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Abstract

Large Language Models (LLMs), such as OpenAl-ol and DeepSeek-R1, have
demonstrated strong reasoning capabilities. To further enhance this process, recent
agentic systems, such as Deep Research, incorporate web interactions into LLM
reasoning to mitigate uncertainties and reduce potential errors. However, existing
research predominantly focuses on reasoning performance, often neglecting the
efficiency of these systems. In this work, we present a comprehensive empirical
study that identifies efficiency bottlenecks in web-interactive agentic systems. We
decompose end-to-end latency into two primary components: LLM API latency
and web environment latency. Our findings show that both components signifi-
cantly contribute to the overall system latency. To improve latency, we propose
SpecCache, a caching framework augmented with speculative execution to reduce
web environment overhead. Extensive evaluations on two standard benchmarks
show that our approach improves the cache hit rate by up to 54 x compared to a
random caching strategy, while reducing web environment overhead by up to 3.2x,
without degrading agentic system performance.

1 Introduction

Large Language Models (LLMs) have become a cornerstone of modern artificial intelligence, achiev-
ing outstanding performance across various downstream tasks. Their strengths in natural language
understanding [54], and text generation [14}67] have enabled significant breakthroughs across disci-
plines. To further enhance performance, recent advances in large-scale reinforcement learning (RL)
have enabled large language models to demonstrate strong long-horizon reasoning abilities. As exam-
ples, OpenAl-ol [39] and DeepSeek-R1 [23]] leverage RL methods like PPO [44] and GRPO [45] to
strengthen problem-solving capabilities, equipping them for complex reasoning tasks [24, 40].

Although reasoning models can generate step-by-step reasoning chains, their reasoning processes
remain constrained by insufficient knowledge [27, 141]]. To address this limitation, recent work has
proposed agentic systems that combine web interaction with LLM-based reasoning to retrieve external
knowledge and access up-to-date information [38]]. Existing web-interactive agentic systems can
be categorized into the following two types: (1) employing prompt engineering to inject external
knowledge into LLMs for complex task completion [33} 58]]; (2) leveraging reinforcement learning
to integrate search capabilities into LLMs [12] 49| 28]]. While existing web-interactive agentic
systems primarily focus on improving the reasoning capabilities of LLMs for complex tasks [56} 58],
they largely neglect system efficiency. The latency of agentic systems is critical for applications
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with low-latency service-level objectives (SLOs), as it directly affects service reliability and user
satisfaction [S55}17]].

To address this gap, we systematically benchmark the end-to-end latency of web-interactive agen-
tic systems. We begin by sampling two queries from the WebWalkerQA [58|] and Frames [30]
benchmarks to evaluate the latency of a single iteration of the Reflexion-based agentic system [47].
As shown in Figure[I] both the LLM API and web environment 40
contribute substantially to the latency of web-interactive agentic Web Env
systems. Accordingly, we separately analyze the latency intro- B o4-mini

duced by the LLM API and the web environment. To identify
key contributors to LLM API latency, we analyze the impact of

several factors, including geographic region (e.g., request ori-

gin locations), output token length, model type (e.g., reasoning

vs. non-reasoning), and API deployment mode (e.g., serverless

vs. dedicated) across 15 models from 5 providers: Anthropic,
DeepSeek, Google, OpenAl, and Together Al (§2.1). To mea-
sure web environment latency, we use the WebWalkerQA bench-
mark [58]], which centers on queries related to international or-
ganizations, conferences, and educational institutions, making
it well-suited for assessing information retrieval performance

(2.2).

Our empirical analysis reveals the following important observations: (1) High variability across 15
models and 5 providers is observed in LLM response latency. Latency for fixed-length requests may
differ by up to 69.21x based on the time they are issued (§2.1)); (2) LLM response latency variance
persists across dates and locations (§2.1)); (3) Web environment latency can contribute as much as
53.7% to the overall latency of agentic systems (§2.2).

Motivated by the above observations, this paper focuses on reducing web environment latency as
the primary strategy to improve the overall latency of agentic systems. This focus is grounded in
the expectation that, as LLM deployment infrastructures rapidly advance, scheduling overheads and
other system-level inefficiencies will continue to diminish, leading to lower LLM latency without
compromising, and potentially even enhancing, model performance [2| (18} 37]]. To reduce the web
environment latency, we propose SpecCache (§3), a novel caching framework that uses speculative
execution [32]] to mitigate latency in web environments. Specifically, SpecCache implements a
caching mechanism that stores LLM-generated actions along with a speculative execution path, which
uses a draft model to predict the LLM’s next action and proactively populate the action cache. Using
a draft model unlocks a new dimension that allows environment interaction costs to be concealed by
overlapping them with model reasoning. Furthermore, SpecCache is designed upon the ReAct [63]]
abstraction; therefore, SpecCache can be applied to not only web-interactive agentic systems but
also other turn-based agentic systems that interact with external environments.
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Figure 1: Average latency break-
down per iteration of a Reflexion-
based agentic system [47] for
sampled question answering.

In summary, our key contributions are as follows:

* We present a comprehensive end-to-end latency analysis of web-interactive agentic systems,
decomposing latency into LLM API and web environment components. Our findings show
that both contribute significantly to overall latency.

