
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNIFIED CONVERGENCE ANALYSIS FOR SCORE-
BASED DIFFUSION MODELS WITH DETERMINISTIC
SAMPLERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Score-based diffusion models have emerged as powerful techniques for generat-
ing samples from high-dimensional data distributions. These models involve a
two-phase process: first, injecting noise to transform the data distribution into a
known prior distribution, and second, sampling to recover the original data distri-
bution from noise. Among the various sampling methods, deterministic samplers
stand out for their enhanced efficiency. However, analyzing these deterministic
samplers presents unique challenges, as they preclude the use of established tech-
niques such as Girsanov’s theorem, which are only applicable to stochastic sam-
plers. Furthermore, existing analysis for deterministic samplers usually focuses on
specific examples, lacking a generalized approach for general forward processes
and various deterministic samplers. Our paper addresses these limitations by in-
troducing a unified convergence analysis framework. To demonstrate the power
of our framework, we analyze the variance-preserving (VP) forward process with
the exponential integrator (EI) scheme, achieving iteration complexity of Õ(d2/ϵ).
Additionally, we provide a detailed analysis of Denoising Diffusion Implicit Mod-
els (DDIM)-type samplers, which have been underexplored in previous research,
achieving polynomial iteration complexity.

1 INTRODUCTION

Score-based diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020a;c) have
emerged as a powerful class of generative models, achieving significant success in image genera-
tion tasks, such as DALL·E (Ramesh et al., 2022), Stable Diffusion (Rombach et al., 2022), Imagen
(Saharia et al., 2022), and SDXL (Podell et al., 2023). Beyond that, these models have also demon-
strated effectiveness in diverse applications, including structure-based drug design (Corso et al.,
2022; Guan et al., 2024), text generation (Austin et al., 2021; Zheng et al., 2023; Chen et al., 2023c),
and reinforcement learning (Wang et al., 2022; Lu et al., 2023). At the core of the score-based diffu-
sion models is a forward Stochastic Differential Equation (SDE) to diffuse the data distribution into
a known prior distribution, and a neural network is trained to approximate the score function. Scal-
able score-matching techniques, such as denoising score matching (Vincent, 2011) and sliced score
matching (Song et al., 2020b), enable efficient learning of the score function. Once learned, we can
use numerical samplers to simulate the backward process and recover the original data distribution
from noise.
To improve the sampling quality and efficiency of diffusion models, it is crucial to use efficient
samplers in addition to an accurate score estimator. Early developments of diffusion models, such
as Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) applied stochastic samplers.
Later, empirical studies showed that diffusion models with deterministic samplers, such as Denois-
ing Diffusion Implicit Models (DDIM) (Song et al., 2020a) can still generate high-quality samples
while achieving better efficiency. For instance, DDIM is more than 10 times faster than DDPM.
Beyond DDIM, many novel fast ODE solvers have been developed for diffusion models, further
improving the efficiency of the sampling processes (Lu et al., 2022; Zhou et al., 2024).
The remarkable success of diffusion models has inspired extensive research interest in the math-
ematical analysis of these powerful generative models (Block et al., 2020; De Bortoli et al., 2021;
De Bortoli, 2022; Lee et al., 2023; Pidstrigach, 2022; Chen et al., 2022; 2023a;b; Li et al., 2024a;b;c;
Benton et al., 2024; Huang et al., 2024a). Notably, many prior works studied the convergence of
diffusion models with stochastic samplers (Chen et al., 2022; 2023a; Benton et al., 2024; Li et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2024b). A key tool in their analysis is Girsanov’s theorem, which helps control the distance be-
tween the distributions of two stochastic processes. However, it relies on the smoothing effect pro-
vided by stochasticity and therefore do not apply to deterministic samplers. To address this, (Chen
et al., 2024) introduced an additional corrector into the Langevin dynamics, which incorporates
randomness to help smooth the distribution. Meanwhile, Chen et al. (2023b) assumed the access
to the exact score function and provided a discretization analysis for the probability flow ODE in
Kullback–Leibler (KL) divergence. Moreover, under extra conditions, Li et al. (2024b) proved a
non-asymptotic convergence rate for a specific deterministic sampler based on the probability flow
ODE with elementary analysis. Huang et al. (2024a) considered the Ornstein–Uhlenbeck (OU) for-
ward process with the Runge-Kutta integrator and provided error bounds for both continuous- and
discrete-time settings. However, all of these works focus on specific forward processes and sam-
plers. Therefore, a natural question arises:
Can we develop a unified framework for the convergence analysis of diffusion models with deter-
ministic samplers that accommodates those common forward processes and sampling algorithms?
In this paper, we provide an affirmative answer to this question. We summarize our contributions as
follows:

• We develop a key technical tool (Lemma 3.2), which enables us to bound the time derivative
of the total variation (TV) distance between the final states of two ODE processes, through the
difference in their drift terms and the divergence. As a direct application, we establish convergence
guarantees for the continuous-time reverse ODE in the case of the OU forward process.

• We provide a unified convergence analysis framework for diffusion models with deterministic
samplers. For general forward processes and sampling algorithms, our framework decomposes
the error of diffusion models into five distinct terms: two arising from score estimation and three
from time discretization. This decomposition enables a divide-and-conquer approach, allowing
for improved analysis of each error component while maintaining the consistency of the unified
framework.

• To demonstrate the generality and effectiveness of our framework, we apply it to two typical
diffusion model settings: we achieve Õ(d2/ϵ) iteration complexity for the Variance Preserving
(VP) forward process with exponential integrator (EI) numerical scheme. This theoretical guar-
antee matches Li et al. (2024b), where a similar but different sampling algorithm is considered.
Moreover, we establish polynomial iteration complexity for the Variance Exploding (VE) forward
process with the DDIM numerical scheme. To the best of our knowledge, this is the first con-
vergence result for diffusion models employing DDIM-type samplers that can handle estimated
scores, whereas prior works, such as Chen et al. (2023b), only considered cases with access to
accurate score function.

Notation: In this work, we use lowercase letters a, b to represent scalars, lowercase bold letters x,y
to represent vectors, uppercase italic bold letters X,Y to represent random variables, and uppercase
bold letters A,B to represent matrices. For a vector x ∈ Rd and matrix A ∈ Rd×d, we denote by
∥x∥ the Euclidean norm of x and ∥A∥2 the operator norm of A. We use f1 ≲ f2 to denote that
there is a universal constant C such that f1 ≤ Cf2. For two sequences {an} and {bn}, we write
an = O(bn) if there exists an absolute constant C such that an ≤ Cbn, and we use Õ(·) to further
hide the logarithmic factors. For vector operations, we use ∇ to denote the gradient, ∇· to denote
divergence, and ∇2 to denote the Jacobian matrix.

2 PROBLEM BACKGROUND

The primary objective of diffusion models is to generate new samples given a set of examples drawn
from the data distribution. In this section, we introduce the fundamentals of ODE-based diffusion
models with deterministic samplers.
2.1 ODE-BASED DIFFUSION MODELS

A diffusion model typically consists of a forward process that perturbs the data distribution into
noise, followed by a denoising backward process. In general, the forward process can be modeled
as an Itô SDE:

dXt = f(t,Xt)dt+ g(t)dWt , X0 ∼ q0, (2.1)

where Wt is a Brownian motion in Rd, f(t, ·) is called the drift coefficient, g(t) is called the dif-
fusion coefficient (Song et al., 2020c). It begins by sampling X0 from the data distribution q0, and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

evolves according to the forward process (2.1). The law of Xt is denoted by qt(x). Under mild reg-
ularity conditions on q0, we can construct a family of reverse processes

(
Y λ
t

)
t∈[0,T]

, which evolve
according to the following SDE:

dY λ
t = −

(
f(T − t,Y λ

t)− 1 + λ2

2
g(T − t)2∇ log qT−t(Y

λ
t)

)
dt+ λg(T − t)dWt , Y λ

0 ∼ qT .

(2.2)

These processes hold the same marginal distribution as qT−t(x) at time t (Chen et al., 2023b). As a
special case when λ = 0, the backward process is deterministic, i.e.,

dYt = −
(
f(T − t,Yt)−

1

2
g(T − t)2∇ log qT−t(Yt)

)
dt , Y0 ∼ qT , (2.3)

which is called the probability flow ODE (Song et al., 2020c).
The goal of ODE-based diffusion model is to simulate (2.3). However, we must make several ap-
proximations. First, as we do not have access to the true score ∇ log q(t,x), we learn an approxi-
mation sθ(t,x) by minimizing

L(sθ) =
∫ T

0

Eqt

[
∥sθ(t,Xt)−∇ log qt(Xt)∥2

]
dt. (2.4)

When f(t, ·) is affine, the transition is Gaussian, allowing for the closed-form solution of
∇ log q(t,x). By applying integration by parts, (2.4) can be reformulated into tractable objec-
tives, specifically through the methods of denoising score matching and implicit score matching
(Hyvärinen & Dayan, 2005; Vincent, 2011). For more general forward processes, these objectives
can be estimated using samples drawn from the forward process. Then, using the estimated score
function sθ, we have the simulate reverse process:

dŶt = −
(
f(T − t, Ŷt)−

1

2
g(T − t)2sθ(T − t, Ŷt)

)
dt , Ŷ0 ∼ qT . (2.5)

Second, since the initial distribution qT of the reverse process is not directly accessible, we instead
initialize the reverse process with a given Gaussian distribution πd, which is assumed to be a good
approximation of qT .
Third, in practical implementations, the continuous-time process is typically simulated using time
discretization. Specifically, we choose time steps 0 = t0 < t1 < · · · < tN ≤ T , sample Ŷ0 ∼ πd

and iteratively calculate Ŷtk+1
from Ŷtk using a particular numerical scheme. In this way, we only

need to have access to the value of the estimated score function sθ(tk, Ŷtk), k = 0, 1, . . . , N , which
can reduce the computational complexity of the sampling process. Common numerical schemes in-
clude the Exponential Integrator scheme, the Euler-Maruyama scheme, and the DDIM-type sampler
scheme, as we will discuss in Section 4.1.
For non-smooth data distributions, the score function ∇ log qt can be unbounded as t → 0, which
will happen especially when the data distribution is supported on a lower-dimensional submanifold
of Rd. This will lead to difficulty when considering the distance to the data distribution. For this
reason, we consider an early stopping scheme, selecting tN = T − δ for some small δ. Our analysis
focuses on the distance between the final distribution of the sampling process and qδ . When δ
is sufficiently small, the Wasserstein-p metric between qδ and q0 is small. This shows that it is
reasonable to approximate qδ instead of q0.
In this paper, we propose a unified framework that can handle different time schedules. The choice
of the time schedule is crucial for obtaining good results when analyzing the convergence of specific
samplers. In this paper, we follow the time schedule used in Benton et al. (2024). This allows us to
provide more refined control over the discretization error. We will always assume T > 1 and δ < 1.
In the first stage when t ∈ [0, T − 1], we use uniform time steps, with step size ηk = tk+1 − tk ≤ η.
In the second stage for t ∈ [T −1, T −δ], we assume time steps satisfying ηk ≤ η(T − tk+1), which
results in an exponential decay at a rate of (1 + η)−1. Using this schedule, we have

ηk ≤ η min{1, T − tk+1}. (2.6)

It’s worth noting that similar first-uniform-then-exponential schedules have also been utilized in
Chen et al. (2023a); Li et al. (2024b;c).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 DIFFICULTIES IN CONVERGENCE ANALYSIS OF ODE FLOW

Compared with the convergence analysis of SDEs, the convergence analysis of ODEs is more chal-
lenging. For SDE, the prior results either apply Girsanov’s Theorem (Chen et al., 2022) or rely on
a chain-rule-based argument (Chen et al., 2023a). Using these methods, we can see that for SDEs,
when the drift term is slightly perturbed, it is possible to bound the distance between the final iter-
ates or, more strongly, the entire distributions over the trajectories. Therefore, the assumption of the
score estimation is sufficient. However, as the following theorem illustrates, this fails in the ODE
case.
Theorem 2.1. Consider the 1-dimensional OU process (xt)t∈[0,T] which starts at N(0, 1). It satis-
fies the following SDE

dxt = −xtdt+
√
2dWt, x0 ∼ N(0, 1).

Let the law of xt be denoted by qt. Its reverse process (yt)t∈[0,T] (see (2.3)) can be represented with
the following ODE:

dyt =
(
yt +∇ log q(T − t, yt)

)
dt, y0 ∼ qT .

For arbitrarily small ϵ > 0, there exists sθ(t, x), which is smooth, and anywhere ϵ-close to the true
score function, i,e, ∣∣sθ(T − t, x)−∇ log q(T − t, x)

∣∣ ≤ ϵ, ∀t, ∀x,
such that the corresponding simulated reverse process (ŷt)t∈[0,T] (see (2.5)) satisfies

TV(ŷT , yT) ≥
1

4π
,

which indicates that the TV-distance of the final states is larger than a constant no matter how small
the score estimation error is.
Remark 2.2. For the construction of the counter-example, we consider a specific scenario where
the data distribution is standard Gaussian, and the OU process maintains the distribution. In this
case, adding an arbitrarily small perturbation to the drift term of the reverse ODE can result in a
sampling probability density function q̂(T − t, x) = 1√

2π
e−

x2

2

(
1 + t

2T sin(2nπx)
)

with severe

oscillations (n can be arbitrarily large), instead of a Gaussian distribution q(t, x) = 1√
2π

e−
x2

2 . For
details, please refer to Section B. This demonstrates that the score estimation error assumption is
insufficient, even when ignoring the discretization error. For a similar purpose, an example has been
given in Li et al. (2024b) for the discrete-time sampling algorithms. Notably, our constructed sθ
is smooth while theirs is not. This indicates that adding the score function’s smoothness condition
alone is insufficient to guarantee the desired properties.

3 CONVERGENCE OF CONTINUOUS TIME REVERSE PROCESS

In this section, we focus on the OU forward process, where f(t,x) = −x and g(t) =
√
2. Temporar-

ily, we ignore the discretization error and focus on the true reverse process (2.3) and the simulated
reverse process (2.5) starting at πd. Specifically, we want to study the TV-distance between the
following ODEs.

dYt =
(
Yt +∇ log qT−t(Yt)

)
dt , Y0 ∼ qT , (3.1)

dŶt =
(
Ŷt + sθ(T − t, Ŷt)

)
dt , Ŷ0 ∼ πd. (3.2)

We make the following standard assumption regarding the score estimation error.
Assumption 3.1 (Score estimation error). The estimated score function sθ(·, ·) satisfies:

Et,Yt∥sθ(T − t,Yt)−∇ log q(T − t,Yt)
∥∥2 ≤ ϵ2score.

This assumption guarantees that the drift terms in (3.1) and (3.2) will be close. However, as dis-
cussed in Remark 2.2, this condition alone is insufficient for ODE flows. To address this problem,
we introduce the following lemma. It states that the time derivative of the TV distance between two
ODE flows is determined by the distance between their drift terms and the divergence of these drift
terms. Its proof is left to Appendix C.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Lemma 3.2. Suppose Xt and Yt are stochastic processes in Rd driven by ODEs:

dXt = b(t,Xt) dt , X0 ∼ p0,

dYt = b∗(t,Yt) dt , Y0 ∼ q0.

Let p(t,x) be the law of Xt and q(t,x) be the law of Yt. If the drift terms b,b∗ : [0,∞)×Rd → Rd

are continuously differentiable with respect to x ∈ Rd, then the time-derivative of the total variation
distance between Xt and Yt satisfies the following equation:

∂ TV(Xt,Yt)

∂ t
= −

∫
Ωt

(
∇ · b(t,x)−∇ · b∗(t,x)

)
q(t,x) dx

−
∫
Ωt

(
b(t,x)− b∗(t,x)

)
· ∇ log q(t,x)q(t,x)dx,

where Ωt := {x ∈ Rd | p(t,x) > q(t,x)}.

In the application of this lemma to diffusion models, we can choose the true reverse ODE and sam-
pling process ODE. Let pt be the distribution of the sampling process, and qt be the distribution
of the true reverse process. Several works (Chen et al., 2023b; Albergo et al., 2023), considered
the time derivative of KL divergence, deriving expressions that involve scores of the sampling pro-
cesses ∇ log p(t,x). However, as shown in Theorem B.1, the score of the sampling process can
still explode given sufficiently small score estimation error (see Assumption 3.1) and divergence
estimation error (see Assumption 3.3). The crucial aspect of this lemma is that it enables us to avoid
the occurrence of the sampling process score ∇ log p(t,x). We apply Gauss’s theorem to transfer
the integral to ∂Ωt, where we can replace pt with qt because pt = qt on ∂Ωt. Then, we apply
Gauss’s theorem again to convert it back to a volume integral. This allows us to eliminate the depen-
dence on ∇ log p(t,x). Motivated by this lemma, we make the following assumption on divergence
estimation error.
Assumption 3.3 (Divergence estimation error). For any t ∈ [0, T − δ], the estimated score function
sθ(t, ·) is second-order continuously differentiable. Moreover, it satisfies:

Et,Yt

∣∣∣∇ · sθ(T − t,Yt)−∇ · ∇ log q(T − t,Yt)
∣∣∣ ≤ ϵdiv.

Similar assumptions regarding the difference between the derivatives of true and estimated scores
have been made Li et al. (2024b;a;c). In comparison, those studies assumed the closeness of the
entire Jacobian matrix, while we only require assumptions on the divergence. Under Assumptions
3.1 and 3.3, we have the following theorem.
Theorem 3.4. Let the true and simulate reverse process be defined as (3.1) and (3.2). Under As-
sumptions 3.1 and 3.3, if we further assume that X0 has finite second-order momentum, then we
have:

TV(ŶtN ,Xδ) ≤ TV(Ŷ0,Y0) +

√
dT + d log

1

δ
ϵscore + ϵdiv.

See Appendix D for the proof of this theorem.
Remark 3.5. Huang et al. (2024a) proves a similar bound on the TV-distance for continuous-time
processes. Their result differs from ours in that, unlike Assumption 3.3, they do not assume the
divergence estimation error to be small. Instead, they require the first two derivatives of the estimated
score function to be bounded. Their estimation error term scales as O(d3/4T 3/4δ−1ϵ

1/2
score), which

is strictly worse than our O(d1/2(T 1/2 + log1/2(δ−1))ϵscore). Moreover, their results rely on extra
assumptions regarding the compact support of the data distribution. For a detailed comparison with
Huang et al. (2024a), regarding the settings and results, please refer to Appendix A.1.

4 UNIFIED ANALYSIS FOR DISCRETE-TIME REVERSE PROCESS

In this section, we conduct convergence analysis for the discrete-time reverse process. Specifically,
we consider a sequence of time steps 0 = t0 < t1 < ... < tN ≤ T . Starting from Ŷ0 ∼ πd, we
iteratively apply a deterministic sampler {Tk}N−1

k=0 to generate subsequent iterations. For any k, the
sampling process can be expressed as:

Ŷtk+1
= Tk(Ŷtk),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where Tk acts as a discrete-time simulation of the transition in the reverse ODE process (4.1). We
will present our results in three steps. In Section 4.1, we introduce some commonly used numerical
schemes for diffusion models. In Section 4.2, we provide a unified framework encompassing these
numerical schemes. We then employ an interpolation method to transform the discrete-time sam-
pling into an equivalent continuous-time ODE, enabling us to leverage Lemma 3.2 from the previous
section. In Section 4.3, we present the convergence analysis for this general framework.
4.1 NUMERICAL SCHEMES

Recall that for general forward process (2.1), the continuous-time reverse process with the estimated
score function sθ can be written as

dŶt = −
(
f(T − t, Ŷt)−

1

2
g(T − t)2sθ(T − t, Ŷt)

)
dt , Ŷ0 ∼ qT . (4.1)

Forward Euler Scheme. The simplest method is the forward Euler scheme, which directly replaces
t ∈ [tk, tk+1] with the start point tk in the equation above, i.e.,

dŶt = −
(
f(T − tk, Ŷtk)−

1

2
g(T − tk)

2sθ(T − tk, Ŷtk)
)
dt, for tk < t ≤ tk+1.

Or equivalently, we have the following discrete-time sampling algorithm, with ηk = tk+1 − tk:

Ŷtk+1
= Ŷtk − ηk

(
f(T − tk, Ŷtk)−

1

2
g(T − tk)

2sθ(T − tk, Ŷtk)
)
. (4.2)

Exponential Integrator (EI) Scheme. When f(t,y) = Ly is a linear function, we can apply the
Exponential Integrator (EI) scheme by keeping Ŷt in the linear part, i.e., the ODE becomes

dŶt = −
(
LŶt −

1

2
g(T − tk)

2sθ(T − tk, Ŷtk)
)
dt, for tk < t ≤ tk+1.

In this way, we can integrate the linear part exactly. As a result, we have the following discrete-time
sampling algorithm, with ηk = tk+1 − tk:

Ŷtk+1
= e−Lηk Ŷtk +

e−Lηk − 1

2L
g(T − tk)

2sθ(T − tk, Ŷtk). (4.3)

DDIM-type Scheme. Song et al. (2020a) introduced a deterministic sampler for the probability flow
ODE by considering a non-Markovian diffusion process. As interpreted by Chen et al. (2023b), it
can be viewed as a two-step process involving a restoration step that provides a rough estimate for
a past step and a degradation step that simulates the forward process by progressively adding the
estimated noise. Specifically, starting from Ŷtk , the restoration step provides an estimate of Ytk+γ

for some γ > 0, where tk+1 − tk ≤ γ, i.e.

Ytk+γ ≈ Ŷtk − γ
[
f(T − tk, Ŷtk)− g(T − tk)

2sθ(T − tk, Ŷtk)
]
= z.

Next, the degradation step simulates the forward process during t ∈ [T − tk − γ, T − tk+1], which
can be expressed as

Ŷtk+1
= z+ (tk + γ − tk+1)f(T − tk − γ, z) + g(T − tk − γ)

√
tk + γ − tk+1ϵ,

where ϵ represents the noise estimated from Ŷtk . By substituting the form of ϵ and making some
approximations, we can get the following sampling algorithm, with ηk = tk+1 − tk:

Ŷtk+1
= Ŷtk − ηkf

(
T − tk, Ŷtk

)
+ lηk

(
1−

√
1− 1/l

)
g(T − tk)

2sθ(T − tk, Ŷtk), (4.4)

where l = γ/(tk+1 − tk). Please refer to Chen et al. (2023b) for more details about the DDIM-type
sampler. For linear diffusions, we can set γ = T − tk. Then, with our selection of time schedule, by
(2.6), we have l ≥ (T − tk+1)/(tk+1 − tk) ≥ min{1, T − tk+1}/(tk+1 − tk) ≥ 1/η.
4.2 INTERPOLATION METHODS

At the core of our analysis is to apply Lemma 3.2, which analyzes the divergence between two
ODEs. However, two main challenges arise. First, the discrete-time nature of the sampling algorithm
precludes direct application of the lemma. Second, the sampling process Ŷtk+1

= Tk(Ŷtk) depends
on the position Ŷtk at time tk, while the proof of Lemma 3.2 utilizes the Fokker-Planck equation,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

which requires the drift term to be a function solely of time and the current position. To solve
these problems, we first introduce a unified framework encompassing all the numerical schemes
in Section 4.1. Next, we present an interpolation method to transform the sampling process into a
continuous-time ODE, enabling the application of Lemma 3.2.
For the numerical schemes defined in (4.2), (4.3) and (4.4), we naturally extend the definition to
a continuous interval t ∈ [tk, tk+1] by replacing tk+1 with t. More concrete examples of Ft can
be found in Section 5. This yields a continuous-time interpolation operator Ftk→t(·), or simply Ft

when no confusion arises. Moreover, let Ŷt = Ft(Ŷtk) = F (t, Ŷtk). It is also equivalent to the
following ODE:

dYt =
∂F

∂t
(t, Ŷtk)dt.

