sequence and varying the number of output tokens from
64 to 1024. The evaluated models include: (i) Together AI: Llama-3.1-70B, Llama-3.1-405B; (ii)
OpenAI: GPT-4o; (iii) Google: Gemini-1.5-Pro. The figure illustrates an upward trend in LLM API
latency with increasing output token count.

1With Together AI, we can create on-demand dedicated endpoints with the following advantages: (1)
Consistent, predictable performance, unaffected by other users’ load in our serverless environment; (2) No
rate limits, with a high maximum load capacity; (3) More cost-effective under high utilization; (4) Access to a
broader selection of models.

21

64 128 256 512 1024
Output Tokens

10 1

100

101

102

La
te

nc
y

(s
)

QwQ-32B (Ser.)
QwQ-32B (Ded.)

(a) QwQ-32B

64 128 256 512 1024
Output Tokens

10 1

100

101

102

La
te

nc
y

(s
)

Llama-3.1-70B (Ser.)
Llama-3.1-70B (Ded.)

(b) Llama-3.1-70B

Figure 11: This figure illustrates the relationship between API call latency and the number of output
tokens under various API deployment modes. QwQ-32B (Ser.) and Llama-3.1-70B (Ser.) denote API
calls made in serverless mode, while QwQ-32B (Ded.) and Llama-3.1-70B (Ded.) refer to calls made
in dedicated mode.

Llama-3.1-8B Qwen2.5-7B GPT-4o-mini Distill-Qwen-1.5B Distill-Qwen-14B DeepSeek-Reasoner Kimi-K2-Instruct100

101

102

103

La
te

nc
y

(s
)

Figure 12: In this figure, we evaluate the end-to-end latency of API calls offered by three AI
companies by querying the LLMs every hour. The evaluated models include: (i) Together AI:
Llama-3.1-8B, Qwen2.5-7B, DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-14B,
and Kimi-K2-Instruct; (ii) OpenAI: GPT-4o-mini; (iii) DeepSeek: DeepSeek-Reasoner. This figure
shows that LLM API response times exhibit high variance, including occasional outliers.

F Model Version553

Table 9 lists the versions of the models used in this paper.554

Model Name Version

GPT-4.1 GPT-4.1-2025-04-14
GPT-4.1-mini GPT-4.1-mini-2025-04-14

o4-mini o4-mini-2025-04-16
Claude-3.7 Claude-3-7-Sonnet-20250219

DeepSeek-V3 DeepSeek-V3-0324
DeepSeek-R1 DeepSeek-R1-0528

Table 9: This table presents the model versions used in this paper.

22

	Introduction
	Latency Analysis
	LLM API
	Web Environment

	SpecCache
	Challenges
	Caching Framework
	Discussion

	Experiments
	Setup
	Experimental Results

	Related Work
	Limitations and Future Work
	Conclusion
	Latency Test Question.
	Examples of Math Questions
	Sampled Questions
	WebWalkerQA
	Frames

	Prompts and Trajectory
	Target LLM Prompts
	Draft Model Prompt
	Trajectory Example

	Additional LLM API Latency Measurement Results
	Model Version