* To reduce web environment overhead, we propose SpecCache, a caching framework
that stores a small set of LLM-generated actions and corresponding results. In addition,
SpecCache employs a model-driven strategy to enable the overlap of environment interac-
tion costs with model reasoning.

* We conduct extensive experiments to demonstrate the effectiveness and efficiency of
SpecCache. Compared with existing agentic systems on WebWalkerQA and Frames,
SpecCache delivers up to a 58X improvement in cache hit rate and a 3.2x reduction
in web environment overhead, without compromising performance. Our method does not
change the results produced by the agentic system, as the caching framework operates
on a separate path and does not interfere with the backbone LLM or the agentic system’s
reasoning path.
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Figure 2: In this figure, we evaluate the end-to-end latency of API calls offered by five Al companies
by querying the LLMs every hour. The evaluated models include: (i) Together Al: Llama-3.1-70B,
Llama-3.1-405B, Qwen2.5-72B, QwQ-32B; (ii) OpenAl: GPT-40; (iii) Google: Gemini-1.5-Pro; (iv)
Anthropic: Claude-3.7-Sonnet. (v) DeepSeek: DeepSeek-Chat. This figure shows that LLM API
response times exhibit high variance, including occasional outliers.
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Figure 3: In this figure, we evaluate the end-to-end latency of API calls across different dates. Due to
space constraints, we report results from three representative models: Llama-3.1-70B and Llama-3.1-
405B provided by Together Al, and GPT-40 from OpenAl. This figure illustrates latency variance
over time for various models, with fixed input prompts and a uniform output length.

2 Latency Analysis

Given that both the LLM API and the web environment significantly contribute to the latency of
web-interactive agentic systems (Figure[T), we analyze their impacts separately to gain deeper insight.
We begin with a detailed examination of LLM API latency in §2.1] followed by an analysis of web
environment performance in

21 LLMAPI

Although many popular models, such as LLaMA [52], Qwen [60], and DeepSeek [35], are open-
weight, most agentic systems access LLMs through APIs in practice for two primary reasons. First,
leading models, such as OpenAl’s GPT-4o0 [26]], Anthropic’s Claude 3.5 [3]], and Google’s Gemini
2.5 [20], remain closed-source and are accessible only via proprietary APIs. Second, the substantial
cost and technical complexity of deploying and operating LLMs at scale pose a major barrier for
agentic system users [4, [29]. Therefore, in this section, we monitor API call latency over one week to
evaluate its impact on agentic system performance.

Setup. Our experiments evaluate LLM API calls from the following providers and their respective
models: (i) Anthropic [2]: Claude-3.7-Sonnet, (ii) DeepSeek [18]]: DeepSeek-Chat, (iii) Google [21]:
Gemini-1.5-Pro, (iv) OpenAl [37]: GPT-40, and (v) Together AI [[L]: Llama-3.1-70B, Llama-3.1-
405B, Qwen2.5-72B, and QwQ-32B. Unless otherwise specified, all experiments use identical input
questions (listed in Appendix [A)), generate up to 512 output tokens, and are conducted with top-p = 1
and temperature = 0. All experiments are conducted on a CloudLab [[19] instance from Wisconsin.
Experiments are conducted between July 23 and July 27, 2025.

High Variability in Latency. We begin with a five-day study evaluating the end-to-end latency of
LLM APIs across providers, including Together Al [[L], OpenAl [37], Google [21], and Anthropic [2].
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Figure 4: This figure presents the LLM API latency and number of generated tokens (top), as well
as the latency breakdown (bottom), for answering questions Q1-Q4 from Appendix [B] Following
prior work [8]], we set the temperature to 0.6 and top-p to 0.95 when solving the math problems. The
results show that output token length significantly affects LLM API end-to-end latency.

Each provider is called once per hour for five consecutive days to collect measurement data. Figure
illustrates the considerable variance in API latency. For example, the response time for Llama-3.1-
405B provided by Together AI [1]] ranges from 6.50 seconds to 449.89 seconds. As shown in Figure[3]
LLM API call latency exhibits variance over all five days, with fluctuations differing from day to
day. High variance in LLM API call latency may arise from constrained GPU resources on the
provider side, leading to queuing delays [46]], or from performance noise in the cloud infrastructure
hosting the model [16, 48]. Due to the variability in LLM API call latency, larger models can
occasionally exhibit lower latency than smaller ones. For example, on July 24, 2025, Llama-
3.1-405B had lower latency than Llama-3.1-70B. While Gemini-1.5-Pro maintains low variability
(3.71%, coefficient of variation), the pronounced variability in Llama-3.1-70B and GPT-40 (135.21%
and 36.81%, respectively) poses challenges for consistent performance in latency-sensitive tasks,
including language agentic systems [63,47] and code generation [13]] which rely on LLM APIs.

