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ABSTRACT

Score-based diffusion models have emerged as powerful techniques for generat-
ing samples from high-dimensional data distributions. These models involve a
two-phase process: first, injecting noise to transform the data distribution into a
known prior distribution, and second, sampling to recover the original data distri-
bution from noise. Among the various sampling methods, deterministic samplers
stand out for their enhanced efficiency. However, analyzing these deterministic
samplers presents unique challenges, as they preclude the use of established tech-
niques such as Girsanov’s theorem, which are only applicable to stochastic sam-
plers. Furthermore, existing analysis for deterministic samplers usually focuses on
specific examples, lacking a generalized approach for general forward processes
and various deterministic samplers. Our paper addresses these limitations by in-
troducing a unified convergence analysis framework. To demonstrate the power
of our framework, we analyze the variance-preserving (VP) forward process with
the exponential integrator (EI) scheme, achieving iteration complexity of Õ(d2/ϵ).
Additionally, we provide a detailed analysis of Denoising Diffusion Implicit Mod-
els (DDIM)-type samplers, which have been underexplored in previous research,
achieving polynomial iteration complexity.

1 INTRODUCTION

Score-based diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020a;c) have
emerged as a powerful class of generative models, achieving significant success in image genera-
tion tasks, such as DALL·E (Ramesh et al., 2022), Stable Diffusion (Rombach et al., 2022), Imagen
(Saharia et al., 2022), and SDXL (Podell et al., 2023). Beyond that, these models have also demon-
strated effectiveness in diverse applications, including structure-based drug design (Corso et al.,
2022; Guan et al., 2024), text generation (Austin et al., 2021; Zheng et al., 2023; Chen et al., 2023c),
and reinforcement learning (Wang et al., 2022; Lu et al., 2023). At the core of the score-based diffu-
sion models is a forward Stochastic Differential Equation (SDE) to diffuse the data distribution into
a known prior distribution, and a neural network is trained to approximate the score function. Scal-
able score-matching techniques, such as denoising score matching (Vincent, 2011) and sliced score
matching (Song et al., 2020b), enable efficient learning of the score function. Once learned, we can
use numerical samplers to simulate the backward process and recover the original data distribution
from noise.
To improve the sampling quality and efficiency of diffusion models, it is crucial to use efficient
samplers in addition to an accurate score estimator. Early developments of diffusion models, such
as Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) applied stochastic samplers.
Later, empirical studies showed that diffusion models with deterministic samplers, such as Denois-
ing Diffusion Implicit Models (DDIM) (Song et al., 2020a) can still generate high-quality samples
while achieving better efficiency. For instance, DDIM is more than 10 times faster than DDPM.
Beyond DDIM, many novel fast ODE solvers have been developed for diffusion models, further
improving the efficiency of the sampling processes (Lu et al., 2022; Zhou et al., 2024).
The remarkable success of diffusion models has inspired extensive research interest in the math-
ematical analysis of these powerful generative models (Block et al., 2020; De Bortoli et al., 2021;
De Bortoli, 2022; Lee et al., 2023; Pidstrigach, 2022; Chen et al., 2022; 2023a;b; Li et al., 2024a;b;c;
Benton et al., 2024; Huang et al., 2024a). Notably, many prior works studied the convergence of
diffusion models with stochastic samplers (Chen et al., 2022; 2023a; Benton et al., 2024; Li et al.,
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2024b). A key tool in their analysis is Girsanov’s theorem, which helps control the distance be-
tween the distributions of two stochastic processes. However, it relies on the smoothing effect pro-
vided by stochasticity and therefore do not apply to deterministic samplers. To address this, (Chen
et al., 2024) introduced an additional corrector into the Langevin dynamics, which incorporates
randomness to help smooth the distribution. Meanwhile, Chen et al. (2023b) assumed the access
to the exact score function and provided a discretization analysis for the probability flow ODE in
Kullback–Leibler (KL) divergence. Moreover, under extra conditions, Li et al. (2024b) proved a
non-asymptotic convergence rate for a specific deterministic sampler based on the probability flow
ODE with elementary analysis. Huang et al. (2024a) considered the Ornstein–Uhlenbeck (OU) for-
ward process with the Runge-Kutta integrator and provided error bounds for both continuous- and
discrete-time settings. However, all of these works focus on specific forward processes and sam-
plers. Therefore, a natural question arises:
Can we develop a unified framework for the convergence analysis of diffusion models with deter-
ministic samplers that accommodates those common forward processes and sampling algorithms?
In this paper, we provide an affirmative answer to this question. We summarize our contributions as
follows:

• We develop a key technical tool (Lemma 3.2), which enables us to bound the time derivative
of the total variation (TV) distance between the final states of two ODE processes, through the
difference in their drift terms and the divergence. As a direct application, we establish convergence
guarantees for the continuous-time reverse ODE in the case of the OU forward process.

• We provide a unified convergence analysis framework for diffusion models with deterministic
samplers. For general forward processes and sampling algorithms, our framework decomposes
the error of diffusion models into five distinct terms: two arising from score estimation and three
from time discretization. This decomposition enables a divide-and-conquer approach, allowing
for improved analysis of each error component while maintaining the consistency of the unified
framework.

• To demonstrate the generality and effectiveness of our framework, we apply it to two typical
diffusion model settings: we achieve Õ(d2/ϵ) iteration complexity for the Variance Preserving
(VP) forward process with exponential integrator (EI) numerical scheme. This theoretical guar-
antee matches Li et al. (2024b), where a similar but different sampling algorithm is considered.
Moreover, we establish polynomial iteration complexity for the Variance Exploding (VE) forward
process with the DDIM numerical scheme. To the best of our knowledge, this is the first con-
vergence result for diffusion models employing DDIM-type samplers that can handle estimated
scores, whereas prior works, such as Chen et al. (2023b), only considered cases with access to
accurate score function.

Notation: In this work, we use lowercase letters a, b to represent scalars, lowercase bold letters x,y
to represent vectors, uppercase italic bold letters X,Y to represent random variables, and uppercase
bold letters A,B to represent matrices. For a vector x ∈ Rd and matrix A ∈ Rd×d, we denote by
∥x∥ the Euclidean norm of x and ∥A∥2 the operator norm of A. We use f1 ≲ f2 to denote that
there is a universal constant C such that f1 ≤ Cf2. For two sequences {an} and {bn}, we write
an = O(bn) if there exists an absolute constant C such that an ≤ Cbn, and we use Õ(·) to further
hide the logarithmic factors. For vector operations, we use ∇ to denote the gradient, ∇· to denote
divergence, and ∇2 to denote the Jacobian matrix.

2 PROBLEM BACKGROUND

The primary objective of diffusion models is to generate new samples given a set of examples drawn
from the data distribution. In this section, we introduce the fundamentals of ODE-based diffusion
models with deterministic samplers.
2.1 ODE-BASED DIFFUSION MODELS

A diffusion model typically consists of a forward process that perturbs the data distribution into
noise, followed by a denoising backward process. In general, the forward process can be modeled
as an Itô SDE:

dXt = f(t,Xt)dt+ g(t)dWt , X0 ∼ q0, (2.1)

where Wt is a Brownian motion in Rd, f(t, ·) is called the drift coefficient, g(t) is called the dif-
fusion coefficient (Song et al., 2020c). It begins by sampling X0 from the data distribution q0, and
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evolves according to the forward process (2.1). The law of Xt is denoted by qt(x). Under mild reg-
ularity conditions on q0, we can construct a family of reverse processes

(
Y λ
t

)
t∈[0,T ]

, which evolve
according to the following SDE:

dY λ
t = −

(
f(T − t,Y λ

t )− 1 + λ2

2
g(T − t)2∇ log qT−t(Y

λ
t )

)
dt+ λg(T − t)dWt , Y λ

0 ∼ qT .

(2.2)

These processes hold the same marginal distribution as qT−t(x) at time t (Chen et al., 2023b). As a
special case when λ = 0, the backward process is deterministic, i.e.,

dYt = −
(
f(T − t,Yt)−

1

2
g(T − t)2∇ log qT−t(Yt)

)
dt , Y0 ∼ qT , (2.3)

which is called the probability flow ODE (Song et al., 2020c).
The goal of ODE-based diffusion model is to simulate (2.3). However, we must make several ap-
proximations. First, as we do not have access to the true score ∇ log q(t,x), we learn an approxi-
mation sθ(t,x) by minimizing

L(sθ) =
∫ T

0

Eqt

[
∥sθ(t,Xt)−∇ log qt(Xt)∥2

]
dt. (2.4)

When f(t, ·) is affine, the transition is Gaussian, allowing for the closed-form solution of
∇ log q(t,x). By applying integration by parts, (2.4) can be reformulated into tractable objec-
tives, specifically through the methods of denoising score matching and implicit score matching
(Hyvärinen & Dayan, 2005; Vincent, 2011). For more general forward processes, these objectives
can be estimated using samples drawn from the forward process. Then, using the estimated score
function sθ, we have the simulate reverse process:

dŶt = −
(
f(T − t, Ŷt)−

1

2
g(T − t)2sθ(T − t, Ŷt)

)
dt , Ŷ0 ∼ qT . (2.5)

Second, since the initial distribution qT of the reverse process is not directly accessible, we instead
initialize the reverse process with a given Gaussian distribution πd, which is assumed to be a good
approximation of qT .
Third, in practical implementations, the continuous-time process is typically simulated using time
discretization. Specifically, we choose time steps 0 = t0 < t1 < · · · < tN ≤ T , sample Ŷ0 ∼ πd

and iteratively calculate Ŷtk+1
from Ŷtk using a particular numerical scheme. In this way, we only

need to have access to the value of the estimated score function sθ(tk, Ŷtk), k = 0, 1, . . . , N , which
can reduce the computational complexity of the sampling process. Common numerical schemes in-
clude the Exponential Integrator scheme, the Euler-Maruyama scheme, and the DDIM-type sampler
scheme, as we will discuss in Section 4.1.
For non-smooth data distributions, the score function ∇ log qt can be unbounded as t → 0, which
will happen especially when the data distribution is supported on a lower-dimensional submanifold
of Rd. This will lead to difficulty when considering the distance to the data distribution. For this
reason, we consider an early stopping scheme, selecting tN = T − δ for some small δ. Our analysis
focuses on the distance between the final distribution of the sampling process and qδ . When δ
is sufficiently small, the Wasserstein-p metric between qδ and q0 is small. This shows that it is
reasonable to approximate qδ instead of q0.
In this paper, we propose a unified framework that can handle different time schedules. The choice
of the time schedule is crucial for obtaining good results when analyzing the convergence of specific
samplers. In this paper, we follow the time schedule used in Benton et al. (2024). This allows us to
provide more refined control over the discretization error. We will always assume T > 1 and δ < 1.
In the first stage when t ∈ [0, T − 1], we use uniform time steps, with step size ηk = tk+1 − tk ≤ η.
In the second stage for t ∈ [T −1, T −δ], we assume time steps satisfying ηk ≤ η(T − tk+1), which
results in an exponential decay at a rate of (1 + η)−1. Using this schedule, we have

ηk ≤ η min{1, T − tk+1}. (2.6)

It’s worth noting that similar first-uniform-then-exponential schedules have also been utilized in
Chen et al. (2023a); Li et al. (2024b;c).
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2.2 DIFFICULTIES IN CONVERGENCE ANALYSIS OF ODE FLOW

Compared with the convergence analysis of SDEs, the convergence analysis of ODEs is more chal-
lenging. For SDE, the prior results either apply Girsanov’s Theorem (Chen et al., 2022) or rely on
a chain-rule-based argument (Chen et al., 2023a). Using these methods, we can see that for SDEs,
when the drift term is slightly perturbed, it is possible to bound the distance between the final iter-
ates or, more strongly, the entire distributions over the trajectories. Therefore, the assumption of the
score estimation is sufficient. However, as the following theorem illustrates, this fails in the ODE
case.
Theorem 2.1. Consider the 1-dimensional OU process (xt)t∈[0,T ] which starts at N(0, 1). It satis-
fies the following SDE

dxt = −xtdt+
√
2dWt, x0 ∼ N(0, 1).

Let the law of xt be denoted by qt. Its reverse process (yt)t∈[0,T ] (see (2.3)) can be represented with
the following ODE:

dyt =
(
yt +∇ log q(T − t, yt)

)
dt, y0 ∼ qT .

For arbitrarily small ϵ > 0, there exists sθ(t, x), which is smooth, and anywhere ϵ-close to the true
score function, i,e, ∣∣sθ(T − t, x)−∇ log q(T − t, x)

∣∣ ≤ ϵ, ∀t, ∀x,
such that the corresponding simulated reverse process (ŷt)t∈[0,T ] (see (2.5)) satisfies

TV(ŷT , yT ) ≥
1

4π
,

which indicates that the TV-distance of the final states is larger than a constant no matter how small
the score estimation error is.
Remark 2.2. For the construction of the counter-example, we consider a specific scenario where
the data distribution is standard Gaussian, and the OU process maintains the distribution. In this
case, adding an arbitrarily small perturbation to the drift term of the reverse ODE can result in a
sampling probability density function q̂(T − t, x) = 1√

2π
e−

x2

2

(
1 + t

2T sin(2nπx)
)

with severe

oscillations (n can be arbitrarily large), instead of a Gaussian distribution q(t, x) = 1√
2π

e−
x2

2 . For
details, please refer to Section B. This demonstrates that the score estimation error assumption is
insufficient, even when ignoring the discretization error. For a similar purpose, an example has been
given in Li et al. (2024b) for the discrete-time sampling algorithms. Notably, our constructed sθ
is smooth while theirs is not. This indicates that adding the score function’s smoothness condition
alone is insufficient to guarantee the desired properties.

3 CONVERGENCE OF CONTINUOUS TIME REVERSE PROCESS

In this section, we focus on the OU forward process, where f(t,x) = −x and g(t) =
√
2. Temporar-

ily, we ignore the discretization error and focus on the true reverse process (2.3) and the simulated
reverse process (2.5) starting at πd. Specifically, we want to study the TV-distance between the
following ODEs.

dYt =
(
Yt +∇ log qT−t(Yt)

)
dt , Y0 ∼ qT , (3.1)

dŶt =
(
Ŷt + sθ(T − t, Ŷt)

)
dt , Ŷ0 ∼ πd. (3.2)

We make the following standard assumption regarding the score estimation error.
Assumption 3.1 (Score estimation error). The estimated score function sθ(·, ·) satisfies:

Et,Yt∥sθ(T − t,Yt)−∇ log q(T − t,Yt)
∥∥2 ≤ ϵ2score.

This assumption guarantees that the drift terms in (3.1) and (3.2) will be close. However, as dis-
cussed in Remark 2.2, this condition alone is insufficient for ODE flows. To address this problem,
we introduce the following lemma. It states that the time derivative of the TV distance between two
ODE flows is determined by the distance between their drift terms and the divergence of these drift
terms. Its proof is left to Appendix C.
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Lemma 3.2. Suppose Xt and Yt are stochastic processes in Rd driven by ODEs:

dXt = b(t,Xt) dt , X0 ∼ p0,

dYt = b∗(t,Yt) dt , Y0 ∼ q0.

Let p(t,x) be the law of Xt and q(t,x) be the law of Yt. If the drift terms b,b∗ : [0,∞)×Rd → Rd

are continuously differentiable with respect to x ∈ Rd, then the time-derivative of the total variation
distance between Xt and Yt satisfies the following equation:

∂ TV(Xt,Yt)

∂ t
= −

∫
Ωt

(
∇ · b(t,x)−∇ · b∗(t,x)

)
q(t,x) dx

−
∫
Ωt

(
b(t,x)− b∗(t,x)

)
· ∇ log q(t,x)q(t,x)dx,

where Ωt := {x ∈ Rd | p(t,x) > q(t,x)}.

In the application of this lemma to diffusion models, we can choose the true reverse ODE and sam-
pling process ODE. Let pt be the distribution of the sampling process, and qt be the distribution
of the true reverse process. Several works (Chen et al., 2023b; Albergo et al., 2023), considered
the time derivative of KL divergence, deriving expressions that involve scores of the sampling pro-
cesses ∇ log p(t,x). However, as shown in Theorem B.1, the score of the sampling process can
still explode given sufficiently small score estimation error (see Assumption 3.1) and divergence
estimation error (see Assumption 3.3). The crucial aspect of this lemma is that it enables us to avoid
the occurrence of the sampling process score ∇ log p(t,x). We apply Gauss’s theorem to transfer
the integral to ∂Ωt, where we can replace pt with qt because pt = qt on ∂Ωt. Then, we apply
Gauss’s theorem again to convert it back to a volume integral. This allows us to eliminate the depen-
dence on ∇ log p(t,x). Motivated by this lemma, we make the following assumption on divergence
estimation error.
Assumption 3.3 (Divergence estimation error). For any t ∈ [0, T − δ], the estimated score function
sθ(t, ·) is second-order continuously differentiable. Moreover, it satisfies:

Et,Yt

∣∣∣∇ · sθ(T − t,Yt)−∇ · ∇ log q(T − t,Yt)
∣∣∣ ≤ ϵdiv.

Similar assumptions regarding the difference between the derivatives of true and estimated scores
have been made Li et al. (2024b;a;c). In comparison, those studies assumed the closeness of the
entire Jacobian matrix, while we only require assumptions on the divergence. Under Assumptions
3.1 and 3.3, we have the following theorem.
Theorem 3.4. Let the true and simulate reverse process be defined as (3.1) and (3.2). Under As-
sumptions 3.1 and 3.3, if we further assume that X0 has finite second-order momentum, then we
have:

TV(ŶtN ,Xδ) ≤ TV(Ŷ0,Y0) +

√
dT + d log

1

δ
ϵscore + ϵdiv.

See Appendix D for the proof of this theorem.
Remark 3.5. Huang et al. (2024a) proves a similar bound on the TV-distance for continuous-time
processes. Their result differs from ours in that, unlike Assumption 3.3, they do not assume the
divergence estimation error to be small. Instead, they require the first two derivatives of the estimated
score function to be bounded. Their estimation error term scales as O(d3/4T 3/4δ−1ϵ

1/2
score), which

is strictly worse than our O(d1/2(T 1/2 + log1/2(δ−1))ϵscore). Moreover, their results rely on extra
assumptions regarding the compact support of the data distribution. For a detailed comparison with
Huang et al. (2024a), regarding the settings and results, please refer to Appendix A.1.

4 UNIFIED ANALYSIS FOR DISCRETE-TIME REVERSE PROCESS

In this section, we conduct convergence analysis for the discrete-time reverse process. Specifically,
we consider a sequence of time steps 0 = t0 < t1 < ... < tN ≤ T . Starting from Ŷ0 ∼ πd, we
iteratively apply a deterministic sampler {Tk}N−1

k=0 to generate subsequent iterations. For any k, the
sampling process can be expressed as:

Ŷtk+1
= Tk(Ŷtk),

5
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where Tk acts as a discrete-time simulation of the transition in the reverse ODE process (4.1). We
will present our results in three steps. In Section 4.1, we introduce some commonly used numerical
schemes for diffusion models. In Section 4.2, we provide a unified framework encompassing these
numerical schemes. We then employ an interpolation method to transform the discrete-time sam-
pling into an equivalent continuous-time ODE, enabling us to leverage Lemma 3.2 from the previous
section. In Section 4.3, we present the convergence analysis for this general framework.
4.1 NUMERICAL SCHEMES

Recall that for general forward process (2.1), the continuous-time reverse process with the estimated
score function sθ can be written as

dŶt = −
(
f(T − t, Ŷt)−

1

2
g(T − t)2sθ(T − t, Ŷt)

)
dt , Ŷ0 ∼ qT . (4.1)

Forward Euler Scheme. The simplest method is the forward Euler scheme, which directly replaces
t ∈ [tk, tk+1] with the start point tk in the equation above, i.e.,

dŶt = −
(
f(T − tk, Ŷtk)−

1

2
g(T − tk)

2sθ(T − tk, Ŷtk)
)
dt, for tk < t ≤ tk+1.

Or equivalently, we have the following discrete-time sampling algorithm, with ηk = tk+1 − tk:

Ŷtk+1
= Ŷtk − ηk

(
f(T − tk, Ŷtk)−

1

2
g(T − tk)

2sθ(T − tk, Ŷtk)
)
. (4.2)

Exponential Integrator (EI) Scheme. When f(t,y) = Ly is a linear function, we can apply the
Exponential Integrator (EI) scheme by keeping Ŷt in the linear part, i.e., the ODE becomes

dŶt = −
(
LŶt −

1

2
g(T − tk)

2sθ(T − tk, Ŷtk)
)
dt, for tk < t ≤ tk+1.

In this way, we can integrate the linear part exactly. As a result, we have the following discrete-time
sampling algorithm, with ηk = tk+1 − tk:

Ŷtk+1
= e−Lηk Ŷtk +

e−Lηk − 1

2L
g(T − tk)

2sθ(T − tk, Ŷtk). (4.3)

DDIM-type Scheme. Song et al. (2020a) introduced a deterministic sampler for the probability flow
ODE by considering a non-Markovian diffusion process. As interpreted by Chen et al. (2023b), it
can be viewed as a two-step process involving a restoration step that provides a rough estimate for
a past step and a degradation step that simulates the forward process by progressively adding the
estimated noise. Specifically, starting from Ŷtk , the restoration step provides an estimate of Ytk+γ

for some γ > 0, where tk+1 − tk ≤ γ, i.e.

Ytk+γ ≈ Ŷtk − γ
[
f(T − tk, Ŷtk)− g(T − tk)

2sθ(T − tk, Ŷtk)
]
= z.

Next, the degradation step simulates the forward process during t ∈ [T − tk − γ, T − tk+1], which
can be expressed as

Ŷtk+1
= z+ (tk + γ − tk+1)f(T − tk − γ, z) + g(T − tk − γ)

√
tk + γ − tk+1ϵ,

where ϵ represents the noise estimated from Ŷtk . By substituting the form of ϵ and making some
approximations, we can get the following sampling algorithm, with ηk = tk+1 − tk:

Ŷtk+1
= Ŷtk − ηkf

(
T − tk, Ŷtk

)
+ lηk

(
1−

√
1− 1/l

)
g(T − tk)

2sθ(T − tk, Ŷtk), (4.4)

where l = γ/(tk+1 − tk). Please refer to Chen et al. (2023b) for more details about the DDIM-type
sampler. For linear diffusions, we can set γ = T − tk. Then, with our selection of time schedule, by
(2.6), we have l ≥ (T − tk+1)/(tk+1 − tk) ≥ min{1, T − tk+1}/(tk+1 − tk) ≥ 1/η.
4.2 INTERPOLATION METHODS

At the core of our analysis is to apply Lemma 3.2, which analyzes the divergence between two
ODEs. However, two main challenges arise. First, the discrete-time nature of the sampling algorithm
precludes direct application of the lemma. Second, the sampling process Ŷtk+1

= Tk(Ŷtk) depends
on the position Ŷtk at time tk, while the proof of Lemma 3.2 utilizes the Fokker-Planck equation,

6
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which requires the drift term to be a function solely of time and the current position. To solve
these problems, we first introduce a unified framework encompassing all the numerical schemes
in Section 4.1. Next, we present an interpolation method to transform the sampling process into a
continuous-time ODE, enabling the application of Lemma 3.2.
For the numerical schemes defined in (4.2), (4.3) and (4.4), we naturally extend the definition to
a continuous interval t ∈ [tk, tk+1] by replacing tk+1 with t. More concrete examples of Ft can
be found in Section 5. This yields a continuous-time interpolation operator Ftk→t(·), or simply Ft

when no confusion arises. Moreover, let Ŷt = Ft(Ŷtk) = F (t, Ŷtk). It is also equivalent to the
following ODE:

dYt =
∂F

∂t
(t, Ŷtk)dt.