Moreover, if we further assume Ft is invertible, which holds for many examples when sθ is Lipschitz
and the time step ηk = tk+1 − tk is small enough. Then we have the following ODE:

dŶt = b̂(t, Ŷt)dt, (4.5)

where b̂(t,x) = ∂F
∂t

(
t, F−1

t (x)
)
.

4.3 MAIN RESULTS FOR GENERAL DIFFUSION PROCESSES

Using the interpolation method presented in the last section, we can now provide a general conver-
gence analysis for the discrete-time reverse process. Consider the time step t ∈ [tk, tk+1]. Recall
that for general forward process (2.1), the true reverse process is defined as

dYt = b(t,Yt)dt,

where b(t,x) = −
(
f(T − t,x)− 1

2g(T − t)2∇ log qT−t(x)
)
. While the simulated reverse process

is given by:

dŶt = b̂(t, Ŷt)dt,

where b̂(t,x) = ∂F
∂t

(
t, F−1

t (x)
)
.

Definition 4.1. At each step [tk, tk+1], let the interpolation operator of the sampling algorithm be
Ftk→t. The estimation-error operator is defined by:

Φk(t,x) =
∂F

∂t
(t,x) + f

(
T − t, Ftk→t(x)

)
− 1

2
g(T − t)2∇ log qT−tk

(
x
)
.

As we will show in the next section, it reflects the error between true score ∇ log qT−tk(x) and
sθ(T − tk,x). Similarly, we can define the divergence-error operator, which reflects the error be-
tween ∇2 log qT−tk(x) and ∇sθ(T − tk,x).
Definition 4.2. At each step [tk, tk+1], let the interpolation operator of the sampling algorithm be
Ftk→t. The divergence-error operator is defined by

Ψk(t,x) = ∇
[∂

∂t
F
](
t,x

)
I+∇x

[
f
(
T − t, Ftk→t(x)

)]
− 1

2
g(T − t)2∇2 log qT−tk(x).

Using these definitions, the next theorem shows the convergence for the general diffusion process
with any numerical schemes.
Theorem 4.3. Consider the true reverse process (Yt)t∈[0,T] and reverse sampling process
(Ŷtk)k∈[N]. Then,

TV(YT−δ, ŶtN) ≤ TV(qT , πd)

+

N−1∑
k=0

∫ tk+1

tk

[√
E
[∥∥Φk(t,Ytk)

∥∥2]√∫ ∥∥∥∇ log q(T − t,x)pYt
(x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx︸ ︷︷ ︸

(I) Score estimation error

+

√
E
[
tr
(
Ψk(t,Ytk)

)2]√∫ (pYt
(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx︸ ︷︷ ︸

(II) Divergence estimation error

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

+
1

2
g(T − t)2

∫ ∣∣(∇ log qT−tk(z)−∇ log qT−t(x)
)
· ∇ log q(T − t,x)

∣∣q(T − t,x)dx︸ ︷︷ ︸
(III) Score discretization error

+
1

2
g(T − t)2

∫ ∣∣tr(∇2 log q(T − tk, z)−∇2 log q(T − t,x)
)∣∣q(T − t,x)dx︸ ︷︷ ︸

(IV) Divergence discretization error

+max
x

∣∣∣∣ tr [∇[∂

∂t
F
](
t, F−1

t (x)
)
+∇z

[
f
(
T − t, Ft(z)

)]](
∇F−1

t (x)− I
)∣∣∣∣︸ ︷︷ ︸

(V) Bias error

]
dt,

where z = F−1
t (x).

Other than the distance between the initial distribution of the reverse process and Gaussian noise,
our upper bound of TV distance is divided into five terms.
For (I) and (II), these terms rely on the expectation of the defined estimation-error operator and
divergence-error operator over the true reverse process. Moreover, they depend on the density ratios
between pYt

(x), representing the distribution for the true reverse process at time t, and pFt(Ytk
)(x).

As the interpolation operator Ft acts as a simulation of the true reverse process, we expect that the
ratio will be close to 1, thus bounded. Consequently, these terms are expected to scale with the score
and divergence estimation errors. For (III) and (IV), these terms depend on he distance between
score functions and divergence evaluated at t and tk, originating from the time-discretization algo-
rithm. They will decrease as the time step gets smaller. For (V), we observe that Ft is close to the
identity when t → tk. This results in ∇F−1

t (x)− I converging to the zero matrix when t → tk.

5 APPLICATION TO SPECIFIC DETERMINISTIC SAMPLERS

In this section, we apply Theorem 4.3 to analyze specific diffusion processes. We focus on the Vari-
ance Preserving (VP) forward process with EI schemes and the Variance Exploding (VE) forward
process with the DDIM sampler. While prior work has shown that VP and VE can be connected
through reparametrization (Karras et al., 2022), such equivalence does not account for initialization
and discretization errors. Therefore, we provide separate detailed analyses for both VP and VE
processes. The analysis method can be easily extended to other forward processes and numerical
schemes.
We specifically focus on data distributions with compact support, as outlined in the following as-
sumption.
Assumption 5.1 (Bounded Support of Data). For a constant R, the data distribution q0 satisfies:

q0(x) = 0, ∀ ∥x∥ > R,

or equivalently, P (∥X0∥ > R) = 0.

This assumption has also been made in De Bortoli (2022); Chen et al. (2022). In particular, we
do not assume the smoothness of the data distribution. Therefore, it includes the setting where the
data distribution is supported on a lower-dimensional submanifold of Rd, which, notably, does not
possess a smooth density.
Additionally, we make the following assumptions on the estimated score function.
Assumption 5.2 (Score Estimation Error).∑

k

ηkE∥sθ(T − tk,Ytk)−∇ log q(T − tk,Ytk)∥2 ≤ ϵ2score.

Assumption 5.3 (Divergence Estimation Error).∑
k

ηk

√
E tr

(
∇sθ(T − tk,Ytk)−∇2 log q(T − tk,Ytk)

)2 ≤ ϵdiv.

In addition, to deal with the discretization error for the ODE reverse process, we need the following
regularity conditions for sθ.
Assumption 5.4 (sθ is Lipschitz and bounded at 0). For all tk, we have:

∥sθ(T − tk,x1)− sθ(T − tk,x2)∥ ≤ L · ∥x1 − x2∥,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

∥sθ(T − tk, 0)∥ ≤ c,

for some constant L and c. Without loss of generality, we assume L ≥ 1 and c ≤ L to simplify
later derivation. Similar assumptions on sθ have been made in Huang et al. (2024a). Note that we
only need the Lipschitzness and boundness at 0, while they require the boundness of high-order
derivatives w.r.t t and x.

5.1 VP+EI

In this section, we focus on the VP process where f(t,x) = −x and g(t) =
√
2. As is discussed in

Section 4.1, the sampling algorithm is given by:

Ŷtk+1
= etk+1−tk Ŷtk +

(
etk+1−tk − 1

)
sθ(T − tk, Ŷtk).

At each step [tk, tk+1], Ft(x) = et−tkx+
(
et−tk −1

)
sθ(T − tk,x). Therefore, the estimation-error

operator (Definition 4.1) can be computed as

Φk(t,x) =
∂F

∂t
(t,x) + f

(
T − t, Ft(x)

)
− 1

2
g(T − t)2∇ log qT−tk(x)

= sθ(T − tk,x)−∇ log qT−tk(x).

Similarly, the divergence-error operator (Definition 4.2) can be computed as:

Ψk(t,x) = ∇
[∂

∂t
F
](
t,x

)
I+∇x

[
f
(
T − t, Ftk→t(x)

)]
− 1

2
g(T − t)2∇2 log qT−tk(x)

= ∇sθ(T − tk,x)−∇2 log qT−tk(x).

Now, using Theorem 4.3, we have the following convergence analysis for VP + EI. See Appendix F
for proofs of the following results.
Theorem 5.5. Consider a VP forward process with EI numerical scheme. Under Assump-
tions 5.1, 5.2, 5.3, and 5.4, suppose the time schedule satisfies (2.6). If the step size η satisfies
η ≤ min

{
1/(12L2d2), 1/(24L2R2d)

}
, then the following bound holds:

TV(ŶtN ,Xδ) ≲ TV(qT , πd) + ϵdiv +
√
d
√
ηNϵscore + η2N

[
LR4

(
d2 +

1

δ2

)
+ L2d+

R5

δ

]
.

Lemma 5.6. Assumes the data distribution satisfies Cov(q0) = Id. Then for the VP process, we
have TV(qT , πd) ≲

√
de−T . At VP forward process case, we take πd ∼ N(0, Id).

Corollary 5.7. For all T ≥ 1, δ < 1 and N ≥ log(1/δ), there exists η = Θ((T + log 1
δ)/N)

and a time schedule satisfying (2.6). Under the same assumptions as Theorem 5.5, we additionally
assume that the data distribution satisfies Cov(q0) = Id. When δ = 1/d and d ≥ R/L + L/R4,
if we take T = log(d/ϵ2)/2 and N = LR4Θ

(
d2(T + log(1/δ))2/ϵ

)
for some ϵ ≤ 1/L, we have

TV(ŶtN ,Xδ) ≲ ϵ, assuming Õ(ϵ/
√
d) score estimation error and O(ϵ) divergence error. Hence

the diffusion model requires at most Õ(LR4d2/ϵ) steps to approximate qδ within ϵ ≤ 1/L in TV
distance.
Remark 5.8. We note that the ϵ-dependence in iteration complexity of our deterministic sampler is
ϵ−1, while stochastic ones usually exhibit a slower iteration complexity proportional to ϵ−2(Chen
et al., 2023a; 2022; Li et al., 2024b; Benton et al., 2024). This aligns with general observation in dif-
fusion model practice: deterministic samplers demonstrate higher efficiency compared to stochastic
samplers.

5.2 VE+DDIM
In this section, we focus on the process where f(t,x) = 0 and g(t) = 1, which corresponds to the
VE forward process with σ2

t = t. As discussed in Section 4.1, the sampling algorithm is given by:

Ŷtk+1
= Ŷtk + (tk+1 − tk)l

(
1−

√
1− 1/l

)
sθ(T − tk, Ŷtk), l =

T − tk
tk+1 − tk

.

Let cl = l
(
1 −

√
1− 1/l

)
≤ 1. At each step [tk, tk+1], Ft(x) = x + cl(t − tk)sθ(T − tk,x).

Therefore, the estimation-error operator (Definition 4.1) can be computed as

Φk(t,x) =
∂F

∂t
(t,x) + f

(
T − t, Ft(x)

)
− 1

2
g(T − t)2∇ log qT−tk(x)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

= clsθ(T − tk,x)−
1

2
∇ log qT−tk(x).

Similarly, the divergence-error operator (Definition 4.2) can be computed as:

Ψk(t,x) = ∇
[∂

∂t
F
](
t,x

)
I+∇x

[
f
(
T − t, Ftk→t(x)

)]
− 1

2
g(T − t)2∇2 log qT−tk(x)

= cl∇sθ(T − tk,x)−
1

2
∇2 log qT−tk(x).

Now, using Theorem 4.3, we have the following convergence analysis for VE + DDIM. See Ap-
pendix G for proofs of the following results.

Theorem 5.9. Consider a VE forward process with DDIM numerical scheme. Under Assumptions
5.1, 5.2, 5.3, and 5.4, suppose the time schedule satisfies (2.6). If the step size η satisfies η ≤
min

{
1/(12L2Td2), 1/(24L2R2d)

}
, then the following bound holds:

TV(ŶT−δ,YT−δ) ≲ TV(πd, qT) + ϵdiv +
√
d
√

ηNϵscore + η2N
[
LR4d2 + L2d+

LR4

δ2

]
.

Lemma 5.10. Assume the data distribution satisfies Cov(q0) = Id. Then for the VE forward
process, we have TV(qT , πd) ≲

√
d/

√
T . At VE forward process case, we take πd ∼ N(0, T Id).

Corollary 5.11. For all T ≥ 1, δ < 1 and N ≥ log(1/δ), there exists η = Θ((T + log 1
δ)/N)

and a time schedule satisfying (2.6). Under the same assumptions as Theorem 5.5, we additionally
assume that the data distribution satisfies Cov(q0) = Id. When δ = 1/d and d ≥ L/R4, if we take
T = d/ϵ2 and N = LR4Θ

(
d2(T + log(1/δ))2/ϵ

)
for some ϵ ≤ 1/L, we have TV(ŶtN ,Xδ) ≲ ϵ,

assuming sufficiently small score estimation error and divergence error. Hence the diffusion model
requires at most Õ(LR4d4/ϵ5) steps to approximate qδ within ϵ ≤ 1/L in TV distance.

Remark 5.12. Compared to Corollary 5.7, VE SDE has larger iteration complexity, primarily due
to the slow 1/

√
T decay in the distance between qT and πd, compared with the exponential decay

(Lemma 5.6) for VP SDE.

6 CONCLUSION

In this work, we introduce a unified convergence analysis framework for deterministic samplers.
We start by presenting a counter-example to illustrate the main challenge in analyzing deterministic
samplers compared to stochastic ones. Additionally, we provide a technical lemma that allows us
to bound the distance between distributions using score estimation error and divergence error. With
this approach, we directly established convergence guarantees for the continuous-time reverse ODE.
Moreover, we extend our analysis to the convergence of discrete-time deterministic samplers with a
unified framework. Finally, we demonstrate its effectiveness by applying it to two widely adopted
sampling methods.
Limitation and Future Work. First, for the VP process with EI schemes, our current results have
a quadratic dependence on d, which leaves room for improvement compared to the d-linear state-
of-the-art bounds in ODE analysis (Li et al., 2024c). This discrepancy stems from two factors:
our different assumption that requires control of the divergence error rather than the full Jacobian
error, and our directly estimated Lipschitz constants in the discretization error analysis. We believe
that through more delicate methods for analyzing the discretization error and potentially stronger
conditions, we could achieve linear dimension dependence within our unified framework. Second,
since adding the divergence assumption can guarantee the convergence of the ODE sampler, an
interesting future direction may be to design training methods that can obtain both small score
error and small divergence error. One potential approach would be to incorporate regularization
terms corresponding to divergence error in the loss function, potentially leading to more effective
diffusion model training algorithms. Third, for the VE process, we obtain only polynomial bounds
due to the slow 1/

√
T decay in the distance between qT and πd. It’s important to note that this is not

a limitation of the DDIM sampler, as applying DDIM to the VP processes yields results comparable
to those obtained with the EI scheme. We leave an improved analysis for the VE forward process
as future work. Finally, the discrete-time analysis currently relies on a bounded support assumption
for the data distribution, which may be relaxed to less restrictive conditions, such as light-tailed
distributions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Joe Benton, George Deligiannidis, and Arnaud Doucet. Error bounds for flow matching methods.
arXiv preprint arXiv:2305.16860, 2023.

Joe Benton, VD Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly d-linear convergence
bounds for diffusion models via stochastic localization. 2024.

Adam Block, Youssef Mroueh, and Alexander Rakhlin. Generative modeling with denoising auto-
encoders and langevin sampling. arXiv preprint arXiv:2002.00107, 2020.

Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling:
User-friendly bounds under minimal smoothness assumptions. In International Conference on
Machine Learning, pp. 4735–4763. PMLR, 2023a.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint
arXiv:2209.11215, 2022.

Sitan Chen, Giannis Daras, and Alex Dimakis. Restoration-degradation beyond linear diffusions:
A non-asymptotic analysis for ddim-type samplers. In International Conference on Machine
Learning, pp. 4462–4484. PMLR, 2023b.

Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The probability
flow ode is provably fast. Advances in Neural Information Processing Systems, 36, 2024.

Zixiang Chen, Huizhuo Yuan, Yongqian Li, Yiwen Kou, Junkai Zhang, and Quanquan Gu. Fast
sampling via de-randomization for discrete diffusion models. arXiv preprint arXiv:2312.09193,
2023c.

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock: Dif-
fusion steps, twists, and turns for molecular docking. arXiv preprint arXiv:2210.01776, 2022.

Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
arXiv preprint arXiv:2208.05314, 2022.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

Xuefeng Gao and Lingjiong Zhu. Convergence analysis for general probability flow odes of diffu-
sion models in wasserstein distances. arXiv preprint arXiv:2401.17958, 2024.

Jiaqi Guan, Xiangxin Zhou, Yuwei Yang, Yu Bao, Jian Peng, Jianzhu Ma, Qiang Liu, Liang Wang,
and Quanquan Gu. Decompdiff: diffusion models with decomposed priors for structure-based
drug design. arXiv preprint arXiv:2403.07902, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Daniel Zhengyu Huang, Jiaoyang Huang, and Zhengjiang Lin. Convergence analysis of probability
flow ode for score-based generative models. arXiv preprint arXiv:2404.09730, 2024a.

Xunpeng Huang, Difan Zou, Hanze Dong, Yi Zhang, Yi-An Ma, and Tong Zhang. Reverse transition
kernel: A flexible framework to accelerate diffusion inference. arXiv preprint arXiv:2405.16387,
2024b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(4), 2005.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

L Gary Leal. Advanced transport phenomena: fluid mechanics and convective transport processes,
volume 7. Cambridge university press, 2007.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with
polynomial complexity. Advances in Neural Information Processing Systems, 35:22870–22882,
2022.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for
general data distributions. In International Conference on Algorithmic Learning Theory, pp.
946–985. PMLR, 2023.

Gen Li, Yu Huang, Timofey Efimov, Yuting Wei, Yuejie Chi, and Yuxin Chen. Accelerating conver-
gence of score-based diffusion models, provably. arXiv preprint arXiv:2403.03852, 2024a.

Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Towards non-asymptotic convergence for
diffusion-based generative models. In The Twelfth International Conference on Learning Rep-
resentations, 2024b.

Gen Li, Yuting Wei, Yuejie Chi, and Yuxin Chen. A sharp convergence theory for the probability
flow odes of diffusion models. arXiv preprint arXiv:2408.02320, 2024c.

Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Let us build bridges: Understanding and
extending diffusion generative models. arXiv preprint arXiv:2208.14699, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 22825–22855. PMLR, 2023.

Jakiw Pidstrigach. Score-based generative models detect manifolds. Advances in Neural Information
Processing Systems, 35:35852–35865, 2022.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
to density and score estimation. In Uncertainty in Artificial Intelligence, pp. 574–584. PMLR,
2020b.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020c.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661–1674, 2011.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
for text generation. arXiv preprint arXiv:2302.05737, 2023.

Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion
models in around 5 steps. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7777–7786, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RELATED WORK

Convergence Analysis of Stochastic Samplers. Early theoretical studies for diffusion models were
either non-quantitative (De Bortoli et al., 2021; Liu et al., 2022; Pidstrigach, 2022), or exhibited ex-
ponential dependence on the dimension or other problem parameters (Block et al., 2020; De Bortoli,
2022). Later, Lee et al. (2022) proved the first result with polynomial complexity, with the assump-
tions L2-score estimate and log-Sobolev inequality (LSI). However, the LSI condition on the data
distribution is restrictive, prompting further studies to relax this assumption. Chen et al. (2022)
utilized Girsanov’s theorem, and proved polynomial convergence bounds, assuming either the Lips-
chitzness property of the forward process score function or bounded support of the data distribution.
Lee et al. (2023) relaxed the smoothness condition to apply only to the data distribution rather
than the whole trajectory, and replaced the bounded support assumption with sufficient tail decay.
Chen et al. (2023a) proved a result with both the advantages of these two works, achieving a better
convergence rate while assuming only the smoothness of the data distribution. Furthermore, they
provided results for the non-smooth setting using appropriate early stopping and decreasing step
size. Benton et al. (2024) improved the dependency of the dimension d to linear via the stochas-
tic localization method. Compared with the analysis of reverse SDE, Li et al. (2024b) utilized an
elementary approach to analyze a DDPM-type stochastic sampler. It also proposed an accelerated
stochastic sampler with better iteration complexity. More recently, Huang et al. (2024b) decom-
posed the entire sampling process into several reverse transition kernel subproblems and proposed
novel fast sampling algorithms.
Convergence Analysis of Deterministic Samplers. The first non-asymptotic bounds for determin-
istic samplers were derived by Chen et al. (2023b), which assumes access to the ground truth score
function. Subsequently, Chen et al. (2024) proved the first polynomial-time convergence guarantees
of probability flow ODE with estimation error, by incorporating an additional corrector Langevin
dynamics. While this improved upon prior results, it introduced randomness, making the sampling
processes non-deterministic. Li et al. (2024a;b) applied an elementary analysis framework to study
the convergence of a specific deterministic sampler with a given learning schedule, requiring an ad-
ditional assumption on the Jacobian estimation error. Later, Li et al. (2024c) applied the same frame-
work and achieved improved iteration complexity, which is linear in the dimension. Recently, Huang
et al. (2024a) examined the Ornstein-Uhlenbeck (OU) forward process, removing the assumption of
Jacobian estimation error. However, they introduced higher-order boundedness assumptions on the
derivatives of the estimated score function concerning time and space. They proved an upper bound
for the total variation between the target and generated data at the continuous-time level while also
analyzing the convergence rate for the Runge-Kutta integrator. Further expanding the scope, Gao
& Zhu (2024) studied the Wasserstein distance using general forward SDE with log-concavity data
assumptions. Additionally, research has started to explore other deterministic generation methods,
such as flow matching (Benton et al., 2023).
A.1 COMPARISON WITH HUANG ET AL. (2024A)
Huang et al. (2024a) is the most related work to ours. It studied the convergence properties of
diffusion models with deterministic samplers based on probability flow ODEs.
Theorem A.1 in Huang et al. (2024a) is similar to our Lemma 3.2, where they applied the charac-
teristic line method for ODEs, while we used the Fokker-Planck equation and the Gauss’s theorem
twice. However, we use different methods when dealing with the divergence term

∇ ·
[(
(b(t,x)− b∗(t,x)

)
q(T − t,x)

]
.

We decompose it into score estimation error and divergence estimation error (see Lemma 3.2). In
contrast, they applied the Gagliardo-Nirenberg inequality to bound the integral of first-order deriva-
tives using integrals of second-order and zero-order derivatives of sθ. This led to different assump-
tions regarding the convergence analysis of the continuous-time reverse process. In addition to
the standard estimation error assumption, we require a small divergence error, while Huang et al.
(2024a) assumed the boundedness of up to the second order derivatives of sθ. Furthermore, they re-
quired a bounded support assumption, which is not necessary for our continuous-time analysis. As
a result, Huang et al. (2024a) proved an upper bound on the TV distance: O(T 3/4d3/4(1/δ)ϵ

1/2
score).

In comparison, our result is O(
√

dT + d log(1/δ) · ϵscore), notably only log-dependent on δ.
For the discrete-time analysis, Huang et al. (2024a) studied the p-th Runge-Kutta discretization
method. When p = 1, it becomes the forward Euler method. In comparison, we study the EI
scheme. Our analysis can be easily applied to the forward Euler method, yielding similar results.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

In the discrete-time case, we assumed bounded support of the data distribution and the Lipschitz
condition of sθ, which was already required in Huang et al. (2024a) in the continuous-time analysis.
Additionally, they assumed that the mixed second-order derivatives of sθ with respect to t and x
are bounded by a constant L̄. For the forward Euler method, Huang et al. (2024a) proved iteration
complexity of Õ

(
L̄2R2d2ϵ−1

)
, while our result for EI scheme is Õ(LR4d2ϵ−1) for δ = 1/d. We

remark that the constant L̄ in their result may be very large. For example, the derivatives of the
true score function can depend on higher-order terms of 1/δ (see Lemma H.2). Moreover, we also
consider the VE forward process with the DDIM numerical schemes.

A.2 COMPARISON WITH OTHER WORKS ON DETERMINISTIC SAMPLERS

In this section, we consider different works on convergence analysis of diffusion models with de-
terministic samplers and provide a detailed comparison in Table 1. The comparison focuses on
three key aspects: major assumptions required by these works, the metrics used, and the iteration
complexity in terms of dimension d and accuracy ϵ.