Output Tokens Affect Latency. Unlike the previous section which used fixed input and output
token limits, we next randomly sample four questions from the MATH dataset [24] (listed in Ap-
pendix [B) and allow the LLMs to generate unrestricted-length responses. As shown in Figure [4]
although QwQ-32B is faster than Qwen2.5-72B per output token (Figure[2)), it produces more output
tokens due to the reasoning process, leading to higher overall latency. Notably, both QwQ-32B and
Gemini-1.5-Pro are reasoning-oriented models. While Gemini-1.5-Pro is slower than QwQ-32B
with fixed input and output tokens, it demonstrates greater efficiency on sampled math questions by
generating fewer output tokens per answer. Therefore, learning to generate correct answers using
fewer tokens is an important consideration for model training.

Due to limited space, we present more experimental results from varying model types, request
locations, and number of output tokens in Appendix [El The following insights are derived from
our extensive experiments: (1) With the fixed input question and output tokens, end-to-end API
latency can vary by up to 69.21 x, resulting in an unstable user experience; (2) Moreover, we observe
variability in LLM API latency across different dates and three geographic regions. Specifically, the
coefficient of variation in latency for Llama-3.1-70B API calls is 135.21% in Wisconsin, 42.61% in
South Carolina, and 106.40% in Utah. (3) We observe that the number of output tokens significantly
affects LLM API latency. Designing large language models that can solve tasks correctly with fewer
output tokens presents a promising research direction.
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Figure 5: The above two CDF figures illustrate the performance characteristics of the web environment
from the WebWalkerQA benchmark [58]. The left figure shows the distribution of latency when
fetching root URLs and subpages, highlighting the initial overhead. The right figure presents the
distribution of the number of clickable subpages available from a root URL, showing a large action
space.

2.2 Web Environment

In this section, we conduct a detailed analysis of the performance characteristics of external tool
APIs and web crawlers. Our analysis reveals that these components introduce substantial overhead,
potentially reducing deployment efficiency and diminishing user experience. Moreover, our analysis
provides the empirical foundation for the caching and prefetching methodology introduced in §3]

Setup. To understand the performance trade-offs for web-interactive agentic systems operating
in a real-world environment, we ground our analysis in a practical case study. While gym-like
environments such as WebArena [70] are valuable for reproducibility, they abstract away the noise
and performance variability inherent in deploying a live web-interactive language agentic system.
Therefore, we utilize the WebWalker(QA benchmark [58]], which requires agentic systems to perform
multi-step reasoning and synthesize answers by exploring multiple pages across various real-world
websites. The benchmark’s focus on knowledge-intensive domains, such as international organiza-
tions, conferences, and educational institutions, makes it an ideal testbed for evaluating information
retrieval performance under realistic conditions. We analyze the performance of a Reflexion-based
agentic system [47] using QwQ-32B as the backbone reasoning model, following the setup in [58]].
Due to resource constraints, we sample 30 tasks from distinct root domains for this case study.

Web Crawl Latency Limits System Performance. An agentic system’s interaction cycle in a
ReAct [63] or Reflexion-based agentic system [47] is composed of both reasoning (LLM inference)
and action (web retrieval). We separately profiled the time spent on reasoning and on actions.
Figure[5(a)|shows the distribution of latencies for fetching and parsing the HTML of root URLs in our
task sample (this includes various conference domains such as sigchi.org, international organization
domains such as apec.org, and game producer websites such as rovio.com). As shown in Figure [5(a)}
the median latency is approximately 6 seconds, with a long tail extending to much higher values,
accounting for as much as 53.7% of the total runtime of the agentic system. One potential solution is
to use caching techniques [7] to reduce web crawl latency. However, as shown in Figure [5(b)] the
large and diverse space of subpages presents significant challenges for effective caching. Given these
challenges, we introduce SpecCache in the next section as a solution for reducing web environment
latency.

3 SpecCache

In this section, we will first outline the detailed challenges in designing a caching system aimed at
reducing web environment overhead (§3.1). Next, we propose a caching framework that reduces
the environment interaction cost by enabling parallelism between model inference and environment
interaction, while preserving the original trajectory of the agentic system (§3.2)). Finally, we provide
a detailed discussion of our caching framework (§3.3).
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Figure 6: This figure shows the workflow of our SpecCache framework. In each iteration, the model
input is fed to two independent and non-blocking threads, one Reflexion-based thread and one caching
thread aimed at generating candidate actions. The caching thread updates the cache pool with its
candidate actions. When the Reflexion-based thread selects an action, it first queries the cache pool.
If the cache misses, it executes the action, retrieves the corresponding observation, and proceeds to
the next iteration, updating the cache pool with the new action-observation pair.

3.1 Challenges

In standard LLM agentic system deployments, the agentic system waits for an environment response
(e.g., a web page load) before invoking the LLM for the next reasoning step, and vice versa. To
improve efficiency, our goal is to hide this environment interaction cost by overlapping it with model
reasoning. A natural approach is to develop a caching mechanism that prefetches environment
responses likely to be needed in future steps. However, designing an effective cache for language
agentic systems is non-trivial due to the sheer size of the action space. For example, our analysis
of the WebWalkerQA dataset [58]] reveals that each of the 138 root pages contains a median of 81
clickable subpages (Figure[5(b)), representing possible next actions. This high branching factor makes
it difficult to accurately anticipate which observations will be needed, presenting a key challenge for
prefetching and caching strategies aimed at improving runtime efficiency. Naive strategies, such as
uniform action sampling, would result in a near-zero cache hit rate.