Moreover, if we further assume Ft is invertible, which holds for many examples when sθ is Lipschitz
and the time step ηk = tk+1 − tk is small enough. Then we have the following ODE:

dŶt = b̂(t, Ŷt)dt, (4.5)

where b̂(t,x) = ∂F
∂t

(
t, F−1

t (x)
)
.

4.3 MAIN RESULTS FOR GENERAL DIFFUSION PROCESSES

Using the interpolation method presented in the last section, we can now provide a general conver-
gence analysis for the discrete-time reverse process. Consider the time step t ∈ [tk, tk+1]. Recall
that for general forward process (2.1), the true reverse process is defined as

dYt = b(t,Yt)dt,

where b(t,x) = −
(
f(T − t,x)− 1

2g(T − t)2∇ log qT−t(x)
)
. While the simulated reverse process

is given by:

dŶt = b̂(t, Ŷt)dt,

where b̂(t,x) = ∂F
∂t

(
t, F−1

t (x)
)
.

Definition 4.1. At each step [tk, tk+1], let the interpolation operator of the sampling algorithm be
Ftk→t. The estimation-error operator is defined by:

Φk(t,x) =
∂F

∂t
(t,x) + f

(
T − t, Ftk→t(x)

)
− 1

2
g(T − t)2∇ log qT−tk

(
x
)
.

As we will show in the next section, it reflects the error between true score ∇ log qT−tk(x) and
sθ(T − tk,x). Similarly, we can define the divergence-error operator, which reflects the error be-
tween ∇2 log qT−tk(x) and ∇sθ(T − tk,x).
Definition 4.2. At each step [tk, tk+1], let the interpolation operator of the sampling algorithm be
Ftk→t. The divergence-error operator is defined by

Ψk(t,x) = ∇
[ ∂

∂t
F
](
t,x

)
I+∇x

[
f
(
T − t, Ftk→t(x)

)]
− 1

2
g(T − t)2∇2 log qT−tk(x).

Using these definitions, the next theorem shows the convergence for the general diffusion process
with any numerical schemes.
Theorem 4.3. Consider the true reverse process (Yt)t∈[0,T ] and reverse sampling process
(Ŷtk)k∈[N ]. Then,

TV(YT−δ, ŶtN ) ≤ TV(qT , πd)

+

N−1∑
k=0

∫ tk+1

tk

[√
E
[∥∥Φk(t,Ytk)

∥∥2]√∫ ∥∥∥∇ log q(T − t,x)pYt
(x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx︸ ︷︷ ︸

(I) Score estimation error

+

√
E
[
tr
(
Ψk(t,Ytk)

)2]√∫ ( pYt
(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx︸ ︷︷ ︸

(II) Divergence estimation error

7
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+
1

2
g(T − t)2

∫ ∣∣(∇ log qT−tk(z)−∇ log qT−t(x)
)
· ∇ log q(T − t,x)

∣∣q(T − t,x)dx︸ ︷︷ ︸
(III) Score discretization error

+
1

2
g(T − t)2

∫ ∣∣tr(∇2 log q(T − tk, z)−∇2 log q(T − t,x)
)∣∣q(T − t,x)dx︸ ︷︷ ︸

(IV) Divergence discretization error

+max
x

∣∣∣∣ tr [∇[ ∂

∂t
F
](
t, F−1

t (x)
)
+∇z

[
f
(
T − t, Ft(z)

)]](
∇F−1

t (x)− I
)∣∣∣∣︸ ︷︷ ︸

(V) Bias error

]
dt,

where z = F−1
t (x).

Other than the distance between the initial distribution of the reverse process and Gaussian noise,
our upper bound of TV distance is divided into five terms.
For (I) and (II), these terms rely on the expectation of the defined estimation-error operator and
divergence-error operator over the true reverse process. Moreover, they depend on the density ratios
between pYt

(x), representing the distribution for the true reverse process at time t, and pFt(Ytk
)(x).

As the interpolation operator Ft acts as a simulation of the true reverse process, we expect that the
ratio will be close to 1, thus bounded. Consequently, these terms are expected to scale with the score
and divergence estimation errors. For (III) and (IV), these terms depend on he distance between
score functions and divergence evaluated at t and tk, originating from the time-discretization algo-
rithm. They will decrease as the time step gets smaller. For (V), we observe that Ft is close to the
identity when t → tk. This results in ∇F−1

t (x)− I converging to the zero matrix when t → tk.

5 APPLICATION TO SPECIFIC DETERMINISTIC SAMPLERS

In this section, we apply Theorem 4.3 to analyze specific diffusion processes. We focus on the Vari-
ance Preserving (VP) forward process with EI schemes and the Variance Exploding (VE) forward
process with the DDIM sampler. While prior work has shown that VP and VE can be connected
through reparametrization (Karras et al., 2022), such equivalence does not account for initialization
and discretization errors. Therefore, we provide separate detailed analyses for both VP and VE
processes. The analysis method can be easily extended to other forward processes and numerical
schemes.
We specifically focus on data distributions with compact support, as outlined in the following as-
sumption.
Assumption 5.1 (Bounded Support of Data). For a constant R, the data distribution q0 satisfies:

q0(x) = 0, ∀ ∥x∥ > R,

or equivalently, P (∥X0∥ > R) = 0.

This assumption has also been made in De Bortoli (2022); Chen et al. (2022). In particular, we
do not assume the smoothness of the data distribution. Therefore, it includes the setting where the
data distribution is supported on a lower-dimensional submanifold of Rd, which, notably, does not
possess a smooth density.
Additionally, we make the following assumptions on the estimated score function.
Assumption 5.2 (Score Estimation Error).∑

k

ηkE∥sθ(T − tk,Ytk)−∇ log q(T − tk,Ytk)∥2 ≤ ϵ2score.

Assumption 5.3 (Divergence Estimation Error).∑
k

ηk

√
E tr

(
∇sθ(T − tk,Ytk)−∇2 log q(T − tk,Ytk)

)2 ≤ ϵdiv.

In addition, to deal with the discretization error for the ODE reverse process, we need the following
regularity conditions for sθ.
Assumption 5.4 (sθ is Lipschitz and bounded at 0). For all tk, we have:

∥sθ(T − tk,x1)− sθ(T − tk,x2)∥ ≤ L · ∥x1 − x2∥,

8
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∥sθ(T − tk, 0)∥ ≤ c,

for some constant L and c. Without loss of generality, we assume L ≥ 1 and c ≤ L to simplify
later derivation. Similar assumptions on sθ have been made in Huang et al. (2024a). Note that we
only need the Lipschitzness and boundness at 0, while they require the boundness of high-order
derivatives w.r.t t and x.

5.1 VP+EI

In this section, we focus on the VP process where f(t,x) = −x and g(t) =
√
2. As is discussed in

Section 4.1, the sampling algorithm is given by:

Ŷtk+1
= etk+1−tk Ŷtk +

(
etk+1−tk − 1

)
sθ(T − tk, Ŷtk).

At each step [tk, tk+1], Ft(x) = et−tkx+
(
et−tk −1

)
sθ(T − tk,x). Therefore, the estimation-error

operator (Definition 4.1) can be computed as

Φk(t,x) =
∂F

∂t
(t,x) + f

(
T − t, Ft(x)

)
− 1

2
g(T − t)2∇ log qT−tk(x)

= sθ(T − tk,x)−∇ log qT−tk(x).

Similarly, the divergence-error operator (Definition 4.2) can be computed as:

Ψk(t,x) = ∇
[ ∂

∂t
F
](
t,x

)
I+∇x

[
f
(
T − t, Ftk→t(x)

)]
− 1

2
g(T − t)2∇2 log qT−tk(x)

= ∇sθ(T − tk,x)−∇2 log qT−tk(x).

Now, using Theorem 4.3, we have the following convergence analysis for VP + EI. See Appendix F
for proofs of the following results.
Theorem 5.5. Consider a VP forward process with EI numerical scheme. Under Assump-
tions 5.1, 5.2, 5.3, and 5.4, suppose the time schedule satisfies (2.6). If the step size η satisfies
η ≤ min

{
1/(12L2d2), 1/(24L2R2d)

}
, then the following bound holds:

TV(ŶtN ,Xδ) ≲ TV(qT , πd) + ϵdiv +
√
d
√
ηNϵscore + η2N

[
LR4

(
d2 +

1

δ2

)
+ L2d+

R5

δ

]
.

Lemma 5.6. Assumes the data distribution satisfies Cov(q0) = Id. Then for the VP process, we
have TV(qT , πd) ≲

√
de−T . At VP forward process case, we take πd ∼ N(0, Id).

Corollary 5.7. For all T ≥ 1, δ < 1 and N ≥ log(1/δ), there exists η = Θ((T + log 1
δ )/N)

and a time schedule satisfying (2.6). Under the same assumptions as Theorem 5.5, we additionally
assume that the data distribution satisfies Cov(q0) = Id. When δ = 1/d and d ≥ R/L + L/R4,
if we take T = log(d/ϵ2)/2 and N = LR4Θ

(
d2(T + log(1/δ))2/ϵ

)
for some ϵ ≤ 1/L, we have

TV(ŶtN ,Xδ) ≲ ϵ, assuming Õ(ϵ/
√
d) score estimation error and O(ϵ) divergence error. Hence

the diffusion model requires at most Õ(LR4d2/ϵ) steps to approximate qδ within ϵ ≤ 1/L in TV
distance.
Remark 5.8. We note that the ϵ-dependence in iteration complexity of our deterministic sampler is
ϵ−1, while stochastic ones usually exhibit a slower iteration complexity proportional to ϵ−2(Chen
et al., 2023a; 2022; Li et al., 2024b; Benton et al., 2024). This aligns with general observation in dif-
fusion model practice: deterministic samplers demonstrate higher efficiency compared to stochastic
samplers.

5.2 VE+DDIM
In this section, we focus on the process where f(t,x) = 0 and g(t) = 1, which corresponds to the
VE forward process with σ2

t = t. As discussed in Section 4.1, the sampling algorithm is given by:

Ŷtk+1
= Ŷtk + (tk+1 − tk)l

(
1−

√
1− 1/l

)
sθ(T − tk, Ŷtk), l =

T − tk
tk+1 − tk

.

Let cl = l
(
1 −

√
1− 1/l

)
≤ 1. At each step [tk, tk+1], Ft(x) = x + cl(t − tk)sθ(T − tk,x).

Therefore, the estimation-error operator (Definition 4.1) can be computed as

Φk(t,x) =
∂F

∂t
(t,x) + f

(
T − t, Ft(x)

)
− 1

2
g(T − t)2∇ log qT−tk(x)

9
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= clsθ(T − tk,x)−
1

2
∇ log qT−tk(x).

Similarly, the divergence-error operator (Definition 4.2) can be computed as:

Ψk(t,x) = ∇
[ ∂

∂t
F
](
t,x

)
I+∇x

[
f
(
T − t, Ftk→t(x)

)]
− 1

2
g(T − t)2∇2 log qT−tk(x)

= cl∇sθ(T − tk,x)−
1

2
∇2 log qT−tk(x).

Now, using Theorem 4.3, we have the following convergence analysis for VE + DDIM. See Ap-
pendix G for proofs of the following results.

Theorem 5.9. Consider a VE forward process with DDIM numerical scheme. Under Assumptions
5.1, 5.2, 5.3, and 5.4, suppose the time schedule satisfies (2.6). If the step size η satisfies η ≤
min

{
1/(12L2Td2), 1/(24L2R2d)

}
, then the following bound holds:

TV(ŶT−δ,YT−δ) ≲ TV(πd, qT ) + ϵdiv +
√
d
√

ηNϵscore + η2N
[
LR4d2 + L2d+

LR4

δ2

]
.

Lemma 5.10. Assume the data distribution satisfies Cov(q0) = Id. Then for the VE forward
process, we have TV(qT , πd) ≲

√
d/

√
T . At VE forward process case, we take πd ∼ N(0, T Id).

Corollary 5.11. For all T ≥ 1, δ < 1 and N ≥ log(1/δ), there exists η = Θ((T + log 1
δ )/N)

and a time schedule satisfying (2.6). Under the same assumptions as Theorem 5.5, we additionally
assume that the data distribution satisfies Cov(q0) = Id. When δ = 1/d and d ≥ L/R4, if we take
T = d/ϵ2 and N = LR4Θ

(
d2(T + log(1/δ))2/ϵ

)
for some ϵ ≤ 1/L, we have TV(ŶtN ,Xδ) ≲ ϵ,

assuming sufficiently small score estimation error and divergence error. Hence the diffusion model
requires at most Õ(LR4d4/ϵ5) steps to approximate qδ within ϵ ≤ 1/L in TV distance.

Remark 5.12. Compared to Corollary 5.7, VE SDE has larger iteration complexity, primarily due
to the slow 1/

√
T decay in the distance between qT and πd, compared with the exponential decay

(Lemma 5.6) for VP SDE.

6 CONCLUSION

In this work, we introduce a unified convergence analysis framework for deterministic samplers.
We start by presenting a counter-example to illustrate the main challenge in analyzing deterministic
samplers compared to stochastic ones. Additionally, we provide a technical lemma that allows us
to bound the distance between distributions using score estimation error and divergence error. With
this approach, we directly established convergence guarantees for the continuous-time reverse ODE.
Moreover, we extend our analysis to the convergence of discrete-time deterministic samplers with a
unified framework. Finally, we demonstrate its effectiveness by applying it to two widely adopted
sampling methods.
Limitation and Future Work. First, for the VP process with EI schemes, our current results have
a quadratic dependence on d, which leaves room for improvement compared to the d-linear state-
of-the-art bounds in ODE analysis (Li et al., 2024c). This discrepancy stems from two factors:
our different assumption that requires control of the divergence error rather than the full Jacobian
error, and our directly estimated Lipschitz constants in the discretization error analysis. We believe
that through more delicate methods for analyzing the discretization error and potentially stronger
conditions, we could achieve linear dimension dependence within our unified framework. Second,
since adding the divergence assumption can guarantee the convergence of the ODE sampler, an
interesting future direction may be to design training methods that can obtain both small score
error and small divergence error. One potential approach would be to incorporate regularization
terms corresponding to divergence error in the loss function, potentially leading to more effective
diffusion model training algorithms. Third, for the VE process, we obtain only polynomial bounds
due to the slow 1/

√
T decay in the distance between qT and πd. It’s important to note that this is not

a limitation of the DDIM sampler, as applying DDIM to the VP processes yields results comparable
to those obtained with the EI scheme. We leave an improved analysis for the VE forward process
as future work. Finally, the discrete-time analysis currently relies on a bounded support assumption
for the data distribution, which may be relaxed to less restrictive conditions, such as light-tailed
distributions.
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A RELATED WORK

Convergence Analysis of Stochastic Samplers. Early theoretical studies for diffusion models were
either non-quantitative (De Bortoli et al., 2021; Liu et al., 2022; Pidstrigach, 2022), or exhibited ex-
ponential dependence on the dimension or other problem parameters (Block et al., 2020; De Bortoli,
2022). Later, Lee et al. (2022) proved the first result with polynomial complexity, with the assump-
tions L2-score estimate and log-Sobolev inequality (LSI). However, the LSI condition on the data
distribution is restrictive, prompting further studies to relax this assumption. Chen et al. (2022)
utilized Girsanov’s theorem, and proved polynomial convergence bounds, assuming either the Lips-
chitzness property of the forward process score function or bounded support of the data distribution.
Lee et al. (2023) relaxed the smoothness condition to apply only to the data distribution rather
than the whole trajectory, and replaced the bounded support assumption with sufficient tail decay.
Chen et al. (2023a) proved a result with both the advantages of these two works, achieving a better
convergence rate while assuming only the smoothness of the data distribution. Furthermore, they
provided results for the non-smooth setting using appropriate early stopping and decreasing step
size. Benton et al. (2024) improved the dependency of the dimension d to linear via the stochas-
tic localization method. Compared with the analysis of reverse SDE, Li et al. (2024b) utilized an
elementary approach to analyze a DDPM-type stochastic sampler. It also proposed an accelerated
stochastic sampler with better iteration complexity. More recently, Huang et al. (2024b) decom-
posed the entire sampling process into several reverse transition kernel subproblems and proposed
novel fast sampling algorithms.
Convergence Analysis of Deterministic Samplers. The first non-asymptotic bounds for determin-
istic samplers were derived by Chen et al. (2023b), which assumes access to the ground truth score
function. Subsequently, Chen et al. (2024) proved the first polynomial-time convergence guarantees
of probability flow ODE with estimation error, by incorporating an additional corrector Langevin
dynamics. While this improved upon prior results, it introduced randomness, making the sampling
processes non-deterministic. Li et al. (2024a;b) applied an elementary analysis framework to study
the convergence of a specific deterministic sampler with a given learning schedule, requiring an ad-
ditional assumption on the Jacobian estimation error. Later, Li et al. (2024c) applied the same frame-
work and achieved improved iteration complexity, which is linear in the dimension. Recently, Huang
et al. (2024a) examined the Ornstein-Uhlenbeck (OU) forward process, removing the assumption of
Jacobian estimation error. However, they introduced higher-order boundedness assumptions on the
derivatives of the estimated score function concerning time and space. They proved an upper bound
for the total variation between the target and generated data at the continuous-time level while also
analyzing the convergence rate for the Runge-Kutta integrator. Further expanding the scope, Gao
& Zhu (2024) studied the Wasserstein distance using general forward SDE with log-concavity data
assumptions. Additionally, research has started to explore other deterministic generation methods,
such as flow matching (Benton et al., 2023).
A.1 COMPARISON WITH HUANG ET AL. (2024A)
Huang et al. (2024a) is the most related work to ours. It studied the convergence properties of
diffusion models with deterministic samplers based on probability flow ODEs.
Theorem A.1 in Huang et al. (2024a) is similar to our Lemma 3.2, where they applied the charac-
teristic line method for ODEs, while we used the Fokker-Planck equation and the Gauss’s theorem
twice. However, we use different methods when dealing with the divergence term

∇ ·
[(
(b(t,x)− b∗(t,x)

)
q(T − t,x)

]
.

We decompose it into score estimation error and divergence estimation error (see Lemma 3.2). In
contrast, they applied the Gagliardo-Nirenberg inequality to bound the integral of first-order deriva-
tives using integrals of second-order and zero-order derivatives of sθ. This led to different assump-
tions regarding the convergence analysis of the continuous-time reverse process. In addition to
the standard estimation error assumption, we require a small divergence error, while Huang et al.
(2024a) assumed the boundedness of up to the second order derivatives of sθ. Furthermore, they re-
quired a bounded support assumption, which is not necessary for our continuous-time analysis. As
a result, Huang et al. (2024a) proved an upper bound on the TV distance: O(T 3/4d3/4(1/δ)ϵ

1/2
score).

In comparison, our result is O(
√

dT + d log(1/δ) · ϵscore), notably only log-dependent on δ.
For the discrete-time analysis, Huang et al. (2024a) studied the p-th Runge-Kutta discretization
method. When p = 1, it becomes the forward Euler method. In comparison, we study the EI
scheme. Our analysis can be easily applied to the forward Euler method, yielding similar results.
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In the discrete-time case, we assumed bounded support of the data distribution and the Lipschitz
condition of sθ, which was already required in Huang et al. (2024a) in the continuous-time analysis.
Additionally, they assumed that the mixed second-order derivatives of sθ with respect to t and x
are bounded by a constant L̄. For the forward Euler method, Huang et al. (2024a) proved iteration
complexity of Õ

(
L̄2R2d2ϵ−1

)
, while our result for EI scheme is Õ(LR4d2ϵ−1) for δ = 1/d. We

remark that the constant L̄ in their result may be very large. For example, the derivatives of the
true score function can depend on higher-order terms of 1/δ (see Lemma H.2). Moreover, we also
consider the VE forward process with the DDIM numerical schemes.

A.2 COMPARISON WITH OTHER WORKS ON DETERMINISTIC SAMPLERS

In this section, we consider different works on convergence analysis of diffusion models with de-
terministic samplers and provide a detailed comparison in Table 1. The comparison focuses on
three key aspects: major assumptions required by these works, the metrics used, and the iteration
complexity in terms of dimension d and accuracy ϵ.

Major Assumptions Metric Complexity Reference

Score Estimation Error 1

TV(p1, q1)

Õ
(

d2

ϵ + d3
√
ϵ

) Li et al. (2024b)

Bounded Support Theorem 1

1

N

N∑
t=1

E
X∼qt

∥∥∇sθ(t,X)−∇2 log q(t,X)
∥∥ ≤ ϵJacobi Õ

(d
ϵ

) Li et al. (2024c)

Theorem 1

Access to Exact Score
KL(p0, q0) Polynomial∇ log q and ∇2 log q Lipschitz Chen et al. (2023b)

∥∇ log
qt
qs
(x)∥ ≤ β|t− s|c(1 + ∥x∥+ ∥∇qt(x)∥) Theorem 4.1

Score Estimation Error
TV(pδ, qδ) O

(d(p+1)/p

ϵ1/p

)
sup
x∈Rd

max
1≤k+|α|≤p+1

max
1≤j≤d

|∂k
t ∂

α
x s

(j)
θ (t,x)| ≤ L Huang et al. (2024a)

Bounded Support Theorem 3.10

Bounded Support: Assumption 5.1
TV(pδ, qδ) Õ

(d2
ϵ

)
Score Estimation Error: Assumption 5.2 This Work:

Divergence Error: Assumption 5.3 Corollary 5.7

Table 1: Comparison of convergence analysis for diffusion models with deterministic samplers

B PROOF OF THEOREM 2.1
Proof of Theorem 2.1. Since xt starts at N(0, 1), we can easily show that xt ∼ N(0, 1) for all
t. Recall that we use q(t, x) to denote the law of xt, then we have q(t, x) = 1√

2π
e−

x2

2 and

∇ log q(t, x) = −x. Define q̂(T − t, x) = 1√
2π

e−
x2

2

(
1 + t

2T sin(2nπx)
)
, and construct our es-

timated score as:

sθ(T − t, x) =

∫∞
x

1√
2π

e−
y2

2 sin(2nπy)
(

1
2T

)
dy

q̂(T − t, x)
− x,

Without loss of generality, we can assume x ≥ 0. Then we have:

|sθ(T − t, x)−∇ log q(T − t, x)| =

∣∣∣∫∞
x

1√
2π

e−
y2

2 sin(2nπy)
(

1
2T

)
dy

∣∣∣
1√
2π

e−
x2

2

(
1 + T−t

2T sin(2nπx)
)

1This assumption is slightly different from ours. While it assigns uniform weights to estimation errors
across all time steps, our approach applies smaller weights to time steps with smaller step sizes.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

≤
1√
2π

e−
x2

2
1
2T supN≥x

∣∣∣∫ N

x
sin(2nπy)dy

∣∣∣
1√
2π

e−
x2

2
1
2

≤ 1

T

1

nπ
.