Major Assumptions Metric Complexity Reference

Score Estimation Error 1

TV(p1, q1)

Õ
(

d2

ϵ + d3
√
ϵ

) Li et al. (2024b)

Bounded Support Theorem 1

1

N

N∑
t=1

E
X∼qt

∥∥∇sθ(t,X)−∇2 log q(t,X)
∥∥ ≤ ϵJacobi Õ

(d
ϵ

) Li et al. (2024c)

Theorem 1

Access to Exact Score
KL(p0, q0) Polynomial∇ log q and ∇2 log q Lipschitz Chen et al. (2023b)

∥∇ log
qt
qs
(x)∥ ≤ β|t− s|c(1 + ∥x∥+ ∥∇qt(x)∥) Theorem 4.1

Score Estimation Error
TV(pδ, qδ) O

(d(p+1)/p

ϵ1/p

)
sup
x∈Rd

max
1≤k+|α|≤p+1

max
1≤j≤d

|∂k
t ∂

α
x s

(j)
θ (t,x)| ≤ L Huang et al. (2024a)

Bounded Support Theorem 3.10

Bounded Support: Assumption 5.1
TV(pδ, qδ) Õ

(d2
ϵ

)
Score Estimation Error: Assumption 5.2 This Work:

Divergence Error: Assumption 5.3 Corollary 5.7

Table 1: Comparison of convergence analysis for diffusion models with deterministic samplers

B PROOF OF THEOREM 2.1
Proof of Theorem 2.1. Since xt starts at N(0, 1), we can easily show that xt ∼ N(0, 1) for all
t. Recall that we use q(t, x) to denote the law of xt, then we have q(t, x) = 1√

2π
e−

x2

2 and

∇ log q(t, x) = −x. Define q̂(T − t, x) = 1√
2π

e−
x2

2

(
1 + t

2T sin(2nπx)
)
, and construct our es-

timated score as:

sθ(T − t, x) =

∫∞
x

1√
2π

e−
y2

2 sin(2nπy)
(

1
2T

)
dy

q̂(T − t, x)
− x,

Without loss of generality, we can assume x ≥ 0. Then we have:

|sθ(T − t, x)−∇ log q(T − t, x)| =

∣∣∣∫∞
x

1√
2π

e−
y2

2 sin(2nπy)
(

1
2T

)
dy

∣∣∣
1√
2π

e−
x2

2

(
1 + T−t

2T sin(2nπx)
)

1This assumption is slightly different from ours. While it assigns uniform weights to estimation errors
across all time steps, our approach applies smaller weights to time steps with smaller step sizes.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

≤
1√
2π

e−
x2

2
1
2T supN≥x

∣∣∣∫ N

x
sin(2nπy)dy

∣∣∣
1√
2π

e−
x2

2
1
2

≤ 1

T

1

nπ
.

Taking n ≥ 1/(Tπϵ), we have |sθ(T − t, x)−∇ log q(T − t, x)| ≤ ϵ. Moreover, since we have
∂q̂(T − t, x)

∂t
= − ∂

∂x

((
sθ(T − t, x) + x

)
· q̂(T − t, x)

)
, q̂(T − 0, x) ∼ N(0, 1),

which satisfies the Fokker-Planck equation. Therefore, we know that q̂(t, x) is the law of ŷT−t.
Hence the law of ŷT is

q̂0(x) =
1√
2π

e−
x2

2

(
1 +

1

2
sin(2nπx)

)
.

The TV distance between yT and ŷT is:

TV(yT , ŷT) =
1

2

∫
R

∣∣∣∣ 1√
2π

e−
x2

2

(
1 +

1

2
sin(2nπx)

)
− 1√

2π
e−

x2

2

∣∣∣∣ dx
=

1

4

∫
R

1√
2π

e−
x2

2 | sin(2nπx)|dx. (B.1)

To calculate the last integral, we consider the Fourier expansion

| sin(2nπx)| = 2

π
− 4

π

∑
k≥1

cos 4knπx

4k2 − 1
.

For any k ≥ 1, we have:∣∣∣∣∫
R
e−

x2

2 cos(4knπx)dx

∣∣∣∣ = 2

∣∣∣∣∫ ∞

0

e−
x2

2 cos(4knπx)dx

∣∣∣∣
≤ 2 sup

N≥0

∣∣∣∣∣
∫ N

0

cos(4knπx)dx

∣∣∣∣∣
≤ 1

2knπ
.

Therefore, we can plug these integrals into B.1 and obtain

TV(yT , ŷT) ≥
1

4

[
2

π
− 4

π

∑
k≥1

1

4k2 − 1

∣∣∣∣∫
R

1√
2π

e−
x2

2 cos(4knπx)dx

∣∣∣∣]

≥ 1

4

[
2

π
− 4

π

∑
k≥1

1

4k2 − 1

1√
2π2knπ

]
≥ 1

4

[2
π
− 2

π2
√
2πn

∑
k≥1

1

3k3

]
.

By taking n large enough, we can easily show that TV(yT , ŷT) ≥ 1
4π . This completes the proof of

Theorem 2.1.

Theorem B.1. Consider the same 1-dimensional OU process (xt)t∈[0,T] and its reverse process
(yt)t∈[0,T] defined in Theorem 2.1. Recall that we denote the law of xt by qt. Then for arbitrarily
small ϵ > 0 and arbitrarily big N > 0, there exists sθ(t, x), which is smooth, anywhere ϵ-close to
the true score function, and its divergence is anywhere ϵ-close to the divergence of the true score
function, i.e., ∣∣sθ(T − t, x)−∇ log q(T − t, x)

∣∣ ≤ ϵ, ∀t, ∀x,∣∣∇ · sθ(T − t, x)−∇ · ∇ log q(T − t, x)
∣∣ ≤ ϵ, ∀t, ∀x,

such that the law pt of the corresponding simulated reverse process (ŷt)t∈[0,T] (see (2.5)) satisfies

sup |∇ log pT (x)| ≥ N,

which indicates that the score of the sampling process can be unbounded no matter how small the
score estimation error and divergence error is.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof of Theorem B.1. Substitute the oscillate term sin(2nπx) in the proof of Theorem 2.1 by
1

n(x2+1) sin(2n
2πx). In this case, we still have q(t, x) = 1√

2π
e−

x2

2 and ∇ log q(t, x) = −x. Now

q̂(T − t, x) becomes 1√
2π

e−
x2

2

(
1+ t

2T
1

n(x2+1) sin(2n
2πx)

)
, and now our estimated score becomes:

sθ(T − t, x) =

∫∞
x

1√
2π

e−
y2

2
1

n(x2+1) sin(2n
2πx)

(
1
2T

)
dy

q̂(T − t, x)
− x,

Without loss of generality, we can assume x ≥ 0. Then we have:

|sθ(T − t, x)−∇ log q(T − t, x)| =

∣∣∣∫∞
x

1√
2π

e−
y2

2
1

n(y2+1) sin(2n
2πy)

(
1
2T

)
dy

∣∣∣
1√
2π

e−
x2

2

(
1 + T−t

2T
1

n(y2+1) sin(2n
2πy)

)
≤

1√
2π

e−
x2

2
1
2T

1
(y2+1) supN≥x

∣∣∣∫ N

x
1
n sin(2n2πy)dy

∣∣∣
1√
2π

e−
x2

2
1
2

≤ 1

T

1

n3π
. (B.2)

Further more, we consider the divergence estimation error. Since this example is one-dimensional,
taking divergence is the same as taking a derivative with respect to x. Hence we have:

|∇ · sθ(T − t, x)−∇ · ∇ log q(T − t, x)| =

∣∣∣∣∣∣ ∂∂x
∫∞
x

1√
2π

e−
y2

2
1

n(y2+1) sin(2n
2πy)

(
1
2T

)
dy

q̂(T − t, x)

∣∣∣∣∣∣
≤

∣∣∣ 1√
2π

e−
x2

2
1

n(x2+1) sin(2n
2πx)

(
1
2T

)
· q̂(T − t, x)

q̂(T − t, x)2

∣∣∣
+
∣∣∣∫∞

x
1√
2π

e−
y2

2
1

n(y2+1) sin(2n
2πy)

(
1
2T

)
dy · ∂

∂x q̂(T − t, x)

q̂(T − t, x)2

∣∣∣. (B.3)

Firstly, we have

1

2

1√
2π

e−
x2

2 ≤ |q̂(T − t, x)| ≤ 1√
2π

e−
x2

2 .

Moreover, we know that∣∣∣∣ ∂∂x q̂(T − t, x)

∣∣∣∣ = ∣∣∣ 1√
2π

e−
x2

2

(
− x

(
1 +

t

2T

1

n(x2 + 1)
sin(2n2πx)

)
+

t

2T

1

n

2n2π cos(2n2πx)(x2 + 1)− 2x sin(2n2πx)

(x2 + 1)2

)∣∣∣ (B.4)

≤ 1√
2π

e−
x2

2

(
|x|+ 1

4Tn
+ nπ +

1

2Tn

)
≤ 1√

2π
e−

x2

2

(
|x|+ 2nπ

)
.

Since 1√
2π

e−
y2

2
1

n(y2+1) is strictly monotonically decreasing when y ≥ x ≥ 0, we have∣∣∣∣∫ ∞

x

1√
2π

e−
y2

2
1

n(y2 + 1)
sin(2n2πy)

(
1

2T

)
dy

∣∣∣∣
≤ 1√

2π
e−

x2

2
1

n(x2 + 1)

1

2T
sup
N≥x

∣∣∣∣∣
∫ N

x

sin(2n2πy)dy

∣∣∣∣∣
≤ 1√

2π
e−

x2

2
1

x2 + 1

1

n3π

1

2T
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Substituting back to B.3, we have

|∇ · sθ(T − t, x)−∇ · ∇ log q(T − t, x)| ≤ 1

2Tn
+ 4

1

x2 + 1

1

n3π

1

2T
(|x|+ 2nπ)

≤ 1

2Tn
+

1

Tn3π
+

4

Tn2
. (B.5)

For any ϵ > 0, using (B.2) and (B.5), for n large enough, the score estimation error and the diver-
gence estimation error are less than ϵ for every t and x. Same as in the proof of Theorem 2.1, using
Fokker-Planck equation, we know that q̂ is the law of the sampling process. However, by (B.4), the
score of the sampling process is clearly unbounded (there is a coefficient proportional to n, and our
n is arbitrary large).

C PROOF OF LEMMA 3.2
Proof of Lemma 3.2. We begin by computing total variance distance between Xt and Yt for any
t ∈ [0, T]:

TV(Xt,Yt) =

∫
Ωt

p(t,x)− q(t,x) dx, (C.1)

where Ωt := {x ∈ Rd | p(t,x) > q(t,x)}. Now we proceed to compute the time-derivative
of (C.1). By Theorem K.1, we have

∂ TV(Xt,Yt)

∂ t
=

∫
Ωt

∂

∂t

(
p(t,x)− q(t,x)

)
dx︸ ︷︷ ︸

I1

+

∫
∂Ωt

(
p(t,x)− q(t,x)

)
v(t,x) · n(t,x) dS︸ ︷︷ ︸

I2

.

(C.2)

For term I1, by Fokker-Planck equation, we have

∂

∂t

(
p(t,x)− q(t,x)

)
= −∇ ·

(
b(t,x)p(t,x)− b∗(t,x)q(t,x)

)
.

Therefore, we have

I1 =

∫
Ωt

−∇ ·
(
b(t,x)p(t,x)− b∗(t,x)q(t,x)

)
dx.

For term I2, by the definition of Ωt := {x ∈ Rd | p(t,x) > q(t,x)}, we have p(t,x) = q(t,x) on
∂Ωt. Hence I2 = 0.
Therefore, by substituting I1 and I2 into (C.2), we obtain

∂ TV(Xt,Yt)

∂ t
=

∫
Ωt

−∇ ·
(
b(t,x)p(t,x)− b∗(t,x)q(t,x)

)
dx

=

∫
∂Ωt

−
(
b(t,x)p(t,x)− b∗(t,x)q(t,x)

)
· n(t,x)dS

=

∫
∂Ωt

−
(
b(t,x)q(t,x)− b∗(t,x)q(t,x)

)
· n(t,x)dS

=

∫
Ωt

−∇ ·
((

b(t,x)− b∗(t,x)
)
q(t,x)

)
dx

= −
∫
Ωt

(
∇ · b(t,x)−∇ · b∗(t,x)

)
q(t,x) dx−

∫
Ωt

(
b(t,x)− b∗(t,x)

)
· ∇ q(t,x) dx,

where in the second equation we use Gauss’s theorem to compute the integration of divergence,
the third equation uses the fact that p(t,x) = q(t,x) on ∂Ωt, the forth equation holds by Gauss’s
theorem again. This completes the proof.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D PROOF OF THEOREM 3.4
In this section, we provide a proof of Theorem 3.4. The core of the theorem’s proof is Lemma 3.2,
which allows us to represent the time-derivative of TV distribution between distribution by score
estimation error and divergence estimation error.

Proof of Theorem 3.4. Recall Yt and Ŷt are ODE flows determined by (3.1) and (3.2). Define
b(t,x) = x+∇ log q(T − t,x) and b̂(t,x) = x+ sθ(T − t,x), then we have:

dYt = b(t,Yt)dt, Y0 ∼ qT .

dŶt = b̂(t, Ŷt)dt, Ŷ0 ∼ πd.

By Lemma 3.2, recall that the law of Yt is denoted by q(T − t,x), we have:

∂ TV(Ŷt,Yt)

∂ t
= −

∫
Ωt

(
∇ · b̂(t,x)−∇ · b(t,x)

)
q(T − t,x) dx

−
∫
Ωt

(
b̂(t,x)− b(t,x)

)
· ∇ log q(T − t,x)q(T − t,x)dx

=

∫
Ωt

(
∇ · sθ(T − t,x)−∇ · ∇ log q(T − t,x)

)
q(T − t,x)dx︸ ︷︷ ︸

I1

−
∫
Ωt

(
sθ(T − t,x)−∇ log q(T − t,x)

)
· ∇ log q(T − t,x)q(T − t,x)dx︸ ︷︷ ︸

I2

.

(D.1)

For I1, we know that:

|I1| ≤
∫
Ωt

∣∣∣∇ · sθ(T − t,x)−∇ · ∇ log q(T − t,x)
∣∣∣q(T − t,x)dx

≤ E
∣∣∣∇ · sθ(T − t,Yt)−∇ · ∇ log q(T − t,Yt)

∣∣∣. (D.2)

For I2, using the Cauchy-Schwartz inequality, we know that:

|I2| ≤

√∫
Ωt

∥∥sθ(T − t,x)−∇ log q(T − t,x)
∥∥2q(T − t,x)dx

·

√∫
Ωt

∥∥∇ log q(T − t,x)
∥∥2q(T − t,x)dx

≤
√
E∥sθ(T − t,Yt)−∇ log q(T − t,Yt)

∥∥2 ·√E∥∇ log q(T − t,Yt)
∥∥2. (D.3)

Substituting (D.2) and (D.3) back to (D.1), and taking the integral with respect to t on [0, T − δ], we
have:

TV(ŶT−δ,Xδ) ≤ TV(Ŷ0,Y0) +

∫ T−δ

0

(
|I1|+ |I2|

)
dt

≤ TV(Ŷ0,Y0) +

∫ T−δ

0

E
∣∣∣∇ · sθ(T − t,Yt)−∇ · ∇ log q(T − t,Yt)

∣∣∣dt
+

∫ T−δ

0

√
E∥sθ(T − t,Yt)−∇ log q(T − t,Yt)

∥∥2 ·√E∥∇ log q(T − t,Yt)
∥∥2dt

≤ TV(Ŷ0,Y0) +

∫ T−δ

0

E
∣∣∣∇ · sθ(T − t,Yt)−∇ · ∇ log q(T − t,Yt)

∣∣∣dt
+

√∫ T−δ

0

E∥sθ(T − t,Yt)−∇ log q(T − t,Yt)
∥∥2dt ·

√∫ T−δ

0

E∥∇ log q(T − t,Yt)
∥∥2dt.

(D.4)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Since X0 has finite second-order momentum, using Lemma K.2, we have that:

EQ∥∇ log q(T − t,Yt)
∥∥2 ≤ d

(
1− e−2(T−t)

)−1
.

Thus we know that:∫ T−δ

0

E∥∇ log q(T − t,Yt)
∥∥2dt ≤ ∫ T−δ

0

d

1− e−2(T−t)
dt

= d

∫ T

δ

1

1− e−2t
dt

= d
(1
2
log

(
e2T − 1

)
− 1

2
log

(
e2δ − 1

))
= O

(
dT + d log

1

δ

)
. (D.5)

Substituting (D.5) into (D.4) and using Assumptions 3.1 and 3.3, we can conclude with

TV(ŶT−δ,Xδ) ≲ TV(Ŷ0,Y0) +

√
dT + d log

1

δ
ϵscore + ϵdiv.

E PROOF OF THEOREM 4.3
Proof of Theorem 4.3. In the time step t ∈ [tk, tk+1], we can compute the time derivative of the
total variation distance between Ŷt and Yt using Lemma 3.2:

∂TV(Ŷt,Yt)

∂t
= −

∫
Ωt

(
∇ · b̂(t,x)−∇ · b(t,x)

)
q(T − t,x)dx︸ ︷︷ ︸

I1

−
∫
Ωt

(
b̂(t,x)− b(t,x)

)
· ∇q(T − t,x)dx︸ ︷︷ ︸

I2

. (E.1)

Recall that b(t,x) = −
(
f(T − t,x)− 1

2g(T − t)2∇ log qT−t(x)
)
, b̂(t,x) = ∂F

∂t

(
t, F−1

t (x)
)
.

For I1, we decompose tr[∇b̂(t,x)−∇b(t,x)] as follows:

tr[∇b̂(t,x)−∇b(t,x)] =

[
∇
[∂

∂t
F
](
t, F−1

t (x)
)
∇F−1

t (x) +∇f(T − t,x)

− 1

2
g(T − t)2∇2 log qT−tk

(
F−1
t (x)

)]
− 1

2
g(T − t)2

[
∇2 log qT−t(x)−∇2 log qT−tk

(
F−1
t (x)

)]
= Ψk(t, z) +

(
∇
[∂

∂t
F
](
t, z

)
+∇z

[
f
(
T − t, Ft(z)

)])(
∇F−1

t (x)− I
)

− 1

2
g(T − t)2

[
∇2 log qT−t(x)−∇2 log qT−tk

(
z
)]
,

where z = F−1
t (x). Therefore, we have

|I1| ≤
∫
Ωt

∣∣∣ tr [∇b̂(t,x)−∇b(t,x)
]∣∣∣q(T − t,x)dx

≤
∫

| trΨk(t, z)|q(T − t,x)dx

+

∫ ∣∣∣∣ tr [∇[∂

∂t
F
](
t, z

)
+∇z

[
f
(
T − t, Ft(z)

)]]
(∇F−1

t (x)− I)

∣∣∣∣q(T − t,x)dx

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

+

∫
1

2
g(T − t)2

∣∣ tr [∇2 log qT−t(x)−∇2 log qT−tk(z)
]∣∣q(T − t,x)dx

(i)

≤
(∫ [

trΨk(t, z)
]2
pFt(Ytk

)(x)dx

) 1
2
(∫ (pYt

(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx

) 1
2

+max
x

∣∣∣∣ tr [∇[∂

∂t
F
](
t, F−1

t (x)
)
+∇z

[
f
(
T − t, Ft(z)

)]](
∇F−1

t (x)− I
)∣∣∣∣

+

∫
1

2
g(T − t)2

∣∣ tr [∇2 log qT−t(x)−∇2 log qT−tk(z)
]∣∣q(T − t,x)dx

(ii)
=

(
E
[(

trΨk(t,Ytk)
)2]) 1

2

(∫ (pYt
(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx

) 1
2

+max
x

∣∣∣∣ tr [∇[∂

∂t
F
](
t, F−1

t (x)
)
+∇z

[
f
(
T − t, Ft(z)

)]](
∇F−1

t (x)− I
)∣∣∣∣

+

∫
1

2
g(T − t)2

∣∣ tr [∇2 log qT−t(x)−∇2 log qT−tk(z)
]∣∣q(T − t,x)dx. (E.2)

where (i) holds due to the Cauchy-Schwarz inequality. (ii) holds due to the Jacobian transformation
pFt(Ytk

)(x)dx = pYtk
(z)dz for z = F−1

t (x).

For I2, we decompose b̂(t,x)− b(t,x) as follows:

b̂(t,x)− b(t,x) =

[
∂F

∂t

(
t, F−1

t (x)
)
+ f(T − t,x)− 1

2
g(T − t)2∇ log qT−tk

(
F−1
t (x)

)]
− 1

2
g(T − t)2

[
∇ log qT−t(x)−∇ log qT−tk

(
F−1
t (x)

)]
=

[
∂F

∂t
(t, z) + f

(
T − t, Ft(z)

)
− 1

2
g(T − t)2∇ log qT−tk

(
z
)]

− 1

2
g(T − t)2

[
∇ log qT−t(x)−∇ log qT−tk

(
F−1
t (x)

)]
,

= Φk(t, z)−
1

2
g(T − t)2

[
∇ log qT−t(x)−∇ log qT−tk

(
F−1
t (x)

)]
,

where z = F−1
t (x). Therefore, we have

|I2| ≤
∫
Ωt

∣∣Φk(t, z) · ∇q(T − t,x)
∣∣dx

+
1

2
g(T − t)2

∫
Ωt

∣∣∣[∇ log qT−t(x)−∇ log qT−tk

(
F−1
t (x)

)]
· ∇q(T − t,x)

∣∣∣dx
(i)

≤
(∫

∥Φk(t, z)∥2pFt(Ytk
)(x)dx

) 1
2
(∫ ∥∥∥∇ log q(T − t,x)pYt

(x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx

) 1
2

+
1

2
g(T − t)2

∫
Ωt

∣∣∣[∇ log qT−t(x)−∇ log qT−tk

(
F−1
t (x)

)]
· ∇q(T − t,x)

∣∣∣dx
(ii)

≤
(
E
[∥∥Φk(t,Ytk)

∥∥2]) 1
2

(∫ ∥∥∥∇ log q(T − t,x)pYt
(x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx

) 1
2

+
1

2
g(T − t)2

∫
Ωt

∣∣∣[∇ log qT−t(x)−∇ log qT−tk

(
F−1
t (x)

)]
· ∇q(T − t,x)

∣∣∣dx. (E.3)

where (i) holds due to the Cauchy-Schwarz inequality. (ii) holds due to the Jacobian transformation
pFt(Ytk

)(x)dx = pYtk
(z)dz for z = F−1

t (x). Substituting (E.2) and (E.3) into (E.1) and taking the
integral over t, we can complete the proof of Theorem 4.3.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

F ANALYSIS OF VP+EI
In this section, we focus on the case where f(x) = −x and g(t) =

√
2, i.e. the VP-SDE. Specifi-

cally, the forward process Xt satisfies:

dXt = −Xtdt+
√
2dWt, X0 ∼ q0, (F.1)

and the true reverse process Yt satisfies:

dYt =
(
Yt +∇ log qT−t(Yt)

)
dt, Y0 ∼ qT .

Then, the forward process has the following closed-form expression:

Yt = XT−t = e−(T−t)X0 +
√
1− e−2(T−t)Z, Z ∼ N(0, Id). (F.2)

Recall the exponential integrator provides a discretized version of the reverse process:

Ŷtk+1
= eηk Ŷtk +

1

2

(
eηk − 1

)1
2
sθ(T − tk, Ŷtk).