3.2 Caching Framework

In this section, we propose a caching and prefetching framework that decouples and overlaps
model reasoning and environment interaction, significantly reducing wall-clock latency without
compromising task success rates. Our method is a caching system that employs a model-based
action-observation cache.

Action-Observation Cache. The active-observation cache, following an LRU policy, is designed
to store the outcomes of specific actions taken from a given state (e.g., a webpage). When the target
LLM decides on an action, it first queries this cache. A cache hit signifies that the action has been
previously executed, and the corresponding observation is immediately retrieved, bypassing the costly
interaction with the environment. This on-demand caching of action-observation pairs is crucial for
accelerating interactions within a session.

Model-Based Prefetching. To build the action-observation cache, we introduce a model-based
prefetching scheme. This component of our framework moves beyond reactive caching to proactively
explore and cache potential future states. Leveraging ideas from speculative execution [[11}32], we
use a draft model, a smaller LLM running asynchronously with the primary reasoning LLM (the
target model). The role of the draft model is to predict the future actions that the target model is likely
to take from the current state.

The prefetching process unfolds as follows:
1. Asynchronous Action Prediction: While the target LLM performs reasoning, the draft
model generates candidate actions (e.g., web crawls), which are executed in parallel.
2. Asynchronous Caching: The observations resulting from these speculative actions are

stored in the action-observation cache.

When the target LLM eventually determines its next action, it first consults the cache. If the draft
model’s prediction is accurate, the observation is already present, and the agentic system can proceed



instantaneously. This asynchronous prefetching effectively decouples the agentic system’s reasoning
from the environment’s response time (dashed lines in Figure [6)), enabling the design of more efficient
agentic systems.

3.3 Discussion

Our speculative caching approach introduces new trade-offs that balance latency reduction with
increased compute and environment load. The draft model introduces additional computation for
running speculative rollouts asynchronously. We complete speculative actions even after the target
model selects its next move. This preserves useful data in the cache for future steps. In cases where
speculative actions are not used, the main agentic system flow is not interfered with.

The principles underpinning our caching and prefetching framework are not limited to web-interactive
agentic systems. This methodology can be generalized to any turn-based agentic system that operates
in an environment where the feedback loop constitutes a significant portion of the overall latency. By
decoupling reasoning from interaction and proactively exploring the action space, our approach offers
a robust and scalable solution for accelerating a wide range of language agentic system applications
based on the ReAct-style [[63] agentic workflows.

4 Experiments

In this section, we begin by detailing our experimental setup (§4.1). We then evaluate our framework’s
performance on web-based reasoning and retrieval tasks, analyzing its effectiveness in reducing
end-to-end latency in real-world agentic system deployments (§4.2).

4.1 Setup

Agentic Systems. We evaluate a Reflexion-based agentic system using and o4-mini as backbone
models. These models have demonstrated state-of-the-art performance on web exploration bench-
marks, outperforming both open-sourced methods [50} 133,134} 57]] and proprietary agentic frameworks.
For speculative execution, we employ GPT-4.1-mini as draft models.

Benchmarks. Reasoning agentic systems capable of multi-hop, in-depth exploration of real-world
web content remain a challenging research area, despite recent progress enabled by more powerful
models [26} 2, 161]]. As highlighted in [58]], existing benchmarks such as GAIA [36], MMinA [68],
and AssistantBench [65]] primarily focus on breadth-wise reasoning, and do not sufficiently evaluate
depth-wise web exploration capabilities.

We conduct experiments on two benchmarks designed to capture both multi-hop reasoning and
in-depth web exploration: WebWalkerQA [58| and Frames [30].

» WebWalkerQA evaluates an agentic system’s ability to perform multi-hop web reasoning over
a large set of websites. We sample a query from each distinct root URL for our evaluations,
where the agentic system is provided with the root URL as a starting point.

» Frames is a benchmark consisting of factual questions that require synthesizing information
from 2 to 15 Wikipedia pages. To emphasize the multi-hop setting, we select a subset of
queries that require information from at least 5 distinct sources. The agentic system is
provided with only a single Wikipedia page as the seed URL.

We cap the maximum number of iterations per task at 10, where each iteration consists of a reasoning
step, an action step, and a critique step. Empirically, most tasks are completed within 5-6 iterations.
Given budget constraints, we sample 10 questions from each benchmark to analyze the LLM and web
environment overhead in agentic systems, as well as the acceleration achieved through SpecCache.

Metric. We measure LLM latency for each Reflexion-based iteration across multiple workloads,
averaging results over five runs. Because our caching mechanism operates asynchronously in a
separate thread, is non-blocking, and leaves the backbone LLM output unchanged, latency remains
effectively constant in our experiments, with any variance stemming solely from the model APIs.
Averaging mitigates noise and isolates the effects of environmental bottlenecks and the overhead
reductions achieved by our approach.
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Figure 7: This figure presents the iteration-wise latency breakdown of the Reflexion-based agentic
system when answering sampled questions from WebWalkerQA (top) [38]] and Frames (bottom) [30]].
We perform five runs for each sampled question. The sampled questions are listed in Appendix [C|

4.2 Experimental Results

Figure [7] presents the iteration-wise latency breakdown of 04-mini and the web environment for
each question sampled from WebWalkerQA [58]] and Frames [30]. From Figure [/| we observe
high API latency variance for o4-mini, and the web environment constitutes a major component
of the Reflexion-based agentic system, consistent with our empirical findings. We also present the
acceleration achieved by the proposed SpecCache in Figure[8] As shown in Figure[8] SpecCache
achieves up to a 3.2x reduction in web environment latency for answering sampled questions.
Importantly, our solution always improves the overall efficiency of agentic systems and never adds
overhead to their end-to-end latency.