Taking n ≥ 1/(Tπϵ), we have |sθ(T − t, x)−∇ log q(T − t, x)| ≤ ϵ. Moreover, since we have
∂q̂(T − t, x)

∂t
= − ∂

∂x

((
sθ(T − t, x) + x

)
· q̂(T − t, x)

)
, q̂(T − 0, x) ∼ N(0, 1),

which satisfies the Fokker-Planck equation. Therefore, we know that q̂(t, x) is the law of ŷT−t.
Hence the law of ŷT is

q̂0(x) =
1√
2π

e−
x2

2

(
1 +

1

2
sin(2nπx)

)
.

The TV distance between yT and ŷT is:

TV(yT , ŷT ) =
1

2

∫
R

∣∣∣∣ 1√
2π

e−
x2

2

(
1 +

1

2
sin(2nπx)

)
− 1√

2π
e−

x2

2

∣∣∣∣ dx
=

1

4

∫
R

1√
2π

e−
x2

2 | sin(2nπx)|dx. (B.1)

To calculate the last integral, we consider the Fourier expansion

| sin(2nπx)| = 2

π
− 4

π

∑
k≥1

cos 4knπx

4k2 − 1
.

For any k ≥ 1, we have:∣∣∣∣∫
R
e−

x2

2 cos(4knπx)dx

∣∣∣∣ = 2

∣∣∣∣∫ ∞

0

e−
x2

2 cos(4knπx)dx

∣∣∣∣
≤ 2 sup

N≥0

∣∣∣∣∣
∫ N

0

cos(4knπx)dx

∣∣∣∣∣
≤ 1

2knπ
.

Therefore, we can plug these integrals into B.1 and obtain

TV(yT , ŷT ) ≥
1

4

[
2

π
− 4

π

∑
k≥1

1

4k2 − 1

∣∣∣∣∫
R

1√
2π

e−
x2

2 cos(4knπx)dx

∣∣∣∣ ]

≥ 1

4

[
2

π
− 4

π

∑
k≥1

1

4k2 − 1

1√
2π2knπ

]
≥ 1

4

[ 2
π
− 2

π2
√
2πn

∑
k≥1

1

3k3

]
.

By taking n large enough, we can easily show that TV(yT , ŷT ) ≥ 1
4π . This completes the proof of

Theorem 2.1.

Theorem B.1. Consider the same 1-dimensional OU process (xt)t∈[0,T ] and its reverse process
(yt)t∈[0,T ] defined in Theorem 2.1. Recall that we denote the law of xt by qt. Then for arbitrarily
small ϵ > 0 and arbitrarily big N > 0, there exists sθ(t, x), which is smooth, anywhere ϵ-close to
the true score function, and its divergence is anywhere ϵ-close to the divergence of the true score
function, i.e., ∣∣sθ(T − t, x)−∇ log q(T − t, x)

∣∣ ≤ ϵ, ∀t, ∀x,∣∣∇ · sθ(T − t, x)−∇ · ∇ log q(T − t, x)
∣∣ ≤ ϵ, ∀t, ∀x,

such that the law pt of the corresponding simulated reverse process (ŷt)t∈[0,T ] (see (2.5)) satisfies

sup |∇ log pT (x)| ≥ N,

which indicates that the score of the sampling process can be unbounded no matter how small the
score estimation error and divergence error is.
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Proof of Theorem B.1. Substitute the oscillate term sin(2nπx) in the proof of Theorem 2.1 by
1

n(x2+1) sin(2n
2πx). In this case, we still have q(t, x) = 1√

2π
e−

x2

2 and ∇ log q(t, x) = −x. Now

q̂(T − t, x) becomes 1√
2π

e−
x2

2

(
1+ t

2T
1

n(x2+1) sin(2n
2πx)

)
, and now our estimated score becomes:

sθ(T − t, x) =

∫∞
x

1√
2π

e−
y2

2
1

n(x2+1) sin(2n
2πx)

(
1
2T

)
dy

q̂(T − t, x)
− x,

Without loss of generality, we can assume x ≥ 0. Then we have:

|sθ(T − t, x)−∇ log q(T − t, x)| =

∣∣∣∫∞
x

1√
2π

e−
y2

2
1

n(y2+1) sin(2n
2πy)

(
1
2T

)
dy

∣∣∣
1√
2π

e−
x2

2

(
1 + T−t

2T
1

n(y2+1) sin(2n
2πy)

)
≤

1√
2π

e−
x2

2
1
2T

1
(y2+1) supN≥x

∣∣∣∫ N

x
1
n sin(2n2πy)dy

∣∣∣
1√
2π

e−
x2

2
1
2

≤ 1

T

1

n3π
. (B.2)

Further more, we consider the divergence estimation error. Since this example is one-dimensional,
taking divergence is the same as taking a derivative with respect to x. Hence we have:

|∇ · sθ(T − t, x)−∇ · ∇ log q(T − t, x)| =

∣∣∣∣∣∣ ∂∂x
∫∞
x

1√
2π

e−
y2

2
1

n(y2+1) sin(2n
2πy)

(
1
2T

)
dy

q̂(T − t, x)

∣∣∣∣∣∣
≤

∣∣∣ 1√
2π

e−
x2

2
1

n(x2+1) sin(2n
2πx)

(
1
2T

)
· q̂(T − t, x)

q̂(T − t, x)2

∣∣∣
+
∣∣∣∫∞

x
1√
2π

e−
y2

2
1

n(y2+1) sin(2n
2πy)

(
1
2T

)
dy · ∂

∂x q̂(T − t, x)

q̂(T − t, x)2

∣∣∣. (B.3)

Firstly, we have

1

2

1√
2π

e−
x2

2 ≤ |q̂(T − t, x)| ≤ 1√
2π

e−
x2

2 .

Moreover, we know that∣∣∣∣ ∂∂x q̂(T − t, x)

∣∣∣∣ = ∣∣∣ 1√
2π

e−
x2

2

(
− x

(
1 +

t

2T

1

n(x2 + 1)
sin(2n2πx)

)
+

t

2T

1

n

2n2π cos(2n2πx)(x2 + 1)− 2x sin(2n2πx)

(x2 + 1)2

)∣∣∣ (B.4)

≤ 1√
2π

e−
x2

2

(
|x|+ 1

4Tn
+ nπ +

1

2Tn

)
≤ 1√

2π
e−

x2

2

(
|x|+ 2nπ

)
.

Since 1√
2π

e−
y2

2
1

n(y2+1) is strictly monotonically decreasing when y ≥ x ≥ 0, we have∣∣∣∣∫ ∞

x

1√
2π

e−
y2

2
1

n(y2 + 1)
sin(2n2πy)

(
1

2T

)
dy

∣∣∣∣
≤ 1√

2π
e−

x2

2
1

n(x2 + 1)

1

2T
sup
N≥x

∣∣∣∣∣
∫ N

x

sin(2n2πy)dy

∣∣∣∣∣
≤ 1√

2π
e−

x2

2
1

x2 + 1

1

n3π

1

2T
.
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Substituting back to B.3, we have

|∇ · sθ(T − t, x)−∇ · ∇ log q(T − t, x)| ≤ 1

2Tn
+ 4

1

x2 + 1

1

n3π

1

2T
(|x|+ 2nπ)

≤ 1

2Tn
+

1

Tn3π
+

4

Tn2
. (B.5)

For any ϵ > 0, using (B.2) and (B.5), for n large enough, the score estimation error and the diver-
gence estimation error are less than ϵ for every t and x. Same as in the proof of Theorem 2.1, using
Fokker-Planck equation, we know that q̂ is the law of the sampling process. However, by (B.4), the
score of the sampling process is clearly unbounded (there is a coefficient proportional to n, and our
n is arbitrary large).

C PROOF OF LEMMA 3.2
Proof of Lemma 3.2. We begin by computing total variance distance between Xt and Yt for any
t ∈ [0, T ]:

TV(Xt,Yt) =

∫
Ωt

p(t,x)− q(t,x) dx, (C.1)

where Ωt := {x ∈ Rd | p(t,x) > q(t,x)}. Now we proceed to compute the time-derivative
of (C.1). By Theorem K.1, we have

∂ TV(Xt,Yt)

∂ t
=

∫
Ωt

∂

∂t

(
p(t,x)− q(t,x)

)
dx︸ ︷︷ ︸

I1

+

∫
∂Ωt

(
p(t,x)− q(t,x)

)
v(t,x) · n(t,x) dS︸ ︷︷ ︸

I2

.

(C.2)

For term I1, by Fokker-Planck equation, we have

∂

∂t

(
p(t,x)− q(t,x)

)
= −∇ ·

(
b(t,x)p(t,x)− b∗(t,x)q(t,x)

)
.

Therefore, we have

I1 =

∫
Ωt

−∇ ·
(
b(t,x)p(t,x)− b∗(t,x)q(t,x)

)
dx.

For term I2, by the definition of Ωt := {x ∈ Rd | p(t,x) > q(t,x)}, we have p(t,x) = q(t,x) on
∂Ωt. Hence I2 = 0.
Therefore, by substituting I1 and I2 into (C.2), we obtain

∂ TV(Xt,Yt)

∂ t
=

∫
Ωt

−∇ ·
(
b(t,x)p(t,x)− b∗(t,x)q(t,x)

)
dx

=

∫
∂Ωt

−
(
b(t,x)p(t,x)− b∗(t,x)q(t,x)

)
· n(t,x)dS

=

∫
∂Ωt

−
(
b(t,x)q(t,x)− b∗(t,x)q(t,x)

)
· n(t,x)dS

=

∫
Ωt

−∇ ·
((

b(t,x)− b∗(t,x)
)
q(t,x)

)
dx

= −
∫
Ωt

(
∇ · b(t,x)−∇ · b∗(t,x)

)
q(t,x) dx−

∫
Ωt

(
b(t,x)− b∗(t,x)

)
· ∇ q(t,x) dx,

where in the second equation we use Gauss’s theorem to compute the integration of divergence,
the third equation uses the fact that p(t,x) = q(t,x) on ∂Ωt, the forth equation holds by Gauss’s
theorem again. This completes the proof.
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D PROOF OF THEOREM 3.4
In this section, we provide a proof of Theorem 3.4. The core of the theorem’s proof is Lemma 3.2,
which allows us to represent the time-derivative of TV distribution between distribution by score
estimation error and divergence estimation error.

Proof of Theorem 3.4. Recall Yt and Ŷt are ODE flows determined by (3.1) and (3.2). Define
b(t,x) = x+∇ log q(T − t,x) and b̂(t,x) = x+ sθ(T − t,x), then we have:

dYt = b(t,Yt)dt, Y0 ∼ qT .

dŶt = b̂(t, Ŷt)dt, Ŷ0 ∼ πd.

By Lemma 3.2, recall that the law of Yt is denoted by q(T − t,x), we have:

∂ TV(Ŷt,Yt)

∂ t
= −

∫
Ωt

(
∇ · b̂(t,x)−∇ · b(t,x)

)
q(T − t,x) dx

−
∫
Ωt

(
b̂(t,x)− b(t,x)

)
· ∇ log q(T − t,x)q(T − t,x)dx

=

∫
Ωt

(
∇ · sθ(T − t,x)−∇ · ∇ log q(T − t,x)

)
q(T − t,x)dx︸ ︷︷ ︸

I1

−
∫
Ωt

(
sθ(T − t,x)−∇ log q(T − t,x)

)
· ∇ log q(T − t,x)q(T − t,x)dx︸ ︷︷ ︸

I2

.

(D.1)

For I1, we know that:

|I1| ≤
∫
Ωt

∣∣∣∇ · sθ(T − t,x)−∇ · ∇ log q(T − t,x)
∣∣∣q(T − t,x)dx

≤ E
∣∣∣∇ · sθ(T − t,Yt)−∇ · ∇ log q(T − t,Yt)

∣∣∣. (D.2)

For I2, using the Cauchy-Schwartz inequality, we know that:

|I2| ≤

√∫
Ωt

∥∥sθ(T − t,x)−∇ log q(T − t,x)
∥∥2q(T − t,x)dx

·

√∫
Ωt

∥∥∇ log q(T − t,x)
∥∥2q(T − t,x)dx

≤
√
E∥sθ(T − t,Yt)−∇ log q(T − t,Yt)

∥∥2 ·√E∥∇ log q(T − t,Yt)
∥∥2. (D.3)

Substituting (D.2) and (D.3) back to (D.1), and taking the integral with respect to t on [0, T − δ], we
have:

TV(ŶT−δ,Xδ) ≤ TV(Ŷ0,Y0) +

∫ T−δ

0

(
|I1|+ |I2|

)
dt

≤ TV(Ŷ0,Y0) +

∫ T−δ

0

E
∣∣∣∇ · sθ(T − t,Yt)−∇ · ∇ log q(T − t,Yt)

∣∣∣dt
+

∫ T−δ

0

√
E∥sθ(T − t,Yt)−∇ log q(T − t,Yt)

∥∥2 ·√E∥∇ log q(T − t,Yt)
∥∥2dt

≤ TV(Ŷ0,Y0) +

∫ T−δ

0

E
∣∣∣∇ · sθ(T − t,Yt)−∇ · ∇ log q(T − t,Yt)

∣∣∣dt
+

√∫ T−δ

0

E∥sθ(T − t,Yt)−∇ log q(T − t,Yt)
∥∥2dt ·

√∫ T−δ

0

E∥∇ log q(T − t,Yt)
∥∥2dt.

(D.4)
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Since X0 has finite second-order momentum, using Lemma K.2, we have that:

EQ∥∇ log q(T − t,Yt)
∥∥2 ≤ d

(
1− e−2(T−t)

)−1
.

Thus we know that:∫ T−δ

0

E∥∇ log q(T − t,Yt)
∥∥2dt ≤ ∫ T−δ

0

d

1− e−2(T−t)
dt

= d

∫ T

δ

1

1− e−2t
dt

= d
(1
2
log

(
e2T − 1

)
− 1

2
log

(
e2δ − 1

))
= O

(
dT + d log

1

δ

)
. (D.5)

Substituting (D.5) into (D.4) and using Assumptions 3.1 and 3.3, we can conclude with

TV(ŶT−δ,Xδ) ≲ TV(Ŷ0,Y0) +

√
dT + d log

1

δ
ϵscore + ϵdiv.

E PROOF OF THEOREM 4.3
Proof of Theorem 4.3. In the time step t ∈ [tk, tk+1], we can compute the time derivative of the
total variation distance between Ŷt and Yt using Lemma 3.2:

∂TV(Ŷt,Yt)

∂t
= −

∫
Ωt

(
∇ · b̂(t,x)−∇ · b(t,x)

)
q(T − t,x)dx︸ ︷︷ ︸

I1

−
∫
Ωt

(
b̂(t,x)− b(t,x)

)
· ∇q(T − t,x)dx︸ ︷︷ ︸

I2

. (E.1)

Recall that b(t,x) = −
(
f(T − t,x)− 1

2g(T − t)2∇ log qT−t(x)
)
, b̂(t,x) = ∂F

∂t

(
t, F−1

t (x)
)
.

For I1, we decompose tr[∇b̂(t,x)−∇b(t,x)] as follows:

tr[∇b̂(t,x)−∇b(t,x)] =

[
∇
[ ∂

∂t
F
](
t, F−1

t (x)
)
∇F−1

t (x) +∇f(T − t,x)

− 1

2
g(T − t)2∇2 log qT−tk

(
F−1
t (x)

)]
− 1

2
g(T − t)2

[
∇2 log qT−t(x)−∇2 log qT−tk

(
F−1
t (x)

)]
= Ψk(t, z) +

(
∇
[ ∂

∂t
F
](
t, z

)
+∇z

[
f
(
T − t, Ft(z)

)])(
∇F−1

t (x)− I
)

− 1

2
g(T − t)2

[
∇2 log qT−t(x)−∇2 log qT−tk

(
z
)]
,

where z = F−1
t (x). Therefore, we have

|I1| ≤
∫
Ωt

∣∣∣ tr [∇b̂(t,x)−∇b(t,x)
]∣∣∣q(T − t,x)dx

≤
∫

| trΨk(t, z)|q(T − t,x)dx

+

∫ ∣∣∣∣ tr [∇[ ∂

∂t
F
](
t, z

)
+∇z

[
f
(
T − t, Ft(z)

)]]
(∇F−1

t (x)− I)

∣∣∣∣q(T − t,x)dx
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+

∫
1

2
g(T − t)2

∣∣ tr [∇2 log qT−t(x)−∇2 log qT−tk(z)
]∣∣q(T − t,x)dx

(i)

≤
(∫ [

trΨk(t, z)
]2
pFt(Ytk

)(x)dx

) 1
2
(∫ ( pYt

(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx

) 1
2

+max
x

∣∣∣∣ tr [∇[ ∂

∂t
F
](
t, F−1

t (x)
)
+∇z

[
f
(
T − t, Ft(z)

)]](
∇F−1

t (x)− I
)∣∣∣∣

+

∫
1

2
g(T − t)2

∣∣ tr [∇2 log qT−t(x)−∇2 log qT−tk(z)
]∣∣q(T − t,x)dx

(ii)
=

(
E
[(

trΨk(t,Ytk)
)2]) 1

2

(∫ ( pYt
(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx

) 1
2

+max
x

∣∣∣∣ tr [∇[ ∂

∂t
F
](
t, F−1

t (x)
)
+∇z

[
f
(
T − t, Ft(z)

)]](
∇F−1

t (x)− I
)∣∣∣∣

+

∫
1

2
g(T − t)2

∣∣ tr [∇2 log qT−t(x)−∇2 log qT−tk(z)
]∣∣q(T − t,x)dx. (E.2)

where (i) holds due to the Cauchy-Schwarz inequality. (ii) holds due to the Jacobian transformation
pFt(Ytk

)(x)dx = pYtk
(z)dz for z = F−1

t (x).

For I2, we decompose b̂(t,x)− b(t,x) as follows:

b̂(t,x)− b(t,x) =

[
∂F

∂t

(
t, F−1

t (x)
)
+ f(T − t,x)− 1

2
g(T − t)2∇ log qT−tk

(
F−1
t (x)

)]
− 1

2
g(T − t)2

[
∇ log qT−t(x)−∇ log qT−tk

(
F−1
t (x)

)]
=

[
∂F

∂t
(t, z) + f

(
T − t, Ft(z)

)
− 1

2
g(T − t)2∇ log qT−tk

(
z
)]

− 1

2
g(T − t)2

[
∇ log qT−t(x)−∇ log qT−tk

(
F−1
t (x)

)]
,

= Φk(t, z)−
1

2
g(T − t)2

[
∇ log qT−t(x)−∇ log qT−tk

(
F−1
t (x)

)]
,

where z = F−1
t (x). Therefore, we have

|I2| ≤
∫
Ωt

∣∣Φk(t, z) · ∇q(T − t,x)
∣∣dx

+
1

2
g(T − t)2

∫
Ωt

∣∣∣[∇ log qT−t(x)−∇ log qT−tk

(
F−1
t (x)

)]
· ∇q(T − t,x)

∣∣∣dx
(i)

≤
(∫

∥Φk(t, z)∥2pFt(Ytk
)(x)dx

) 1
2
(∫ ∥∥∥∇ log q(T − t,x)pYt

(x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx

) 1
2

+
1

2
g(T − t)2

∫
Ωt

∣∣∣[∇ log qT−t(x)−∇ log qT−tk

(
F−1
t (x)

)]
· ∇q(T − t,x)

∣∣∣dx
(ii)

≤
(
E
[∥∥Φk(t,Ytk)

∥∥2]) 1
2

(∫ ∥∥∥∇ log q(T − t,x)pYt
(x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx

) 1
2

+
1

2
g(T − t)2

∫
Ωt

∣∣∣[∇ log qT−t(x)−∇ log qT−tk

(
F−1
t (x)

)]
· ∇q(T − t,x)

∣∣∣dx. (E.3)

where (i) holds due to the Cauchy-Schwarz inequality. (ii) holds due to the Jacobian transformation
pFt(Ytk

)(x)dx = pYtk
(z)dz for z = F−1

t (x). Substituting (E.2) and (E.3) into (E.1) and taking the
integral over t, we can complete the proof of Theorem 4.3.
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F ANALYSIS OF VP+EI
In this section, we focus on the case where f(x) = −x and g(t) =

√
2, i.e. the VP-SDE. Specifi-

cally, the forward process Xt satisfies:

dXt = −Xtdt+
√
2dWt, X0 ∼ q0, (F.1)

and the true reverse process Yt satisfies:

dYt =
(
Yt +∇ log qT−t(Yt)

)
dt, Y0 ∼ qT .

Then, the forward process has the following closed-form expression:

Yt = XT−t = e−(T−t)X0 +
√
1− e−2(T−t)Z, Z ∼ N(0, Id). (F.2)

Recall the exponential integrator provides a discretized version of the reverse process:

Ŷtk+1
= eηk Ŷtk +

1

2

(
eηk − 1

)1
2
sθ(T − tk, Ŷtk).

Therefore, we can define the following interpolation operator:

Ft(z) = et−tkz+
(
et−tk − 1

)
sθ(T − tk, z), (F.3)

satisfying Ftk+1
(Ŷtk) = Ŷtk+1

. Under Assumption 5.4, we know sθ(t, ·) is Lipschitz. Therefore,
suppose η ≤ 1/L, then we have 1/2 ≤ ∥∇Ft∥ ≤ 3/2. In particular, Ft is invertible.
Denote et−tk by a. Since t− tk ≤ η ≤ 1, we have a ≤ 1 + 2(t− tk). Then we know that:

∥z∥ ≥ a∥F−1
t (z)∥ − (a− 1)

(
L∥F−1

t (z)∥+ c
)

≥ ∥F−1
t (z)∥ − 2(t− tk)

(
L∥F−1

t (z)∥+ c
)

≥ 1

2
∥F−1

t (z)∥ − 1

2
,

where the last inequality holds when we assume that t − tk ≤ η ≤ min{1/4L, 1/4c}. Thus we
know that:

∥F−1
t (z)∥ ≤ 2∥z∥+ 1. (F.4)

Before we start the proof, we introduce several important lemmas used in our proof. Let c1 =
(1 + d/2)4L2 and c2 = (1 + d/2)(L+ c)2. Using our assumption on η, we know that

η ≤ min
{

1

16d
,

1

2c1d
,
1

c2
,

1

4R2c1

}
. (F.5)

The following two lemmas are related to the ratios pYt
(x)/pFt(Ytk

).

Lemma F.1. Let Yt and Ft(z) be defined in (F.2) and (F.3). Under Assumptions 5.4 and 5.1,
suppose our time schedule satisfies (2.6). Then, for η ≤ min{ 1

2(L+1)d ,
1

16d ,
1

c1d
, 1
2c1

, 1
c2
, 1
R2c1

}, we
have

pYt(x)

pFt(Ytk
)(x)

≲ e(t−tk)c1∥x∥2+(t−tk)c2 .

Moreover, we have ∫
Ωt

(
pYt(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx ≲ 1.