Therefore, we can define the following interpolation operator:

Ft(z) = et−tkz+
(
et−tk − 1

)
sθ(T − tk, z), (F.3)

satisfying Ftk+1
(Ŷtk) = Ŷtk+1

. Under Assumption 5.4, we know sθ(t, ·) is Lipschitz. Therefore,
suppose η ≤ 1/L, then we have 1/2 ≤ ∥∇Ft∥ ≤ 3/2. In particular, Ft is invertible.
Denote et−tk by a. Since t− tk ≤ η ≤ 1, we have a ≤ 1 + 2(t− tk). Then we know that:

∥z∥ ≥ a∥F−1
t (z)∥ − (a− 1)

(
L∥F−1

t (z)∥+ c
)

≥ ∥F−1
t (z)∥ − 2(t− tk)

(
L∥F−1

t (z)∥+ c
)

≥ 1

2
∥F−1

t (z)∥ − 1

2
,

where the last inequality holds when we assume that t − tk ≤ η ≤ min{1/4L, 1/4c}. Thus we
know that:

∥F−1
t (z)∥ ≤ 2∥z∥+ 1. (F.4)

Before we start the proof, we introduce several important lemmas used in our proof. Let c1 =
(1 + d/2)4L2 and c2 = (1 + d/2)(L+ c)2. Using our assumption on η, we know that

η ≤ min
{

1

16d
,

1

2c1d
,
1

c2
,

1

4R2c1

}
. (F.5)

The following two lemmas are related to the ratios pYt
(x)/pFt(Ytk

).

Lemma F.1. Let Yt and Ft(z) be defined in (F.2) and (F.3). Under Assumptions 5.4 and 5.1,
suppose our time schedule satisfies (2.6). Then, for η ≤ min{ 1

2(L+1)d ,
1

16d ,
1

c1d
, 1
2c1

, 1
c2
, 1
R2c1

}, we
have

pYt(x)

pFt(Ytk
)(x)

≲ e(t−tk)c1∥x∥2+(t−tk)c2 .

Moreover, we have ∫
Ωt

(
pYt(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx ≲ 1.

Lemma F.2. Let Yt and Ft(z) be defined in (F.2) and (F.3). Under Assumptions 5.1 and 5.4,
suppose our time schedule satisfies (2.6). Then for η ≤ min{ 1

2(L+1)d ,
1

16d ,
1

2c1d
, 1
2c1

, 1
c2
, 1
4R2c1

},
we have: ∫ ∥∥∥∇q(T − t,x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx ≲

d

min{T − t, 1}
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

The following two lemmas show the upper bound of the derivatives of the true score function with
respect to t and x separately.

Lemma F.3. When Xt is defined as in (F.1), under Assumption 5.1, we have:∣∣∣∣ ∂∂t(tr
(
∇2 log q(t,x)

))∣∣∣∣ ≲ d

min{t, 1}2
+

R2(∥x∥+R)2

min{t, 1}4
,∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ ≲
∥x∥+R

min{t, 1}2
+

(∥x∥+R)2R2

min{t, 1}2
+

(∥x∥+R)3

min{t, 1}3
.

Lemma F.4. When Xt is defined as in (F.1), under Assumption 5.1, we have:

∥∇ log q(t,x)∥ ≲
∥x∥+R

min{t, 1}
,

∥∥∇2 log q(t,x)
∥∥
2
≤ 1

min{t, 1}
+

R2

min{t, 1}2
,

∥∥∇tr
(
∇2 log q(t,x)

)∥∥ ≤ R3

min{t, 1}3
.

The proofs of the above lemmas can be found in later sections.
F.1 PROOF OF THEOREM 5.5
Proof of Theorem 5.5. From the discussion in Section 5.1, we know that:

Φk(t,x) = sθ(T − tk,x)−∇ log qT−tk(x), (F.6)

Ψk(t,x) = ∇sθ(T − tk,x)−∇2 log qT−tk(x), (F.7)

in this specific case. Recall that g(t) =
√
2 and f

(
T − t,x

)
= −x = −Ft(z). From (F.3) we have:

∂

∂t
F (t,x) = Ft(x) + sθ(T − tk,x).

Thus we know that

∇
[∂

∂t
F
](
t, F−1

t (x)
)
=

[
∇Ft

]
(z) +∇sθ(T − tk, z). (F.8)

By Theorem 4.3, we know that:

TV(YT−δ, ŶtN) ≤ TV(qT , πd)

+

N−1∑
k=0

∫ tk+1

tk

[√
E
[∥∥Φk(t,Ytk)

∥∥2]√∫ ∥∥∥∇ log q(T − t,x)pYt(x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx︸ ︷︷ ︸

J1: Score estimation error

+

√
E
[
tr
(
Ψk(t,Ytk)

)2]√∫ (pYt(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx︸ ︷︷ ︸

J2: Divergence estimation error

+

∫ ∣∣(∇ log qT−tk(z)−∇ log qT−t(x)
)
· ∇ log q(T − t,x)

∣∣q(T − t,x)dx︸ ︷︷ ︸
J3: Score discretization error

+

∫ ∣∣tr(∇2 log q(T − tk, z)−∇2 log q(T − t,x)
)∣∣q(T − t,x)dx︸ ︷︷ ︸

J4: Divergence discretization error

+max
x

∣∣∣∣ tr [∇sθ(T − tk, z)

](
∇F−1

t (x)− I
)∣∣∣∣︸ ︷︷ ︸

J5:Bias error

]
dt. (F.9)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Bounding the Score Estimation Error J1. We can easily verify that our η is small enough to
satisfies the condition of Lemma F.2. Therefore, using Lemma F.2 and (F.6), we have=

|J1| ≲

√
d

min{T − t, 1}

√
EQ

∥∥∥sθ(T − tk,Ytk)−∇ log qT−tk(Ytk)
∥∥∥2. (F.10)

Bounding the Divergence Estimation Error J2.
Similarly, our η is small enough to satisfies the condition of Lemma F.1. Using Lemma F.1 and (F.7),
we have

|J2| ≲
√
EQ tr

(
∇sθ(T − tk,Ytk)−∇2 log q(T − tk,Ytk)

)2

. (F.11)

Bounding the Bias Term J5. From (F.3), we know that:

∇F−1
t (x) =

[
(∇Ft)

(
F−1
t (x)

)]−1

=
[
et−tkId +

(
et−tk − 1

)
∇sθ

(
T − tk, F

−1
t (x)

)]−1
.

Using Assumption 5.4 and t− tk ≤ η ≤ 1, we have:

∥(∇Ft)
(
F−1
t (x)

)
− Id∥2 ≤

(
et−tk − 1

)
∥Id +∇sθ

(
T − tk, F

−1
t (x)∥2

≤ 2(t− tk)(1 + L).

Let A = (∇Ft)
(
F−1
t (x)

)
− Id. Then we have ∥A∥2 ≤ 2(t− tk)(1 + L). Thus we know that:

∥∇
(
F−1
t (x)

)
− Id∥2 = ∥(Id +A)−1 − Id∥2

(i)
=

∥∥∥∥ ∞∑
n=1

(−1)nAn

∥∥∥∥
2

(ii)

≤
∞∑

n=1

∥A∥n2

(iii)

≤ 4(t− tk)(1 + L), (F.12)

here (i) holds because of the series expansion for ∥A∥2 < 1. (ii) holds due to the Cauchy-Schwarz
inequality. (iii) holds due to our assumption η ≤ 1/4(1 + L). Then we know that:

|J5| = max
x

∣∣∣ tr [∇sθ(T − tk, z)
(
∇
(
F−1
t (x)

)
− Id

)]∣∣∣
(i)

≤ dmax
∥∥∥∇sθ(T − tk, z)

(
∇
(
F−1
t (x)

)
− Id

)∥∥∥
2

≤ dmax ∥∇sθ(T − tk, z)∥2∥∇
(
F−1
t (x)

)
− Id∥2

(ii)

≤ 4dL(t− tk)(1 + L),

where (i) holds due to tr(A) ≤ d∥A∥2. (ii) holds due to Assumption 5.4 and (F.12). Thus we have:

|J5| ≲ (t− tk)dL
2. (F.13)

Bounding the Moments of Yt.
Before we start estimating J3 and J4, we first do some preparation. Since we have Yt = XT−t =

e−(T−t)X0 +
√
1− e−2(T−t)Z, here Z ∼ N(0, Id). Our goal is to bound the moments of Yt.

When T − t < 1, we know that e−(T−t) = Θ(1) and
√
1− e−2(T−t) = O(

√
T − t). Thus we have:

E∥Yt∥2 = e−2(T−t)E∥X0∥2 +
(
1− e−2(T−t)

)
E∥Z∥2 + Ee−(T−t)

√
1− e−2(T−t)⟨X0,Z⟩

≲ E∥X0∥2 + (T − t)E∥Z∥2

= R2 + (T − t)d. (F.14)

where the first inequality holds due to the independence of X0 and Z. When T − t ≥ 1, we have:

E∥Yt∥2 ≲ e−2(T−t)E∥X0∥2 + E∥Z∥2

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

= e−2(T−t)R2 + d. (F.15)

Combine (F.14) and (F.15) together, we know that:

E∥Yt∥2 ≲ R2 + min{T − t, 1}d. (F.16)

After computing the second-order moment, using the inequality
(
E∥Yt∥

)2 ≤ E∥Yt∥2, we can bound
the first-order moment as follows:

E∥Yt∥ ≲ R+
√

min{T − t, 1}
√
d. (F.17)

Moreover, we consider the fourth-order moment using similar methods. When T − t < 1, we have
e−(T−t) = Θ(1) and

√
1− e−2(T−t) = O(

√
T − t). Thus we know that:

E∥Yt∥4 ≲ E∥X0∥4 + (T − t)2E∥Z∥4

≲ R4 + (T − t)2d2, (F.18)

where the first inequality holds due to ∥x − y∥4 ≤ (∥x∥ + ∥y∥) ≤ C(∥x∥4 + ∥y∥4) for some
constant C. Same as what we did earlier, when T − t ≥ 1, we have:

E∥Yt∥4 ≲ e−4(T−t)E∥X0∥4 + E∥Z∥4

≲ e−3(T−t)R4 + d2. (F.19)

Putting (F.18) and (F.19) together, we have:

E∥Yt∥4 ≲ R4 + min{T − t, 1}2d2. (F.20)

After computing the fourth-order momentum, using the inequality E∥Yt∥3 ≤
√
E∥Yt∥2 ·

√
E∥Yt∥4,

we know that:

E∥Yt∥3 ≲ R3 + min{T − t, 1}3/2d3/2. (F.21)

Bounding Divergence Discretization Error J4. Let z = F−1
t (x). We start by bounding ∥z− x∥.

We know that

∥z− x∥ = ∥F−1
t (x)− x∥

=
(
et−tk − 1

)∥∥F−1
t (x) + sθ(T − tk, F

−1
t (x))

∥∥
≤ 2(t− tk)

∥∥F−1
t (x) + sθ(T − tk, F

−1
t (x))

∥∥
≤ 2(t− tk)(L+ 1)

∥∥F−1
t (x)

∥∥+ (t− tk)c,

where the first inequality holds due to t−tk < 1. The second inequality holds due to Assumption 5.4.
From (F.4) we know that ∥F−1

t (x)∥ ≤ 2∥x∥+ 1. Hence we have:

∥z− x∥ ≲ (t− tk)(L+ 1)∥x∥+ (t− tk)(L+ c+ 1)

(i)

≲ (t− tk)L(∥x∥+ 1). (F.22)

Using Lemma F.3 and Lemma F.4, we have∣∣∣∣ ∫
Ωt

tr
(
∇2 log q(T − tk, z)−∇2 log q(T − t,x)

)
q(T − t,x)dx

∣∣∣∣
≲

∫
Ωt

(
(t− tk)

(
d

min{T − t, 1}2
+

R2(∥x∥+R)2

min{T − t, 1}4

)
+

R3

min{T − t, 1}3
∥x− z∥

)
q(T − t,x)dx

(i)

≲
∫
Ωt

(
(t− tk)

(
d

min{T − t, 1}2
+

R2(∥x∥+R)2

min{T − t, 1}4

)
+

R3

min{T − t, 1}3
(t− tk)L(∥x∥+ 1)

)
q(T − t,x)dx

≲ (t− tk)
d

min{T − t, 1}2
+ (t− tk)

R2

min{T − t, 1}4
E(∥Yt∥2 +R2)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

+ (t− tk)
R3

min{T − t, 1}3
L · E(∥Yt∥+ 1)

(ii)

≲ (t− tk)
d

min{T − t, 1}2
+ (t− tk)

R4 +R2min{T − t, 1}d
min{T − t, 1}4

+ (t− tk)
LR3

min{T − t, 1}3
(R+

√
T − t

√
d+ 1),

where (i) holds due to (F.22). (ii) holds due to (F.16) and (F.17). Assuming R ≥ 1, we can further
simplify its form:

|J4| ≲ (t− tk)d
R2

min{T − t, 1}3
+ (t− tk)(1 + Lmin{T − t, 1}) R4

min{T − t, 1}4

+ (t− tk)
√
d

LR3

min{T − t, 1}5/2

≲ (t− tk)d
R2

min{T − t, 1}3
+ (t− tk)

LR4

min{T − t, 1}4
+ (t− tk)

√
d

LR3

min{T − t, 1}5/2
.

(F.23)

Bounding Score Discretization Error J3.
According to Lemma F.4, we know that:

∥∇ log q(T − t,x)∥ ≲
∥x∥+R

min{T − t, 1}
,

∥∥∇2 log q(T − t,x)
∥∥
2
≲

1

min{T − t, 1}
+

R2

min{T − t, 1}2
(i)

≲
R2

min{T − t, 1}2
.

Here (i) is because we assumed that R ≥ 1. Using Lemma F.3, we have:∥∥∥∥ ∂

∂t

(
∇ log q(T − t,x)

)∥∥∥∥ ≲
∥x∥+R

min{T − t, 1}2
+

(∥x∥+R)2R2

min{T − t, 1}2
+

(∥x∥+R)3

min{T − t, 1}3

≲
(∥x∥+R)2R2

min{T − t, 1}2
+

(∥x∥+R)3

min{T − t, 1}3
.

Thus we know that:∣∣∣∣∫
Ωt

(
∇ log qT−tk(z)−∇ log qT−t(x)

)
∇ log q(T − t,x)q(T − t,x)dx

∣∣∣∣
≲

∫
Ωt

(t− tk)
((∥x∥+R)2R2

min{T − t, 1}2
+

(∥x∥+R)3

min{T − t, 1}3
) ∥x∥+R

min{T − t, 1}
q(T − t,x)dx

+

∫
Ωt

R2

min{T − t, 1}2
∥x− z∥ ∥x∥+R

min{T − t, 1}
q(T − t,x)dx

≲ (t− tk)
R2

min{T − t, 1}3
E(∥Yt∥+R)3 + (t− tk)

1

min{T − t, 1}4
E(∥Yt∥+R)4

+ (t− tk)

∫
Ωt

R2

min{T − t, 1}2
L(∥x∥+ 1)

∥x∥+R

min{T − t, 1}
q(T − t,x)dx

(i)

≲ (t− tk)
R2

min{T − t, 1}3
(R3 + min{T − t, 1}3/2d3/2)

+ (t− tk)
1

min{T − t, 1}4
(R4 + min{T − t, 1}2d2)

+ (t− tk)
LR2

min{T − t, 1}3
(R2 + min{T − t, 1}d), (F.24)

where we use (F.20) and (F.21) to bound the third and fourth moments of Yt. (i) holds due to:∫
Ωt

(∥x∥+ 1)(∥x∥+R)q(T − t,x)dx ≲ E(∥Yt∥+R)2 ≲ R2 + min{T − t, 1}d.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Reorganizing terms in (F.24), we have:

|J3| ≲ (t− tk)
[R5

min{T − t, 1}3
+ d3/2

R2

min{T − t, 1}3/2
+

R4

min{T − t, 1}4

+ d2
1

min{T − t, 1}2
+

LR4

min{T − t, 1}3
+ d

LR2

min{T − t, 1}2
]
. (F.25)

Putting J3 and J4 Together.
By (F.23) and (F.25), and since we assume R ≥ 1 and L ≥ 1, we have:

|J3|+ |J4| ≲ (t− tk) d
R2

min{T − t, 1}3︸ ︷︷ ︸
C1

+(t− tk)
LR4

min{T − t, 1}4︸ ︷︷ ︸
C2

+(t− tk)
√
d

LR3

min{T − t, 1}5/2︸ ︷︷ ︸
C3

+ (t− tk)
[R5

min{T − t, 1}3︸ ︷︷ ︸
C4

+ d3/2
R2

min{T − t, 1}3/2︸ ︷︷ ︸
C5

+
R4

min{T − t, 1}4︸ ︷︷ ︸
C6

+ d2
1

min{T − t, 1}2︸ ︷︷ ︸
C7

+
LR4

min{T − t, 1}3︸ ︷︷ ︸
C8

+ d
LR2

min{T − t, 1}2︸ ︷︷ ︸
C9

]
(ii)

≲ (t− tk)
[
C1 + C2 + C3 + C4 + C5 + C7 + C9

]
= (t− tk)

[
d2

1

min{T − t, 1}2
+ d3/2

R2

min{T − t, 1}3/2
+ d

(LR2min{T − t, 1}+R2

min{T − t, 1}3
)

+
√
d

LR3

min{T − t, 1}5/2
+

R5min{T − t, 1}+ LR4

min{T − t, 1}4
]
. (F.26)

Here (ii) is because C6 ≤ C2 and C8 ≤ C2.
Combining Everything Together.
Plugging (F.10) (F.11) (F.13) (F.26) back to (F.9), and taking the integral, we can obtain the following
inequality:

TV(ŶT−δ,YT−δ) ≲ TV(πd, qT)

+
∑
k

(tk+1 − tk)

√
EQ tr

(
∇sθ(T − tk,Ytk)−∇2 log q(T − tk,Ytk)

)2

︸ ︷︷ ︸
K1

+
∑
k

(tk+1 − tk)

√
d

min{T − tk+1, 1}

√
EQ

∥∥∥sθ(T − tk,Ytk)−∇ log qT−tk(Ytk)
∥∥∥2︸ ︷︷ ︸

K2

+
∑
k

(tk+1 − tk)
2dL2

︸ ︷︷ ︸
K3

+
∑
k

(tk+1 − tk)
2

[
d2

1

min{T − t, 1}2
+ d3/2

R2

min{T − t, 1}3/2
+ d

(
LR2min{T − t, 1}+R2

min{T − t, 1}3

)
+
√
d

LR3

min{T − t, 1}5/2
+

R5min{T − t, 1}+ LR4

min{T − t, 1}4

]
.

Using Assumption 5.3, we have K1 = ϵdiv. For K2, using the Cauchy-Schwartz inequality, we have

∑
k

(tk+1 − tk)

√
d

min{T − tk+1, 1}

√
EQ

∥∥∥sθ(T − tk,Ytk)−∇ log qT−tk(Ytk)
∥∥∥2

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

≤
√∑

k

(tk+1 − tk)
d

min{T − tk+1, 1}

√∑
k

(tk+1 − tk)EQ

∥∥∥sθ(T − tk,Ytk)−∇ log qT−tk(Ytk)
∥∥∥2

≤
√
ηNdϵscore.

For K3, we know that: ∑
k

(tk+1 − tk)
2dL2 ≤ η2NdL2.

For K4, using our assumption on time schedule tk+1 − tk ≤ η (T − tk+1) , we have:

K4 ≲ η2N
[
d2 + d3/2R2 + LR2d+R2d

1

δ

+ LR3

√
d

δ
+R5 1

δ
+ LR4 1

δ2

]
(ii)

≲ η2N
[
LR4d2 + d3/2R2 + LR2d+R5 1

δ
+ LR4 1

δ2

]
(iii)

≲ η2N
[
LR4d2 +R5 1

δ
+ LR4 1

δ2

]
,

where (ii) holds due to R2d 1
δ ≤ d2 + LR4

δ2 and 2LR3
√

d
δ ≤ LR2d + LR4 1

δ2 . (iii) holds due to

2d3/2R2 ≤ LR4d2 +LR2d and 2LR2d ≤ LR4d2 +LR4 1
δ2 . Putting K1, K2, K3 and K4 together,

we have

TV(ŶT−δ,YT−δ) ≲ TV(qT , πd) + ϵdiv +
√
d
√
ηNϵscore

+ η2N
[
LR4(d2 +

1

δ2
) + L2d+

R5

δ

]
.

This completes the proof of Theorem 5.5.

F.2 PROOF OF LEMMA 5.6 AND COROLLARY 5.7
Proof of Lemma 5.6. By proposition 4 in Benton et al. (2024), we have:

KL(qT ∥πd) ≲ de−2T , for T ≥ 1.

Then by Pinsker’s inequality, we know that:

TV(qT , πd) ≤
√

1

2
KL(qT ∥πd) ≲

√
de−T .

This completes the proof.

Proof of Corollary 5.7. Please refer to Benton et al. (2024)’s Appendix D for a detailed deriva-
tion of the existence of such time schedule. Since we take T = log(d/ϵ2)/2 and
N = LR4Θ

(
d2(T + log(1/δ))2/ϵ

)
, using ϵ ≤ 1/L, we can easily show that η ≤

min{1/(12L2d2), 1/(24L2R2d)}. Hence by Theorem 5.5 and Lemma 5.6, we have:

TV(ŶT−δ,YT−δ) ≲
√
de−T + ϵdiv +

√
d
√

ηNϵscore + η2N
[
LR4

(
d2 +

1

δ2

)
+ L2d+

R5

δ

]
.

Since we take δ = 1/d and assumed that d ≥ R/L+L/R4, we can further simply the bound of TV
to:

TV(ŶT−δ,YT−δ) ≲
√
de−T + ϵdiv +

√
d
√
ηNϵscore + η2NLR4d2.

Since T = log(d/ϵ2)/2 and N = LR4Θ
(
d2(T + log(1/δ))2/ϵ

)
, we know that

√
de−T ≤ ϵ,

η2NLR4d2 =
1

N
(T + log(1/δ))2LR4d2 ≤ ϵ.

Recall that we assume sufficiently small score estimation and divergence error, this completes the
proof of Corollary 5.7

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

G ANALYSIS OF VE+DDIM
In this section, we focus on the case where f(x) = 0 and g(t) = 1, i.e. taking σ(t)2 = t in VE-SDE.
Specifically, the forward process Xt satisfies:

dXt = dWt, X0 ∼ q0, (G.1)

and the true reverse process Yt satisfies:

dYt =
1

2
∇ log qT−t(Yt)dt, Y0 ∼ qT . (G.2)

Then, the forward process has the following closed-form expression:

Yt = XT−t = X0 +
√
T − tZ, Z ∼ N(0, Id). (G.3)

Recall that we interpret DDIM as a numerical scheme, and it provides the following discretized
version of the reverse process:

Ŷtk+1
= Ŷtk + (tk+1 − tk)l

(
1−

√
1− 1

l

)
sθ(T − tk, Ŷtk), l =

T − tk
tk+1 − tk

. (G.4)

Therefore, denoting l(1 −
√
1− 1/l) by cl, we have cl ≤ 1. Then we can define the following

interpolation operator:

Ft(z) = z+ (t− tk)clsθ(T − tk, z), (G.5)

satisfying Ftk+1
(Ŷtk) = Ŷtk+1

. Under Assumption 5.4, we know sθ(t, ·) is Lipschitz. Therefore,
suppose η ≤ 1/L, then we have 1/2 ≤ ∥∇Ft∥ ≤ 3/2. In particular, Ft is invertible.
Moreover, using Assumption 5.4 and F−1

t (x) − x = −(t − tk)cl · sθ
(
T − tk, F

−1
t (x)

)
, when

η ≤ 1
L+c , we have

∥F−1
t (x)− x∥ = (t− tk)cl∥sθ

(
T − tk, F

−1
t (x)

)
∥

≤ (t− tk)L∥F−1
t (x)∥+ (t− tk)c

≤ ∥x∥+ 1. (G.6)

Thus we know that

∥F−1
t (x)∥ ≤ 2∥x∥+ 1. (G.7)

Before we start the proof, we introduce several important lemmas used in our proof. Let c1 =
(1 + d/2)4L2 and c2 = (1 + d/2)(L+ c)2. Using our assumption on η, we know that

η ≤ min
{

1

4c1dT
,
1

c2
,

1

4R2c1

}
. (G.8)

The following two lemmas are related to the ratios pYt
(x)/pFt(Ytk

).