Finally, we evaluate the cache hit rate of SpecCache in comparison to a random selection strategy that
selects candidate actions and updates the cache pool by uniformly sampling a candidate action rather
than leveraging the draft model’s predictions. When o4-mini is used as the target model and GPT-4.1-
mini as the draft model, SpecCache achieves a cache hit rate of 83.3%, significantly outperforming
the random caching strategy, which attains only 8.9% on the WebWalkerQA benchmark. We also
evaluate cache hit rates on the Frames benchmark, where SpecCache achieves a hit rate of 54.0%,
substantially outperforming the random caching strategy, which achieves only 1.0%. To isolate the
effect of the draft model, we fix the target model and use GPT-4.1 as the draft model. Under this
setup, SpecCache achieves a hit rate of 87.3% on the WebWalkerQA benchmark and 52.7% on the
Frames benchmark. The results indicate that the draft model has a limited effect on the performance
of SpecCache. These results reveal a new axis for accelerating agentic systems: allocating more
compute to asynchronous assistant models allows environment overhead to be overlapped with LLM
reasoning.

5 Related Work

Large Language Models. The Transformer architecture [53]] has been successfully applied to a
wide variety of tasks, including text classification [54} 43]], text generation [67} 42], mathematical
reasoning [[15} 24]], and code generation [S]]. The development of GPT models [9] highlights how
scaling up language models substantially improves their performance across a range of downstream
tasks. Inspired by the success of GPT, several large-scale language models have been introduced,
including LLaMA [52], Gemma [51]], Qwen [60], and DeepSeek [35 [23]].

Web-Interactive Agentic Systems and Benchmarks. Recent web-interactive agentic systems,
including Search-ol [33]], ReSeaerch [12], Search-R1 [28]], and WebDancer [57]], enhance the reason-
ing capabilities of large language models by integrating web interaction into their decision-making.
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Figure 8: This figure shows the iteration-wise latency breakdown for the agentic systems accelerated
by SpecCache when answering sampled questions from WebWalkerQA (top) [S8] and Frames
(bottom) [30]. We use o4-mini as the target model and GPT-4.1-mini as the draft model. We perform
five runs for each sampled question. The sampled questions are listed in Appendix [C]

Concurrently, benchmarks such as GAIA [36], MMinA [68], AssistantBench [65], BrowseComp [56],
and WebWalker [58] have been proposed to evaluate agentic system performance in real-world web
environments.

LLM Inference. A substantial body of systems research has focused on accelerating LLM inference,
leading to notable advances such as Orca [66], PagedAttention [31], RadixAttention [69], and
FlashInfer [64]. These approaches target improved LLM inference performance via more efficient
hardware usage. In parallel, recent work has explored architecture-level optimization, focusing on
designing inference-efficient model architectures to further boost throughput [62} 16, 22]]. Another
prominent direction is speculative decoding [[11} |32} |59], which accelerates LLM inference by
employing a lightweight draft model to generate candidate outputs that the larger target model
later verifies. The concept of speculative decoding builds upon speculative execution [10} 25]], an
optimization widely employed in processors to perform tasks concurrently with verifying their
correctness. In this work, we generalize speculative execution to agentic systems by predicting
agentic system actions to reduce web environment overhead.

6 Limitations and Future Work

First, we primarily focus on reducing latency arising from the web environment. We leave the
reduction of LLM API latency and its variance to future work. Secondly, to control for the high
variance and varying outputs of LLM API calls, we fix the API responses when measuring the
acceleration achieved by SpecCache. Measuring the end-to-end speedup of the agentic system is left
for future work. Thirdly, we do not evaluate other types of agentic systems, such as code-based and
tool-based agentic systems, leaving their analysis for future work. Lastly, we believe a deeper dive
into the API traffic analysis would be of independent research interest, shedding light on how much
request batching, query priority scheduling, and LLM execution contribute to the end-to-end latency
and variance, respectively.

7 Conclusion

In this paper, we provide a comprehensive empirical analysis of web-interactive agentic systems. Our
findings reveal that both the LLM API and the web environment significantly contribute to agentic
system latency. To reduce agentic system latency, we propose SpecCache, a caching technique
designed to mitigate web environment overhead. Extensive evaluations show that SpecCache
improves cache hit rates by up to 58 x and reduces web environment latency by as much as 3.2x.
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A Latency Test Question.

This section introduces the question used to measure LLM API latency, with a fixed input and a
controlled number of output tokens.

QUESTION:

Tell a story about Blackberry. Make the story detailed, with rich descriptions, character
development, and dialogue. Aim for a story that would take at least n tokens to tell.