Lemma F.2. Let Yt and Ft(z) be defined in (F.2) and (F.3). Under Assumptions 5.1 and 5.4,
suppose our time schedule satisfies (2.6). Then for η ≤ min{ 1

2(L+1)d ,
1

16d ,
1

2c1d
, 1
2c1

, 1
c2
, 1
4R2c1

},
we have: ∫ ∥∥∥∇q(T − t,x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx ≲

d

min{T − t, 1}
.
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The following two lemmas show the upper bound of the derivatives of the true score function with
respect to t and x separately.

Lemma F.3. When Xt is defined as in (F.1), under Assumption 5.1, we have:∣∣∣∣ ∂∂t( tr
(
∇2 log q(t,x)

))∣∣∣∣ ≲ d

min{t, 1}2
+

R2(∥x∥+R)2

min{t, 1}4
,∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ ≲
∥x∥+R

min{t, 1}2
+

(∥x∥+R)2R2

min{t, 1}2
+

(∥x∥+R)3

min{t, 1}3
.

Lemma F.4. When Xt is defined as in (F.1), under Assumption 5.1, we have:

∥∇ log q(t,x)∥ ≲
∥x∥+R

min{t, 1}
,

∥∥∇2 log q(t,x)
∥∥
2
≤ 1

min{t, 1}
+

R2

min{t, 1}2
,

∥∥∇tr
(
∇2 log q(t,x)

)∥∥ ≤ R3

min{t, 1}3
.

The proofs of the above lemmas can be found in later sections.
F.1 PROOF OF THEOREM 5.5
Proof of Theorem 5.5. From the discussion in Section 5.1, we know that:

Φk(t,x) = sθ(T − tk,x)−∇ log qT−tk(x), (F.6)

Ψk(t,x) = ∇sθ(T − tk,x)−∇2 log qT−tk(x), (F.7)

in this specific case. Recall that g(t) =
√
2 and f

(
T − t,x

)
= −x = −Ft(z). From (F.3) we have:

∂

∂t
F (t,x) = Ft(x) + sθ(T − tk,x).

Thus we know that

∇
[ ∂

∂t
F
](
t, F−1

t (x)
)
=

[
∇Ft

]
(z) +∇sθ(T − tk, z). (F.8)

By Theorem 4.3, we know that:

TV(YT−δ, ŶtN ) ≤ TV(qT , πd)

+

N−1∑
k=0

∫ tk+1

tk

[√
E
[∥∥Φk(t,Ytk)

∥∥2]√∫ ∥∥∥∇ log q(T − t,x)pYt(x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx︸ ︷︷ ︸

J1: Score estimation error

+

√
E
[
tr
(
Ψk(t,Ytk)

)2]√∫ ( pYt(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx︸ ︷︷ ︸

J2: Divergence estimation error

+

∫ ∣∣(∇ log qT−tk(z)−∇ log qT−t(x)
)
· ∇ log q(T − t,x)

∣∣q(T − t,x)dx︸ ︷︷ ︸
J3: Score discretization error

+

∫ ∣∣tr(∇2 log q(T − tk, z)−∇2 log q(T − t,x)
)∣∣q(T − t,x)dx︸ ︷︷ ︸

J4: Divergence discretization error

+max
x

∣∣∣∣ tr [∇sθ(T − tk, z)

](
∇F−1

t (x)− I
)∣∣∣∣︸ ︷︷ ︸

J5:Bias error

]
dt. (F.9)
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Bounding the Score Estimation Error J1. We can easily verify that our η is small enough to
satisfies the condition of Lemma F.2. Therefore, using Lemma F.2 and (F.6), we have=

|J1| ≲

√
d

min{T − t, 1}

√
EQ

∥∥∥sθ(T − tk,Ytk)−∇ log qT−tk(Ytk)
∥∥∥2. (F.10)

Bounding the Divergence Estimation Error J2.
Similarly, our η is small enough to satisfies the condition of Lemma F.1. Using Lemma F.1 and (F.7),
we have

|J2| ≲
√
EQ tr

(
∇sθ(T − tk,Ytk)−∇2 log q(T − tk,Ytk)

)2

. (F.11)

Bounding the Bias Term J5. From (F.3), we know that:

∇F−1
t (x) =

[
(∇Ft)

(
F−1
t (x)

)]−1

=
[
et−tkId +

(
et−tk − 1

)
∇sθ

(
T − tk, F

−1
t (x)

)]−1
.

Using Assumption 5.4 and t− tk ≤ η ≤ 1, we have:

∥(∇Ft)
(
F−1
t (x)

)
− Id∥2 ≤

(
et−tk − 1

)
∥Id +∇sθ

(
T − tk, F

−1
t (x)∥2

≤ 2(t− tk)(1 + L).

Let A = (∇Ft)
(
F−1
t (x)

)
− Id. Then we have ∥A∥2 ≤ 2(t− tk)(1 + L). Thus we know that:

∥∇
(
F−1
t (x)

)
− Id∥2 = ∥(Id +A)−1 − Id∥2

(i)
=

∥∥∥∥ ∞∑
n=1

(−1)nAn

∥∥∥∥
2

(ii)

≤
∞∑

n=1

∥A∥n2

(iii)

≤ 4(t− tk)(1 + L), (F.12)

here (i) holds because of the series expansion for ∥A∥2 < 1. (ii) holds due to the Cauchy-Schwarz
inequality. (iii) holds due to our assumption η ≤ 1/4(1 + L). Then we know that:

|J5| = max
x

∣∣∣ tr [∇sθ(T − tk, z)
(
∇
(
F−1
t (x)

)
− Id

)]∣∣∣
(i)

≤ dmax
∥∥∥∇sθ(T − tk, z)

(
∇
(
F−1
t (x)

)
− Id

)∥∥∥
2

≤ dmax ∥∇sθ(T − tk, z)∥2∥∇
(
F−1
t (x)

)
− Id∥2

(ii)

≤ 4dL(t− tk)(1 + L),

where (i) holds due to tr(A) ≤ d∥A∥2. (ii) holds due to Assumption 5.4 and (F.12). Thus we have:

|J5| ≲ (t− tk)dL
2. (F.13)

Bounding the Moments of Yt.
Before we start estimating J3 and J4, we first do some preparation. Since we have Yt = XT−t =

e−(T−t)X0 +
√
1− e−2(T−t)Z, here Z ∼ N(0, Id). Our goal is to bound the moments of Yt.

When T − t < 1, we know that e−(T−t) = Θ(1) and
√
1− e−2(T−t) = O(

√
T − t). Thus we have:

E∥Yt∥2 = e−2(T−t)E∥X0∥2 +
(
1− e−2(T−t)

)
E∥Z∥2 + Ee−(T−t)

√
1− e−2(T−t)⟨X0,Z⟩

≲ E∥X0∥2 + (T − t)E∥Z∥2

= R2 + (T − t)d. (F.14)

where the first inequality holds due to the independence of X0 and Z. When T − t ≥ 1, we have:

E∥Yt∥2 ≲ e−2(T−t)E∥X0∥2 + E∥Z∥2
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= e−2(T−t)R2 + d. (F.15)

Combine (F.14) and (F.15) together, we know that:

E∥Yt∥2 ≲ R2 + min{T − t, 1}d. (F.16)

After computing the second-order moment, using the inequality
(
E∥Yt∥

)2 ≤ E∥Yt∥2, we can bound
the first-order moment as follows:

E∥Yt∥ ≲ R+
√

min{T − t, 1}
√
d. (F.17)

Moreover, we consider the fourth-order moment using similar methods. When T − t < 1, we have
e−(T−t) = Θ(1) and

√
1− e−2(T−t) = O(

√
T − t). Thus we know that:

E∥Yt∥4 ≲ E∥X0∥4 + (T − t)2E∥Z∥4

≲ R4 + (T − t)2d2, (F.18)

where the first inequality holds due to ∥x − y∥4 ≤ (∥x∥ + ∥y∥) ≤ C(∥x∥4 + ∥y∥4) for some
constant C. Same as what we did earlier, when T − t ≥ 1, we have:

E∥Yt∥4 ≲ e−4(T−t)E∥X0∥4 + E∥Z∥4

≲ e−3(T−t)R4 + d2. (F.19)

Putting (F.18) and (F.19) together, we have:

E∥Yt∥4 ≲ R4 + min{T − t, 1}2d2. (F.20)

After computing the fourth-order momentum, using the inequality E∥Yt∥3 ≤
√
E∥Yt∥2 ·

√
E∥Yt∥4,

we know that:

E∥Yt∥3 ≲ R3 + min{T − t, 1}3/2d3/2. (F.21)

Bounding Divergence Discretization Error J4. Let z = F−1
t (x). We start by bounding ∥z− x∥.

We know that

∥z− x∥ = ∥F−1
t (x)− x∥

=
(
et−tk − 1

)∥∥F−1
t (x) + sθ(T − tk, F

−1
t (x))

∥∥
≤ 2(t− tk)

∥∥F−1
t (x) + sθ(T − tk, F

−1
t (x))

∥∥
≤ 2(t− tk)(L+ 1)

∥∥F−1
t (x)

∥∥+ (t− tk)c,

where the first inequality holds due to t−tk < 1. The second inequality holds due to Assumption 5.4.
From (F.4) we know that ∥F−1

t (x)∥ ≤ 2∥x∥+ 1. Hence we have:

∥z− x∥ ≲ (t− tk)(L+ 1)∥x∥+ (t− tk)(L+ c+ 1)

(i)

≲ (t− tk)L(∥x∥+ 1). (F.22)

Using Lemma F.3 and Lemma F.4, we have∣∣∣∣ ∫
Ωt

tr
(
∇2 log q(T − tk, z)−∇2 log q(T − t,x)

)
q(T − t,x)dx

∣∣∣∣
≲

∫
Ωt

(
(t− tk)

(
d

min{T − t, 1}2
+

R2(∥x∥+R)2

min{T − t, 1}4

)
+

R3

min{T − t, 1}3
∥x− z∥

)
q(T − t,x)dx

(i)

≲
∫
Ωt

(
(t− tk)

(
d

min{T − t, 1}2
+

R2(∥x∥+R)2

min{T − t, 1}4

)
+

R3

min{T − t, 1}3
(t− tk)L(∥x∥+ 1)

)
q(T − t,x)dx

≲ (t− tk)
d

min{T − t, 1}2
+ (t− tk)

R2

min{T − t, 1}4
E(∥Yt∥2 +R2)
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+ (t− tk)
R3

min{T − t, 1}3
L · E(∥Yt∥+ 1)

(ii)

≲ (t− tk)
d

min{T − t, 1}2
+ (t− tk)

R4 +R2min{T − t, 1}d
min{T − t, 1}4

+ (t− tk)
LR3

min{T − t, 1}3
(R+

√
T − t

√
d+ 1),

where (i) holds due to (F.22). (ii) holds due to (F.16) and (F.17). Assuming R ≥ 1, we can further
simplify its form:

|J4| ≲ (t− tk)d
R2

min{T − t, 1}3
+ (t− tk)(1 + Lmin{T − t, 1}) R4

min{T − t, 1}4

+ (t− tk)
√
d

LR3

min{T − t, 1}5/2

≲ (t− tk)d
R2

min{T − t, 1}3
+ (t− tk)

LR4

min{T − t, 1}4
+ (t− tk)

√
d

LR3

min{T − t, 1}5/2
.

(F.23)

Bounding Score Discretization Error J3.
According to Lemma F.4, we know that:

∥∇ log q(T − t,x)∥ ≲
∥x∥+R

min{T − t, 1}
,

∥∥∇2 log q(T − t,x)
∥∥
2
≲

1

min{T − t, 1}
+

R2

min{T − t, 1}2
(i)

≲
R2

min{T − t, 1}2
.

Here (i) is because we assumed that R ≥ 1. Using Lemma F.3, we have:∥∥∥∥ ∂

∂t

(
∇ log q(T − t,x)

)∥∥∥∥ ≲
∥x∥+R

min{T − t, 1}2
+

(∥x∥+R)2R2

min{T − t, 1}2
+

(∥x∥+R)3

min{T − t, 1}3

≲
(∥x∥+R)2R2

min{T − t, 1}2
+

(∥x∥+R)3

min{T − t, 1}3
.

Thus we know that:∣∣∣∣∫
Ωt

(
∇ log qT−tk(z)−∇ log qT−t(x)

)
∇ log q(T − t,x)q(T − t,x)dx

∣∣∣∣
≲

∫
Ωt

(t− tk)
( (∥x∥+R)2R2

min{T − t, 1}2
+

(∥x∥+R)3

min{T − t, 1}3
) ∥x∥+R

min{T − t, 1}
q(T − t,x)dx

+

∫
Ωt

R2

min{T − t, 1}2
∥x− z∥ ∥x∥+R

min{T − t, 1}
q(T − t,x)dx

≲ (t− tk)
R2

min{T − t, 1}3
E(∥Yt∥+R)3 + (t− tk)

1

min{T − t, 1}4
E(∥Yt∥+R)4

+ (t− tk)

∫
Ωt

R2

min{T − t, 1}2
L(∥x∥+ 1)

∥x∥+R

min{T − t, 1}
q(T − t,x)dx

(i)

≲ (t− tk)
R2

min{T − t, 1}3
(R3 + min{T − t, 1}3/2d3/2)

+ (t− tk)
1

min{T − t, 1}4
(R4 + min{T − t, 1}2d2)

+ (t− tk)
LR2

min{T − t, 1}3
(R2 + min{T − t, 1}d), (F.24)

where we use (F.20) and (F.21) to bound the third and fourth moments of Yt. (i) holds due to:∫
Ωt

(∥x∥+ 1)(∥x∥+R)q(T − t,x)dx ≲ E(∥Yt∥+R)2 ≲ R2 + min{T − t, 1}d.
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Reorganizing terms in (F.24), we have:

|J3| ≲ (t− tk)
[ R5

min{T − t, 1}3
+ d3/2

R2

min{T − t, 1}3/2
+

R4

min{T − t, 1}4

+ d2
1

min{T − t, 1}2
+

LR4

min{T − t, 1}3
+ d

LR2

min{T − t, 1}2
]
. (F.25)

Putting J3 and J4 Together.
By (F.23) and (F.25), and since we assume R ≥ 1 and L ≥ 1, we have:

|J3|+ |J4| ≲ (t− tk) d
R2

min{T − t, 1}3︸ ︷︷ ︸
C1

+(t− tk)
LR4

min{T − t, 1}4︸ ︷︷ ︸
C2

+(t− tk)
√
d

LR3

min{T − t, 1}5/2︸ ︷︷ ︸
C3

+ (t− tk)
[ R5

min{T − t, 1}3︸ ︷︷ ︸
C4

+ d3/2
R2

min{T − t, 1}3/2︸ ︷︷ ︸
C5

+
R4

min{T − t, 1}4︸ ︷︷ ︸
C6

+ d2
1

min{T − t, 1}2︸ ︷︷ ︸
C7

+
LR4

min{T − t, 1}3︸ ︷︷ ︸
C8

+ d
LR2

min{T − t, 1}2︸ ︷︷ ︸
C9

]
(ii)

≲ (t− tk)
[
C1 + C2 + C3 + C4 + C5 + C7 + C9

]
= (t− tk)

[
d2

1

min{T − t, 1}2
+ d3/2

R2

min{T − t, 1}3/2
+ d

(LR2min{T − t, 1}+R2

min{T − t, 1}3
)

+
√
d

LR3

min{T − t, 1}5/2
+

R5min{T − t, 1}+ LR4

min{T − t, 1}4
]
. (F.26)

Here (ii) is because C6 ≤ C2 and C8 ≤ C2.
Combining Everything Together.
Plugging (F.10) (F.11) (F.13) (F.26) back to (F.9), and taking the integral, we can obtain the following
inequality:

TV(ŶT−δ,YT−δ) ≲ TV(πd, qT )

+
∑
k

(tk+1 − tk)

√
EQ tr

(
∇sθ(T − tk,Ytk)−∇2 log q(T − tk,Ytk)

)2

︸ ︷︷ ︸
K1

+
∑
k

(tk+1 − tk)

√
d

min{T − tk+1, 1}

√
EQ

∥∥∥sθ(T − tk,Ytk)−∇ log qT−tk(Ytk)
∥∥∥2︸ ︷︷ ︸

K2

+
∑
k

(tk+1 − tk)
2dL2

︸ ︷︷ ︸
K3

+
∑
k

(tk+1 − tk)
2

[
d2

1

min{T − t, 1}2
+ d3/2

R2

min{T − t, 1}3/2
+ d

(
LR2min{T − t, 1}+R2

min{T − t, 1}3

)
+
√
d

LR3

min{T − t, 1}5/2
+

R5min{T − t, 1}+ LR4

min{T − t, 1}4

]
.

Using Assumption 5.3, we have K1 = ϵdiv. For K2, using the Cauchy-Schwartz inequality, we have

∑
k

(tk+1 − tk)

√
d

min{T − tk+1, 1}

√
EQ

∥∥∥sθ(T − tk,Ytk)−∇ log qT−tk(Ytk)
∥∥∥2
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≤
√∑

k

(tk+1 − tk)
d

min{T − tk+1, 1}

√∑
k

(tk+1 − tk)EQ

∥∥∥sθ(T − tk,Ytk)−∇ log qT−tk(Ytk)
∥∥∥2

≤
√
ηNdϵscore.

For K3, we know that: ∑
k

(tk+1 − tk)
2dL2 ≤ η2NdL2.

For K4, using our assumption on time schedule tk+1 − tk ≤ η (T − tk+1) , we have:

K4 ≲ η2N
[
d2 + d3/2R2 + LR2d+R2d

1

δ

+ LR3

√
d

δ
+R5 1

δ
+ LR4 1

δ2

]
(ii)

≲ η2N
[
LR4d2 + d3/2R2 + LR2d+R5 1

δ
+ LR4 1

δ2

]
(iii)

≲ η2N
[
LR4d2 +R5 1

δ
+ LR4 1

δ2

]
,

where (ii) holds due to R2d 1
δ ≤ d2 + LR4

δ2 and 2LR3
√

d
δ ≤ LR2d + LR4 1

δ2 . (iii) holds due to

2d3/2R2 ≤ LR4d2 +LR2d and 2LR2d ≤ LR4d2 +LR4 1
δ2 . Putting K1, K2, K3 and K4 together,

we have

TV(ŶT−δ,YT−δ) ≲ TV(qT , πd) + ϵdiv +
√
d
√
ηNϵscore

+ η2N
[
LR4(d2 +

1

δ2
) + L2d+

R5

δ

]
.

This completes the proof of Theorem 5.5.

F.2 PROOF OF LEMMA 5.6 AND COROLLARY 5.7
Proof of Lemma 5.6. By proposition 4 in Benton et al. (2024), we have:

KL(qT ∥πd) ≲ de−2T , for T ≥ 1.

Then by Pinsker’s inequality, we know that:

TV(qT , πd) ≤
√

1

2
KL(qT ∥πd) ≲

√
de−T .

This completes the proof.

Proof of Corollary 5.7. Please refer to Benton et al. (2024)’s Appendix D for a detailed deriva-
tion of the existence of such time schedule. Since we take T = log(d/ϵ2)/2 and
N = LR4Θ

(
d2(T + log(1/δ))2/ϵ

)
, using ϵ ≤ 1/L, we can easily show that η ≤

min{1/(12L2d2), 1/(24L2R2d)}. Hence by Theorem 5.5 and Lemma 5.6, we have:

TV(ŶT−δ,YT−δ) ≲
√
de−T + ϵdiv +

√
d
√

ηNϵscore + η2N
[
LR4

(
d2 +

1

δ2

)
+ L2d+

R5

δ

]
.

Since we take δ = 1/d and assumed that d ≥ R/L+L/R4, we can further simply the bound of TV
to:

TV(ŶT−δ,YT−δ) ≲
√
de−T + ϵdiv +

√
d
√
ηNϵscore + η2NLR4d2.

Since T = log(d/ϵ2)/2 and N = LR4Θ
(
d2(T + log(1/δ))2/ϵ

)
, we know that

√
de−T ≤ ϵ,

η2NLR4d2 =
1

N
(T + log(1/δ))2LR4d2 ≤ ϵ.

Recall that we assume sufficiently small score estimation and divergence error, this completes the
proof of Corollary 5.7
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G ANALYSIS OF VE+DDIM
In this section, we focus on the case where f(x) = 0 and g(t) = 1, i.e. taking σ(t)2 = t in VE-SDE.
Specifically, the forward process Xt satisfies:

dXt = dWt, X0 ∼ q0, (G.1)

and the true reverse process Yt satisfies:

dYt =
1

2
∇ log qT−t(Yt)dt, Y0 ∼ qT . (G.2)

Then, the forward process has the following closed-form expression:

Yt = XT−t = X0 +
√
T − tZ, Z ∼ N(0, Id). (G.3)

Recall that we interpret DDIM as a numerical scheme, and it provides the following discretized
version of the reverse process:

Ŷtk+1
= Ŷtk + (tk+1 − tk)l

(
1−

√
1− 1

l

)
sθ(T − tk, Ŷtk), l =

T − tk
tk+1 − tk

. (G.4)

Therefore, denoting l(1 −
√
1− 1/l) by cl, we have cl ≤ 1. Then we can define the following

interpolation operator:

Ft(z) = z+ (t− tk)clsθ(T − tk, z), (G.5)

satisfying Ftk+1
(Ŷtk) = Ŷtk+1

. Under Assumption 5.4, we know sθ(t, ·) is Lipschitz. Therefore,
suppose η ≤ 1/L, then we have 1/2 ≤ ∥∇Ft∥ ≤ 3/2. In particular, Ft is invertible.
Moreover, using Assumption 5.4 and F−1

t (x) − x = −(t − tk)cl · sθ
(
T − tk, F

−1
t (x)

)
, when

η ≤ 1
L+c , we have

∥F−1
t (x)− x∥ = (t− tk)cl∥sθ

(
T − tk, F

−1
t (x)

)
∥

≤ (t− tk)L∥F−1
t (x)∥+ (t− tk)c

≤ ∥x∥+ 1. (G.6)

Thus we know that

∥F−1
t (x)∥ ≤ 2∥x∥+ 1. (G.7)

Before we start the proof, we introduce several important lemmas used in our proof. Let c1 =
(1 + d/2)4L2 and c2 = (1 + d/2)(L+ c)2. Using our assumption on η, we know that

η ≤ min
{

1

4c1dT
,
1

c2
,

1

4R2c1

}
. (G.8)

The following two lemmas are related to the ratios pYt
(x)/pFt(Ytk

).

Lemma G.1. Let Yt and Ft(z) be defined in (G.2) and (G.5). Under Assumption 5.4 (Lipschitz
condition on sθ), Assumption 5.1 (bounded support) and suppose the time schedule satisfies (2.6),
assuming η ≤ min{ 1

d ,
1

L+c ,
1

4c1(T−t) ,
1

c1R2 ,
1
c2
}, we have

pYt
(x)

pFt(Ytk
)(x)

≲ e(t−tk)c1∥x∥2+(t−tk)c2 ,

where c1 = (1 + d/2)4L2 and c2 = (1 + d/2)(L+ c)2. Moreover, we have∫
Ωt

(
pYt(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx ≲ 1.