Lemma G.1. Let Yt and Ft(z) be defined in (G.2) and (G.5). Under Assumption 5.4 (Lipschitz
condition on sθ), Assumption 5.1 (bounded support) and suppose the time schedule satisfies (2.6),
assuming η ≤ min{ 1

d ,
1

L+c ,
1

4c1(T−t) ,
1

c1R2 ,
1
c2
}, we have

pYt
(x)

pFt(Ytk
)(x)

≲ e(t−tk)c1∥x∥2+(t−tk)c2 ,

where c1 = (1 + d/2)4L2 and c2 = (1 + d/2)(L+ c)2. Moreover, we have∫
Ωt

(
pYt(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx ≲ 1.

Lemma G.2. Let Yt and Ft(z) be defined in (G.2) and (G.5). Under Assumption 5.4, 5.1 and 2.6,
suppose η ≤ min{ 1

c2
, 1
c1R2 ,

1
2(d+2)c1(T−t)}, where c1 = (1+d/2)4L2 and c2 = (1+d/2)(L+ c)2.

then, we have: ∫
Ωt

∥∥∥∇q(T − t,x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx ≲

d

T − t
.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

The following two lemmas show the upper bound of the derivatives of the true score function of the
VE forward process concerning t and x separately.
Lemma G.3. When Xt is defined as in (G.1), then under Assumption 5.1, we have:∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ ≲
∥x∥+R

t2
+

(∥x∥+R)3

t3
.

Moreover, we have: ∣∣∣∣ ∂∂t(tr
(
∇2 log q(t,x)

))∣∣∣∣ ≲ d

t2
+

R2(∥x∥+R)2

t4
.

Lemma G.4. When Xt is defined as in (G.1), then under Assumption 5.1, we have:

∥∇ log q(t,x)∥ ≲
∥x∥+R

t
,∥∥∇2 log q(t,x)

∥∥
2
≤ 1

t
+

R2

t2
,∥∥∇tr

(
∇2 log q(t,x)

)∥∥ ≤ R3

t3
.

The proofs of the above lemmas can be found in later sections.
G.1 PROOF OF THEOREM 5.9
Proof of Theorem 5.9. From the discussion in Section 5.2, we know that:

Φk(t,x) = clsθ(T − tk,x)−
1

2
∇ log qT−tk(x), (G.9)

Ψk(t,x) = cl∇sθ(T − tk,x)−
1

2
∇2 log qT−tk(x). (G.10)

The interpolation operator can be expressed as:

Ft(x) = x+ cl(t− tk)sθ(T − tk,x), (G.11)

in this specific case. Recall that g(t) = 1 and f
(
T − t,x

)
= 0. Denote F−1

t (x) by z. From (G.11)
we have:

∂

∂t
F (t,x) = clsθ(T − tk,x).

Thus we know that

∇
[∂

∂t
F
](
t, F−1

t (x)
)
= cl∇sθ(T − tk, z). (G.12)

By Theorem 4.3, we know that:

TV(YT−δ, ŶtN) ≤ TV(qT , πd)

+

N−1∑
k=0

∫ tk+1

tk

[√
E
[∥∥Φk(t,Ytk)

∥∥2]√∫ ∥∥∥∇ log q(T − t,x)pYt(x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx︸ ︷︷ ︸

J1: Score estimation error

+

√
E
[
tr
(
Ψk(t,Ytk)

)2]√∫ (pYt(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx︸ ︷︷ ︸

J2: Divergence estimation error

+
1

2

∫ ∣∣(∇ log qT−tk(z)−∇ log qT−t(x)
)
· ∇ log q(T − t,x)

∣∣q(T − t,x)dx︸ ︷︷ ︸
J3: Score discretization error

+
1

2

∫ ∣∣tr(∇2 log q(T − tk, z)−∇2 log q(T − t,x)
)∣∣q(T − t,x)dx︸ ︷︷ ︸

J4: Divergence discretization error

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

+max
x

∣∣∣∣ tr [cl∇sθ(T − tk, z)

](
∇F−1

t (x)− I
)∣∣∣∣︸ ︷︷ ︸

J5: Bias

]
dt. (G.13)

Since we assumed η ≤ min
{
1/(12L2Td2), 1/(24L2R2d)

}
, we can easily verify that η is small

enough to satisfy the condition of Lemma G.1 and Lemma G.2.
Bounding the score Estimation Error J1. For the first square root in J1, we know that:√

E
[∥∥Φk(t,Ytk)

∥∥2] = √
E
[∥∥clsθ(T − tk,Ytk)−

1

2
∇ log qT−tk(Ytk)

∥∥2]
≤

√
E
[[∥∥1

2
sθ(T − tk,Ytk)−

1

2
∇ log qT−tk(Ytk)

∥∥+ (cl −
1

2
)
∥∥sθ(T − tk,Ytk)

∥∥]2]
≲

√
E
[∥∥1

2
sθ(T − tk,Ytk)−

1

2
∇ log qT−tk(Ytk)

∥∥2]+√
E
[
(cl −

1

2
)2
∥∥sθ(T − tk,Ytk)

∥∥2].
(G.14)

Using Assumption 5.4, we have
∥∥sθ(T − tk,Ytk)

∥∥ ≤ L∥Ytk∥+ c. Since Ytk = X0 +
√
T − tkZ,

we have:

E
∥∥Ytk

∥∥2 = E
∥∥X0

∥∥2 + (T − tk)E
∥∥Z∥∥2

≤ R2 + (T − tk)d.

Moreover, recall that we take l = (T − tk)/(tk+1 − tk) ≥ 1/η. We can show that 0 ≤ cl − 1
2 ≤ η.

Hence we have:√
E
[
(cl −

1

2
)2
∥∥sθ(T − tk,Ytk)

∥∥2] ≲ (cl −
1

2
)

√
E
[
L2

∥∥Ytk

∥∥2 + c2
]

≤ η
√

L2R2 + L2(T − tk)d+ c2. (G.15)

For the second term, since our η satisfies the condition of Lemma G.2 we can apply Lemma G.2 and
obtain ∫

Ωt

∥∥∥∇ log q(T − t,x)pYt(x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx ≲

d

T − t
. (G.16)

Combining (G.15), (G.14) and (G.16), we have:

J1 ≲

√
d

T − t

√
E
[∥∥sθ(T − tk,Ytk)−∇ log qT−tk(Ytk)

∥∥2]
+ η

√
d

T − t

√
L2R2 + L2(T − tk)d+ c2. (G.17)

Bounding the Divergence Estimation Error J2. For the first term in J2, we know that:√
E
[
tr
(
cl∇sθ(T − tk,Ytk)−

1

2
∇2 log qT−tk(Ytk)

)2]
≲

√
E
[
tr

(
1

2
∇sθ(T − tk,Ytk)−

1

2
∇2 log qT−tk(Ytk)

)2

+
(
cl −

1

2

)2(
tr∇sθ(T − tk,Ytk)

)2]
≲

√
E
[
tr
(
∇sθ(T − tk,Ytk)−∇2 log qT−tk(Ytk)

)2]
+ (cl −

1

2
)

√
E
[(

tr∇sθ(T − tk,Ytk)
)2]︸ ︷︷ ︸

K1

.

(G.18)

Using Assumption 5.4, we know that ∥∇sθ(T − tk,x)∥2 ≤ L, thus | tr∇sθ(T − tk,x)| ≤ dL.
Same as we did with J1, we have 0 ≤ cl − 1

2 ≤ η. Moreover, K1 can be further bounded by(
cl −

1

2

)√
E
[(

tr∇sθ(T − tk,Ytk)
)2] ≤ ηdL. (G.19)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

For the second term, since our η satisfies the condition of Lemma G.1, we can apply it and obtain∫
Ωt

(pYt
(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx ≲ 1. (G.20)

Combining (G.18), (G.19) and (G.20) together, we have:

J2 ≲

√
EQ tr

(
∇sθ(T − tk,Ytk)−∇2 log q(T − tk,Ytk)

)2

+ ηdL. (G.21)

Bounding the Bias Term J5. We know that:

∇F−1
t (x) =

[
(∇Ft)

(
F−1
t (x)

)]−1

=
[
Id + cl(t− tk)∇sθ

(
T − tk, F

−1
t (x)

)]−1
.

Using Assumption 5.4 and t− tk ≤ η ≤ 1, we have:

∥(∇Ft)
(
F−1
t (x)

)
− Id∥2 ≤ (t− tk)∥cl∇sθ

(
T − tk, F

−1
t (x)∥2

≤ (t− tk)(1 + L).

Here we use cl ≤ 1. Let A = (∇Ft)
(
F−1
t (x)

)
− Id. Then we have ∥A∥2 ≤ (t− tk)(1 +L). Thus

we know that:

∥∇
(
F−1
t (x)

)
− Id∥2 = ∥(Id +A)−1 − Id∥2

(i)
=

∥∥∥∥ ∞∑
n=1

(−1)nAn

∥∥∥∥
2

(ii)

≤
∞∑

n=1

∥A∥n2

(iii)

≤ 2(t− tk)(1 + L),

here (i) holds because of the series expansion for ∥A∥2 < 1. (ii) holds due to the Cauchy-Schwarz
inequality. (iii) holds due to our assumption η ≤ 1/2(1 + L). Then we know that:

J5 = max

∣∣∣∣tr(cl∇sθ(T − tk, z)
(
∇
(
F−1
t (x)

)
− Id

))∣∣∣∣
(i)

≤ dmax ∥∇sθ(T − tk, z)
(
∇
(
F−1
t (x)

)
− Id

)
∥2

≤ dmax ∥∇sθ(T − tk, z)∥2∥∇
(
F−1
t (x)

)
− Id∥2

≤ dL(t− tk)2(1 + L),

here (i) holds due to tr(A) ≤ d∥A∥2 and cl ≤ 1. Thus we have:

|J5| ≲ (t− tk)dL
2. (G.22)

Estimating z− x. By Assumption 5.4, we have:

∥z− x∥ = ∥F−1
t (x)− x∥

= (t− tk)
∥∥sθ(T − tk, F

−1
t (x))

∥∥
≤ (t− tk)L

∥∥F−1
t (x)

∥∥+ (t− tk)c.

Since we assume that t− tk ≤ η ≤ min{ 1
4L ,

1
4c}. From (G.7) we know that ∥F−1

t (x)∥ ≤ 2∥x∥+1.
Hence we have:

∥z− x∥ ≲ (t− tk)L(2∥x∥+ 1) + (t− tk)c

(i)

≲ (t− tk)L(∥x∥+ 1). (G.23)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Bounding the Moments of Yt.
Before we start estimating J3 and J4, we do some preparation work. Our goal is to estimate the
moments of Yt. Since we have Yt = XT−t = X0 +

√
T − tZ, here Z ∼ N(0, Id). We have

E∥Yt∥2 = E∥X0∥2 + (T − t)E∥Z∥2

≤ R2 + (T − t)d. (G.24)

After computing the second order momentum, by the inequality
(
E∥Yt∥

)2 ≤ E∥Yt∥2, we know
that:

E∥Yt∥ ≲ R+
√
T − t

√
d. (G.25)

Moreover, we consider the fourth order momentum as we will need to estimate it later: we have

E∥Yt∥4 ≲ E∥X0∥4 + (T − t)2E∥Z∥4

≲ R4 + (T − t)2d2. (G.26)

After computing the foruth order momentum, by the inequality E∥Yt∥3 ≤
√
E∥Yt∥2 ·

√
E∥Yt∥4,

we know that:

E∥Yt∥3 ≲ R3 + (T − t)3/2d3/2. (G.27)

Bounding Divergence Discretization Error J4.
Using Lemma G.3 and Lemma G.4, we know that∣∣∣∣ ∂∂t(tr

(
∇2 log q(T − t,x)

))∣∣∣∣ ≲ d

(T − t)2
+

R2(∥x∥+R)2

(T − t)4
,

∥∥∇tr
(
∇2 log q(t,x)

)∥∥ ≤ R3

(T − t)3
.

Thus we know that:∣∣∣∣∫
Ωt

tr
(
∇2 log q(T − tk, z)−∇2 log q(T − t,x)

)
q(T − t,x)dx

∣∣∣∣
≲

∫
Ωt

(
(t− tk)

(d

(T − t)2
+

R2(∥x∥+R)2

(T − t)4
)
+

R3

(T − t)3
∥x− z∥

)
q(T − t,x)dx

(i)

≲
∫
Ωt

(
(t− tk)

(d

(T − t)2
+

R2(∥x∥+R)2

(T − t)4
)
+

R3

(T − t)3
(t− tk)L(∥x∥+ 1)

)
q(T − t,x)dx

≲ (t− tk)
d

(T − t)2
+ (t− tk)

R2

(T − t)4
E(∥Yt∥2 +R2) + (t− tk)

R3

(T − t)3
L · E(∥Yt∥+ 1)

(ii)

≲ (t− tk)
d

(T − t)2
+ (t− tk)

R4 +R2(T − t)d

(T − t)4
+ (t− tk)

LR3

(T − t)3
(R+

√
T − t

√
d+ 1).

Here (i) is due to (G.23) and (ii) is due to (G.24) and (G.25). Assuming R ≥ 1, we can further
simplify its form:

|J4| ≲ (t− tk)
[
d

1

(T − t)2
+ d

R2

(T − t)3
+ (1 + L(T − t))

R4

(T − t)4
+

√
d

LR3

(T − t)5/2

]
. (G.28)

Bounding the Score Discretization Error J3.
Using Lemma G.4, we know that:

∥∇ log q(t,x)∥ ≲
∥x∥+R

t
,∥∥∇2 log q(t,x)

∥∥
2
≤ 1

t
+

R2

t2
.

Moreover, by Lemma G.3, we have:∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ ≲
∥x∥+R

t2
+

(∥x∥+R)3

t3
.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Thus we know that:∣∣∣∣∫
Ωt

(
∇ log qT−tk(z)−∇ log qT−t(x)

)
∇ log q(T − t,x)q(T − t,x)dx

∣∣∣∣
≲

∫
Ωt

(t− tk)
(∥x∥+R

(T − t)2
+

(∥x∥+R)3

(T − t)3

)∥x∥+R

T − t
q(T − t,x)dx

+

∫
Ωt

(1

T − t
+

R2

(T − t)2
)
∥x− z∥∥x∥+R

T − t
q(T − t,x)dx

≲ (t− tk)
1

(T − t)3
E(∥Yt∥+R)2 + (t− tk)

1

(T − t)4
E(∥Yt∥+R)4

+ (t− tk)

∫
Ωt

(1

T − t
+

R2

(T − t)2
)
L(∥x∥+ 1)

∥x∥+R

T − t
q(T − t,x)dx

(i)

≲ (t− tk)
1

(T − t)3
(R2 + (T − t)d) + (t− tk)

1

(T − t)4
(R4 + (T − t)2d2)

+ (t− tk)
L

(T − t)2
(R2 + (T − t)d) + (t− tk)

LR2

(T − t)3
(R2 + (T − t)d). (G.29)

Here we use (G.26) and (G.24) to bound the second and fourth momentum of Yt, and (i) is due to:∫
Ωt

(∥x∥+ 1)(∥x∥+R)q(T − t,x)dx ≲ E(∥Yt∥+R)2 ≲ R2 + (T − t)d.

Reorganizing terms in (G.29), since we assume that L ≥ 1 and R ≥ 1, we have:

|J3| ≲ (t− tk)
[
d2

1

(T − t)2
+ d

1

(T − t)2
+ d

LR2

(T − t)2
+ d

L

T − t

+
R4

(T − t)4
+

R2

(T − t)3
+

LR2

(T − t)2
+

LR4

(T − t)3

]
≲ (t− tk)

[
d2

1

(T − t)2
+ d

LR2

(T − t)2
+ d

L

T − t
+

R4

(T − t)4
+

LR4

(T − t)3
+

LR2

(T − t)2

]
.

(G.30)

Putting J3 and J4 Together.
Combining (G.30) and (G.28) together, we have

|J3|+ |J4| ≲ (t− tk)
[
d2

1

(T − t)2︸ ︷︷ ︸
C1

+ d
LR2

(T − t)2︸ ︷︷ ︸
C2

+ d
L

T − t︸ ︷︷ ︸
C3

+
R4

(T − t)4︸ ︷︷ ︸
C4

+
LR4

(T − t)3︸ ︷︷ ︸
C5

+
LR2

(T − t)2︸ ︷︷ ︸
C6

]

+ (t− tk)
[
d

1

(T − t)2︸ ︷︷ ︸
C7

+ d
R2

(T − t)3︸ ︷︷ ︸
C8

+(1 + L(T − t))
R4

(T − t)4︸ ︷︷ ︸
C9

+
√
d

LR3

(T − t)5/2︸ ︷︷ ︸
C10

]
(i)

≲ (t− tk)
[
C1 + C2 + C3 + C4 + C5 + C8 + C10

]
= (t− tk)

[
d2

1

(T − t)2
+ d

LR2

(T − t)2
+ d

L

T − t
+

R4

(T − t)4

+
LR4

(T − t)3
+ d

R2

(T − t)3
+

√
d

LR3

(T − t)5/2

]
, (G.31)

where (i) is due to C7 ≤ C2, C9 = C4 + C5, C6 ≤ C2.
Combining Everything Together.
Plugging (G.17), (G.21), (G.22) and (G.31) into (G.13), and taking the integral, we can obtain the
following inequality

TV(ŶT−δ,YT−δ) ≲ TV(πd, qT)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

+
∑
k

(tk+1 − tk)

√
EQ tr

(
∇sθ(T − tk,Ytk)−∇2 log q(T − tk,Ytk)

)2

︸ ︷︷ ︸
R1

+
∑
k

(tk+1 − tk)ηdL︸ ︷︷ ︸
R2

+
∑
k

(tk+1 − tk)

√
d

T − tk+1

√
EQ

∥∥∥sθ(T − tk,Ytk)−∇ log qT−tk(Ytk)
∥∥∥2︸ ︷︷ ︸

R3

+
∑
k

(tk+1 − tk)

√
d

T − tk+1
η
√
L2R2 + L2(T − tk)d+ c2︸ ︷︷ ︸

R4

+
∑
k

(tk+1 − tk)
2dL2

︸ ︷︷ ︸
R5

+
∑
k

(tk+1 − tk)
2
[
d2

1

(T − t)2
+ d

LR2

(T − t)2
+ d

L

T − t
+

R4

(T − t)4

+
LR4

(T − t)3
+ d

R2

(T − t)3
+

√
d

LR3

(T − t)5/2

]
.

We further denote the last term by R6. We know that R1 is ϵdiv. For R3, by Cauchy-Shwartz
inequality, we have:

R3 ≤
√∑

k

(tk+1 − tk)
d

T − tk+1

√∑
k

(tk+1 − tk)EQ

∥∥∥sθ(T − tk,Ytk)−∇ log qT−tk(Ytk)
∥∥∥2

≤
√
ηNd · ϵscore.

Since we assume L ≥ 1, for R2 +R5, we have∑
k

(tk+1 − tk)ηdL+
∑
k

(tk+1 − tk)
2dL2 ≲ η2NdL2.

For the R4, we have∑
k

(tk+1 − tk)

√
d

T − tk+1
η
√
L2R2 + L2(T − tk)d+ c2

(i)

≲ η
∑
k

(tk+1 − tk)
[√ d

T − tk+1

√
L2R2 +

√
L2(T − tk)d

]
(ii)

≲ η
∑
k

η
√
dLR+ (t− tk)Ld

≤ η2N(
√
dLR+ Ld),

here we omit c in (i), and (ii) is because T−tk
T−tk+1

≤ 1 + η ≤ 2. Hence we know that

R2 +R4 +R5 ≲ η2N
[
L2d+ LR

√
d
]
.

Finally, for the R6, we know that:

R6 ≤ η2N
[
d2 + LR2d+ Ld+

R4

δ2
+

LR4

δ
+

R2

δ
d+ LR3

√
d

δ

]
35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

≲ η2N
[
d2 + LR2d+

R2

δ
d+ LR3

√
d

δ
+

R4

δ2
+

LR4

δ

]
.

Putting together, we know that

TV(ŶT−δ,YT−δ) ≲ TV(πd, qT) + ϵdiv +
√

ηNd · ϵscore

+ η2N
[
d2 + LR2d+ L2d+

R2

δ
d+ LR3

√
d

δ
+

R4

δ2
+

LR4

δ

]
(iii)

≲ TV(πd, qT) + ϵdiv +
√
ηNd · ϵscore + η2N

[
LR4d2 + L2d+

LR4

δ2

]
,

here (iii) is due to 2LR2d ≤ LR4d2+ LR4

δ2 , 2R2

δ d ≤ LR4d2+ LR4

δ2 and LR3
√

d
δ ≤ LR4d2+ LR4

δ2

(and δ < 1 as well as R ≥ 1 and L ≥ 1). This completes the proof of Theorem 5.9.

G.2 PROOF OF LEMMA 5.10 AND COROLLARY 5.11
Proof of Lemma 5.10. Since qt|0(xt|x0) = N (xt;x0, tId), we have

KL(qt|0(·|x0)∥N(0, T Id)) =
∥x0∥2

2T
. (G.32)

By the convexity of the KL divergence,

KL(qT ∥N(0, T Id)) = KL
(∫

Rd

qT |0(·|x0)q0(dx0)∥N(0, T Id)

)
≤

∫
Rd

KL(qT |0(·|x0)∥πd)q0(dx0)

=
1

2T
Eq0

[
∥X0∥2

]
=

d

2T
. (G.33)

where we have used that Eq0 [∥X0∥2] = d, since Cov(q0) = Id. Applying Pinsker’s inequality
to (G.33), we have:

TV
(
X0 +N(0, T Id), N(0, T Id)

)
≤

√
d√
2T

. (G.34)

This completes the proof of Lemma 5.10.

Proof of Corollary 5.11. Please refer to Benton et al. (2024)’s Appendix D for a detailed
derivation of the existence of such time schedule. Since we take T = d/ϵ2 and
N = LR4Θ

(
d2(T + log(1/δ))2/ϵ

)
, using ϵ ≤ 1/L, we can easily show that η ≤

min{1/(12L2Td2), 1/(24L2R2d)}. Hence by Theorem 5.5 and Lemma 5.6, we have:

TV(ŶT−δ,YT−δ) ≲

√
d√
T

+ ϵdiv +
√
d
√

ηNϵscore + η2N
[
LR4d2 + L2d+ LR4 1

δ2

]
.

Since we take δ = 1/d and assume that d ≥ L/R4, we can further simply the bound of TV to:

TV(ŶT−δ,YT−δ) ≲

√
d√
T

+ ϵdiv +
√
d
√
ηNϵscore + η2NLR4d2.

Since T = d/ϵ2 and N = LR4Θ
(
d2(T + log(1/δ))2/ϵ

)
, we know that

√
d√
T

≤ ϵ,

ηNLR4d2 =
1

N
(T + log(1/δ))2LR4d2 ≤ ϵ.

Recall that we assume sufficiently small score estimation and divergence error, this completes the
proof of Corollary 5.11.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

H LIPSCHITZNESS OF SCORE FUNCTIONS

In this section, we consider the forward process by gradually adding noise to data distribution, i.e.,

Xt = f(t)Xdata + g(t)Z, (H.1)

where Z ∼ N (0, I) is a standard normal random variable independent of Xdata, and f(t) and g(t)
are scaling functions determined by the forward process that modulate the influence of the data
and noise over time. Both VE and VP forward processes can be represented in this form. The
distribution of Xt is denoted by q(t,x). We will show the Lipschitzness property of ∇ log q(t,x)
under Assumption 5.1.
H.1 GENERAL RESULTS

The following lemma regards the upper bound of the derivatives concerning x.
Lemma H.1. Suppose Assumption 5.1 holds. Let Xt be the forward process defined in (H.1), and
its distribution is denoted by q(t,x). We have the following inequalities:

∥∇ log q(t,x)∥ ≤ ∥x∥+ f(t)R

g(t)2
,

∥∥∇2 log q(t,x)
∥∥
2
≤ 1

g(t)2

(
1 +

f(t)2

g(t)2
2R2

)
,

∥∥∇tr
(
∇2 log q(t,x)

)∥∥ ≤ 6f(t)3

g(t)6
R3.