Table 1: The question used to measure LLM API latency.

where n can be set to 64, 128, 256, 512, or 1024, depending on the number of output tokens.

B Examples of Math Questions

This section presents the sampled math questions used to measure LLM API latency.

QUESTION 1:
Find the constant term in the expansion of

1 5
102% — —;
( v 2x2)
QUESTION 2:

At what value of y is there a horizontal asymptote for the graph of the equation
_ 4z3+21—4
y= 33 —2x2+4+5x—1 "

QUESTION 3:

How many zeroes are at the end of 42! (42 factorial)? (Reminder: The number n! is the product
of the integers from 1 to n. For example, 5! =5-4-3-2-1 = 120.)

QUESTION 4:

Suppose that ABC'D is a trapezoid in which AD||BC. Given AC | CD, AC bisects angle
ZBAD, and [ABC D] = 42, then compute [AACD].

Table 2: The sampled math questions used to measure LLM API latency.
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C Sampled Questions

C.1 WebWalkerQA

In this section, we present the sampled WebWalkerQA Questions used to measure LLM and Web
API latency in Table[3]

QUESTION 1:

During the 7th China International Import Expo (CIIE) in 2024, when will the National
Exhibition and Convention Center (Shanghai) be closed for security measures, and who is
permitted to access the venue during this period?

QUESTION 2:

Who were the recipients of the POMS Fellows Award in 2006 and the Wickham Skinner Award
for Teaching Innovation in 2018?

QUESTION 3:

For ACL 2024, what is the deadline for students requiring financial assistance to apply for
discounted virtual registration, and by what date will they be notified about the selection for D&I
subsidies?

QUESTION 4:

What was the specific schedule for the social event held on the evening after the ACL 2023 best
paper awards ceremony?

QUESTION 5:

When is the paper submission deadline for the ACL 2025 Industry Track, and what is the venue
address for the conference?

QUESTION 6:

Where is the Web Conference 2024 Welcome Reception held and what is the nearest
transportation method from the Resorts World Convention Centre?

QUESTION 7:

Which event has a higher total reward pool, the SHIBUYA Y3K event on October 2, 2024, or the
upcoming The Smurfs: Gargamel’s Castle experience?

QUESTION 8:

What is the official launch date of Junkworld on Apple Arcade, and what new feature was
introduced in the January 2024 update?

QUESTION 9:
Find the first IGG recruitment contact email in Asia in alphabetical order.

QUESTION 10:

Who was the chair of the 12th APEC Tourism Ministerial Meeting held in Urubamba on June 9,
20247

Table 3: The sampled WebWalkerQA Questions used to measure LLM and Web API latency.
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C.2 Frames

In this section, we present the sampled Frames Questions used to measure LLM and Web API latency
in Table @l

QUESTION 1:

I have an element in mind and would like you to identify the person it was named after. Here’s a
clue: The element’s atomic number is 9 higher than that of an element discovered by the scientist
who discovered Zirconium in the same year.

QUESTION 2:

As of July 1, 2024, what is the parent company of the current record label of the singer of Edge
of Seventeen?

QUESTION 3:

According to the 1990 United States census, what was the total population of the cities in
Oklahoma that had at least 100,000 residents according to the 2020 United States census?

QUESTION 4:

The oldest extant football team in Italy plays in a stadium. The stadium is named after a person.
Who was the emperor of China when that person was 5 years old?

QUESTION 5:
Of the four main characters on Seinfeld, which actor is the oldest?

QUESTION 6:
Which species from the genus mulona are both found in the same country?

QUESTION 7:
I am moving to the G40 postcode area - what train stations are nearby, as of 20247

QUESTION 8:

Which player scored more than 15 goals in Eredevisie during the 21-22 season and had
previously played for Auxerre?

QUESTION 9:

Which MP standing as the leader of a major party in the 2019 United Kingdom General Election
was also an MP for Henley?

QUESTION 10:

What is the etymology of the name of the province to the east of the province in which Hazrati
Sultan District is located?

Table 4: The sampled Frames Questions used to measure LLM and Web API latency.
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D Prompts and Trajectory

D.1 Target LLM Prompts

We evaluate SpecCache on top of a Reflexion [47] agentic system. Table outline the prompts
used for each component of Reflexion.

TARGET MODEL ACTION PROMPT:

Digging through the buttons to find quality sources and the right information. You have access to
the following tools:

<Tool Description>

Use the following format:

Question: the input question you must answer

Thought: you should always think about what to do

Action: the action to take, should be one of [<Tool Names>]

Action Input: the input to the action

Observation: the result of the action

Action: the action to take, should be one of [<Tool Names>]

Action Input: the input to the action

Observation: the result of the action

... (this Thought/Action/Action Input/Observation can be repeated zero or more 20 times)
Notice:

- You must take action at every step. When you take action, you must use the tool with the
correct format and output the action input.

- You can not say "I’'m sorry, but I cannot assist with this request."!!! You must explore.

- When you have sufficient information to answer the query, provide your final answer in the
format: "Final Answer: <your answer>"

- Action Input should be valid JSON.