Lemma G.2. Let Yt and Ft(z) be defined in (G.2) and (G.5). Under Assumption 5.4, 5.1 and 2.6,
suppose η ≤ min{ 1

c2
, 1
c1R2 ,

1
2(d+2)c1(T−t)}, where c1 = (1+d/2)4L2 and c2 = (1+d/2)(L+ c)2.

then, we have: ∫
Ωt

∥∥∥∇q(T − t,x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx ≲

d

T − t
.
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The following two lemmas show the upper bound of the derivatives of the true score function of the
VE forward process concerning t and x separately.
Lemma G.3. When Xt is defined as in (G.1), then under Assumption 5.1, we have:∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ ≲
∥x∥+R

t2
+

(∥x∥+R)3

t3
.

Moreover, we have: ∣∣∣∣ ∂∂t( tr
(
∇2 log q(t,x)

))∣∣∣∣ ≲ d

t2
+

R2(∥x∥+R)2

t4
.

Lemma G.4. When Xt is defined as in (G.1), then under Assumption 5.1, we have:

∥∇ log q(t,x)∥ ≲
∥x∥+R

t
,∥∥∇2 log q(t,x)

∥∥
2
≤ 1

t
+

R2

t2
,∥∥∇tr

(
∇2 log q(t,x)

)∥∥ ≤ R3

t3
.

The proofs of the above lemmas can be found in later sections.
G.1 PROOF OF THEOREM 5.9
Proof of Theorem 5.9. From the discussion in Section 5.2, we know that:

Φk(t,x) = clsθ(T − tk,x)−
1

2
∇ log qT−tk(x), (G.9)

Ψk(t,x) = cl∇sθ(T − tk,x)−
1

2
∇2 log qT−tk(x). (G.10)

The interpolation operator can be expressed as:

Ft(x) = x+ cl(t− tk)sθ(T − tk,x), (G.11)

in this specific case. Recall that g(t) = 1 and f
(
T − t,x

)
= 0. Denote F−1

t (x) by z. From (G.11)
we have:

∂

∂t
F (t,x) = clsθ(T − tk,x).

Thus we know that

∇
[ ∂

∂t
F
](
t, F−1

t (x)
)
= cl∇sθ(T − tk, z). (G.12)

By Theorem 4.3, we know that:

TV(YT−δ, ŶtN ) ≤ TV(qT , πd)

+

N−1∑
k=0

∫ tk+1

tk

[√
E
[∥∥Φk(t,Ytk)

∥∥2]√∫ ∥∥∥∇ log q(T − t,x)pYt(x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx︸ ︷︷ ︸

J1: Score estimation error

+

√
E
[
tr
(
Ψk(t,Ytk)

)2]√∫ ( pYt(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx︸ ︷︷ ︸

J2: Divergence estimation error

+
1

2

∫ ∣∣(∇ log qT−tk(z)−∇ log qT−t(x)
)
· ∇ log q(T − t,x)

∣∣q(T − t,x)dx︸ ︷︷ ︸
J3: Score discretization error

+
1

2

∫ ∣∣tr(∇2 log q(T − tk, z)−∇2 log q(T − t,x)
)∣∣q(T − t,x)dx︸ ︷︷ ︸

J4: Divergence discretization error
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+max
x

∣∣∣∣ tr [cl∇sθ(T − tk, z)

](
∇F−1

t (x)− I
)∣∣∣∣︸ ︷︷ ︸

J5: Bias

]
dt. (G.13)

Since we assumed η ≤ min
{
1/(12L2Td2), 1/(24L2R2d)

}
, we can easily verify that η is small

enough to satisfy the condition of Lemma G.1 and Lemma G.2.
Bounding the score Estimation Error J1. For the first square root in J1, we know that:√

E
[∥∥Φk(t,Ytk)

∥∥2] = √
E
[∥∥clsθ(T − tk,Ytk)−

1

2
∇ log qT−tk(Ytk)

∥∥2]
≤

√
E
[[∥∥1

2
sθ(T − tk,Ytk)−

1

2
∇ log qT−tk(Ytk)

∥∥+ (cl −
1

2
)
∥∥sθ(T − tk,Ytk)

∥∥]2]
≲

√
E
[∥∥1

2
sθ(T − tk,Ytk)−

1

2
∇ log qT−tk(Ytk)

∥∥2]+√
E
[
(cl −

1

2
)2
∥∥sθ(T − tk,Ytk)

∥∥2].
(G.14)

Using Assumption 5.4, we have
∥∥sθ(T − tk,Ytk)

∥∥ ≤ L∥Ytk∥+ c. Since Ytk = X0 +
√
T − tkZ,

we have:

E
∥∥Ytk

∥∥2 = E
∥∥X0

∥∥2 + (T − tk)E
∥∥Z∥∥2

≤ R2 + (T − tk)d.

Moreover, recall that we take l = (T − tk)/(tk+1 − tk) ≥ 1/η. We can show that 0 ≤ cl − 1
2 ≤ η.

Hence we have:√
E
[
(cl −

1

2
)2
∥∥sθ(T − tk,Ytk)

∥∥2] ≲ (cl −
1

2
)

√
E
[
L2

∥∥Ytk

∥∥2 + c2
]

≤ η
√

L2R2 + L2(T − tk)d+ c2. (G.15)

For the second term, since our η satisfies the condition of Lemma G.2 we can apply Lemma G.2 and
obtain ∫

Ωt

∥∥∥∇ log q(T − t,x)pYt(x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx ≲

d

T − t
. (G.16)

Combining (G.15), (G.14) and (G.16), we have:

J1 ≲

√
d

T − t

√
E
[∥∥sθ(T − tk,Ytk)−∇ log qT−tk(Ytk)

∥∥2]
+ η

√
d

T − t

√
L2R2 + L2(T − tk)d+ c2. (G.17)

Bounding the Divergence Estimation Error J2. For the first term in J2, we know that:√
E
[
tr
(
cl∇sθ(T − tk,Ytk)−

1

2
∇2 log qT−tk(Ytk)

)2]
≲

√
E
[
tr

(
1

2
∇sθ(T − tk,Ytk)−

1

2
∇2 log qT−tk(Ytk)

)2

+
(
cl −

1

2

)2(
tr∇sθ(T − tk,Ytk)

)2]
≲

√
E
[
tr
(
∇sθ(T − tk,Ytk)−∇2 log qT−tk(Ytk)

)2]
+ (cl −

1

2
)

√
E
[(

tr∇sθ(T − tk,Ytk)
)2]︸ ︷︷ ︸

K1

.

(G.18)

Using Assumption 5.4, we know that ∥∇sθ(T − tk,x)∥2 ≤ L, thus | tr∇sθ(T − tk,x)| ≤ dL.
Same as we did with J1, we have 0 ≤ cl − 1

2 ≤ η. Moreover, K1 can be further bounded by(
cl −

1

2

)√
E
[(

tr∇sθ(T − tk,Ytk)
)2] ≤ ηdL. (G.19)
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For the second term, since our η satisfies the condition of Lemma G.1, we can apply it and obtain∫
Ωt

( pYt
(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx ≲ 1. (G.20)

Combining (G.18), (G.19) and (G.20) together, we have:

J2 ≲

√
EQ tr

(
∇sθ(T − tk,Ytk)−∇2 log q(T − tk,Ytk)

)2

+ ηdL. (G.21)

Bounding the Bias Term J5. We know that:

∇F−1
t (x) =

[
(∇Ft)

(
F−1
t (x)

)]−1

=
[
Id + cl(t− tk)∇sθ

(
T − tk, F

−1
t (x)

)]−1
.

Using Assumption 5.4 and t− tk ≤ η ≤ 1, we have:

∥(∇Ft)
(
F−1
t (x)

)
− Id∥2 ≤ (t− tk)∥cl∇sθ

(
T − tk, F

−1
t (x)∥2

≤ (t− tk)(1 + L).

Here we use cl ≤ 1. Let A = (∇Ft)
(
F−1
t (x)

)
− Id. Then we have ∥A∥2 ≤ (t− tk)(1 +L). Thus

we know that:

∥∇
(
F−1
t (x)

)
− Id∥2 = ∥(Id +A)−1 − Id∥2

(i)
=

∥∥∥∥ ∞∑
n=1

(−1)nAn

∥∥∥∥
2

(ii)

≤
∞∑

n=1

∥A∥n2

(iii)

≤ 2(t− tk)(1 + L),

here (i) holds because of the series expansion for ∥A∥2 < 1. (ii) holds due to the Cauchy-Schwarz
inequality. (iii) holds due to our assumption η ≤ 1/2(1 + L). Then we know that:

J5 = max

∣∣∣∣tr(cl∇sθ(T − tk, z)
(
∇
(
F−1
t (x)

)
− Id

))∣∣∣∣
(i)

≤ dmax ∥∇sθ(T − tk, z)
(
∇
(
F−1
t (x)

)
− Id

)
∥2

≤ dmax ∥∇sθ(T − tk, z)∥2∥∇
(
F−1
t (x)

)
− Id∥2

≤ dL(t− tk)2(1 + L),

here (i) holds due to tr(A) ≤ d∥A∥2 and cl ≤ 1. Thus we have:

|J5| ≲ (t− tk)dL
2. (G.22)

Estimating z− x. By Assumption 5.4, we have:

∥z− x∥ = ∥F−1
t (x)− x∥

= (t− tk)
∥∥sθ(T − tk, F

−1
t (x))

∥∥
≤ (t− tk)L

∥∥F−1
t (x)

∥∥+ (t− tk)c.

Since we assume that t− tk ≤ η ≤ min{ 1
4L ,

1
4c}. From (G.7) we know that ∥F−1

t (x)∥ ≤ 2∥x∥+1.
Hence we have:

∥z− x∥ ≲ (t− tk)L(2∥x∥+ 1) + (t− tk)c

(i)

≲ (t− tk)L(∥x∥+ 1). (G.23)
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Bounding the Moments of Yt.
Before we start estimating J3 and J4, we do some preparation work. Our goal is to estimate the
moments of Yt. Since we have Yt = XT−t = X0 +

√
T − tZ, here Z ∼ N(0, Id). We have

E∥Yt∥2 = E∥X0∥2 + (T − t)E∥Z∥2

≤ R2 + (T − t)d. (G.24)

After computing the second order momentum, by the inequality
(
E∥Yt∥

)2 ≤ E∥Yt∥2, we know
that:

E∥Yt∥ ≲ R+
√
T − t

√
d. (G.25)

Moreover, we consider the fourth order momentum as we will need to estimate it later: we have

E∥Yt∥4 ≲ E∥X0∥4 + (T − t)2E∥Z∥4

≲ R4 + (T − t)2d2. (G.26)

After computing the foruth order momentum, by the inequality E∥Yt∥3 ≤
√
E∥Yt∥2 ·

√
E∥Yt∥4,

we know that:

E∥Yt∥3 ≲ R3 + (T − t)3/2d3/2. (G.27)

Bounding Divergence Discretization Error J4.
Using Lemma G.3 and Lemma G.4, we know that∣∣∣∣ ∂∂t( tr

(
∇2 log q(T − t,x)

))∣∣∣∣ ≲ d

(T − t)2
+

R2(∥x∥+R)2

(T − t)4
,

∥∥∇tr
(
∇2 log q(t,x)

)∥∥ ≤ R3

(T − t)3
.

Thus we know that:∣∣∣∣∫
Ωt

tr
(
∇2 log q(T − tk, z)−∇2 log q(T − t,x)

)
q(T − t,x)dx

∣∣∣∣
≲

∫
Ωt

(
(t− tk)

( d

(T − t)2
+

R2(∥x∥+R)2

(T − t)4
)
+

R3

(T − t)3
∥x− z∥

)
q(T − t,x)dx

(i)

≲
∫
Ωt

(
(t− tk)

( d

(T − t)2
+

R2(∥x∥+R)2

(T − t)4
)
+

R3

(T − t)3
(t− tk)L(∥x∥+ 1)

)
q(T − t,x)dx

≲ (t− tk)
d

(T − t)2
+ (t− tk)

R2

(T − t)4
E(∥Yt∥2 +R2) + (t− tk)

R3

(T − t)3
L · E(∥Yt∥+ 1)

(ii)

≲ (t− tk)
d

(T − t)2
+ (t− tk)

R4 +R2(T − t)d

(T − t)4
+ (t− tk)

LR3

(T − t)3
(R+

√
T − t

√
d+ 1).

Here (i) is due to (G.23) and (ii) is due to (G.24) and (G.25). Assuming R ≥ 1, we can further
simplify its form:

|J4| ≲ (t− tk)
[
d

1

(T − t)2
+ d

R2

(T − t)3
+ (1 + L(T − t))

R4

(T − t)4
+

√
d

LR3

(T − t)5/2

]
. (G.28)

Bounding the Score Discretization Error J3.
Using Lemma G.4, we know that:

∥∇ log q(t,x)∥ ≲
∥x∥+R

t
,∥∥∇2 log q(t,x)

∥∥
2
≤ 1

t
+

R2

t2
.

Moreover, by Lemma G.3, we have:∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ ≲
∥x∥+R

t2
+

(∥x∥+R)3

t3
.
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Thus we know that:∣∣∣∣∫
Ωt

(
∇ log qT−tk(z)−∇ log qT−t(x)

)
∇ log q(T − t,x)q(T − t,x)dx

∣∣∣∣
≲

∫
Ωt

(t− tk)
(∥x∥+R

(T − t)2
+

(∥x∥+R)3

(T − t)3

)∥x∥+R

T − t
q(T − t,x)dx

+

∫
Ωt

( 1

T − t
+

R2

(T − t)2
)
∥x− z∥∥x∥+R

T − t
q(T − t,x)dx

≲ (t− tk)
1

(T − t)3
E(∥Yt∥+R)2 + (t− tk)

1

(T − t)4
E(∥Yt∥+R)4

+ (t− tk)

∫
Ωt

( 1

T − t
+

R2

(T − t)2
)
L(∥x∥+ 1)

∥x∥+R

T − t
q(T − t,x)dx

(i)

≲ (t− tk)
1

(T − t)3
(R2 + (T − t)d) + (t− tk)

1

(T − t)4
(R4 + (T − t)2d2)

+ (t− tk)
L

(T − t)2
(R2 + (T − t)d) + (t− tk)

LR2

(T − t)3
(R2 + (T − t)d). (G.29)

Here we use (G.26) and (G.24) to bound the second and fourth momentum of Yt, and (i) is due to:∫
Ωt

(∥x∥+ 1)(∥x∥+R)q(T − t,x)dx ≲ E(∥Yt∥+R)2 ≲ R2 + (T − t)d.

Reorganizing terms in (G.29), since we assume that L ≥ 1 and R ≥ 1, we have:

|J3| ≲ (t− tk)
[
d2

1

(T − t)2
+ d

1

(T − t)2
+ d

LR2

(T − t)2
+ d

L

T − t

+
R4

(T − t)4
+

R2

(T − t)3
+

LR2

(T − t)2
+

LR4

(T − t)3

]
≲ (t− tk)

[
d2

1

(T − t)2
+ d

LR2

(T − t)2
+ d

L

T − t
+

R4

(T − t)4
+

LR4

(T − t)3
+

LR2

(T − t)2

]
.

(G.30)

Putting J3 and J4 Together.
Combining (G.30) and (G.28) together, we have

|J3|+ |J4| ≲ (t− tk)
[
d2

1

(T − t)2︸ ︷︷ ︸
C1

+ d
LR2

(T − t)2︸ ︷︷ ︸
C2

+ d
L

T − t︸ ︷︷ ︸
C3

+
R4

(T − t)4︸ ︷︷ ︸
C4

+
LR4

(T − t)3︸ ︷︷ ︸
C5

+
LR2

(T − t)2︸ ︷︷ ︸
C6

]

+ (t− tk)
[
d

1

(T − t)2︸ ︷︷ ︸
C7

+ d
R2

(T − t)3︸ ︷︷ ︸
C8

+(1 + L(T − t))
R4

(T − t)4︸ ︷︷ ︸
C9

+
√
d

LR3

(T − t)5/2︸ ︷︷ ︸
C10

]
(i)

≲ (t− tk)
[
C1 + C2 + C3 + C4 + C5 + C8 + C10

]
= (t− tk)

[
d2

1

(T − t)2
+ d

LR2

(T − t)2
+ d

L

T − t
+

R4

(T − t)4

+
LR4

(T − t)3
+ d

R2

(T − t)3
+

√
d

LR3

(T − t)5/2

]
, (G.31)

where (i) is due to C7 ≤ C2, C9 = C4 + C5, C6 ≤ C2.
Combining Everything Together.
Plugging (G.17), (G.21), (G.22) and (G.31) into (G.13), and taking the integral, we can obtain the
following inequality

TV(ŶT−δ,YT−δ) ≲ TV(πd, qT )
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+
∑
k

(tk+1 − tk)

√
EQ tr

(
∇sθ(T − tk,Ytk)−∇2 log q(T − tk,Ytk)

)2

︸ ︷︷ ︸
R1

+
∑
k

(tk+1 − tk)ηdL︸ ︷︷ ︸
R2

+
∑
k

(tk+1 − tk)

√
d

T − tk+1

√
EQ

∥∥∥sθ(T − tk,Ytk)−∇ log qT−tk(Ytk)
∥∥∥2︸ ︷︷ ︸

R3

+
∑
k

(tk+1 − tk)

√
d

T − tk+1
η
√
L2R2 + L2(T − tk)d+ c2︸ ︷︷ ︸

R4

+
∑
k

(tk+1 − tk)
2dL2

︸ ︷︷ ︸
R5

+
∑
k

(tk+1 − tk)
2
[
d2

1

(T − t)2
+ d

LR2

(T − t)2
+ d

L

T − t
+

R4

(T − t)4

+
LR4

(T − t)3
+ d

R2

(T − t)3
+

√
d

LR3

(T − t)5/2

]
.

We further denote the last term by R6. We know that R1 is ϵdiv. For R3, by Cauchy-Shwartz
inequality, we have:

R3 ≤
√∑

k

(tk+1 − tk)
d

T − tk+1

√∑
k

(tk+1 − tk)EQ

∥∥∥sθ(T − tk,Ytk)−∇ log qT−tk(Ytk)
∥∥∥2

≤
√
ηNd · ϵscore.

Since we assume L ≥ 1, for R2 +R5, we have∑
k

(tk+1 − tk)ηdL+
∑
k

(tk+1 − tk)
2dL2 ≲ η2NdL2.

For the R4, we have∑
k

(tk+1 − tk)

√
d

T − tk+1
η
√
L2R2 + L2(T − tk)d+ c2

(i)

≲ η
∑
k

(tk+1 − tk)
[√ d

T − tk+1

√
L2R2 +

√
L2(T − tk)d

]
(ii)

≲ η
∑
k

η
√
dLR+ (t− tk)Ld

≤ η2N(
√
dLR+ Ld),

here we omit c in (i), and (ii) is because T−tk
T−tk+1

≤ 1 + η ≤ 2. Hence we know that

R2 +R4 +R5 ≲ η2N
[
L2d+ LR

√
d
]
.

Finally, for the R6, we know that:

R6 ≤ η2N
[
d2 + LR2d+ Ld+

R4

δ2
+

LR4

δ
+

R2

δ
d+ LR3

√
d

δ

]
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≲ η2N
[
d2 + LR2d+

R2

δ
d+ LR3

√
d

δ
+

R4

δ2
+

LR4

δ

]
.

Putting together, we know that

TV(ŶT−δ,YT−δ) ≲ TV(πd, qT ) + ϵdiv +
√

ηNd · ϵscore

+ η2N
[
d2 + LR2d+ L2d+

R2

δ
d+ LR3

√
d

δ
+

R4

δ2
+

LR4

δ

]
(iii)

≲ TV(πd, qT ) + ϵdiv +
√
ηNd · ϵscore + η2N

[
LR4d2 + L2d+

LR4

δ2

]
,

here (iii) is due to 2LR2d ≤ LR4d2+ LR4

δ2 , 2R2

δ d ≤ LR4d2+ LR4

δ2 and LR3
√

d
δ ≤ LR4d2+ LR4

δ2

(and δ < 1 as well as R ≥ 1 and L ≥ 1). This completes the proof of Theorem 5.9.

G.2 PROOF OF LEMMA 5.10 AND COROLLARY 5.11
Proof of Lemma 5.10. Since qt|0(xt|x0) = N (xt;x0, tId), we have

KL(qt|0(·|x0)∥N(0, T Id)) =
∥x0∥2

2T
. (G.32)

By the convexity of the KL divergence,

KL(qT ∥N(0, T Id)) = KL
(∫

Rd

qT |0(·|x0)q0(dx0)∥N(0, T Id)

)
≤

∫
Rd

KL(qT |0(·|x0)∥πd)q0(dx0)

=
1

2T
Eq0

[
∥X0∥2

]
=

d

2T
. (G.33)

where we have used that Eq0 [∥X0∥2] = d, since Cov(q0) = Id. Applying Pinsker’s inequality
to (G.33), we have:

TV
(
X0 +N(0, T Id), N(0, T Id)

)
≤

√
d√
2T

. (G.34)

This completes the proof of Lemma 5.10.

Proof of Corollary 5.11. Please refer to Benton et al. (2024)’s Appendix D for a detailed
derivation of the existence of such time schedule. Since we take T = d/ϵ2 and
N = LR4Θ

(
d2(T + log(1/δ))2/ϵ

)
, using ϵ ≤ 1/L, we can easily show that η ≤

min{1/(12L2Td2), 1/(24L2R2d)}. Hence by Theorem 5.5 and Lemma 5.6, we have:

TV(ŶT−δ,YT−δ) ≲

√
d√
T

+ ϵdiv +
√
d
√

ηNϵscore + η2N
[
LR4d2 + L2d+ LR4 1

δ2

]
.

Since we take δ = 1/d and assume that d ≥ L/R4, we can further simply the bound of TV to:

TV(ŶT−δ,YT−δ) ≲

√
d√
T

+ ϵdiv +
√
d
√
ηNϵscore + η2NLR4d2.

Since T = d/ϵ2 and N = LR4Θ
(
d2(T + log(1/δ))2/ϵ

)
, we know that

√
d√
T

≤ ϵ,

ηNLR4d2 =
1

N
(T + log(1/δ))2LR4d2 ≤ ϵ.

Recall that we assume sufficiently small score estimation and divergence error, this completes the
proof of Corollary 5.11.
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H LIPSCHITZNESS OF SCORE FUNCTIONS

In this section, we consider the forward process by gradually adding noise to data distribution, i.e.,

Xt = f(t)Xdata + g(t)Z, (H.1)

where Z ∼ N (0, I) is a standard normal random variable independent of Xdata, and f(t) and g(t)
are scaling functions determined by the forward process that modulate the influence of the data
and noise over time. Both VE and VP forward processes can be represented in this form. The
distribution of Xt is denoted by q(t,x). We will show the Lipschitzness property of ∇ log q(t,x)
under Assumption 5.1.
H.1 GENERAL RESULTS

The following lemma regards the upper bound of the derivatives concerning x.
Lemma H.1. Suppose Assumption 5.1 holds. Let Xt be the forward process defined in (H.1), and
its distribution is denoted by q(t,x). We have the following inequalities:

∥∇ log q(t,x)∥ ≤ ∥x∥+ f(t)R

g(t)2
,

∥∥∇2 log q(t,x)
∥∥
2
≤ 1

g(t)2

(
1 +

f(t)2

g(t)2
2R2

)
,

∥∥∇tr
(
∇2 log q(t,x)

)∥∥ ≤ 6f(t)3

g(t)6
R3.