Proof of Lemma H.1. We prove the lemma by gradually computing the higher-order derivatives of
the score function step by step. A key point in our proof is that we bringing the terms involving x
outside of the integral and canceling them, resulting in an expression where x only appears in the
function’s evaluation. Firstly, we derive the form of our score function ∇ ln q(t,x).
Expression of the Score Function.
To start with, using the expression of the forward process Xt in (H.1), we represent q(t,x) as the
convolution of the data distribution and Gaussian distribution. Specifically, we have:

q(t,x) =

∫
Rd

pf(t)X0
(y)pg(t)Z(x− y)dy

=

∫
Rd

1

f(t)
pX0

(y

f(t)

)
pg(t)Z(x− y)dy

=

∫
Rd

pX0(y)pg(t)Z
(
x− f(t)y

)
dy

=

∫
Rd

q0(y)pZ

(x− f(t)y

g(t)

) 1

g(t)
dy

=

∫
Rd

q0(y)ϕ
(x− f(t)y

g(t)

) 1

g(t)
dy, (H.2)

where we represent the probability density function of standard Gaussian distribution as ϕ(x) =

(e−∥x∥2/2)/(
√
2π)d. Besides, in the second and fourth equations, we use the change of variable

formula of the density function, i.e., paX(x) = pX(x/a)/a, where X is a random variable and a is
a constant. By directly taking the gradient, we have the following property of ϕ(·):

∇ϕ(x) = −ϕ(x)x.

Moreover, by the chain rule, we can calculate the gradient with respect to x:

∇x

[
ϕ
(x− f(t)y

g(t)

)]
= − 1

g(t)

[
ϕ
(x− f(t)y

g(t)

)x− f(t)y

g(t)

]
= −x− f(t)y

g(t)2
ϕ
(x− f(t)y

g(t)

)
. (H.3)

Thus, we can express the score function as follows:

∇ log q(t,x) =
∇q(t,x)

q(t,x)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

(i)
=

∇
∫
Rd pdata(y)ϕ

(x−f(t)y
g(t)

)
1

g(t)dy∫
Rd pdata(y)ϕ

(x−f(t)y
g(t)

)
1

g(t)dy

=

∫
Rd pdata(y)∇x

[
ϕ
(x−f(t)y

g(t)

)]
dy∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy

(ii)
=

∫
Rd pdata(y)

(
− x−f(t)y

g(t)2

)
ϕ
(x−f(t)y

g(t)

)
dy∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy

= − 1

g(t)2

∫
Rd pdata(y)

(
x− f(t)y

)
ϕ
(x−f(t)y

g(t)

)
dy∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy

, (H.4)

where (i) holds due to (H.2), and (ii) holds due to (H.3).
Under Assumption 5.1, we have pdata(y) = 0 for ∥y∥ > R. Thus, we have

∥∇ log q(t,x)∥ =
1

g(t)2

∥∥ ∫
Rd pdata(y)

(
x− f(t)y

)
ϕ
(x−f(t)y

g(t)

)
dy

∥∥∫
Rd pdata(y)ϕ

(x−f(t)y
g(t)

)
dy

≤ 1

g(t)2

∫
Rd pdata(y)∥x− f(t)y∥ϕ

(x−f(t)y
g(t)

)
dy∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy

≤ 1

g(t)2

∫
Rd pdata(y)

(
∥x∥+ f(t)∥y∥

)
ϕ
(x−f(t)y

g(t)

)
dy∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy

≤ ∥x∥+ f(t)R

g(t)2
.

This shows that, under Assumption 5.1, the norm of the score function can be bounded by a linear
function.
First-order Derivative of the Score Function.
We proceed by computing the Jacobian matrix of ∇ log q(t,x). Directly calculating the gradient
of (H.6), we have

∇2 log q(t,x) = ∇
[
− 1

g(t)2

∫
Rd pdata(y)(x− f(t)y)ϕ

(x−f(t)y
g(t)

)
dy∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy

]

= − 1

g(t)2
1

Φ(x)2

[
∇
(∫

Rd

pdata(y)(x− f(t)y)ϕ
(x− f(t)y

g(t)

)
dy

)
︸ ︷︷ ︸

I1

Φ(x)

−
∫
Rd

pdata(y)(x− f(t)y)ϕ
(x− f(t)y

g(t)

)
dy

(
∇

∫
Rd

pdata(y)ϕ
(x− f(t)y

g(t)

)
dy

)⊤

︸ ︷︷ ︸
I2

]
,

(H.5)

where we use the shorthand expression Φ(x) =
∫
Rd pdata(y)ϕ

(x−f(t)y
g(t)

)
dy, and the last equation

holds due to the gradient formula of vector-valued functions, i.e., ∇ f(x)
g(x) = ∇f(x)

g(x) − f(x)∇g(x)⊤

g(x)2 .
Firstly, we compute I1:

I1 = ∇
(∫

Rd

pdata(y)(x− f(t)y)ϕ
(x− f(t)y

g(t)

)
dy

)
=

∫
Rd

pdata(y)

(
ϕ
(x− f(t)y

g(t)

)
I+ (x− f(t)y)∇x

[
ϕ
(x− f(t)y

g(t)

)]⊤)
dy

(i)
=

∫
Rd

pdata(y)

(
ϕI+ (x− f(t)y)

(
− ϕ

x− f(t)y

g(t)2

)⊤
)
dy

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

=

∫
Rd

pdata(y)

(
I− (x− f(t)y)(x− f(t)y)⊤

g(t)2

)
ϕdy

=

∫
Rd

pdata(y)ϕdy · I− xx⊤

g(t)2

∫
Rd

pdata(y)ϕdy︸ ︷︷ ︸
I1,1

+
f(t)

g(t)2
x

∫
Rd

pdata(y)y
⊤ϕdy︸ ︷︷ ︸

I1,2

+
f(t)

g(t)2

(∫
Rd

pdata(y)yϕdy

)
x⊤︸ ︷︷ ︸

I1,3

−f(t)2

g(t)2

∫
Rd

pdata(y)yy
⊤ϕdy, (H.6)

where we use the shorthand expression ϕ = ϕ
(x−f(t)y

g(t)

)
and (i) holds due to (H.3).

Next, we compute I2:

I2 =

[∫
Rd

pdata(y)(x− f(t)y)ϕ
(x− f(t)y

g(t)

)
dy

][
∇

∫
Rd

pdata(y)ϕ
(x− f(t)y

g(t)

)
dy

]⊤
=

[∫
Rd

pdata(y)(x− f(t)y)ϕ
(x− f(t)y

g(t)

)
dy

][∫
Rd

pdata(y)
(
− x− f(t)y

g(t)2

)
ϕ
(x− f(t)y

g(t)

)
dy

]⊤
= − 1

g(t)2

[∫
Rd

pdata(y)
(
x− f(t)y

)
ϕdy

][∫
Rd

pdata(y)
(
x− f(t)y

)⊤
ϕdy

]
= − xx⊤

g(t)2

∫
Rd

pdata(y)ϕdy︸ ︷︷ ︸
I2,1

·
∫
Rd

pdata(y)ϕdy +
f(t)

g(t)2
x

∫
Rd

pdata(y)y
⊤ϕdy︸ ︷︷ ︸

I2,2

·
∫
Rd

pdata(y)ϕdy

+
f(t)

g(t)2

(∫
Rd

pdata(y)yϕdy

)
x⊤︸ ︷︷ ︸

I2,3

∫
Rd

pdata(y)ϕdy − f(t)2

g(t)2

∫
Rd

pdata(y)yϕdy

∫
Rd

pdata(y)y
⊤ϕdy,

(H.7)
where the second inequality holds due to (H.3), the third inequality holds due to the short-
hand expression ϕ = ϕ

(x−f(t)y
g(t)

)
. Substituting (H.6) and (H.7) into (H.5), notice that Φ(x) =∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy, I1,1 = I2,1, I1,2 = I2,2 and I1,3 = I2,3. Thus, we have the following

equation:

∇2 log q(t,x) = − 1

g(t)2

[
I− f(t)2

g(t)2

(∫
Rd pdata(y)yy

⊤ϕdy∫
Rd pdata(y)ϕdy

−
[∫

Rd pdata(y)yϕdy
][∫

Rd pdata(y)y
⊤ϕdy

](∫
Rd pdata(y)ϕdy

)2)]
. (H.8)

Using Assumption 5.1, when pdata(y) ̸= 0, we have ∥yy⊤∥2 = ∥y∥2 ≤ R2. Moreover, we have∥∥∥∥ ∫
Rd

pdata(y)yϕdy ·
∫
Rd

pdata(y)y
⊤ϕdy

∥∥∥∥
2

=

∥∥∥∥∫
Rd

pdata(y)yϕdy

∥∥∥∥2
≤

(∫
Rd

pdata(y)∥y∥ϕdy
)2

≤ R2

(∫
Rd

pdata(y)ϕdy

)2

.

Substituting into (H.8), we have∥∥∇2 log q(t,x)
∥∥
2
≤ 1

g(t)2

(
1 +

f(t)2

g(t)2
2R2

)
.

This implies that ∇ log q(t,x) is Lipschitz.
Derivatives of the Divergence of the Score Function.
Next, we consider the divergence of the score function, i.e.,

∇ · [∇ log q(t,x)] = tr
(
∇2 log q(t,x)

)
.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

To start with, using (H.8), we have:

tr
(
∇2 log q(t,x)

)
= − d

g(t)2
+

f(t)2

g(t)4

(∫
Rd pdata(y)∥y∥2ϕdy∫

Rd pdata(y)ϕdy
−

∥
∫
Rd pdata(y)yϕdy∥2(∫
Rd pdata(y)ϕdy

)2)
, (H.9)

where we use the fact tr(xx⊤) = ∥x∥2. Directly computing the gradient, we have

∇tr
(
∇2 log q(t,x)

)
=

f(t)2

g(t)4

[
∇
∫
Rd pdata(y)∥y∥2ϕdy∫

Rd pdata(y)ϕdy︸ ︷︷ ︸
J1

−∇
∥
∫
Rd pdata(y)yϕdy∥2(∫
Rd pdata(y)ϕdy

)2︸ ︷︷ ︸
J2

]
.

Firstly, for J1, we have

J1 =
∇
∫
Rd pdata(y)∥y∥2ϕdy ·

∫
Rd pdata(y)ϕdy −∇

∫
Rd pdata(y)ϕdy ·

∫
Rd pdata(y)∥y∥2ϕdy(∫

Rd pdata(y)ϕdy
)2 .

(H.10)

We calculate the two gradients separately. First, we have

∇
∫
Rd

pdata(y)∥y∥2ϕdy =

∫
Rd

pdata(y)∥y∥2∇ϕdy

=

∫
Rd

pdata(y)∥y∥2
(
− x− f(t)y

g(t)2

)
ϕdy

= − x

g(t)2

∫
Rd

pdata(y)∥y∥2ϕdy +
f(t)

g(t)2

∫
Rd

pdata(y)∥y∥2yϕdy,

(H.11)

where the second equality holds due to (H.3). Next, we have

∇
∫
Rd

pdata(y)ϕdy =

∫
Rd

pdata(y)∇ϕdy

=

∫
Rd

pdata(y)
(
− x− f(t)y

g(t)2

)
ϕdy

= − x

g(t)2

∫
Rd

pdata(y)ϕdy +
f(t)

g(t)2

∫
Rd

pdata(y)yϕdy. (H.12)

Substituting (H.11) and (H.12) into (H.10), we have

J1 =

(
− x

g(t)2

∫
Rd pdata(y)∥y∥2ϕdy + f(t)

g(t)2

∫
Rd pdata(y)∥y∥2yϕdy

)
·
∫
Rd pdata(y)ϕdy(∫

Rd pdata(y)ϕdy
)2

−

(
− x

g(t)2

∫
Rd pdata(y)ϕdy + f(t)

g(t)2

∫
Rd pdata(y)yϕdy

)
·
∫
Rd pdata(y)∥y∥2ϕdy(∫

Rd pdata(y)ϕdy
)2

=
f(t)

g(t)2

(∫
Rd pdata(y)∥y∥2yϕdy∫

Rd pdata(y)ϕdy
−

∫
Rd pdata(y)yϕdy

∫
Rd pdata(y)∥y∥2ϕdy(∫

Rd pdata(y)ϕdy
)2)

.

Next, for J2, we have:

J2 =
∇∥

∫
Rd pdata(y)yϕdy∥2 ·

(∫
Rd pdata(y)ϕdy

)2 −∇
(∫

Rd pdata(y)ϕdy
)2 · ∥ ∫Rd pdata(y)yϕdy∥2(∫

Rd pdata(y)ϕdy
)4 .

(H.13)

Again, we calculate the two gradients as follows. First, we have:

∇
∥∥∥∥∫

Rd

pdata(y)yϕdy

∥∥∥∥2 = ∇
d∑

i=1

(∫
Rd

pdata(y)yiϕdy

)2

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

=

d∑
i=1

2

∫
Rd

pdata(y)yiϕdy ·
∫
Rd

pdata(y)yi∇ϕdy

(i)
=

d∑
i=1

2

∫
Rd

pdata(y)yiϕdy ·
∫
Rd

pdata(y)yi

(
− x− f(t)y

g(t)2

)
ϕdy

= − 2x

g(t)2

d∑
i=1

(∫
Rd

pdata(y)yiϕdy

)2

+
2f(t)

g(t)2

d∑
i=1

∫
Rd

pdata(y)yiϕdy

∫
Rd

pdata(y)yiyϕdy

(ii)
= − 2x

g(t)2

∥∥∥∥∫
Rd

pdata(y)yϕdy

∥∥∥∥2 + 2f(t)

g(t)2

∫
Rd

pdata(y)yy
⊤ϕdy ·

∫
Rd

pdata(y)yϕdy, (H.14)

where (i) holds due to (H.3), and (ii) holds due to the coordinate expression of matrix multiplication.
Moreover, we have

∇
(∫

Rd

pdata(y)ϕdy

)2

= 2

∫
Rd

pdata(y)ϕdy · ∇
∫
Rd

pdata(y)ϕdy

(i)
= 2

∫
Rd

pdata(y)ϕdy ·
(
− x

g(t)2

∫
Rd

pdata(y)ϕdy +
f(t)

g(t)2

∫
Rd

pdata(y)yϕdy

)
= − 2x

g(t)2

(∫
Rd

pdata(y)ϕdy

)2

+
2f(t)

g(t)2

∫
Rd

pdata(y)ϕdy ·
∫
Rd

pdata(y)yϕdy,

(H.15)

where (i) holds due to (H.12). Substituting (H.14) and (H.15) into (H.13), we have

J2 =

(
− 2x

g(t)2 ∥
∫
Rd pdata(y)yϕdy∥2 + 2f(t)

g(t)2

∫
Rd pdata(y)yy

⊤ϕdy
∫
Rd pdata(y)yϕdy

)(∫
Rd pdata(y)ϕdy

)2(∫
Rd pdata(y)ϕdy

)4
−

(
− 2x

g(t)2

(∫
Rd pdata(y)ϕdy

)2
+ 2f(t)

g(t)2

∫
Rd pdata(y)ϕdy

∫
Rd pdata(y)yϕdy

)
· ∥

∫
Rd pdata(y)yϕdy∥2(∫

Rd pdata(y)ϕdy
)4

=
2f(t)

g(t)2

(∫
Rd pdata(y)yy

⊤ϕdy
∫
Rd pdata(y)yϕdy(∫

Rd pdata(y)ϕdy
)2 +

∫
Rd pdata(y)yϕdy · ∥

∫
Rd pdata(y)yϕdy∥2(∫

Rd pdata(y)ϕdy
)3)

.

We can conclude with

∥J1∥ ≤ f(t)

g(t)2

(∫
Rd pdata(y)∥y∥2∥y∥ϕdy∫

Rd pdata(y)ϕdy
−

∫
Rd pdata(y)∥y∥ϕdy

∫
Rd pdata(y)∥y∥2ϕdy(∫

Rd pdata(y)ϕdy
)2)

≤ f(t)

g(t)2

(
R3 +R ·R2

)
=

2f(t)

g(t)2
R3.

Moreover, we have

∥J2∥ ≤ 2f(t)

g(t)2

(∥
∫
Rd pdata(y)yy

⊤ϕdy∥2∥
∫
Rd pdata(y)yϕdy∥(∫

Rd pdata(y)ϕdy
)2

+

∫
Rd pdata(y)∥y∥ϕdy · ∥

∫
Rd pdata(y)yϕdy∥2(∫

Rd pdata(y)ϕdy
)3)

≤ 2f(t)

g(t)2

(∫
Rd pdata(y)∥yy⊤∥2ϕdy

∫
Rd pdata(y)∥y∥ϕdy(∫

Rd pdata(y)ϕdy
)2

+

∫
Rd pdata(y)∥y∥ϕdy ·

(∫
Rd pdata(y)∥y∥ϕdy

)2(∫
Rd pdata(y)ϕdy

)3)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

(i)
=

2f(t)

g(t)2

(∫
Rd pdata(y)∥y∥2ϕdy

∫
Rd pdata(y)∥y∥ϕdy(∫

Rd pdata(y)ϕdy
)2

+

∫
Rd pdata(y)∥y∥ϕdy ·

(∫
Rd pdata(y)∥y∥ϕdy

)2(∫
Rd pdata(y)ϕdy

)3)
(i)

≤ 2f(t)

g(t)2

(
R2 ·R+R ·R2

)
=

4f(t)

g(t)2
R3,

where (i) holds due to the fact ∥yy⊤∥2 = ∥y∥2 for any y ∈ Rd, and (ii) holds due to Assump-
tion 5.1. Putting everything together, we know that∥∥∇tr

(
∇2 log q(t,x)

)∥∥ ≤ 6f(t)3

g(t)6
R3.

This completes the proof of Lemma H.1.

The following lemma considers the upper bounds for the time-derivative of our score function. We
use similar techniques to as we obtain in the proof of Lemma H.1.
Lemma H.2. Suppose Assumption 5.1 holds. Let Xt be the forward process defined in (H.1), and
its distribution is denoted by q(t,x). Then we have:∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ ≤ 2g′(t)

g(t)3

(
∥x∥+ |f(t)|R

)
+

|f ′(t)|R
g(t)2

+
2g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)2
+ 2|g′(t)| ·

(
∥x∥+ f(t)R

)3
g(t)5

,

∣∣∣∣ ∂∂t(tr
(
∇2 log q(t,x)

))∣∣∣∣ ≤ 2d · |g′(t)|
g(t)3

+
4f(t) ·

∣∣f ′(t)g(t)− 2f(t)g′(t)
∣∣

g(t)5
R2

+ 6R2 f(t)
2

g(t)4

(
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

)
.

Proof of Lemma H.2. To start with, we first compute the time-derivative of ϕ(x−f(t)y
g(t)). Using the

chain rule, we have

∂

∂t
ϕ
(x− f(t)y

g(t)

)
=

∂

∂t

(
1

(
√
2π)d

e−

∥∥ x−f(t)y
g(t)

∥∥2

2

)

=
1

(
√
2π)d

e−

∥∥ x−f(t)y
g(t)

∥∥2

2

(
− 1

2

) ∂

∂t

∥∥∥x− f(t)y

g(t)

∥∥∥2. (H.16)

Since we know that:
∂

∂t

∥∥∥x− f(t)y

g(t)

∥∥∥2 =
∂

∂t

∥x∥2 − 2f(t)x⊤y + f(t)2∥y∥2

g(t)2

=

(
− 2f ′(t)x⊤y + 2f(t)f ′(t)∥y∥2

)
g(t)2 − 2∥x− f(t)y∥2g(t)g′(t)

g(t)4

= − 2

g(t)3

(
g(t)f ′(t)

(
x⊤y − f(t)∥y∥2

)
+ g′(t)∥x− f(t)y∥2

)
. (H.17)

Substituting (H.17) into (H.16), and recall our shorthand expression ϕ = ϕ(x−f(t)y
g(t)), we know that:

∂

∂t
ϕ =

g(t)f ′(t)
(
x⊤y − f(t)∥y∥2

)
+ g′(t)∥x− f(t)y∥2

g(t)3
ϕ. (H.18)

Therefore, assuming ∥y∥ ≤ R, we have∣∣∣ ∂
∂t

ϕ
∣∣∣ = ∣∣∣∣g(t)f ′(t)

(
x⊤y − f(t)∥y∥2

)
+ g′(t)∥x− f(t)y∥2

g(t)3

∣∣∣∣ϕ
42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

≤
g(t)|f ′(t)| ·

(
∥x∥∥y∥+ f(t)∥y∥2

)
+ |g′(t)| · ∥x− f(t)y∥2

g(t)3
ϕ

≤
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

ϕ. (H.19)

Time-Derivative of the Score Function.
By (H.4), we know:

∇ log q(t,x) = − 1

g(t)2

∫
Rd pdata(y)

(
x− f(t)y

)
ϕ
(x−f(t)y

g(t)

)
dy∫

Rd pdata(y)ϕ
(x−f(t)y

g(t)

)
dy

.

Taking the derivative with respect to t, we have:

∂

∂t

(
∇ log q(t,x)

)
=

2g′(t)

g(t)3

∫
Rd pdata(y)

(
x− f(t)y

)
ϕdy∫

Rd pdata(y)ϕdy

− 1

g(t)2

(∂

∂t

∫
Rd pdata(y)

(
x− f(t)y

)
ϕdy∫

Rd pdata(y)ϕdy︸ ︷︷ ︸
L1

)
.

Using Assumption 5.1, we can easily see that:∥∥∥∥∥
∫
Rd pdata(y)

(
x− f(t)y

)
ϕdy∫

Rd pdata(y)ϕdy

∥∥∥∥∥ ≤ ∥x∥+ |f(t)|R. (H.20)

For L1, we have:

L1 =

∫
Rd pdata(y)

((
x− f(t)y

)
ϕt − f ′(t)yϕ

)
dy(∫

Rd pdata(y)ϕdy
) −

∫
Rd pdata(y)

(
x− f(t)y

)
ϕdy

∫
Rd pdata(y)ϕtdy(∫

Rd pdata(y)ϕdy
)2 .

From (H.19) and Assumption 5.1, we know that:

∥L1∥ ≤
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

2
(
∥x∥+ |f(t)|R

)
+ |f ′(t)|R.

(H.21)

Combining (H.20) and (H.21), we have:∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ =
2g′(t)

g(t)3

(
∥x∥+ |f(t)|R

)
+

1

g(t)2

(g(t)|f ′(t)| ·
(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

2
(
∥x∥+ |f(t)|R

)
+ |f ′(t)|R

)
=

2g′(t)

g(t)3

(
∥x∥+ |f(t)|R

)
+

2g(t)|f ′(t)| ·
(
∥x∥R+ f(t)R2

)2
+ 2|g′(t)| ·

(
∥x∥+ f(t)R

)3
g(t)5

+
|f ′(t)|R
g(t)2

.

Time-Derivative of the Divergence of the Score Function.
In this section, we consider the t-derivative of the divergence of the score function, i.e.,

∂

∂t

(
∇ · [∇ log q(t,x)]

)
=

∂

∂t

(
tr
(
∇2 log q(t,x)

))
.