- IF YOU DO NOT HAVE SUFFICIENT INFORMATION, CONTINUE EXPLORING BY
TAKING ACTION.

- YOU MUST TAKE ACTION AT EVERY STEP UNLESS YOU ARE PRODUCING YOUR
FINAL ANSWER. WHEN YOU TAKE ACTION, YOU MUST USE THE TOOL WITH THE
CORRECT FORMAT AND OUTPUT THE ACTION INPUT. THEREFORE, YOU MUST
OUTPUT AN ACTION AND AN ACTION INPUT.

- IF YOU ARE PRODUCING YOUR FINAL ANSWER, YOU MUST OUTPUT THE FINAL
ANSWER IN THE FORMAT: "Final Answer: <your answer>"

Begin!

<Query>

Table 5: The prompt for the backbone LLM to take an action.

TARGET MODEL SELF-REFLECTION PROMPT:

You are an information extraction agent. Your task is to analyze the given observation and extract
ANY information that could help answer the query, including:
- Direct facts and data

- Reasoning and conclusions made by the model

- Historical information that could be relevant

- Any insights that contribute to solving the query

- Background knowledge that supports the answer

**nput:**

- Query: "<Query>"

- Observation: "<Current Observation>"

**Output (JSON):**
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{

"usefulness": true,
"information": "<Extracted Useful Information> using string format"

}

Or, if the observation contains NO potentially useful information at all:

{

"usefulness": false

**QGuidelines: **

- Be generous in what you consider "useful information"

- Include reasoning, conclusions, and background knowledge

- If the observation contains ANY information that could contribute to solving the query, mark it
as useful

- Only mark as false if the observation is completely irrelevant

Only respond with valid JSON.

Table 6: The prompt for the target model to perform self-reflection.

MAIN MODEL EVALUATOR PROMPT:

You are a query answering agent. Your task is to evaluate whether the accumulated useful
information is sufficient to answer the current query with HIGH CONFIDENCE. If it is sufficient
and you are very confident in the answer, return a JSON object with a "judge" value of true and
an "answer" field with the answer. If the information is insufficient or you have doubts, return a
JSON object with a "judge" value of false.

**Input:**

- Query: "<Query>"

- Accumulated Information: "<Accumulated Useful Information>"

**QOutput (JSON):**

{

"judge": true,
"answer": "<Generated Answer> using string format"

}

Or, if the information is insufficient or you have doubts:
"judge": false

**QGuidelines: **

- Only mark as sufficient if you are VERY CONFIDENT in the answer

- If you have any doubts about facts, reasoning, or completeness, mark as insufficient

- Consider whether you need more information to verify your answer

- The answer should be clear, complete, and directly address the query

- When in doubt, prefer to continue exploring rather than give a potentially wrong answer
Only respond with valid JSON.

Table 7: The evaluator prompt for the target model to create internal
feedback.
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D.2 Draft Model Prompt

In this section, we present the prompt for the draft model to predict action in Table

DRAFT MODEL ACTION PREDICTION PROMPT:

Digging through the buttons to find quality sources and the right information. You have access to
the following tools:
<Tool Description>
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [<Tool Names>]
Action Input 1: {{"button": "About"} }
Action Input 2: {{"button": "Contact"}}
Action Input 3: {{"button": "Application"}}
Observation: the result of the action
Action: the action to take, should be one of [<Tool Names>]
Action Input 1: {{"button": "News"}}
Action Input 2: {{"button": "Info"}}
Action Input 3: {{"button": "Faculty"}}
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can be repeated zero or more 20 times)
Notice:
- You must take action at every step. When you take action, you must use the tool with the correct
format and output 3 action inputs.
- You must always output three Action Input lines (Action Input 1, Action Input 2, Action Input
3) for each Action, unless there are fewer than three distinct valid inputs available.
- If there are fewer than three, output as many as are available.
- When you can not find the information you need, you should visit page of previous page
recursively until you find the information you need.
- You can not say "I’m sorry, but I cannot assist with this request."!!! You must explore.
- If you do not have sufficient information, continue exploring.
- Action Input should be a valid JSON.
- Do not recommend navigation buttons such as "About Wikipedia", "Search", "Create account”,
"Log in", "View source", "Print/export”, "Navigation".
- Focus on content-specific buttons that are likely to contain information relevant to your query,
such as:
- Names of people, places, events, or topics
- Years, dates, or time periods
- Specific categories or sections
- Links to related articles or detailed pages
Begin!
<Query>

Table 8: The prompt for the draft model that performs speculative action
prediction in SpecCache.

D.3 Trajectory Example

In this section, we show an example of a trajectory. We use {Action} to indicate a cache hit and

{Action} to indicate cache exists and the content will not be retrieved.

Query:
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When is the paper submission deadline for the ACL 2025 Industry Track, and what is the venue
address for the conference?

Root URL:
https://2025.aclweb.org/
Draft LLM:

Thought: The "Call for Industry Track" button will likely provide details on submission deadlines for
the Industry Track. For the venue address, "Participants Info" or similar buttons may give explicit
venue details. Starting by exploring the "Call for Industry Track" for the specific deadline and the
other buttons for venue information.