Proof of Lemma H.1. We prove the lemma by gradually computing the higher-order derivatives of
the score function step by step. A key point in our proof is that we bringing the terms involving x
outside of the integral and canceling them, resulting in an expression where x only appears in the
function’s evaluation. Firstly, we derive the form of our score function ∇ ln q(t,x).
Expression of the Score Function.
To start with, using the expression of the forward process Xt in (H.1), we represent q(t,x) as the
convolution of the data distribution and Gaussian distribution. Specifically, we have:

q(t,x) =

∫
Rd

pf(t)X0
(y)pg(t)Z(x− y)dy

=

∫
Rd

1

f(t)
pX0

( y

f(t)

)
pg(t)Z(x− y)dy

=

∫
Rd

pX0(y)pg(t)Z
(
x− f(t)y

)
dy

=

∫
Rd

q0(y)pZ

(x− f(t)y

g(t)

) 1

g(t)
dy

=

∫
Rd

q0(y)ϕ
(x− f(t)y

g(t)

) 1

g(t)
dy, (H.2)

where we represent the probability density function of standard Gaussian distribution as ϕ(x) =

(e−∥x∥2/2)/(
√
2π)d. Besides, in the second and fourth equations, we use the change of variable

formula of the density function, i.e., paX(x) = pX(x/a)/a, where X is a random variable and a is
a constant. By directly taking the gradient, we have the following property of ϕ(·):

∇ϕ(x) = −ϕ(x)x.

Moreover, by the chain rule, we can calculate the gradient with respect to x:

∇x

[
ϕ
(x− f(t)y

g(t)

)]
= − 1

g(t)

[
ϕ
(x− f(t)y

g(t)

)x− f(t)y

g(t)

]
= −x− f(t)y

g(t)2
ϕ
(x− f(t)y

g(t)

)
. (H.3)

Thus, we can express the score function as follows:

∇ log q(t,x) =
∇q(t,x)

q(t,x)

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

(i)
=

∇
∫
Rd pdata(y)ϕ

(x−f(t)y
g(t)

)
1

g(t)dy∫
Rd pdata(y)ϕ

(x−f(t)y
g(t)

)
1

g(t)dy

=

∫
Rd pdata(y)∇x

[
ϕ
(x−f(t)y

g(t)

)]
dy∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy

(ii)
=

∫
Rd pdata(y)

(
− x−f(t)y

g(t)2

)
ϕ
(x−f(t)y

g(t)

)
dy∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy

= − 1

g(t)2

∫
Rd pdata(y)

(
x− f(t)y

)
ϕ
(x−f(t)y

g(t)

)
dy∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy

, (H.4)

where (i) holds due to (H.2), and (ii) holds due to (H.3).
Under Assumption 5.1, we have pdata(y) = 0 for ∥y∥ > R. Thus, we have

∥∇ log q(t,x)∥ =
1

g(t)2

∥∥ ∫
Rd pdata(y)

(
x− f(t)y

)
ϕ
(x−f(t)y

g(t)

)
dy

∥∥∫
Rd pdata(y)ϕ

(x−f(t)y
g(t)

)
dy

≤ 1

g(t)2

∫
Rd pdata(y)∥x− f(t)y∥ϕ

(x−f(t)y
g(t)

)
dy∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy

≤ 1

g(t)2

∫
Rd pdata(y)

(
∥x∥+ f(t)∥y∥

)
ϕ
(x−f(t)y

g(t)

)
dy∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy

≤ ∥x∥+ f(t)R

g(t)2
.

This shows that, under Assumption 5.1, the norm of the score function can be bounded by a linear
function.
First-order Derivative of the Score Function.
We proceed by computing the Jacobian matrix of ∇ log q(t,x). Directly calculating the gradient
of (H.6), we have

∇2 log q(t,x) = ∇
[
− 1

g(t)2

∫
Rd pdata(y)(x− f(t)y)ϕ

(x−f(t)y
g(t)

)
dy∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy

]

= − 1

g(t)2
1

Φ(x)2

[
∇
(∫

Rd

pdata(y)(x− f(t)y)ϕ
(x− f(t)y

g(t)

)
dy

)
︸ ︷︷ ︸

I1

Φ(x)

−
∫
Rd

pdata(y)(x− f(t)y)ϕ
(x− f(t)y

g(t)

)
dy

(
∇

∫
Rd

pdata(y)ϕ
(x− f(t)y

g(t)

)
dy

)⊤

︸ ︷︷ ︸
I2

]
,

(H.5)

where we use the shorthand expression Φ(x) =
∫
Rd pdata(y)ϕ

(x−f(t)y
g(t)

)
dy, and the last equation

holds due to the gradient formula of vector-valued functions, i.e., ∇ f(x)
g(x) = ∇f(x)

g(x) − f(x)∇g(x)⊤

g(x)2 .
Firstly, we compute I1:

I1 = ∇
(∫

Rd

pdata(y)(x− f(t)y)ϕ
(x− f(t)y

g(t)

)
dy

)
=

∫
Rd

pdata(y)

(
ϕ
(x− f(t)y

g(t)

)
I+ (x− f(t)y)∇x

[
ϕ
(x− f(t)y

g(t)

)]⊤)
dy

(i)
=

∫
Rd

pdata(y)

(
ϕI+ (x− f(t)y)

(
− ϕ

x− f(t)y

g(t)2

)⊤
)
dy
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=

∫
Rd

pdata(y)

(
I− (x− f(t)y)(x− f(t)y)⊤

g(t)2

)
ϕdy

=

∫
Rd

pdata(y)ϕdy · I− xx⊤

g(t)2

∫
Rd

pdata(y)ϕdy︸ ︷︷ ︸
I1,1

+
f(t)

g(t)2
x

∫
Rd

pdata(y)y
⊤ϕdy︸ ︷︷ ︸

I1,2

+
f(t)

g(t)2

(∫
Rd

pdata(y)yϕdy

)
x⊤︸ ︷︷ ︸

I1,3

−f(t)2

g(t)2

∫
Rd

pdata(y)yy
⊤ϕdy, (H.6)

where we use the shorthand expression ϕ = ϕ
(x−f(t)y

g(t)

)
and (i) holds due to (H.3).

Next, we compute I2:

I2 =

[ ∫
Rd

pdata(y)(x− f(t)y)ϕ
(x− f(t)y

g(t)

)
dy

][
∇

∫
Rd

pdata(y)ϕ
(x− f(t)y

g(t)

)
dy

]⊤
=

[ ∫
Rd

pdata(y)(x− f(t)y)ϕ
(x− f(t)y

g(t)

)
dy

][ ∫
Rd

pdata(y)
(
− x− f(t)y

g(t)2

)
ϕ
(x− f(t)y

g(t)

)
dy

]⊤
= − 1

g(t)2

[ ∫
Rd

pdata(y)
(
x− f(t)y

)
ϕdy

][ ∫
Rd

pdata(y)
(
x− f(t)y

)⊤
ϕdy

]
= − xx⊤

g(t)2

∫
Rd

pdata(y)ϕdy︸ ︷︷ ︸
I2,1

·
∫
Rd

pdata(y)ϕdy +
f(t)

g(t)2
x

∫
Rd

pdata(y)y
⊤ϕdy︸ ︷︷ ︸

I2,2

·
∫
Rd

pdata(y)ϕdy

+
f(t)

g(t)2

(∫
Rd

pdata(y)yϕdy

)
x⊤︸ ︷︷ ︸

I2,3

∫
Rd

pdata(y)ϕdy − f(t)2

g(t)2

∫
Rd

pdata(y)yϕdy

∫
Rd

pdata(y)y
⊤ϕdy,

(H.7)
where the second inequality holds due to (H.3), the third inequality holds due to the short-
hand expression ϕ = ϕ

(x−f(t)y
g(t)

)
. Substituting (H.6) and (H.7) into (H.5), notice that Φ(x) =∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy, I1,1 = I2,1, I1,2 = I2,2 and I1,3 = I2,3. Thus, we have the following

equation:

∇2 log q(t,x) = − 1

g(t)2

[
I− f(t)2

g(t)2

(∫
Rd pdata(y)yy

⊤ϕdy∫
Rd pdata(y)ϕdy

−
[ ∫

Rd pdata(y)yϕdy
][ ∫

Rd pdata(y)y
⊤ϕdy

]( ∫
Rd pdata(y)ϕdy

)2 )]
. (H.8)

Using Assumption 5.1, when pdata(y) ̸= 0, we have ∥yy⊤∥2 = ∥y∥2 ≤ R2. Moreover, we have∥∥∥∥ ∫
Rd

pdata(y)yϕdy ·
∫
Rd

pdata(y)y
⊤ϕdy

∥∥∥∥
2

=

∥∥∥∥∫
Rd

pdata(y)yϕdy

∥∥∥∥2
≤

(∫
Rd

pdata(y)∥y∥ϕdy
)2

≤ R2

(∫
Rd

pdata(y)ϕdy

)2

.

Substituting into (H.8), we have∥∥∇2 log q(t,x)
∥∥
2
≤ 1

g(t)2

(
1 +

f(t)2

g(t)2
2R2

)
.

This implies that ∇ log q(t,x) is Lipschitz.
Derivatives of the Divergence of the Score Function.
Next, we consider the divergence of the score function, i.e.,

∇ · [∇ log q(t,x)] = tr
(
∇2 log q(t,x)

)
.
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To start with, using (H.8), we have:

tr
(
∇2 log q(t,x)

)
= − d

g(t)2
+

f(t)2

g(t)4

(∫
Rd pdata(y)∥y∥2ϕdy∫

Rd pdata(y)ϕdy
−

∥
∫
Rd pdata(y)yϕdy∥2( ∫
Rd pdata(y)ϕdy

)2 )
, (H.9)

where we use the fact tr(xx⊤) = ∥x∥2. Directly computing the gradient, we have

∇tr
(
∇2 log q(t,x)

)
=

f(t)2

g(t)4

[
∇
∫
Rd pdata(y)∥y∥2ϕdy∫

Rd pdata(y)ϕdy︸ ︷︷ ︸
J1

−∇
∥
∫
Rd pdata(y)yϕdy∥2( ∫
Rd pdata(y)ϕdy

)2︸ ︷︷ ︸
J2

]
.

Firstly, for J1, we have

J1 =
∇
∫
Rd pdata(y)∥y∥2ϕdy ·

∫
Rd pdata(y)ϕdy −∇

∫
Rd pdata(y)ϕdy ·

∫
Rd pdata(y)∥y∥2ϕdy( ∫

Rd pdata(y)ϕdy
)2 .

(H.10)

We calculate the two gradients separately. First, we have

∇
∫
Rd

pdata(y)∥y∥2ϕdy =

∫
Rd

pdata(y)∥y∥2∇ϕdy

=

∫
Rd

pdata(y)∥y∥2
(
− x− f(t)y

g(t)2

)
ϕdy

= − x

g(t)2

∫
Rd

pdata(y)∥y∥2ϕdy +
f(t)

g(t)2

∫
Rd

pdata(y)∥y∥2yϕdy,

(H.11)

where the second equality holds due to (H.3). Next, we have

∇
∫
Rd

pdata(y)ϕdy =

∫
Rd

pdata(y)∇ϕdy

=

∫
Rd

pdata(y)
(
− x− f(t)y

g(t)2

)
ϕdy

= − x

g(t)2

∫
Rd

pdata(y)ϕdy +
f(t)

g(t)2

∫
Rd

pdata(y)yϕdy. (H.12)

Substituting (H.11) and (H.12) into (H.10), we have

J1 =

(
− x

g(t)2

∫
Rd pdata(y)∥y∥2ϕdy + f(t)

g(t)2

∫
Rd pdata(y)∥y∥2yϕdy

)
·
∫
Rd pdata(y)ϕdy( ∫

Rd pdata(y)ϕdy
)2

−

(
− x

g(t)2

∫
Rd pdata(y)ϕdy + f(t)

g(t)2

∫
Rd pdata(y)yϕdy

)
·
∫
Rd pdata(y)∥y∥2ϕdy( ∫

Rd pdata(y)ϕdy
)2

=
f(t)

g(t)2

(∫
Rd pdata(y)∥y∥2yϕdy∫

Rd pdata(y)ϕdy
−

∫
Rd pdata(y)yϕdy

∫
Rd pdata(y)∥y∥2ϕdy( ∫

Rd pdata(y)ϕdy
)2 )

.

Next, for J2, we have:

J2 =
∇∥

∫
Rd pdata(y)yϕdy∥2 ·

( ∫
Rd pdata(y)ϕdy

)2 −∇
( ∫

Rd pdata(y)ϕdy
)2 · ∥ ∫Rd pdata(y)yϕdy∥2( ∫

Rd pdata(y)ϕdy
)4 .

(H.13)

Again, we calculate the two gradients as follows. First, we have:

∇
∥∥∥∥∫

Rd

pdata(y)yϕdy

∥∥∥∥2 = ∇
d∑

i=1

(∫
Rd

pdata(y)yiϕdy

)2
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=

d∑
i=1

2

∫
Rd

pdata(y)yiϕdy ·
∫
Rd

pdata(y)yi∇ϕdy

(i)
=

d∑
i=1

2

∫
Rd

pdata(y)yiϕdy ·
∫
Rd

pdata(y)yi

(
− x− f(t)y

g(t)2

)
ϕdy

= − 2x

g(t)2

d∑
i=1

(∫
Rd

pdata(y)yiϕdy

)2

+
2f(t)

g(t)2

d∑
i=1

∫
Rd

pdata(y)yiϕdy

∫
Rd

pdata(y)yiyϕdy

(ii)
= − 2x

g(t)2

∥∥∥∥∫
Rd

pdata(y)yϕdy

∥∥∥∥2 + 2f(t)

g(t)2

∫
Rd

pdata(y)yy
⊤ϕdy ·

∫
Rd

pdata(y)yϕdy, (H.14)

where (i) holds due to (H.3), and (ii) holds due to the coordinate expression of matrix multiplication.
Moreover, we have

∇
(∫

Rd

pdata(y)ϕdy

)2

= 2

∫
Rd

pdata(y)ϕdy · ∇
∫
Rd

pdata(y)ϕdy

(i)
= 2

∫
Rd

pdata(y)ϕdy ·
(
− x

g(t)2

∫
Rd

pdata(y)ϕdy +
f(t)

g(t)2

∫
Rd

pdata(y)yϕdy

)
= − 2x

g(t)2

(∫
Rd

pdata(y)ϕdy

)2

+
2f(t)

g(t)2

∫
Rd

pdata(y)ϕdy ·
∫
Rd

pdata(y)yϕdy,

(H.15)

where (i) holds due to (H.12). Substituting (H.14) and (H.15) into (H.13), we have

J2 =

(
− 2x

g(t)2 ∥
∫
Rd pdata(y)yϕdy∥2 + 2f(t)

g(t)2

∫
Rd pdata(y)yy

⊤ϕdy
∫
Rd pdata(y)yϕdy

)( ∫
Rd pdata(y)ϕdy

)2( ∫
Rd pdata(y)ϕdy

)4
−

(
− 2x

g(t)2

( ∫
Rd pdata(y)ϕdy

)2
+ 2f(t)

g(t)2

∫
Rd pdata(y)ϕdy

∫
Rd pdata(y)yϕdy

)
· ∥

∫
Rd pdata(y)yϕdy∥2( ∫

Rd pdata(y)ϕdy
)4

=
2f(t)

g(t)2

(∫
Rd pdata(y)yy

⊤ϕdy
∫
Rd pdata(y)yϕdy( ∫

Rd pdata(y)ϕdy
)2 +

∫
Rd pdata(y)yϕdy · ∥

∫
Rd pdata(y)yϕdy∥2( ∫

Rd pdata(y)ϕdy
)3 )

.

We can conclude with

∥J1∥ ≤ f(t)

g(t)2

(∫
Rd pdata(y)∥y∥2∥y∥ϕdy∫

Rd pdata(y)ϕdy
−

∫
Rd pdata(y)∥y∥ϕdy

∫
Rd pdata(y)∥y∥2ϕdy( ∫

Rd pdata(y)ϕdy
)2 )

≤ f(t)

g(t)2

(
R3 +R ·R2

)
=

2f(t)

g(t)2
R3.

Moreover, we have

∥J2∥ ≤ 2f(t)

g(t)2

(∥
∫
Rd pdata(y)yy

⊤ϕdy∥2∥
∫
Rd pdata(y)yϕdy∥( ∫

Rd pdata(y)ϕdy
)2

+

∫
Rd pdata(y)∥y∥ϕdy · ∥

∫
Rd pdata(y)yϕdy∥2( ∫

Rd pdata(y)ϕdy
)3 )

≤ 2f(t)

g(t)2

(∫
Rd pdata(y)∥yy⊤∥2ϕdy

∫
Rd pdata(y)∥y∥ϕdy( ∫

Rd pdata(y)ϕdy
)2

+

∫
Rd pdata(y)∥y∥ϕdy ·

( ∫
Rd pdata(y)∥y∥ϕdy

)2( ∫
Rd pdata(y)ϕdy

)3 )
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(i)
=

2f(t)

g(t)2

(∫
Rd pdata(y)∥y∥2ϕdy

∫
Rd pdata(y)∥y∥ϕdy( ∫

Rd pdata(y)ϕdy
)2

+

∫
Rd pdata(y)∥y∥ϕdy ·

( ∫
Rd pdata(y)∥y∥ϕdy

)2( ∫
Rd pdata(y)ϕdy

)3 )
(i)

≤ 2f(t)

g(t)2

(
R2 ·R+R ·R2

)
=

4f(t)

g(t)2
R3,

where (i) holds due to the fact ∥yy⊤∥2 = ∥y∥2 for any y ∈ Rd, and (ii) holds due to Assump-
tion 5.1. Putting everything together, we know that∥∥∇tr

(
∇2 log q(t,x)

)∥∥ ≤ 6f(t)3

g(t)6
R3.

This completes the proof of Lemma H.1.

The following lemma considers the upper bounds for the time-derivative of our score function. We
use similar techniques to as we obtain in the proof of Lemma H.1.
Lemma H.2. Suppose Assumption 5.1 holds. Let Xt be the forward process defined in (H.1), and
its distribution is denoted by q(t,x). Then we have:∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ ≤ 2g′(t)

g(t)3

(
∥x∥+ |f(t)|R

)
+

|f ′(t)|R
g(t)2

+
2g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)2
+ 2|g′(t)| ·

(
∥x∥+ f(t)R

)3
g(t)5

,

∣∣∣∣ ∂∂t( tr
(
∇2 log q(t,x)

))∣∣∣∣ ≤ 2d · |g′(t)|
g(t)3

+
4f(t) ·

∣∣f ′(t)g(t)− 2f(t)g′(t)
∣∣

g(t)5
R2

+ 6R2 f(t)
2

g(t)4

(
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

)
.

Proof of Lemma H.2. To start with, we first compute the time-derivative of ϕ(x−f(t)y
g(t) ). Using the

chain rule, we have

∂

∂t
ϕ
(x− f(t)y

g(t)

)
=

∂

∂t

(
1

(
√
2π)d

e−

∥∥ x−f(t)y
g(t)

∥∥2

2

)

=
1

(
√
2π)d

e−

∥∥ x−f(t)y
g(t)

∥∥2

2

(
− 1

2

) ∂

∂t

∥∥∥x− f(t)y

g(t)

∥∥∥2. (H.16)

Since we know that:
∂

∂t

∥∥∥x− f(t)y

g(t)

∥∥∥2 =
∂

∂t

∥x∥2 − 2f(t)x⊤y + f(t)2∥y∥2

g(t)2

=

(
− 2f ′(t)x⊤y + 2f(t)f ′(t)∥y∥2

)
g(t)2 − 2∥x− f(t)y∥2g(t)g′(t)

g(t)4

= − 2

g(t)3

(
g(t)f ′(t)

(
x⊤y − f(t)∥y∥2

)
+ g′(t)∥x− f(t)y∥2

)
. (H.17)

Substituting (H.17) into (H.16), and recall our shorthand expression ϕ = ϕ(x−f(t)y
g(t) ), we know that:

∂

∂t
ϕ =

g(t)f ′(t)
(
x⊤y − f(t)∥y∥2

)
+ g′(t)∥x− f(t)y∥2

g(t)3
ϕ. (H.18)

Therefore, assuming ∥y∥ ≤ R, we have∣∣∣ ∂
∂t

ϕ
∣∣∣ = ∣∣∣∣g(t)f ′(t)

(
x⊤y − f(t)∥y∥2

)
+ g′(t)∥x− f(t)y∥2

g(t)3

∣∣∣∣ϕ
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≤
g(t)|f ′(t)| ·

(
∥x∥∥y∥+ f(t)∥y∥2

)
+ |g′(t)| · ∥x− f(t)y∥2

g(t)3
ϕ

≤
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

ϕ. (H.19)

Time-Derivative of the Score Function.
By (H.4), we know:

∇ log q(t,x) = − 1

g(t)2

∫
Rd pdata(y)

(
x− f(t)y

)
ϕ
(x−f(t)y

g(t)

)
dy∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy

.

Taking the derivative with respect to t, we have:

∂

∂t

(
∇ log q(t,x)

)
=

2g′(t)

g(t)3

∫
Rd pdata(y)

(
x− f(t)y

)
ϕdy∫

Rd pdata(y)ϕdy

− 1

g(t)2

( ∂

∂t

∫
Rd pdata(y)

(
x− f(t)y

)
ϕdy∫

Rd pdata(y)ϕdy︸ ︷︷ ︸
L1

)
.

Using Assumption 5.1, we can easily see that:∥∥∥∥∥
∫
Rd pdata(y)

(
x− f(t)y

)
ϕdy∫

Rd pdata(y)ϕdy

∥∥∥∥∥ ≤ ∥x∥+ |f(t)|R. (H.20)

For L1, we have:

L1 =

∫
Rd pdata(y)

((
x− f(t)y

)
ϕt − f ′(t)yϕ

)
dy( ∫

Rd pdata(y)ϕdy
) −

∫
Rd pdata(y)

(
x− f(t)y

)
ϕdy

∫
Rd pdata(y)ϕtdy( ∫

Rd pdata(y)ϕdy
)2 .

From (H.19) and Assumption 5.1, we know that:

∥L1∥ ≤
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

2
(
∥x∥+ |f(t)|R

)
+ |f ′(t)|R.

(H.21)

Combining (H.20) and (H.21), we have:∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ =
2g′(t)

g(t)3

(
∥x∥+ |f(t)|R

)
+

1

g(t)2

(g(t)|f ′(t)| ·
(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

2
(
∥x∥+ |f(t)|R

)
+ |f ′(t)|R

)
=

2g′(t)

g(t)3

(
∥x∥+ |f(t)|R

)
+

2g(t)|f ′(t)| ·
(
∥x∥R+ f(t)R2

)2
+ 2|g′(t)| ·

(
∥x∥+ f(t)R

)3
g(t)5

+
|f ′(t)|R
g(t)2

.