To start with, using (H.9), we have:

tr
(
∇2 log q(t,x)

)
= − d

g(t)2
+

f(t)2

g(t)4

(∫
Rd pdata(y)∥y∥2ϕdy∫

Rd pdata(y)ϕdy
−

∥
∫
Rd pdata(y)yϕdy∥2(∫
Rd pdata(y)ϕdy

)2)
. (H.22)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Taking the derivative with respect to t, we have:

∂

∂t

(
tr
(
∇2 log q(t,x)

))
=

2d · g′(t)
g(t)3

+
2f(t)f ′(t)g(t)− 4f(t)2g′(t)

g(t)5

(∫
Rd pdata(y)∥y∥2ϕdy∫

Rd pdata(y)ϕdy
−

∥
∫
Rd pdata(y)yϕdy∥2(∫
Rd pdata(y)ϕdy

)2)
︸ ︷︷ ︸

K1

+
f(t)2

g(t)4

(
∂

∂t

∫
Rd pdata(y)∥y∥2ϕdy∫

Rd pdata(y)ϕdy︸ ︷︷ ︸
K2

− ∂

∂t

∥
∫
Rd pdata(y)yϕdy∥2(∫
Rd pdata(y)ϕdy

)2︸ ︷︷ ︸
K3

)
. (H.23)

For K1, using Assumption 5.1, we have

|K1| ≤
∣∣∣∣2f(t)f ′(t)g(t)− 4f(t)2g′(t)

g(t)5
(R2 +R2)

∣∣∣∣ = 4f(t) ·
∣∣f ′(t)g(t)− 2f(t)g′(t)

∣∣
g(t)5

R2. (H.24)

For K2, Using the definition of K2 in (H.23) , we have

|K2| =
∣∣∣∣ ∂∂t

∫
Rd pdata(y)∥y∥2ϕdy∫

Rd pdata(y)ϕdy

∣∣∣∣
=

∣∣∣∣ ∂
∂t

∫
Rd pdata(y)∥y∥2ϕdy∫
Rd pdata(y)ϕdy

−
∫
Rd pdata(y)∥y∥2ϕdy ·

(
∂
∂t

∫
Rd pdata(y)ϕdy

)(∫
Rd pdata(y)ϕdy

)2 ∣∣∣∣
≤

∣∣∣∣
∫
Rd pdata(y)∥y∥2 ∂

∂tϕdy∫
Rd pdata(y)ϕdy

∣∣∣∣+ ∣∣∣∣
∫
Rd pdata(y)∥y∥2ϕdy ·

(∫
Rd pdata(y)

∂
∂tϕdy

)(∫
Rd pdata(y)ϕdy

)2 ∣∣∣∣
≤ 2R2 g(t)|f

′(t)| ·
(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

, (H.25)

where the last inequality holds due to (H.19) and Assumption 5.1.
For K3, we have

|K3| =
∣∣∣∣ ∂∂t ∥

∫
Rd pdata(y)yϕdy∥2

(
∫
Rd pdata(y)ϕdy)2

∣∣∣∣
≤

∣∣∣∣ ∂
∂t∥

∫
Rd pdata(y)yϕdy∥2

(
∫
Rd pdata(y)ϕdy)2

−
∥∥ ∫

Rd pdata(y)yϕdy
∥∥2 · ∂

∂t

(∫
Rd pdata(y)ϕdy

)2
(
∫
Rd pdata(y)ϕdy)4

∣∣∣∣
≤

∣∣∣∣ ∂
∂t∥

∫
Rd pdata(y)yϕdy∥2

(
∫
Rd pdata(y)ϕdy)2

∣∣∣∣+ ∣∣∣∣
∥∥ ∫

Rd pdata(y)yϕdy
∥∥2 · ∂

∂t

(∫
Rd pdata(y)ϕdy

)2
(
∫
Rd pdata(y)ϕdy)4

∣∣∣∣. (H.26)

Moreover, we have:∣∣∣∣ ∂∂t∥∥∥
∫
Rd

pdata(y)yϕdy
∥∥∥2∣∣∣∣ = ∣∣∣∣ ∂∂t

d∑
i=1

(∫
Rd

pdata(y)yiϕdy
)2

∣∣∣∣
=

∣∣∣∣ d∑
i=1

2

∫
Rd

pdata(y)yiϕdy

∫
Rd

pdata(y)yi
∂

∂t
ϕdy

∣∣∣∣
≤

d∑
i=1

2

∫
Rd

pdata(y)|yi|ϕdy ·
∫
Rd

pdata(y)|yi|
∣∣∣ ∂
∂t

ϕ
∣∣∣dy

≤ 2

(
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

) d∑
i=1

(∫
Rd

pdata(y)|yi|ϕdy
)2

.

Using the Cauchy-Schwarz inequality, we have
d∑

i=1

(∫
Rd

pdata(y)|yi|ϕdy
)2

≤
d∑

i=1

(∫
Rd

pdata(y)ϕdy

)(∫
Rd

pdata(y)|yi|2ϕdy
)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

=

(∫
Rd

pdata(y)ϕdy

)(∫
Rd

pdata(y)∥y∥2ϕdy
)

≤ R2

(∫
Rd

pdata(y)ϕdy

)2

,

where the last inequality holds due to Assumption 5.1. Therefore, we have∣∣∣∣ ∂∂t∥∥∥
∫
Rd

pdata(y)yϕdy
∥∥∥2∣∣∣∣

≤ 2R2

(
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

)(∫
Rd

pdata(y)ϕdy

)2

.

(H.27)

Moreover, we have:∣∣∣∣ ∂∂t(
∫
Rd

pdata(y)ϕdy
)2

∣∣∣∣ = 2

∣∣∣∣ ∫
Rd

pdata(y)ϕdy · ∂

∂t

∫
Rd

pdata(y)ϕdy

∣∣∣∣
≤ 2

∣∣∣∣ ∫
Rd

pdata(y)ϕdy

∣∣∣∣ · ∫
Rd

pdata(y)
∣∣∣ ∂
∂t

ϕ
∣∣∣dy

≤ 2
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

(∫
Rd

pdata(y)ϕdy

)2

, (H.28)

where the last inequality holds due to (H.18). Substituting (H.27) and (H.28) into (H.26), and using
Assumption 5.1, we have:

|K3| ≤ 4R2

(
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

)
. (H.29)

Combining (H.23), (H.24), (H.25) and (H.29), we have the following inequality:∣∣∣∣ ∂∂t(tr
(
∇2 log q(t,x)

))∣∣∣∣ ≤ 2d · |g′(t)|
g(t)3

+
4f(t) ·

∣∣f ′(t)g(t)− 2f(t)g′(t)
∣∣

g(t)5
R2

+ 6R2 f(t)
2

g(t)4

(
g(t)|f ′(t)| ·

(
∥x∥R+ f(t)R2

)
+ |g′(t)| ·

(
∥x∥+ f(t)R

)2
g(t)3

)
. (H.30)

This completes the proof of Lemma H.2.

H.2 PROOF OF LEMMAS F.3 AND F.4

Proof of Lemma F.3. Since Xt = e−tX0 + N
(
0, (1 − e−2t)Id

)
, we have f(t) = e−t and g(t) =√

1− e−2t in this case. When t < 1, we know that f(t) = Θ(1), f ′(t) = Θ(1), g(t) = Θ(
√
t),

g′(t) = Θ(1√
t
). Hence by Lemma H.2, we have:∣∣∣∣ ∂∂t(tr
(
∇2 log q(t,x)

))∣∣∣∣ ≲ d

t2
+

R2

t3
+R2 1

t2

√
t(∥x∥+R)R+ 1√

t
(∥x∥+R)2

√
t
3

=
d

t2
+

R2

t3
+

R3(∥x∥+R)

t3
+

R2(∥x∥+R)2

t4

(i)

≲
d

t2
+

R2(∥x∥+R)2

t4
, t < 1.

Here in (i) we use 2R2

t3 ≤ 1
t2 + R4

t4 ≤ d
t2 + R2(∥x∥+R)2

t4 . We next consider the case t ≥ 1:
Denote e−t by a, then we know that f(t) = Θ(a), f ′(t) = Θ(a), g(t) = Θ(1), g′(t) = Θ(a2). By,
Lemma H.2, we have:∣∣∣∣ ∂∂t(tr

(
∇2 log q(t,x)

))∣∣∣∣ ≲ a2d+R2a2 +R2a2
(
a(∥x∥+ aR)R+ a2(∥x∥+ aR)2

)
45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

(ii)

≤ a2d+R2a2 +R2a2
(
(∥x∥+R)R+ (∥x∥+R)2

)
≲ a2d+ a2R2 + a2R2(∥x∥+R)2

(iii)

≲ a2d+ a2R2(∥x∥+R)2

≤ d+R2(∥x∥+R)2, t ≥ 1.

Here (ii) is due to a < 1 and (iii) is because 2R2 ≤ 1+R4 ≤ d+R2(∥x∥+R)2. This proves the
first inequality of Lemma F.3.
Same as above, When t < 1, we know that f(t) = Θ(1), f ′(t) = Θ(1), g(t) = Θ(

√
t), g′(t) =

Θ(1√
t
). Hence by Lemma H.2, we have:∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ ≲
∥x∥+R

t2
+

(∥x∥+R)2R2

t2
+

(∥x∥+R)3

t3
+

R

t

≲
∥x∥+R

t2
+

(∥x∥+R)2R2

t2
+

(∥x∥+R)3

t3
, t < 1.

We next consider the case t ≥ 1. Denote e−t by a, then we know that f(t) = Θ(a), f ′(t) = Θ(a),
g(t) = Θ(1), g′(t) = Θ(a2). By, Lemma H.2, we have:∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ ≲ a2(∥x∥+ aR) + a(∥x∥+ aR)2R2 + a2(∥x∥+ aR)3 + aR

(i)

≲ a(∥x∥+R) + a(∥x∥+R)2R2 + a(∥x∥+R)3

≤ (∥x∥+R) + (∥x∥+R)2R2 + (∥x∥+R)3, t ≥ 1.

Here (i) is due to a = e−t < 1 given t ≥ 1. This completes the proof of Lemma F.3.

Proof of Lemma F.4. Because Xt = e−tX0 +N
(
0, (1− e−2t)Id

)
, we havef(t) = e−t and g(t) =√

1− e−2t in this case. When t < 1, we know that

f(t) = Θ(1), f ′(t) = Θ(1), g(t) = Θ(
√
t), g′(t) = Θ(

1√
t
).

Then by Lemma H.1, we can easily show the three inequalities are valid when t < 1.
Moreover, when t ≥ 1, we have

f(t) = Θ(e−t), f ′(t) = Θ(e−t), g(t) = Θ(1), g′(t) = Θ(e−2t).

Then by Lemma H.1, we can easily show the three inequalities are valid when t ≥ 1. This completes
the proof of Lemma F.4.

H.3 PROOF OF LEMMAS G.3 AND G.4

Proof of Lemma G.3. Since Xt = X0+N
(
0,
√
tId

)
, we have f(t) = 1 and g(t) =

√
t in this case.

Hence f ′(t) = 0 and g′(t) = Θ(1√
t
). By Lemma H.2, we have:∥∥∥∥ ∂

∂t

(
∇ log q(t,x)

)∥∥∥∥ ≲
∥x∥+R

t2
+

(∥x∥+R)3

t3
.

∣∣∣∣ ∂∂t(tr
(
∇2 log q(t,x)

))∣∣∣∣ ≲ d

t2
+

R2

t3
+

R2(∥x∥+R)2

t4

(i)

≲
d

t2
+

R2(∥x∥+R)2

t4
,

here (i) is due to 2R2

t3 ≤ 1
t2 + R4

t4 . This completes our proof.

Proof of Lemma G.4. Since Xt = X0+N
(
0,
√
tId

)
, we have f(t) = 1 and g(t) =

√
t in this case.

Hence f ′(t) = 0 and g′(t) = Θ(1√
t
). Substituting into Lemma H.1, we completes our proof.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

I PROOF OF REMAINING LEMMAS IN SECTIONS F AND G
I.1 PROOF OF LEMMAS F.1 AND F.2
We first present the following two technical lemmas.
Lemma I.1. Let Yt and Ft(z) be defined in (F.2) and (F.3). Then for any 0 ≤ k ≤ N − 1,
t ∈ [tk, tk+1] and x ∈ Rd, we have:

pYt
(x)

pFt(Ytk
)(x)

≤
e
∣∣∇Ft

(
F−1
t (x)

)∣∣
a

·
(1− e−2(T−t) + a2−1

1+2/d

1− e−2(T−t)

)d/2

· e
(1+d/2)∥g(x)∥22

2(a2−1) ,

where a = et−tk and g(x) = aF−1
t (x)− x.

Lemma I.2. Suppose Yt = e−(T−t)Xdata + N
(
0, (1 − e−2(T−t))Id

)
and p(∥Xdata∥2 < R) = 1.

Then for λ < min{ 1
d ,

1
2}, we have:

Eeλ∥Yt∥2
2 ≤ eλR

2−1.

Using these lemmas, we can start the proof of Lemma F.1:

Proof of Lemma F.1. To start with, we have the following lemma about the ratio: Firstly, using the
expression of the interpolation operator (F.3), we have

∇Ft(x) = et−tkId +
(
et−tk − 1

)
∇sθ(T − tk,x).

The operator norm of ∇Ft(x) can be bounded by

∥∇Ft(x)∥2 ≤ et−tk +
(
et−tk − 1

)
L

= a+ (a− 1)L

Using the fact that |A| ≤ ∥A∥d, we know that:∣∣∇Ft

(
F−1
t (x)

)∣∣ ≤ (
a+ (a− 1)L

)d
≤

(
1 + 2η + 2ηL

)d
≤ e

Here the last inequality is because η ≤ 1
2(L+1)d . With our time schedule, by (2.6), we have

t− tk ≤ tk+1 − tk ≤ η min{1, T − t}.

We consider two cases when T − t ≥ 1 and T − t < 1.
First, when T − t ≥ 1, we have t− tk ≤ η. Therefore, we have(

1− e−2(T−t) + a2−1
1+2/d

1− e−2(T−t)

)d/2

≤
(
1 +

e2(t−tk) − 1

1− e−2(T−t)

)d/2

≤
(
1 +

e2η − 1

1− e−2

)d/2

.

Since ex − 1 ≤ 2x when x ≤ 1 and 1− e−2 > 1
2 , when η ≤ 1/(8d), we have:(

1 +
e2η − 1

1− e−2

)d/2

≤
(
1 +

1

d

)d/2

≤
√
e.

Secondly, when T − t < 1, since 1 − e−2x > x/4 and ex − 1 ≤ 2x when 0 < x < 1, when
η ≤ 1/16d, we know that:(

1− e−2(T−t) + a2−1
1+2/d

1− e−2(T−t)

)d/2

≤
(
1 + 4

e2(t−tk) − 1

T − t

)d/2

≤
(
1 + 4

4(t− tk)

T − t

)d/2

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

≤ (1 + 16η)d/2 ≤
√
e.

Combining the two cases, we can summarize that when η ≤ 1/16d, we have(
1− e−2(T−t) + a2−1

1+2/d

1− e−2(T−t)

)d/2

≤
√
e.

Since g(x) = aF−1
t (x)− x, we have:

g(x) = aF−1
t (x)− x

= aF−1
t (x)− aF−1

t (x)− (a− 1)sθ(T − tk, F
−1
t (x))

= −(a− 1)sθ(T − tk, F
−1
t (x)).

Hence,

(1 + d/2)∥g(x)∥22
2(a2 − 1)

=
(1 + d/2)(a− 1)∥sθ(T − tk, F

−1
t (x))∥2

2(a+ 1)
.

Using the assumption on sθ and inequality (F.4), we have that:

(1 + d/2)(a− 1)∥sθ(T − tk, F
−1
t (x))∥2

2(a+ 1)
≤ (1 + d/2)(a− 1)

2(a+ 1)
(L∥F−1

t (x)∥+ c)2

≤ (1 + d/2)(a− 1)

2(a+ 1)
(2L∥x∥+ L+ c)2

≤ (1 + d/2)(a− 1)

2(a+ 1)

≤ (1 + d/2)(a− 1)

a+ 1
4L2∥x∥2 + (1 + d/2)(a− 1)

a+ 1
(L+ c)2

≤ (t− tk) (1 + d/2)4L2︸ ︷︷ ︸
c1

∥x∥2 + (t− tk) (1 + d/2)(L+ c)2︸ ︷︷ ︸
c2

,

where the lst inequality holds due to a ≥ 1 and a− 1 ≤ 2(t− tk). Thus, we know that:

pYt(x)

pFt(Ytk
)(x)

≲ e(t−tk)c1∥x∥2+(t−tk)c2 .

This proves the first part of Lemma F.1.
Next we prove the second part, we know that:∫

Ωt

(pYt
(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx ≲

∫
Ωt

e(t−tk)c1∥x∥2+(t−tk)c2pYt
(x)dx

≤ e(t−tk)c2Ee(t−tk)c1∥Yt∥2

(i)

≤ e(t−tk)c2e(t−tk)c1R
2−1

(ii)

≲ 1,

where the (i) holds due to Lemma I.2 since our t− tk ≤ η ≤ min{ 1
c1d

, 1
2c1

}. And (ii) holds due to
t− tk ≤ η ≤ min{ 1

c2
, 1
R2c1

}
By Lemma I.1, we know that:

pYt
(x)

pFt(Ytk
)(x)

≤
e
∣∣∇Ft

(
F−1
t (x)

)∣∣
a

(
1− e−2(T−t) + a2−1

1+2/d

1− e−2(T−t)

)d/2

· e
(1+d/2)∥g(x)∥22

2(a2−1)

≲ 1.

here a = et−tk and g(x) = aF−1
t (x)− x. This completes the proof of Lemma F.1.

Next, we begin our proof of Lemma F.2.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Proof of Lemma F.2. To start with, using Lemma F.1, we know that:

pYt(x)

pFt(Ytk
)(x)

≲ e(t−tk)c1∥x∥2+(t−tk)c2 ,

where c1 = (1 + d/2)4L2 and c2 = (1 + d/2)(L+ c)2.
Thus, we have:∫

Ωt

∥∥∥∇q(T − t,x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx =

∫
Ωt

∥∥∥∇ log q(T − t,x)
∥∥∥2 pYt

(x)

pFt(Ytk
)(x)

pYt
(x)dx

≲
∫
Ωt

∥∥∥∇ log q(T − t,x)
∥∥∥2eη(c1∥x∥2+c2)pYt(x)dx

≲ EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

]
,

where the last inequality holds due to η ≤ 1
c2

. Next, we select a constant M = 2R. We have the
following inequality:

EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

]
= EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

1∥Yt∥<M

]
+ EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

1∥Yt∥≥M

]
≲ EQ

∥∥∇ log q(T − t,Yt)
∥∥2︸ ︷︷ ︸

I1

+EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

1∥Yt∥≥M

]
︸ ︷︷ ︸

I2

,

where the last inequality holds due to η ≤ 1
4R2c1

= 1
c1M2 . For I1, using Lemma K.2, we have:

I1 = EQ∥∇ log q(T − t,Yt)∥2

≤ d
1

1− e−2(T−t)

(i)

≲
d

min{T − t, 1}
, (I.1)

where (i) holds because 1− e−2x > x/2 when x < 1 and 1− e−2x > 1/2 when x ≥ 1.
For I2, using Lemma H.1 with f(t) = e−(T−t), g(t) =

√
1− e−2(T−t), we have:

∥∇ log q(T − t,x)∥ ≤ ∥x∥+R

1− e−2(T−t)

=
∥x∥+R

σT−t
,

here we denote 1− e−2(T−t) by σT−t. Therefore, we have:

I2 ≲ EQ

[(∥Yt∥+R

σT−t

)2

eηc1∥Yt∥2

1∥Yt∥≥M

]
. (I.2)

Let α = e−(T−t), we have Yt = XT−t = αX0 +
√
1− α2Z. Thus, ∥Yt∥ ≤ R +

√
1− α2∥Z∥.

Hence, (I.2) becomes

I2 ≤ 1

(σT−t)2
EQ

[(
2R+

√
1− α2∥Z∥

)2
eηc1(R+

√
1−α2∥Z∥)21∥Z∥≥ M−R√

1−α2

]
≲

1

(σT−t)2
EQ

[(
R2 + (1− α2)∥Z∥2

)
e2ηc1(1−α2)∥Z∥2

1∥Z∥≥ M−R√
1−α2

]
, (I.3)

where the last inequality holds due to (a+b)2 ≤ 2a2+2b2, and η ≤ 1/c1R
2. Let λ = 2ηc1(1−α2).

Then we have

I2 ≲
R2

(σT−t)2

∫
Rd

1

(
√
2π)d

e−
∥z∥2

2 eλ∥z∥
2

1∥z∥≥ M−R√
1−α2

dz︸ ︷︷ ︸
K1

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

+
2

σT−t

∫
Rd

1
√
2π

d
e−

∥z∥2
2 ∥z∥2eλ∥z∥

2

1∥z∥≥ M−R√
1−α2

dz︸ ︷︷ ︸
K2

, (I.4)

here we use that 1 − α2 = 1 − e−2(T−t) = σT−t. Let ϕσ2(x) = exp(−∥x∥2/2σ2)/(2πσ2)d/2.
When λ smaller then 1

2 , we have eλ∥z∥
2

ϕ1(z) = ϕ 1
1−2λ

(z)(1
1−2λ)

d
2 . Therefore, we know that:

K1 =
(1

1− 2λ

) d
2

∫
Rd

ϕ 1
1−2λ

(z)1∥z∥≥ M−R√
1−α2

dz

=
(1

1− 2λ

) d
2 P

[
∥Z ′∥ ≥ M −R√

1− α2

∣∣∣Z ′ ∼ N
(
0,

1

1− 2λ
Id

)]
=

(1

1− 2λ

) d
2 P

[
∥Z∥ ≥

√
1− 2λ(M −R)√

1− α2

∣∣∣Z ∼ N(0, Id)

]
(i)

≤
(1

1− 2λ

) d
2 1− α2

(1− 2λ)(M −R)2
E∥Z∥2

=
(1

1− 2λ

) d
2+1 σT−td

(M −R)2

(i)

≲
σT−td

R2
. (I.5)

where (i) holds due to the Markov’s inequality. Since η ≤ 1
2c1d

≤ 1
2σT−tc1d

, we have λ = 2ηc1(1−
α2) ≤ 1/(d+ 2). This implies (1/(1− 2λ))d/2 ≤ e, thus (ii) holds. Moreover, for K2 we have:

K2 =
(1

1− 2λ

) d
2

∫
Rd

ϕ 1
1−2λ

(z)∥z∥21∥z∥≥ M−R√
1−α2

dz

≤
(1

1− 2λ

) d
2EZ′∼N(0, 1

1−2λ Id)
∥Z ′∥2

=
(1

1− 2λ

) d
2 d

1− 2λ

≲ d. (I.6)

The last inequality holds due to (1/(1 − 2λ))d/2 ≤ e when λ ≤ 1/(d + 2). Substituting (I.5)
and (I.6) into (I.2), we have

I2 ≲
d

σT−t

≲
d

min{T − t, 1}
. (I.7)

Combining I.1 and I.7, we have:∫
Ωt

∥∥∥∇q(T − t,x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx ≲

d

min{T − t, 1}
,

which completes the proof of Lemma F.2.

I.2 PROOF OF LEMMAS G.1 AND G.2
We first present three technical lemmas.
Lemma I.3. Let Yt and Ft(z) be defined in (G.2) and (G.5). For any k, t ∈ [tk, tk+1] and x ∈ Rd,
we have:

pYt(x)

pFt(Ytk
)(x)

≤ e
∣∣∇Ft

(
F−1
t (x)

)∣∣ · (T − t+ t−tk
1+2/d

T − t

)d/2

· e
(1+d/2)∥F−1

t (x)−x∥22
2(t−tk) ,

Lemma I.4. Suppose Yt = X0 + N
(
0, (T − t)Id

)
and p(∥X0∥2 < R) = 1. Then for λ <

min{ 1
4d(T−t) ,

1
R2 }, we have:

Eeλ∥Yt∥2
2 ≲ 1

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Lemma I.5. Recall that Xt is our forward process defined in G.1 and we use q(t,x) to denote its
law, under Assumption 5.1, we have:

E∥∇ log q(t,Xt)∥2 ≤ d

t
.