Action: visit_page

Action Input 1: {"button": "Call for Industry Track"}
Action Input 2: {"button": "Participants Info"}
Action Input 3: {"button": "Program"}

Target LLM:

Thought: Question: When is the paper submission deadline for the ACL 2025 Industry Track, and
what is the venue address for the conference? Thought: To find the Industry Track deadline, click the
{{Call for Industry Track}} button; to find the venue address, click {{Participants Info. }},

Action: visit_page,
Action Input: | {"button": "Call for Industry Track"}

Observation: <Content retrieved from https://2025.aclweb.org/calls/industry_track/>
Draft LLM:

Thought: I have found the paper submission deadline for the Industry Track (21 March 2025). Next,
I need to find the venue address. It is most likely in sections such as "Participants Info", "FAQ", or
"Visa". I will explore these buttons to locate the venue address.

Action: visit_page
Action Input 1: {"button": "Participants Info" }

Action Input 2: {"button": "FAQ"}
Action Input 3: {"button": "Visa"}
Target LLM:

Thought: Question: When is the paper submission deadline for the ACL 2025 Industry Track, and
what is the venue address for the conference? Thought: We already extracted the paper submission
deadline (21 March 2025) from the Industry Track page. Next, we need to find the venue address by
navigating to the {{ Participants Info }} section via the conference menu. Action: visit_page Action
Input: {button? Toggle menu} Observation: The conference menu has appeared, showing entries
including { {Participants Info.}},

Action: visit_page,

Action Input: {"button": "Participants Info"}

Observation: <Content retrieved from https://2025.aclweb.org/venue/>
Target LLM:

Final Answer: The paper submission deadline for the ACL 2025 Industry Track is 21 March 2025,
and the conference will be held at Austria Center Vienna, Bruno-Kreisky-Platz 1, 1220 Wien, Austria.
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E Additional LLM API Latency Measurement Results

In this section, we present further experimental results from our inference latency measurements.
We follow the experimental setup mentioned in Section [2.1] For the regional ablation study, we use
CloudLab [19]] instances located in Madison, Clemson, and Utah. The results are shown in Figure E}
Figure 0] shows that LLM API latency exhibits variance regardless of the city from which requests are
issued. Furthermore, we also measure the end-to-end latency of LLM API calls by fixing the input
questions and varying the number of output tokens. The results are shown in Figure As shown
in Figure[T0] LLM API latency tends to increase with the number of output tokens, although some
variance is observed. Furthermore, as shown in Figure dedicated modeE] reduces the variance of
API calls compared to serverless mode; however, it is also more expensive due to per-minute billing.
Finally, we present additional end-to-end latency measurements of LLM API calls across a broader

range of models, as shown in Figure[I2] The results in Figure [I2] support the conclusion that LLM
API calls exhibit high variability.
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Figure 9: This figure shows the latency variance across regions for models including Llama-3.1-70B,
Llama-3.1-405B, GPT-40, Gemini-1.5-Pro, and Claude-3.7-Sonnet. All requests use the same input
and a fixed number of output tokens. Latency is measured by sending requests from machines located
in Wisconsin (Madison), South Carolina (Clemson), and Utah.
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Figure 10: From July 23 to July 27, 2025, we evaluated the end-to-end latency of API calls provided
by two Al companies by fixing the input sequence and varying the number of output tokens from
64 to 1024. The evaluated models include: (i) Together Al: Llama-3.1-70B, Llama-3.1-405B; (ii)
OpenAl: GPT-40; (iii) Google: Gemini-1.5-Pro. The figure illustrates an upward trend in LLM API
latency with increasing output token count.

2With Together AI, we can create on-demand dedicated endpoints with the following advantages: (1)
Consistent, predictable performance, unaffected by other users’ load in our serverless environment; (2) No

rate limits, with a high maximum load capacity; (3) More cost-effective under high utilization; (4) Access to a
broader selection of models.
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Figure 11: This figure illustrates the relationship between API call latency and the number of output
tokens under various API deployment modes. QwQ-32B (Ser.) and Llama-3.1-70B (Ser.) denote API
calls made in serverless mode, while QwQ-32B (Ded.) and Llama-3.1-70B (Ded.) refer to calls made
in dedicated mode.
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Figure 12: In this figure, we evaluate the end-to-end latency of API calls offered by three Al
companies by querying the LLMs every hour. The evaluated models include: (i) Together Al:
Llama-3.1-8B, Qwen2.5-7B, DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R 1-Distill-Qwen-14B,
and Kimi-K2-Instruct; (ii) OpenAl: GPT-40-mini; (iii) DeepSeek: DeepSeek-Reasoner. This figure
shows that LLM API response times exhibit high variance, including occasional outliers.

F Model Version

Table Q] lists the versions of the models used in this paper.

Model Name Version
GPT-4.1 GPT-4.1-2025-04-14
GPT-4.1-mini GPT-4.1-mini-2025-04-14
04-mini 04-mini-2025-04-16
Claude-3.7 Claude-3-7-Sonnet-20250219

DeepSeek-V3
DeepSeek-R1

DeepSeek-V3-0324
DeepSeek-R1-0528

Table 9: This table presents the model versions used in this paper.
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