Time-Derivative of the Divergence of the Score Function.
In this section, we consider the t-derivative of the divergence of the score function, i.e.,

∂

∂t

(
∇ · [∇ log q(t,x)]

)
=

∂

∂t

(
tr
(
∇2 log q(t,x)

))
.

To start with, using (H.9), we have:

tr
(
∇2 log q(t,x)

)
= − d

g(t)2
+

f(t)2

g(t)4

(∫
Rd pdata(y)∥y∥2ϕdy∫

Rd pdata(y)ϕdy
−

∥
∫
Rd pdata(y)yϕdy∥2( ∫
Rd pdata(y)ϕdy

)2 )
. (H.22)
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Taking the derivative with respect to t, we have:

∂

∂t

(
tr
(
∇2 log q(t,x)

))
=

2d · g′(t)
g(t)3

+
2f(t)f ′(t)g(t)− 4f(t)2g′(t)

g(t)5

(∫
Rd pdata(y)∥y∥2ϕdy∫

Rd pdata(y)ϕdy
−

∥
∫
Rd pdata(y)yϕdy∥2( ∫
Rd pdata(y)ϕdy

)2 )
︸ ︷︷ ︸

K1

+
f(t)2

g(t)4

(
∂

∂t

∫
Rd pdata(y)∥y∥2ϕdy∫

Rd pdata(y)ϕdy︸ ︷︷ ︸
K2

− ∂

∂t

∥
∫
Rd pdata(y)yϕdy∥2( ∫
Rd pdata(y)ϕdy

)2︸ ︷︷ ︸
K3

)
. (H.23)

For K1, using Assumption 5.1, we have

|K1| ≤
∣∣∣∣2f(t)f ′(t)g(t)− 4f(t)2g′(t)

g(t)5
(R2 +R2)

∣∣∣∣ = 4f(t) ·
∣∣f ′(t)g(t)− 2f(t)g′(t)

∣∣
g(t)5

R2. (H.24)

For K2, Using the definition of K2 in (H.23) , we have

|K2| =
∣∣∣∣ ∂∂t

∫
Rd pdata(y)∥y∥2ϕdy∫

Rd pdata(y)ϕdy

∣∣∣∣
=

∣∣∣∣ ∂
∂t

∫
Rd pdata(y)∥y∥2ϕdy∫
Rd pdata(y)ϕdy

−
∫
Rd pdata(y)∥y∥2ϕdy ·

(
∂
∂t

∫
Rd pdata(y)ϕdy

)( ∫
Rd pdata(y)ϕdy

)2 ∣∣∣∣
≤

∣∣∣∣
∫
Rd pdata(y)∥y∥2 ∂

∂tϕdy∫
Rd pdata(y)ϕdy

∣∣∣∣+ ∣∣∣∣
∫
Rd pdata(y)∥y∥2ϕdy ·

( ∫
Rd pdata(y)

∂
∂tϕdy

)( ∫
Rd pdata(y)ϕdy

)2 ∣∣∣∣
≤ 2R2 g(t)|f

′(t)| ·
(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

, (H.25)

where the last inequality holds due to (H.19) and Assumption 5.1.
For K3, we have

|K3| =
∣∣∣∣ ∂∂t ∥

∫
Rd pdata(y)yϕdy∥2

(
∫
Rd pdata(y)ϕdy)2

∣∣∣∣
≤

∣∣∣∣ ∂
∂t∥

∫
Rd pdata(y)yϕdy∥2

(
∫
Rd pdata(y)ϕdy)2

−
∥∥ ∫

Rd pdata(y)yϕdy
∥∥2 · ∂

∂t

( ∫
Rd pdata(y)ϕdy

)2
(
∫
Rd pdata(y)ϕdy)4

∣∣∣∣
≤

∣∣∣∣ ∂
∂t∥

∫
Rd pdata(y)yϕdy∥2

(
∫
Rd pdata(y)ϕdy)2

∣∣∣∣+ ∣∣∣∣
∥∥ ∫

Rd pdata(y)yϕdy
∥∥2 · ∂

∂t

( ∫
Rd pdata(y)ϕdy

)2
(
∫
Rd pdata(y)ϕdy)4

∣∣∣∣. (H.26)

Moreover, we have:∣∣∣∣ ∂∂t∥∥∥
∫
Rd

pdata(y)yϕdy
∥∥∥2∣∣∣∣ = ∣∣∣∣ ∂∂t

d∑
i=1

(∫
Rd

pdata(y)yiϕdy
)2

∣∣∣∣
=

∣∣∣∣ d∑
i=1

2

∫
Rd

pdata(y)yiϕdy

∫
Rd

pdata(y)yi
∂

∂t
ϕdy

∣∣∣∣
≤

d∑
i=1

2

∫
Rd

pdata(y)|yi|ϕdy ·
∫
Rd

pdata(y)|yi|
∣∣∣ ∂
∂t

ϕ
∣∣∣dy

≤ 2

(
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

) d∑
i=1

(∫
Rd

pdata(y)|yi|ϕdy
)2

.

Using the Cauchy-Schwarz inequality, we have
d∑

i=1

(∫
Rd

pdata(y)|yi|ϕdy
)2

≤
d∑

i=1

(∫
Rd

pdata(y)ϕdy

)(∫
Rd

pdata(y)|yi|2ϕdy
)

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

=

(∫
Rd

pdata(y)ϕdy

)(∫
Rd

pdata(y)∥y∥2ϕdy
)

≤ R2

(∫
Rd

pdata(y)ϕdy

)2

,

where the last inequality holds due to Assumption 5.1. Therefore, we have∣∣∣∣ ∂∂t∥∥∥
∫
Rd

pdata(y)yϕdy
∥∥∥2∣∣∣∣

≤ 2R2

(
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

)(∫
Rd

pdata(y)ϕdy

)2

.

(H.27)

Moreover, we have:∣∣∣∣ ∂∂t(
∫
Rd

pdata(y)ϕdy
)2

∣∣∣∣ = 2

∣∣∣∣ ∫
Rd

pdata(y)ϕdy · ∂

∂t

∫
Rd

pdata(y)ϕdy

∣∣∣∣
≤ 2

∣∣∣∣ ∫
Rd

pdata(y)ϕdy

∣∣∣∣ · ∫
Rd

pdata(y)
∣∣∣ ∂
∂t

ϕ
∣∣∣dy

≤ 2
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

(∫
Rd

pdata(y)ϕdy

)2

, (H.28)

where the last inequality holds due to (H.18). Substituting (H.27) and (H.28) into (H.26), and using
Assumption 5.1, we have:

|K3| ≤ 4R2

(
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

)
. (H.29)

Combining (H.23), (H.24), (H.25) and (H.29), we have the following inequality:∣∣∣∣ ∂∂t( tr
(
∇2 log q(t,x)

))∣∣∣∣ ≤ 2d · |g′(t)|
g(t)3

+
4f(t) ·

∣∣f ′(t)g(t)− 2f(t)g′(t)
∣∣

g(t)5
R2

+ 6R2 f(t)
2

g(t)4

(
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

)
. (H.30)

This completes the proof of Lemma H.2.

H.2 PROOF OF LEMMAS F.3 AND F.4

Proof of Lemma F.3. Since Xt = e−tX0 + N
(
0, (1 − e−2t)Id

)
, we have f(t) = e−t and g(t) =√

1− e−2t in this case. When t < 1, we know that f(t) = Θ(1), f ′(t) = Θ(1), g(t) = Θ(
√
t),

g′(t) = Θ( 1√
t
). Hence by Lemma H.2, we have:∣∣∣∣ ∂∂t( tr
(
∇2 log q(t,x)

))∣∣∣∣ ≲ d

t2
+

R2

t3
+R2 1

t2

√
t(∥x∥+R)R+ 1√

t
(∥x∥+R)2

√
t
3

=
d

t2
+

R2

t3
+

R3(∥x∥+R)

t3
+

R2(∥x∥+R)2

t4

(i)

≲
d

t2
+

R2(∥x∥+R)2

t4
, t < 1.

Here in (i) we use 2R2

t3 ≤ 1
t2 + R4

t4 ≤ d
t2 + R2(∥x∥+R)2

t4 . We next consider the case t ≥ 1:
Denote e−t by a, then we know that f(t) = Θ(a), f ′(t) = Θ(a), g(t) = Θ(1), g′(t) = Θ(a2). By,
Lemma H.2, we have:∣∣∣∣ ∂∂t( tr

(
∇2 log q(t,x)

))∣∣∣∣ ≲ a2d+R2a2 +R2a2
(
a(∥x∥+ aR)R+ a2(∥x∥+ aR)2

)
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(ii)

≤ a2d+R2a2 +R2a2
(
(∥x∥+R)R+ (∥x∥+R)2

)
≲ a2d+ a2R2 + a2R2(∥x∥+R)2

(iii)

≲ a2d+ a2R2(∥x∥+R)2

≤ d+R2(∥x∥+R)2, t ≥ 1.

Here (ii) is due to a < 1 and (iii) is because 2R2 ≤ 1+R4 ≤ d+R2(∥x∥+R)2. This proves the
first inequality of Lemma F.3.
Same as above, When t < 1, we know that f(t) = Θ(1), f ′(t) = Θ(1), g(t) = Θ(

√
t), g′(t) =

Θ( 1√
t
). Hence by Lemma H.2, we have:∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ ≲
∥x∥+R

t2
+

(∥x∥+R)2R2

t2
+

(∥x∥+R)3

t3
+

R

t

≲
∥x∥+R

t2
+

(∥x∥+R)2R2

t2
+

(∥x∥+R)3

t3
, t < 1.

We next consider the case t ≥ 1. Denote e−t by a, then we know that f(t) = Θ(a), f ′(t) = Θ(a),
g(t) = Θ(1), g′(t) = Θ(a2). By, Lemma H.2, we have:∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ ≲ a2(∥x∥+ aR) + a(∥x∥+ aR)2R2 + a2(∥x∥+ aR)3 + aR

(i)

≲ a(∥x∥+R) + a(∥x∥+R)2R2 + a(∥x∥+R)3

≤ (∥x∥+R) + (∥x∥+R)2R2 + (∥x∥+R)3, t ≥ 1.

Here (i) is due to a = e−t < 1 given t ≥ 1. This completes the proof of Lemma F.3.

Proof of Lemma F.4. Because Xt = e−tX0 +N
(
0, (1− e−2t)Id

)
, we havef(t) = e−t and g(t) =√

1− e−2t in this case. When t < 1, we know that

f(t) = Θ(1), f ′(t) = Θ(1), g(t) = Θ(
√
t), g′(t) = Θ(

1√
t
).

Then by Lemma H.1, we can easily show the three inequalities are valid when t < 1.
Moreover, when t ≥ 1, we have

f(t) = Θ(e−t), f ′(t) = Θ(e−t), g(t) = Θ(1), g′(t) = Θ(e−2t).

Then by Lemma H.1, we can easily show the three inequalities are valid when t ≥ 1. This completes
the proof of Lemma F.4.

H.3 PROOF OF LEMMAS G.3 AND G.4

Proof of Lemma G.3. Since Xt = X0+N
(
0,
√
tId

)
, we have f(t) = 1 and g(t) =

√
t in this case.

Hence f ′(t) = 0 and g′(t) = Θ( 1√
t
). By Lemma H.2, we have:∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ ≲
∥x∥+R

t2
+

(∥x∥+R)3

t3
.

∣∣∣∣ ∂∂t( tr
(
∇2 log q(t,x)

))∣∣∣∣ ≲ d

t2
+

R2

t3
+

R2(∥x∥+R)2

t4

(i)

≲
d

t2
+

R2(∥x∥+R)2

t4
,

here (i) is due to 2R2

t3 ≤ 1
t2 + R4

t4 . This completes our proof.

Proof of Lemma G.4. Since Xt = X0+N
(
0,
√
tId

)
, we have f(t) = 1 and g(t) =

√
t in this case.

Hence f ′(t) = 0 and g′(t) = Θ( 1√
t
). Substituting into Lemma H.1, we completes our proof.
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I PROOF OF REMAINING LEMMAS IN SECTIONS F AND G
I.1 PROOF OF LEMMAS F.1 AND F.2
We first present the following two technical lemmas.
Lemma I.1. Let Yt and Ft(z) be defined in (F.2) and (F.3). Then for any 0 ≤ k ≤ N − 1,
t ∈ [tk, tk+1] and x ∈ Rd, we have:

pYt
(x)

pFt(Ytk
)(x)

≤
e
∣∣∇Ft

(
F−1
t (x)

)∣∣
a

·
(1− e−2(T−t) + a2−1

1+2/d

1− e−2(T−t)

)d/2

· e
(1+d/2)∥g(x)∥22

2(a2−1) ,

where a = et−tk and g(x) = aF−1
t (x)− x.

Lemma I.2. Suppose Yt = e−(T−t)Xdata + N
(
0, (1 − e−2(T−t))Id

)
and p(∥Xdata∥2 < R) = 1.

Then for λ < min{ 1
d ,

1
2}, we have:

Eeλ∥Yt∥2
2 ≤ eλR

2−1.

Using these lemmas, we can start the proof of Lemma F.1:

Proof of Lemma F.1. To start with, we have the following lemma about the ratio: Firstly, using the
expression of the interpolation operator (F.3), we have

∇Ft(x) = et−tkId +
(
et−tk − 1

)
∇sθ(T − tk,x).

The operator norm of ∇Ft(x) can be bounded by

∥∇Ft(x)∥2 ≤ et−tk +
(
et−tk − 1

)
L

= a+ (a− 1)L

Using the fact that |A| ≤ ∥A∥d, we know that:∣∣∇Ft

(
F−1
t (x)

)∣∣ ≤ (
a+ (a− 1)L

)d
≤

(
1 + 2η + 2ηL

)d
≤ e

Here the last inequality is because η ≤ 1
2(L+1)d . With our time schedule, by (2.6), we have

t− tk ≤ tk+1 − tk ≤ η min{1, T − t}.

We consider two cases when T − t ≥ 1 and T − t < 1.
First, when T − t ≥ 1, we have t− tk ≤ η. Therefore, we have(

1− e−2(T−t) + a2−1
1+2/d

1− e−2(T−t)

)d/2

≤
(
1 +

e2(t−tk) − 1

1− e−2(T−t)

)d/2

≤
(
1 +

e2η − 1

1− e−2

)d/2

.

Since ex − 1 ≤ 2x when x ≤ 1 and 1− e−2 > 1
2 , when η ≤ 1/(8d), we have:(

1 +
e2η − 1

1− e−2

)d/2

≤
(
1 +

1

d

)d/2

≤
√
e.

Secondly, when T − t < 1, since 1 − e−2x > x/4 and ex − 1 ≤ 2x when 0 < x < 1, when
η ≤ 1/16d, we know that:(

1− e−2(T−t) + a2−1
1+2/d

1− e−2(T−t)

)d/2

≤
(
1 + 4

e2(t−tk) − 1

T − t

)d/2

≤
(
1 + 4

4(t− tk)

T − t

)d/2
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≤ (1 + 16η)d/2 ≤
√
e.

Combining the two cases, we can summarize that when η ≤ 1/16d, we have(
1− e−2(T−t) + a2−1

1+2/d

1− e−2(T−t)

)d/2

≤
√
e.

Since g(x) = aF−1
t (x)− x, we have:

g(x) = aF−1
t (x)− x

= aF−1
t (x)− aF−1

t (x)− (a− 1)sθ(T − tk, F
−1
t (x))

= −(a− 1)sθ(T − tk, F
−1
t (x)).

Hence,

(1 + d/2)∥g(x)∥22
2(a2 − 1)

=
(1 + d/2)(a− 1)∥sθ(T − tk, F

−1
t (x))∥2

2(a+ 1)
.

Using the assumption on sθ and inequality (F.4), we have that:

(1 + d/2)(a− 1)∥sθ(T − tk, F
−1
t (x))∥2

2(a+ 1)
≤ (1 + d/2)(a− 1)

2(a+ 1)
(L∥F−1

t (x)∥+ c)2

≤ (1 + d/2)(a− 1)

2(a+ 1)
(2L∥x∥+ L+ c)2

≤ (1 + d/2)(a− 1)

2(a+ 1)

≤ (1 + d/2)(a− 1)

a+ 1
4L2∥x∥2 + (1 + d/2)(a− 1)

a+ 1
(L+ c)2

≤ (t− tk) (1 + d/2)4L2︸ ︷︷ ︸
c1

∥x∥2 + (t− tk) (1 + d/2)(L+ c)2︸ ︷︷ ︸
c2

,

where the lst inequality holds due to a ≥ 1 and a− 1 ≤ 2(t− tk). Thus, we know that:

pYt(x)

pFt(Ytk
)(x)

≲ e(t−tk)c1∥x∥2+(t−tk)c2 .

This proves the first part of Lemma F.1.
Next we prove the second part, we know that:∫

Ωt

( pYt
(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx ≲

∫
Ωt

e(t−tk)c1∥x∥2+(t−tk)c2pYt
(x)dx

≤ e(t−tk)c2Ee(t−tk)c1∥Yt∥2

(i)

≤ e(t−tk)c2e(t−tk)c1R
2−1

(ii)

≲ 1,

where the (i) holds due to Lemma I.2 since our t− tk ≤ η ≤ min{ 1
c1d

, 1
2c1

}. And (ii) holds due to
t− tk ≤ η ≤ min{ 1

c2
, 1
R2c1

}
By Lemma I.1, we know that:

pYt
(x)

pFt(Ytk
)(x)

≤
e
∣∣∇Ft

(
F−1
t (x)

)∣∣
a

(
1− e−2(T−t) + a2−1

1+2/d

1− e−2(T−t)

)d/2

· e
(1+d/2)∥g(x)∥22

2(a2−1)

≲ 1.

here a = et−tk and g(x) = aF−1
t (x)− x. This completes the proof of Lemma F.1.

Next, we begin our proof of Lemma F.2.
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Proof of Lemma F.2. To start with, using Lemma F.1, we know that:

pYt(x)

pFt(Ytk
)(x)

≲ e(t−tk)c1∥x∥2+(t−tk)c2 ,

where c1 = (1 + d/2)4L2 and c2 = (1 + d/2)(L+ c)2.
Thus, we have:∫

Ωt

∥∥∥∇q(T − t,x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx =

∫
Ωt

∥∥∥∇ log q(T − t,x)
∥∥∥2 pYt

(x)

pFt(Ytk
)(x)

pYt
(x)dx

≲
∫
Ωt

∥∥∥∇ log q(T − t,x)
∥∥∥2eη(c1∥x∥2+c2)pYt(x)dx

≲ EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

]
,

where the last inequality holds due to η ≤ 1
c2

. Next, we select a constant M = 2R. We have the
following inequality:

EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

]
= EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

1∥Yt∥<M

]
+ EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

1∥Yt∥≥M

]
≲ EQ

∥∥∇ log q(T − t,Yt)
∥∥2︸ ︷︷ ︸

I1

+EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

1∥Yt∥≥M

]
︸ ︷︷ ︸

I2

,

where the last inequality holds due to η ≤ 1
4R2c1

= 1
c1M2 . For I1, using Lemma K.2, we have:

I1 = EQ∥∇ log q(T − t,Yt)∥2

≤ d
1

1− e−2(T−t)

(i)

≲
d

min{T − t, 1}
, (I.1)

where (i) holds because 1− e−2x > x/2 when x < 1 and 1− e−2x > 1/2 when x ≥ 1.
For I2, using Lemma H.1 with f(t) = e−(T−t), g(t) =

√
1− e−2(T−t), we have:

∥∇ log q(T − t,x)∥ ≤ ∥x∥+R

1− e−2(T−t)

=
∥x∥+R

σT−t
,

here we denote 1− e−2(T−t) by σT−t. Therefore, we have:

I2 ≲ EQ

[(∥Yt∥+R

σT−t

)2

eηc1∥Yt∥2

1∥Yt∥≥M

]
. (I.2)

Let α = e−(T−t), we have Yt = XT−t = αX0 +
√
1− α2Z. Thus, ∥Yt∥ ≤ R +

√
1− α2∥Z∥.

Hence, (I.2) becomes

I2 ≤ 1

(σT−t)2
EQ

[(
2R+

√
1− α2∥Z∥

)2
eηc1(R+

√
1−α2∥Z∥)21∥Z∥≥ M−R√

1−α2

]
≲

1

(σT−t)2
EQ

[(
R2 + (1− α2)∥Z∥2

)
e2ηc1(1−α2)∥Z∥2

1∥Z∥≥ M−R√
1−α2

]
, (I.3)

where the last inequality holds due to (a+b)2 ≤ 2a2+2b2, and η ≤ 1/c1R
2. Let λ = 2ηc1(1−α2).

Then we have

I2 ≲
R2

(σT−t)2

∫
Rd

1

(
√
2π)d

e−
∥z∥2

2 eλ∥z∥
2

1∥z∥≥ M−R√
1−α2

dz︸ ︷︷ ︸
K1
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+
2

σT−t

∫
Rd

1
√
2π

d
e−

∥z∥2
2 ∥z∥2eλ∥z∥

2

1∥z∥≥ M−R√
1−α2

dz︸ ︷︷ ︸
K2

, (I.4)

here we use that 1 − α2 = 1 − e−2(T−t) = σT−t. Let ϕσ2(x) = exp(−∥x∥2/2σ2)/(2πσ2)d/2.
When λ smaller then 1

2 , we have eλ∥z∥
2

ϕ1(z) = ϕ 1
1−2λ

(z)( 1
1−2λ )

d
2 . Therefore, we know that:

K1 =
( 1

1− 2λ

) d
2

∫
Rd

ϕ 1
1−2λ

(z)1∥z∥≥ M−R√
1−α2

dz

=
( 1

1− 2λ

) d
2 P

[
∥Z ′∥ ≥ M −R√

1− α2

∣∣∣Z ′ ∼ N
(
0,

1

1− 2λ
Id

)]
=

( 1

1− 2λ

) d
2 P

[
∥Z∥ ≥

√
1− 2λ(M −R)√

1− α2

∣∣∣Z ∼ N(0, Id)

]
(i)

≤
( 1

1− 2λ

) d
2 1− α2

(1− 2λ)(M −R)2
E∥Z∥2

=
( 1

1− 2λ

) d
2+1 σT−td

(M −R)2

(i)

≲
σT−td

R2
. (I.5)

where (i) holds due to the Markov’s inequality. Since η ≤ 1
2c1d

≤ 1
2σT−tc1d

, we have λ = 2ηc1(1−
α2) ≤ 1/(d+ 2). This implies (1/(1− 2λ))d/2 ≤ e, thus (ii) holds. Moreover, for K2 we have:

K2 =
( 1

1− 2λ

) d
2

∫
Rd

ϕ 1
1−2λ

(z)∥z∥21∥z∥≥ M−R√
1−α2

dz

≤
( 1

1− 2λ

) d
2EZ′∼N(0, 1

1−2λ Id)
∥Z ′∥2

=
( 1

1− 2λ

) d
2 d

1− 2λ

≲ d. (I.6)

The last inequality holds due to (1/(1 − 2λ))d/2 ≤ e when λ ≤ 1/(d + 2). Substituting (I.5)
and (I.6) into (I.2), we have

I2 ≲
d

σT−t

≲
d

min{T − t, 1}
. (I.7)

Combining I.1 and I.7, we have:∫
Ωt

∥∥∥∇q(T − t,x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx ≲

d

min{T − t, 1}
,

which completes the proof of Lemma F.2.