Proof of lemma G.1. By Lemma I.3, we know that:

pYt
(x)

pFt(Ytk
)(x)

≤ e
∣∣∇Ft

(
F−1
t (x)

)∣∣ · e (1+d/2)∥F−1
t (x)−x∥22

2(t−tk) ·
(T − t+ t−tk

1+2/d

T − t

)d/2

,

Firstly, using the expression of the interpolation operator (G.5), we have
∇Ft(x) = Id + (t− tk)cl∇sθ(T − tk,x).

The operator norm of ∇Ft(x) can be bounded by
∥∇Ft(x)∥2 ≤ 1 + (t− tk)clL

≤ 1 + (t− tk)L,

Using the fact that |A| ≤ ∥A∥d, we know that:∣∣∇Ft

(
F−1
t (x)

)∣∣ ≤ (
1 + (t− tk)L

)d
.

Since t− tk ≤ η < 1, when η ≤ 1/(Ld), we have∣∣∣∇Ft

(
F−1
t (x)

)∣∣∣ ≤ (
1 + ηL

)d ≤ e.

With our time schedule, by (2.6), we have
t− tk ≤ tk+1 − tk ≤ ηmin{1, T − t}.

We have t− tk ≤ η. Therefore, we have(
T − t+ t−tk

1+2/d

T − t

)d/2

≤
(
1 +

t− tk
T − t

)d/2

≤ (1 + η)d/2.

When η ≤ 1
d , we have:

(1 + η)d/2 ≤ (1 +
1

d
)d/2 ≤

√
e.

Then we have:
(1 + d/2)∥F−1

t (x)− x∥22
2(t− tk)

=
(1 + d/2)(t− tk)

2
cl

2∥sθ
(
T − tk, F

−1
t (x)

)
∥2

≤ (1 + d/2)(t− tk)

2

(
L∥F−1

t (x)∥+ c
)2

≤ (1 + d/2)(t− tk)

2

(
2L∥x∥+ L+ c

)2
≤ (t− tk)

(
(1 + d/2)4L2︸ ︷︷ ︸

c1

∥x∥2 + (1 + d/2)(L+ c)2︸ ︷︷ ︸
c2

)
.

Putting together, we know that:
pYt

(x)

pFt(Ytk
)(x)

≲ e(t−tk)c1∥x∥2+(t−tk)c2 .

Moreover, since t− tk ≤ η ≤ 1/c2, we have:∫
Ωt

(pYt(x)

pFt(Ytk
)(x)

)2

pFt(Ytk
)(x)dx =

∫
Ωt

pYt
(x)

pFt(Ytk
)(x)

)pYt
(x)dx

≲ Ee(t−tk)c1∥Yt∥2

(i)

≲ 1,

where (i) holds due to Lemma I.4 (we have (t− tk)c1 ≤ min{ 1
4d(T−t) ,

1
R2 }).

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

Proof of Lemma G.2. To start with, recall that we assume that L ≥ 1, we can easily verify that η
satisfies Lemma G.1’s condition. Using Lemma G.1, we know that:

pYt(x)

pFt(Ytk
)(x)

≲ e(t−tk)c1∥x∥2+(t−tk)c2

≤ eη
(
c1∥x∥2+c2

)
,

where c1 = (1 + d/2)4L2 and c2 = (1 + d/2)(L+ c)2. Thus we have:∫
Ωt

∥∥∥∇q(T − t,x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx ≤

∫
Ωt

∥∥∥∇ log q(T − t,x)
∥∥∥2 pYt(x)

pFt(Ytk
)(x)

pYt
(x)dx

≲
∫
Ωt

∥∥∥∇ log q(T − t,x)
∥∥∥2eη(c1∥x∥2+c2)pYt

(x)dx

≲ EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

]
,

where the last inequality holds due to η ≤ 1
c2

. Next, we select a constant M = 2R. We have the
following inequality:

EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

]
= EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

1∥Yt∥<M

]
+ EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

1∥Yt∥≥M

]
≲ EQ

∥∥∇ log q(T − t,Yt)
∥∥2︸ ︷︷ ︸

I1

+EQ

[∥∥∇ log q(T − t,Yt)
∥∥2eηc1∥Yt∥2

1∥Yt∥≥M

]
︸ ︷︷ ︸

I2

,

where the last inequality holds due to η ≤ 1
c1R2 . For I1, using Lemma I.5, we have:

I1 = EQ∥∇ log q(T − t,Yt)∥2

≤ d

T − t
, (I.8)

For I2, using Lemma H.1 with f(t) = 1, g(t) =
√
T − t, we have:

∥∇ log q(T − t,x)∥ ≤ ∥x∥+R

T − t
,

Therefore, we have:

I2 ≤ EQ

[(∥Yt∥+R

T − t

)2

eηc1∥Yt∥2

1∥Yt∥≥M

]
. (I.9)

We have Yt = XT−t = X0 +
√
T − tZ. Thus, ∥Yt∥ ≤ R+

√
T − t∥Z∥. Hence, (I.9) becomes

I2 ≤ 1

(T − t)2
EQ

[(
2R+

√
T − t∥Z∥

)2
eηc1(R+

√
T−t∥Z∥)21∥Z∥≥ M−R√

T−t

]
≲

1

(T − t)2
EQ

[(
R2 + (T − t)∥Z∥2

)
e2ηc1(T−t)∥Z∥2

1∥Z∥≥ M−R√
T−t

]
, (I.10)

where the last inequality holds due to (a+ b)2 ≤ 2a2 + 2b2, and η ≤ 1
c1R2 . Let λ = 2ηc1(T − t).

Then we have

I2 ≲
R2

(T − t)2

∫
Rd

1

(
√
2π)d

e−
∥z∥2

2 eλ∥z∥
2

1∥z∥≥ M−R√
T−t

dz︸ ︷︷ ︸
K1

+
2

T − t

∫
Rd

1
√
2π

d
e−

∥z∥2
2 ∥z∥2eλ∥z∥

2

1∥z∥≥ M−R√
T−t

dz︸ ︷︷ ︸
K2

, (I.11)

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

Let ϕσ2(x) = exp(−∥x∥2/2σ2)/(2πσ2)d/2. When λ smaller then 1
2 , we have eλ∥z∥

2

ϕ1(z) =

ϕ 1
1−2λ

(z)(1
1−2λ)

d
2 . Therefore, we know that:

K1 =
(1

1− 2λ

) d
2

∫
Rd

ϕ 1
1−2λ

(z)1∥z∥≥ M−R√
T−t

dz

=
(1

1− 2λ

) d
2 P

[
∥Z ′∥ ≥ M −R√

T − t

∣∣∣Z ′ ∼ N
(
0,

1

1− 2λ
Id

)]
=

(1

1− 2λ

) d
2 P

[
∥Z∥ ≥

√
1− 2λ(M −R)√

T − t

∣∣∣Z ∼ N(0, Id)

]
(i)

≤
(1

1− 2λ

) d
2 T − t

(1− 2λ)(M −R)2
E∥Z∥2

≤
(1

1− 2λ

) d
2+1 (T − t)d

(M −R)2

(i)

≲
(T − t)d

R2
. (I.12)

where (i) holds due to the Markov’s inequality. (ii) holds because η ≤ 1
2(d+2)c1(T−t) , thus λ ≤

1/(d+ 2), then we know that (1/(1− 2λ))d/2 ≤ e. Moreover, for K2 we have:

K2 =
(1

1− 2λ

) d
2

∫
Rd

ϕ 1
1−2λ

(z)∥z∥21∥z∥≥ M−R√
T−t

dz

≤
(1

1− 2λ

) d
2EZ′∼N(0, 1

1−2λ Id)
∥Z ′∥2

=
(1

1− 2λ

) d
2 d

1− 2λ

≲ d. (I.13)

The last inequality holds due to (1/(1 − 2λ))d/2 ≤ e. Substituting (I.12) and (I.13) into (I.11), we
have

I2 ≲
d

T − t
. (I.14)

Combining I.8 and I.14, we have:∫
Ωt

∥∥∥∇q(T − t,x)

pFt(Ytk
)(x)

∥∥∥2pFt(Ytk
)(x)dx ≲

d

T − t
,

which completes the proof of Lemma G.2.

J PROOF OF LEMMAS IN SECTION I
Proof of Lemma I.1. Using the Jacobian transformation of probability densities, we have

pFt(Ytk
)(x) = pYtk

(
F−1
t (x)

)∣∣∇(
F−1
t (x)

)∣∣. (J.1)

Moreover, the forward process indicates Ytk = e−(t−tk)Yt + Zt,tk , where Zt,tk ∼ N(0, 1 −
e−2(t−tk)) is independent of Yt. Using the Jacobian transformation of probability densities, we
have

pYtk

(
F−1
t (x)

)
= pYt+et−tkZt,tk

(
et−tkF−1

t (x)
)
· et−tk

= et−tk

∫
Rd

q(t,y)ϕe2(t−tk)−1

(
et−tkF−1

t (x)− y
)
dy,

where ϕσ2(x) = exp(−∥x∥2/2σ2)/(2πσ2)d/2 is the probability density function of Gaussian dis-
tribution with variance σ2. The last equality holds due to the formula for the sum of independent

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

variables. For simplicity, denote a = et−tk and we ignore the dependency of t and tk when it will
not cause any confusion. Then we have

pYtk

(
F−1
t (x)

)
= a

∫
Rd

q(T − t,y)ϕa2−1

(
aF−1

t (x)− y
)
dy. (J.2)

Since aF−1
t (x)−y = x−y+ (aF−1

t (x)−x), with the shorthand notation g(x) = aF−1
t (x)−x,

we have

ϕa2−1

(
aF−1

t (x)− y
)
= ϕa2−1

(
x− y + g(x)

)
=

1

(2π(a2 − 1))d/2
e
− ∥x−y+g(x)∥22

2(a2−1)

=
1

(2π(a2 − 1))d/2
e
− ∥x−y∥2+∥g(x)∥22+2⟨x−y,g(x)⟩

2(a2−1)

≥ 1

(2π(a2 − 1))d/2
e
− (1+2/d)∥x−y∥22+(1+d/2)∥g(x)∥22

2(a2−1)

=
1

(1 + 2/d)d/2
· ϕ a2−1

1+2/d

(x− y) · e−
(1+d/2)∥g(x)∥22

2(a2−1) , (J.3)

where the first inequality holds due to the Young’s inequality. In the last equality, we use the defini-
tion of ϕσ2(·) with σ2 = (a2 − 1)/(1 + 2/d). Combining (J.1), (J.2) and (J.3), we have

pFt(Ytk
)(x) ≥

∣∣∇(
F−1
t (x)

)∣∣ · a ·
∫
Rd

q(t,y)
1

(1 + 2/d)d/2
ϕ a2−1

1+2/d

(x− y)e
− (1+d/2)∥g(x)∥22

2(a2−1) dy

≥ a

e
∣∣∇Ft

(
F−1
t (x)

)∣∣pYt+N(0, a2−1
1+2/d

)
(x) · e−

(1+d/2)∥g(x)∥22
2(a2−1) ,

where we use (1 + 2/d)d/2 ≤ e , the fact that ∇
(
F−1
t (x)

)
=

[
∇Ft

(
F−1
t (x)

)]−1
and the formula

for the distribution of the sum of independent random variables. Then we have

pYt(x)

pFt(Ytk
)(x)

≤
e
∣∣∇Ft

(
F−1
t (x)

)∣∣
a

· e
(1+d/2)∥g(x)∥22

2(a2−1) · pYt
(x)

p
Yt+N(0, a2−1

1+2/d
)
(x)

Since Yt = e−(T−t)Xdata +N(0, 1− e−2(T−t)), by Lemma K.3, we know that

pYt
(x)

p
Yt+N(0,

t−tk
1+2/d

)
(x)

≤
(1− e−2(T−t) + a2−1

1+2/d

1− e−2(T−t)

)d/2

Combining the above two inequalities and we can complete the proof of Lemma I.1

Proof of lemma I.2. Since Yt = e−(T−t)Xdata +N
(
0, (1− e−2(T−t))Id

)
, denote e−(T−t) by c and

use Z to represent standard normal distribution, we know that:

Eeλ∥Yt∥2
2 = Eeλ∥cXdata+

√
1−c2Z∥2

2

(i)

≤ Eeλ∥Xdata∥2
2+λ∥Z∥2

2

(ii)
= Eeλ∥Xdata∥2

2 · Eeλ∥Z∥2
2 .

where (i) holds due to the Cauchy-Schwartz inequality. (ii) holds due to the independency of Xdata
and Z.
Since p(∥Xdata∥2 < R) = 1, then Eeλ∥Xdata∥2

2 ≤ eλR
2

. For λ < 1
2 , we know that:

Eeλ∥Z∥2
2 =

∫
Rd

eλ∥x∥
2
2(2π)−

d
2 e−

∥x∥22
2 dx

=

∫
Rd

(2π
1

1− 2λ
)−

d
2 (1− 2λ)

d
2 e

− ∥x∥22
2 1
1−2λ dx

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

= (1− 2λ)
d
2 .

When λ < 1
d , (1− 2λ)−

d
2 < 1

e , thus we have:

Eeλ∥Yt∥2
2 ≤ eλR

2−1.

Proof of Lemma I.3. Using the Jacobian transformation of probability densities, we have

pFt(Ytk
)(x) = pYtk

(
F−1
t (x)

)∣∣∇(
F−1
t (x)

)∣∣. (J.4)

Moreover, the forward process indicates Ytk = Yt +Zt,tk , where Zt,tk ∼ N(0, t− tk) is indepen-
dent of Yt. Using the Jacobian transformation of probability densities, we have

pYtk

(
F−1
t (x)

)
= pYt+Zt,tk

(
F−1
t (x)

)
=

∫
Rd

q(T − t,y)ϕt−tk

(
F−1
t (x)− y

)
dy,

where ϕσ2(x) = exp(−∥x∥2/2σ2)/(2πσ2)d/2 is the probability density function of Gaussian dis-
tribution with variance σ2. The last equality holds due to the formula for the sum of independent
variables. We have

ϕt−tk

(
F−1
t (x)− y

)
= ϕt−tk

(
x− y + F−1

t (x)− x
)

=
1

(2π(t− tk))d/2
e
− ∥x−y+F

−1
t (x)−x∥22

2(t−tk)

=
1

(2π(t− tk))d/2
e
− ∥x−y∥2+∥F−1

t (x)−x∥22+2⟨x−y,F
−1
t (x)−x⟩

2(t−tk)

≥ 1

(2π(t− tk))d/2
e
− (1+2/d)∥x−y∥22+(1+d/2)∥F−1

t (x)−x∥22
2(t−tk)

=
1

(1 + 2/d)d/2
· ϕ t−tk

1+2/d

(x− y) · e−
(1+d/2)∥F−1

t (x)−x∥22
2(t−tk) , (J.5)

where the first inequality holds due to the Young’s inequality. In the last equality, we use the defini-
tion of ϕσ2(·) with σ2 = (t− tk)/(1 + 2/d). Combining (J.4) and (J.5), we have

pFt(Ytk
)(x) ≥

∣∣∇(
F−1
t (x)

)∣∣ · ∫
Rd

q(T − t,y)
1

(1 + 2/d)d/2
ϕ t−tk

1+2/d

(x− y)e
− (1+d/2)∥F−1

t (x)−x∥22
2(t−tk) dy

≥ 1

e
∣∣∇Ft

(
F−1
t (x)

)∣∣pYt+N(0,
t−tk
1+2/d

)
(x) · e−

(1+d/2)∥F−1
t (x)−x∥22

2(t−tk) ,

where we use (1 + 2/d)d/2 ≤ e , the fact that ∇
(
F−1
t (x)

)
=

[
∇Ft

(
F−1
t (x)

)]−1
and the formula

for the distribution of the sum of independent random variables. Then we have

pYt
(x)

pFt(Ytk
)(x)

≤ e
∣∣∇Ft

(
F−1
t (x)

)∣∣ · e (1+d/2)∥F−1
t (x)−x∥22

2(t−tk) · pYt
(x)

p
Yt+N(0,

t−tk
1+2/d

)
(x)

Since Yt = X0 +N(0, T − t), by Lemma K.3, we know that

pYt(x)

p
Yt+N(0,

t−tk
1+2/d

)
(x)

≤
(T − t+ t−tk

1+2/d

T − t

)d/2

Combining the above two inequalities and we can complete the proof of Lemma I.3

Proof of lemma I.4. Since Yt = X0 +
√
T − tZ, we know that:

Eeλ∥Yt∥2
2 ≤ Ee2λ∥X0∥2

· Ee2λ(T−t)∥Z∥2

≤ e2λR
2

· e2λ(T−t)∥Z∥2

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

(i)

≲ e2λ(T−t)∥Z∥2

,

here (i) is because we assumed λ < 1/R2. Moreover, we have λ ≤ 1
4d(T−t) , this implies 2λ(T −

t) ≤ 1
2 , thus we have

Ee2λ(T−t)∥Z∥2
2 =

∫
Rd

e2λ(T−t)∥x∥2
2(2π)−

d
2 e−

∥x∥22
2 dx

=

∫
Rd

(2π
1

1− 4λ(T − t)
)−

d
2 (1− 4λ(T − t))−

d
2 e

− ∥x∥22
2 1
1−4λ(T−t) dx

= (1− 4λ(T − t))−
d
2

≲ 1.

This completes the proof of Lemma I.4

Proof of Lemma I.5. By tweedie’s formula we know that:

∇ log q(t,Xt) = −1

t

(
Xt − Eq0|t(·|Xt)X0

)
.

E∥∇ log qt(Xt)∥2 =
1

t2
E∥Xt − E[X0|Xt]∥2

=
1

t2
[
E∥Xt∥2 − 2EXt · [X0|Xt] + E∥E[X0|Xt]∥2

]
.

Since Xt = X0 +
√
tZ, we have E∥Xt∥2 = E∥X0∥2 + td. Here the second order momentum is

finite because our bounded support assumption. Moreover, we know that:

EXt · E[X0|Xt] = EXt ·X0 = E
(
X0 +

√
tZ

)
·X0 = E∥X0∥2.

We next consider the trace of the covariance matrix of X0 given Xt:

tr
(
Covq0|t(·|Xt)(X0)

)
= E

[
∥X0∥2|Xt

]
− ∥E[X0|Xt]∥2,

Thus we know that:

E
[
∥E[X0|Xt]∥2

]
= E∥X0∥2 − E tr

(
Covq0|t(·|Xt)(X0)

)
≤ E∥X0∥2.

Putting together, we know that:

E∥∇ log q(t,Xt)∥2 ≤ d

t
.

K AUXILIARY LEMMAS

Theorem K.1 (Reynolds Transport Theorem Leal 2007). For a function F (t,x) : R×Rd → R that
is continuously differentiable with respect to both x and t, the following equality holds:

∂

∂t

∫
Ωt

F (t,x) dx =

∫
Ωt

∂

∂t
F (t,x) dx+

∫
∂Ωt

F (t,x)v(t,x) · n(t,x) dS,

where n is the outward-pointing unit normal vector, v is the velocity of the area element, and dS is
area element.
Lemma K.2 (Lemma 6 in Benton et al. 2024). Let Xt be the OU forward process defined in (F.1).
When X0 has finite second moments, we have:

E∥∇ log q(t,Xt)∥2 ≤ d

1− e−2t
.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

Proof of Lemma K.2. This lemma is the same as Lemma 6 in Benton et al. (2024). We provide a
proof for the completeness of our paper.
Denote 1− e−2t by σt. By Tweedie’s formula we know that:

∇ log q(t,Xt) =
1

σt

(
−Xt + e−tEq0|t(·|Xt)X0

)
.

Taking the expectation of the square, we have

E∥∇ log qt(Xt)∥2 = σ−2
t E∥e−tE[X0|Xt]−Xt∥2

= σ−2
t

[
E∥Xt∥2 − 2e−tEXt · [X0|Xt] + e−2tE∥E[X0|Xt]∥2

]
.

Since Xt = e−tX0 +
√
σtZ, we have E∥Xt∥2 = e−2tE∥X0∥2 + σtd. Recall that we assume that

X0 has finite second moments. Moreover, we know that:

EXt · E[X0|Xt] = EXt ·X0 = E
(
e−tX0 +

√
σtZ

)
·X0 = e−tE∥X0∥2.

We next consider the trace of the covariance matrix of X0 given Xt:

tr
(
Covq0|t(·|Xt)(X0)

)
= E

[
∥X0∥2|Xt

]
− ∥E[X0|Xt]∥2,

Thus we know that:

E
[
∥E[X0|Xt]∥2

]
= E∥X0∥2 − E tr

(
Covq0|t(·|Xt)(X0)

)
≤ E∥X0∥2.

Putting together, we know that:

E∥∇ log q(t,Xt)∥2 ≤ d

σt
.

Lemma K.3. For any data distribution pdata and positive parameters δ and h. Let X,Zδ,Zh be
three independent random variables in Rd satisfying X ∼ pdata, Zδ ∼ N(0, δ) and Zh ∼ N(0, h).
Then we have:

pX+Zδ
(x)

pX+Zδ+Zh
(x)

≤
(δ + h

δ

)d/2
.

where we use pY (x) to denote the probability density function of random variable Y .

Proof of Lemma K.3. We define ϕσ2(x) := 1
(2πσ2)d/2

e−
∥x∥2

2σ2 , which is the probability density func-
tion of normal distribution N(0, σ2Id).
First, we provide an upper bound of ϕδ(x− y)/ϕδ+h(x− y):

ϕδ(x− y)

ϕδ+h(x− y)
=

(δ + h

δ

)d/2
e

(x−y)2

2(δ+h)
− (x−y)2

2δ ≤
(δ + h

δ

)d/2
. (K.1)

Using the independence property, we have

pX+Zδ
(x) =

∫
Rd

pdata(y)ϕδ(x− y) dy,

pX+Zδ+Zh
(x) =

∫
Rd

pdata(y)ϕδ+h(x− y) dy.

Then we have∫
Rd

pdata(y)ϕδ(x− y)dy =

(∫
Rd

pdata(y)ϕδ+h(x− y)
ϕδ(x− y)

ϕδ+h(x− y)
dy

)
≤

∫
Rd

pdata(y)ϕδ+h(x− y)dy
(δ + h

δ

)d/2

,

which completes the proof of Lemma K.3.

57

	Introduction
	Problem Background
	ODE-based Diffusion Models
	Difficulties in Convergence Analysis of ODE Flow

	Convergence of Continuous time Reverse Process
	Unified Analysis for Discrete-time Reverse Process
	Numerical Schemes
	Interpolation Methods
	Main Results for General Diffusion Processes

	Application to Specific Deterministic Samplers
	VP+EI
	VE+DDIM

	Conclusion
	Related Work
	Comparison with Huang et al. (2024a)
	Comparison with Other Works on Deterministic Samplers

	Proof of Theorem 2.1
	Proof of Lemma 3.2
	Proof of Theorem 3.4
	Proof of Theorem 4.3
	Analysis of VP+EI
	Proof of Theorem 5.5
	Proof of Lemma 5.6 and Corollary 5.7

	Analysis of VE+DDIM
	Proof of Theorem 5.9
	Proof of Lemma 5.10 and Corollary 5.11

	Lipschitzness of Score Functions
	General Results
	Proof of Lemmas F.3 and F.4
	Proof of Lemmas G.3 and G.4

	Proof of Remaining Lemmas in Sections F and G
	Proof of Lemmas F.1 and F.2
	Proof of Lemmas G.1 and G.2

	Proof of Lemmas in Section I
	Auxiliary Lemmas