I.2 PROOF OF LEMMAS G.1 AND G.2
We first present three technical lemmas.
Lemma I.3. Let Yt and Ft(z) be defined in (G.2) and (G.5). For any k, t ∈ [tk, tk+1] and x ∈ Rd,
we have:

pYt(x)

pFt(Ytk
)(x)

≤ e
∣∣∇Ft

(
F−1
t (x)

)∣∣ · (T − t+ t−tk
1+2/d

T − t

)d/2

· e
(1+d/2)∥F−1

t (x)−x∥22
2(t−tk) ,

Lemma I.4. Suppose Yt = X0 + N
(
0, (T − t)Id

)
and p(∥X0∥2 < R) = 1. Then for λ <

min{ 1
4d(T−t) ,

1
R2 }, we have:

Eeλ∥Yt∥2
2 ≲ 1
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Lemma I.5. Recall that Xt is our forward process defined in G.1 and we use q(t,x) to denote its
law, under Assumption 5.1, we have:

E∥∇ log q(t,Xt)∥2 ≤ d

t
.

Proof of lemma G.1. By Lemma I.3, we know that:

pYt
(x)

pFt(Ytk
)(x)

≤ e
∣∣∇Ft

(
F−1
t (x)

)∣∣ · e (1+d/2)∥F−1
t (x)−x∥22

2(t−tk) ·
(T − t+ t−tk

1+2/d

T − t

)d/2

,

Firstly, using the expression of the interpolation operator (G.5), we have
∇Ft(x) = Id + (t− tk)cl∇sθ(T − tk,x).

The operator norm of ∇Ft(x) can be bounded by
∥∇Ft(x)∥2 ≤ 1 + (t− tk)clL

≤ 1 + (t− tk)L,

Using the fact that |A| ≤ ∥A∥d, we know that:∣∣∇Ft

(
F−1
t (x)

)∣∣ ≤ (
1 + (t− tk)L

)d
.

Since t− tk ≤ η < 1, when η ≤ 1/(Ld), we have∣∣∣∇Ft

(
F−1
t (x)

)∣∣∣ ≤ (
1 + ηL

)d ≤ e.

With our time schedule, by (2.6), we have
t− tk ≤ tk+1 − tk ≤ ηmin{1, T − t}.

We have t− tk ≤ η. Therefore, we have(
T − t+ t−tk

1+2/d

T − t

)d/2

≤
(
1 +

t− tk
T − t

)d/2

≤ (1 + η)d/2.

When η ≤ 1
d , we have:

(1 + η)d/2 ≤ (1 +
1

d
)d/2 ≤

√
e.

Then we have:
(1 + d/2)∥F−1

t (x)− x∥22
2(t− tk)

=
(1 + d/2)(t− tk)

2
cl

2∥sθ
(
T − tk, F

−1
t (x)

)
∥2

≤ (1 + d/2)(t− tk)

2

(
L∥F−1

t (x)∥+ c
)2

≤ (1 + d/2)(t− tk)

2

(
2L∥x∥+ L+ c

)2
≤ (t− tk)

(
(1 + d/2)4L2︸ ︷︷ ︸

c1

∥x∥2 + (1 + d/2)(L+ c)2︸ ︷︷ ︸
c2

)
.

Putting together, we know that:
pYt

(x)

pFt(Ytk
)(x)

≲ e(t−tk)c1∥x∥2+(t−tk)c2 .

Moreover, since t− tk ≤ η ≤ 1/c2, we have:∫
Ωt

( pYt(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx =

∫
Ωt

pYt
(x)

pFt(Ytk
)(x)

)pYt
(x)dx

≲ Ee(t−tk)c1∥Yt∥2

(i)

≲ 1,

where (i) holds due to Lemma I.4 (we have (t− tk)c1 ≤ min{ 1
4d(T−t) ,

1
R2 }).
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Proof of Lemma G.2. To start with, recall that we assume that L ≥ 1, we can easily verify that η
satisfies Lemma G.1’s condition. Using Lemma G.1, we know that:

pYt(x)

pFt(Ytk
)(x)

≲ e(t−tk)c1∥x∥2+(t−tk)c2

≤ eη
(
c1∥x∥2+c2

)
,

where c1 = (1 + d/2)4L2 and c2 = (1 + d/2)(L+ c)2. Thus we have:∫
Ωt

∥∥∥∇q(T − t,x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx ≤

∫
Ωt

∥∥∥∇ log q(T − t,x)
∥∥∥2 pYt(x)

pFt(Ytk
)(x)

pYt
(x)dx

≲
∫
Ωt

∥∥∥∇ log q(T − t,x)
∥∥∥2eη(c1∥x∥2+c2)pYt

(x)dx

≲ EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

]
,

where the last inequality holds due to η ≤ 1
c2

. Next, we select a constant M = 2R. We have the
following inequality:

EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

]
= EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

1∥Yt∥<M

]
+ EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

1∥Yt∥≥M

]
≲ EQ

∥∥∇ log q(T − t,Yt)
∥∥2︸ ︷︷ ︸

I1

+EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

1∥Yt∥≥M

]
︸ ︷︷ ︸

I2

,

where the last inequality holds due to η ≤ 1
c1R2 . For I1, using Lemma I.5, we have:

I1 = EQ∥∇ log q(T − t,Yt)∥2

≤ d

T − t
, (I.8)

For I2, using Lemma H.1 with f(t) = 1, g(t) =
√
T − t, we have:

∥∇ log q(T − t,x)∥ ≤ ∥x∥+R

T − t
,

Therefore, we have:

I2 ≤ EQ

[(∥Yt∥+R

T − t

)2

eηc1∥Yt∥2

1∥Yt∥≥M

]
. (I.9)

We have Yt = XT−t = X0 +
√
T − tZ. Thus, ∥Yt∥ ≤ R+

√
T − t∥Z∥. Hence, (I.9) becomes

I2 ≤ 1

(T − t)2
EQ

[(
2R+

√
T − t∥Z∥

)2
eηc1(R+

√
T−t∥Z∥)21∥Z∥≥ M−R√

T−t

]
≲

1

(T − t)2
EQ

[(
R2 + (T − t)∥Z∥2

)
e2ηc1(T−t)∥Z∥2

1∥Z∥≥ M−R√
T−t

]
, (I.10)

where the last inequality holds due to (a+ b)2 ≤ 2a2 + 2b2, and η ≤ 1
c1R2 . Let λ = 2ηc1(T − t).

Then we have

I2 ≲
R2

(T − t)2

∫
Rd

1

(
√
2π)d

e−
∥z∥2

2 eλ∥z∥
2

1∥z∥≥ M−R√
T−t

dz︸ ︷︷ ︸
K1

+
2

T − t

∫
Rd

1
√
2π

d
e−

∥z∥2
2 ∥z∥2eλ∥z∥

2

1∥z∥≥ M−R√
T−t

dz︸ ︷︷ ︸
K2

, (I.11)
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Let ϕσ2(x) = exp(−∥x∥2/2σ2)/(2πσ2)d/2. When λ smaller then 1
2 , we have eλ∥z∥

2

ϕ1(z) =

ϕ 1
1−2λ

(z)( 1
1−2λ )

d
2 . Therefore, we know that:

K1 =
( 1

1− 2λ

) d
2

∫
Rd

ϕ 1
1−2λ

(z)1∥z∥≥ M−R√
T−t

dz

=
( 1

1− 2λ

) d
2 P

[
∥Z ′∥ ≥ M −R√

T − t

∣∣∣Z ′ ∼ N
(
0,

1

1− 2λ
Id

)]
=

( 1

1− 2λ

) d
2 P

[
∥Z∥ ≥

√
1− 2λ(M −R)√

T − t

∣∣∣Z ∼ N(0, Id)

]
(i)

≤
( 1

1− 2λ

) d
2 T − t

(1− 2λ)(M −R)2
E∥Z∥2

≤
( 1

1− 2λ

) d
2+1 (T − t)d

(M −R)2

(i)

≲
(T − t)d

R2
. (I.12)

where (i) holds due to the Markov’s inequality. (ii) holds because η ≤ 1
2(d+2)c1(T−t) , thus λ ≤

1/(d+ 2), then we know that (1/(1− 2λ))d/2 ≤ e. Moreover, for K2 we have:

K2 =
( 1

1− 2λ

) d
2

∫
Rd

ϕ 1
1−2λ

(z)∥z∥21∥z∥≥ M−R√
T−t

dz

≤
( 1

1− 2λ

) d
2EZ′∼N(0, 1

1−2λ Id)
∥Z ′∥2

=
( 1

1− 2λ

) d
2 d

1− 2λ

≲ d. (I.13)

The last inequality holds due to (1/(1 − 2λ))d/2 ≤ e. Substituting (I.12) and (I.13) into (I.11), we
have

I2 ≲
d

T − t
. (I.14)

Combining I.8 and I.14, we have:∫
Ωt

∥∥∥∇q(T − t,x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx ≲

d

T − t
,

which completes the proof of Lemma G.2.

J PROOF OF LEMMAS IN SECTION I
Proof of Lemma I.1. Using the Jacobian transformation of probability densities, we have

pFt(Ytk
)(x) = pYtk

(
F−1
t (x)

)∣∣∇(
F−1
t (x)

)∣∣. (J.1)

Moreover, the forward process indicates Ytk = e−(t−tk)Yt + Zt,tk , where Zt,tk ∼ N(0, 1 −
e−2(t−tk)) is independent of Yt. Using the Jacobian transformation of probability densities, we
have

pYtk

(
F−1
t (x)

)
= pYt+et−tkZt,tk

(
et−tkF−1

t (x)
)
· et−tk

= et−tk

∫
Rd

q(t,y)ϕe2(t−tk)−1

(
et−tkF−1

t (x)− y
)
dy,

where ϕσ2(x) = exp(−∥x∥2/2σ2)/(2πσ2)d/2 is the probability density function of Gaussian dis-
tribution with variance σ2. The last equality holds due to the formula for the sum of independent
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variables. For simplicity, denote a = et−tk and we ignore the dependency of t and tk when it will
not cause any confusion. Then we have

pYtk

(
F−1
t (x)

)
= a

∫
Rd

q(T − t,y)ϕa2−1

(
aF−1

t (x)− y
)
dy. (J.2)

Since aF−1
t (x)−y = x−y+ (aF−1

t (x)−x), with the shorthand notation g(x) = aF−1
t (x)−x,

we have

ϕa2−1

(
aF−1

t (x)− y
)
= ϕa2−1

(
x− y + g(x)

)
=

1

(2π(a2 − 1))d/2
e
− ∥x−y+g(x)∥22

2(a2−1)

=
1

(2π(a2 − 1))d/2
e
− ∥x−y∥2+∥g(x)∥22+2⟨x−y,g(x)⟩

2(a2−1)

≥ 1

(2π(a2 − 1))d/2
e
− (1+2/d)∥x−y∥22+(1+d/2)∥g(x)∥22

2(a2−1)

=
1

(1 + 2/d)d/2
· ϕ a2−1

1+2/d

(x− y) · e−
(1+d/2)∥g(x)∥22

2(a2−1) , (J.3)

where the first inequality holds due to the Young’s inequality. In the last equality, we use the defini-
tion of ϕσ2(·) with σ2 = (a2 − 1)/(1 + 2/d). Combining (J.1), (J.2) and (J.3), we have

pFt(Ytk
)(x) ≥

∣∣∇(
F−1
t (x)

)∣∣ · a ·
∫
Rd

q(t,y)
1

(1 + 2/d)d/2
ϕ a2−1

1+2/d

(x− y)e
− (1+d/2)∥g(x)∥22

2(a2−1) dy

≥ a

e
∣∣∇Ft

(
F−1
t (x)

)∣∣pYt+N(0, a2−1
1+2/d

)
(x) · e−

(1+d/2)∥g(x)∥22
2(a2−1) ,

where we use (1 + 2/d)d/2 ≤ e , the fact that ∇
(
F−1
t (x)

)
=

[
∇Ft

(
F−1
t (x)

)]−1
and the formula

for the distribution of the sum of independent random variables. Then we have

pYt(x)

pFt(Ytk
)(x)

≤
e
∣∣∇Ft

(
F−1
t (x)

)∣∣
a

· e
(1+d/2)∥g(x)∥22

2(a2−1) · pYt
(x)

p
Yt+N(0, a2−1

1+2/d
)
(x)

Since Yt = e−(T−t)Xdata +N(0, 1− e−2(T−t)), by Lemma K.3, we know that

pYt
(x)

p
Yt+N(0,

t−tk
1+2/d

)
(x)

≤
(1− e−2(T−t) + a2−1

1+2/d

1− e−2(T−t)

)d/2

Combining the above two inequalities and we can complete the proof of Lemma I.1

Proof of lemma I.2. Since Yt = e−(T−t)Xdata +N
(
0, (1− e−2(T−t))Id

)
, denote e−(T−t) by c and

use Z to represent standard normal distribution, we know that:

Eeλ∥Yt∥2
2 = Eeλ∥cXdata+

√
1−c2Z∥2

2

(i)

≤ Eeλ∥Xdata∥2
2+λ∥Z∥2

2

(ii)
= Eeλ∥Xdata∥2

2 · Eeλ∥Z∥2
2 .

where (i) holds due to the Cauchy-Schwartz inequality. (ii) holds due to the independency of Xdata
and Z.
Since p(∥Xdata∥2 < R) = 1, then Eeλ∥Xdata∥2

2 ≤ eλR
2

. For λ < 1
2 , we know that:

Eeλ∥Z∥2
2 =

∫
Rd

eλ∥x∥
2
2(2π)−

d
2 e−

∥x∥22
2 dx

=

∫
Rd

(2π
1

1− 2λ
)−

d
2 (1− 2λ)

d
2 e

− ∥x∥22
2 1
1−2λ dx
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= (1− 2λ)
d
2 .

When λ < 1
d , (1− 2λ)−

d
2 < 1

e , thus we have:

Eeλ∥Yt∥2
2 ≤ eλR

2−1.

Proof of Lemma I.3. Using the Jacobian transformation of probability densities, we have

pFt(Ytk
)(x) = pYtk

(
F−1
t (x)

)∣∣∇(
F−1
t (x)

)∣∣. (J.4)

Moreover, the forward process indicates Ytk = Yt +Zt,tk , where Zt,tk ∼ N(0, t− tk) is indepen-
dent of Yt. Using the Jacobian transformation of probability densities, we have

pYtk

(
F−1
t (x)

)
= pYt+Zt,tk

(
F−1
t (x)

)
=

∫
Rd

q(T − t,y)ϕt−tk

(
F−1
t (x)− y

)
dy,

where ϕσ2(x) = exp(−∥x∥2/2σ2)/(2πσ2)d/2 is the probability density function of Gaussian dis-
tribution with variance σ2. The last equality holds due to the formula for the sum of independent
variables. We have

ϕt−tk

(
F−1
t (x)− y

)
= ϕt−tk

(
x− y + F−1

t (x)− x
)

=
1

(2π(t− tk))d/2
e
− ∥x−y+F

−1
t (x)−x∥22

2(t−tk)

=
1

(2π(t− tk))d/2
e
− ∥x−y∥2+∥F−1

t (x)−x∥22+2⟨x−y,F
−1
t (x)−x⟩

2(t−tk)

≥ 1

(2π(t− tk))d/2
e
− (1+2/d)∥x−y∥22+(1+d/2)∥F−1

t (x)−x∥22
2(t−tk)

=
1

(1 + 2/d)d/2
· ϕ t−tk

1+2/d

(x− y) · e−
(1+d/2)∥F−1

t (x)−x∥22
2(t−tk) , (J.5)

where the first inequality holds due to the Young’s inequality. In the last equality, we use the defini-
tion of ϕσ2(·) with σ2 = (t− tk)/(1 + 2/d). Combining (J.4) and (J.5), we have

pFt(Ytk
)(x) ≥

∣∣∇(
F−1
t (x)

)∣∣ · ∫
Rd

q(T − t,y)
1

(1 + 2/d)d/2
ϕ t−tk

1+2/d

(x− y)e
− (1+d/2)∥F−1

t (x)−x∥22
2(t−tk) dy

≥ 1

e
∣∣∇Ft

(
F−1
t (x)

)∣∣pYt+N(0,
t−tk
1+2/d

)
(x) · e−

(1+d/2)∥F−1
t (x)−x∥22

2(t−tk) ,

where we use (1 + 2/d)d/2 ≤ e , the fact that ∇
(
F−1
t (x)

)
=

[
∇Ft

(
F−1
t (x)

)]−1
and the formula

for the distribution of the sum of independent random variables. Then we have

pYt
(x)

pFt(Ytk
)(x)

≤ e
∣∣∇Ft

(
F−1
t (x)

)∣∣ · e (1+d/2)∥F−1
t (x)−x∥22

2(t−tk) · pYt
(x)

p
Yt+N(0,

t−tk
1+2/d

)
(x)

Since Yt = X0 +N(0, T − t), by Lemma K.3, we know that

pYt(x)

p
Yt+N(0,

t−tk
1+2/d

)
(x)

≤
(T − t+ t−tk

1+2/d

T − t

)d/2

Combining the above two inequalities and we can complete the proof of Lemma I.3

Proof of lemma I.4. Since Yt = X0 +
√
T − tZ, we know that:

Eeλ∥Yt∥2
2 ≤ Ee2λ∥X0∥2

· Ee2λ(T−t)∥Z∥2

≤ e2λR
2

· e2λ(T−t)∥Z∥2
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(i)

≲ e2λ(T−t)∥Z∥2

,

here (i) is because we assumed λ < 1/R2. Moreover, we have λ ≤ 1
4d(T−t) , this implies 2λ(T −

t) ≤ 1
2 , thus we have

Ee2λ(T−t)∥Z∥2
2 =

∫
Rd

e2λ(T−t)∥x∥2
2(2π)−

d
2 e−

∥x∥22
2 dx

=

∫
Rd

(2π
1

1− 4λ(T − t)
)−

d
2 (1− 4λ(T − t))−

d
2 e

− ∥x∥22
2 1
1−4λ(T−t) dx

= (1− 4λ(T − t))−
d
2

≲ 1.

This completes the proof of Lemma I.4

Proof of Lemma I.5. By tweedie’s formula we know that:

∇ log q(t,Xt) = −1

t

(
Xt − Eq0|t(·|Xt)X0

)
.

E∥∇ log qt(Xt)∥2 =
1

t2
E∥Xt − E[X0|Xt]∥2

=
1

t2
[
E∥Xt∥2 − 2EXt · [X0|Xt] + E∥E[X0|Xt]∥2

]
.

Since Xt = X0 +
√
tZ, we have E∥Xt∥2 = E∥X0∥2 + td. Here the second order momentum is

finite because our bounded support assumption. Moreover, we know that:

EXt · E[X0|Xt] = EXt ·X0 = E
(
X0 +

√
tZ

)
·X0 = E∥X0∥2.

We next consider the trace of the covariance matrix of X0 given Xt:

tr
(
Covq0|t(·|Xt)(X0)

)
= E

[
∥X0∥2|Xt

]
− ∥E[X0|Xt]∥2,

Thus we know that:

E
[
∥E[X0|Xt]∥2

]
= E∥X0∥2 − E tr

(
Covq0|t(·|Xt)(X0)

)
≤ E∥X0∥2.

Putting together, we know that:

E∥∇ log q(t,Xt)∥2 ≤ d

t
.

K AUXILIARY LEMMAS

Theorem K.1 (Reynolds Transport Theorem Leal 2007). For a function F (t,x) : R×Rd → R that
is continuously differentiable with respect to both x and t, the following equality holds:

∂

∂t

∫
Ωt

F (t,x) dx =

∫
Ωt

∂

∂t
F (t,x) dx+

∫
∂Ωt

F (t,x)v(t,x) · n(t,x) dS,

where n is the outward-pointing unit normal vector, v is the velocity of the area element, and dS is
area element.
Lemma K.2 (Lemma 6 in Benton et al. 2024). Let Xt be the OU forward process defined in (F.1).
When X0 has finite second moments, we have:

E∥∇ log q(t,Xt)∥2 ≤ d

1− e−2t
.
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Proof of Lemma K.2. This lemma is the same as Lemma 6 in Benton et al. (2024). We provide a
proof for the completeness of our paper.
Denote 1− e−2t by σt. By Tweedie’s formula we know that:

∇ log q(t,Xt) =
1

σt

(
−Xt + e−tEq0|t(·|Xt)X0

)
.

Taking the expectation of the square, we have

E∥∇ log qt(Xt)∥2 = σ−2
t E∥e−tE[X0|Xt]−Xt∥2

= σ−2
t

[
E∥Xt∥2 − 2e−tEXt · [X0|Xt] + e−2tE∥E[X0|Xt]∥2

]
.

Since Xt = e−tX0 +
√
σtZ, we have E∥Xt∥2 = e−2tE∥X0∥2 + σtd. Recall that we assume that

X0 has finite second moments. Moreover, we know that:

EXt · E[X0|Xt] = EXt ·X0 = E
(
e−tX0 +

√
σtZ

)
·X0 = e−tE∥X0∥2.

We next consider the trace of the covariance matrix of X0 given Xt:

tr
(
Covq0|t(·|Xt)(X0)

)
= E

[
∥X0∥2|Xt

]
− ∥E[X0|Xt]∥2,

Thus we know that:

E
[
∥E[X0|Xt]∥2

]
= E∥X0∥2 − E tr

(
Covq0|t(·|Xt)(X0)

)
≤ E∥X0∥2.

Putting together, we know that:

E∥∇ log q(t,Xt)∥2 ≤ d

σt
.

Lemma K.3. For any data distribution pdata and positive parameters δ and h. Let X,Zδ,Zh be
three independent random variables in Rd satisfying X ∼ pdata, Zδ ∼ N(0, δ) and Zh ∼ N(0, h).
Then we have:

pX+Zδ
(x)

pX+Zδ+Zh
(x)

≤
(δ + h

δ

)d/2
.

where we use pY (x) to denote the probability density function of random variable Y .

Proof of Lemma K.3. We define ϕσ2(x) := 1
(2πσ2)d/2

e−
∥x∥2

2σ2 , which is the probability density func-
tion of normal distribution N(0, σ2Id).
First, we provide an upper bound of ϕδ(x− y)/ϕδ+h(x− y):

ϕδ(x− y)

ϕδ+h(x− y)
=

(δ + h

δ

)d/2
e

(x−y)2

2(δ+h)
− (x−y)2

2δ ≤
(δ + h

δ

)d/2
. (K.1)

Using the independence property, we have

pX+Zδ
(x) =

∫
Rd

pdata(y)ϕδ(x− y) dy,

pX+Zδ+Zh
(x) =

∫
Rd

pdata(y)ϕδ+h(x− y) dy.

Then we have∫
Rd

pdata(y)ϕδ(x− y)dy =

(∫
Rd

pdata(y)ϕδ+h(x− y)
ϕδ(x− y)

ϕδ+h(x− y)
dy

)
≤

∫
Rd

pdata(y)ϕδ+h(x− y)dy
(δ + h

δ

)d/2

,

which completes the proof of Lemma K.3.
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