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Abstract

Evaluating audio captioning systems is a chal-
lenging problem since the evaluation process
must consider numerous semantic alignments
of candidate captions, such as sound event
matching and the temporal relationship among
them. The existing metrics fail to take these
alignments into account as they consider either
statistical overlap (BLEU, SPICE, CIDEr) or
latent representation similarity (FENSE). To
tackle the aforementioned issues of the current
metrics, we propose the graph-score, which
grounds audio captions to semantic graphs, for
better measuring the performance of AAC sys-
tems. Our proposed metric achieves the highest
agreement with human judgment on the pair-
wise benchmark datasets. Furthermore, we
contribute high-quality benchmark datasets to
make progress in developing evaluation metrics
for the audio captioning task.

1 Introduction

Automated audio captioning (AAC) aims to gener-
ate textual descriptions of a given audio. There has
been significant progress in the AAC task due to
framework development (Kim et al., 2024), data
curation (Mei et al., 2023), and prefix-tuning lan-
guage model (Deshmukh et al., 2023; Kim et al.,
2023). However, there is little progress in devel-
oping reliable evaluation metrics for the AAC task.
Furthermore, evaluating AAC systems is challeng-
ing due to the diversity of reference captions in
terms of style and content.

To assess the quality of AAC systems, the most
popular metrics are BLEU (Papineni et al., 2002),
SPICE (Anderson et al., 2016), and FENSE (Zhou
et al., 2022). However, these metrics are not able to
reflect the alignment between audio and candidate
captions. The BLEU score is designed to measure
n-gram overlap between candidate and reference
sentences. Therefore, it is incapable of measuring
semantic similarity. SPICE score is proposed to
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Figure 1: Several qualitative examples from the Audio-
Caps benchmark. The sound-events are highlighted in
blue, and temporal relations are highlighted in orange.

evaluate the semantic similarity for image caption-
ing via semantic graph matching. However, it only
focuses on object’s attributes and their spatial rela-
tionships, which are not vital for audio captioning
evaluation. To tackle the shortcomings of prior
metrics, FENSE is developed to measure the se-
mantic similarity for AAC systems by combining
the Sentence-Bert score (Reimers and Gurevych,
2019) with a fluency penalization score. Although
FENSE is effective and well-aligned with human
judgment, it struggles to determine genuine tem-
poral relations among sound events. As shown in
Figure. 1, the caption C1 is well-aligned with refer-
ence captions. While even the caption C2 refers to
the same sound events, it might describe a different
audio due to the difference in temporal relations
among sound events. Human raters are able to
recognize the difference in temporal relations de-
scribed in these two candidate captions and give a
genuine judgment.

To better compare the performance of AAC sys-
tems, we propose a new evaluation metric for the
AAC task, coined graph-score. Our proposed met-
ric first extracts semantic graphs from the candidate
and reference captions to measure their dissimilar-
ity. The semantic graph consists of a list of triplets,
each triplet represents a pair of sound events and



their temporal relationship. For example, the can-
didate caption "A man speaks followed by chirping
birds" in Figure. 1 can be represented as <man
speaking, following by, bird chirping>. There are
several ways to express an acoustic event, such as
paraphrasing or using a generic/specific expression.
The diversity of acoustic event expression causes
difficulty in measuring the discrepancy between
two graphs. We map the extracted sound events
to a predefined list of 527 audio events extracted
from the AudioSet dataset (Gemmeke et al., 2017)
which is a comprehensive ontology for acoustic
events. Therefore, the semantic graph is a better
representation of captions for measuring the align-
ment in terms of sound events and their temporal
relationships. By leveraging semantic graphs, we
utilize the optimal transport framework to measure
the dissimilarity between candidate and reference
captions, moreover, we also leverage the pretrained
CLAP model (Elizalde et al., 2023) to compute
semantic dissimilarity across audio and textual de-
scription. Finally, our graph-score metric is the
convex combination of both semantic graph and
cross-modal dissimilarity. To sum up, our key con-
tributions are two-fold:

1. We propose a new evaluation metric, coined
graph-score, for the AAC task to better assess
the alignment between candidate caption and
audio and a list of reference captions.

2. Due to the lack of high-quality benchmark
datasets for developing automatic metrics, we
extend subsets of AudioCaps and Clotho test
sets with high-quality human judgements.

2 Methodology

2.1 Semantic Graph Construction

The semantic graph of a given audio describes the
temporal relationship among audio events that oc-
cur in the audio. The semantic graphs consist
of a list of triplets G(c) = {< e1,r,ea >},
where e; and ey are two audio events occurring
in a caption c that have the temporal relationship
r = {following by, concurrent with}. As discussed
in (Xie et al., 2023), the temporal relationships of
audio events can be narrowed down to sequential
or concurrent relationships to understand the au-
dio content correctly. We formulate the semantic
graph extraction from the caption as an open infor-
mation extraction task. Given an audio caption,
we can extract a corresponding semantic graph

reflecting the temporal relationship among audio
events in the caption. We conduct experiments
on using either GPT-4 (Achiam et al., 2023) or
LLaMa3.1-8B (Dubey et al., 2024) to construct
semantic graphs from the caption of audio. The
prompt design can be found in the Appendix C.

Grounded audio events. The extracted seman-
tic graphs from GPT-4 consist of open-ended au-
dio events from the given captions. Due to node
mismatching, estimating the distance between a
pair of graphs is challenging. Therefore, we pro-
pose to use a predefined audio events list to ground
open-audio events from GPT-4 to assist in graph
comparison. The predefined audio events list con-
sists of 527 audio events extracted from the Au-
dioSet dataset (Gemmeke et al., 2017). The ra-
tionale behind choosing AudioSet’s labels is that
this dataset covers a wide range of sound events in
the wild. The covered sound events range from
daily sounds like human and animal sounds to
source-ambiguous sounds like surface contact. Af-
ter extracting semantic graphs from a given audio
caption, the extracted sound events from the cap-
tion are mapped to the AudioSet’s sound events by
nearest-neighbor search. We utilize the pretrained
BERT model (Devlin et al., 2018) to embed both
AudioSet’s labels and the extracted sound events
into the embedding space and then compute the
similarity score between the extracted audio events
and AudioSet’s labels. Given an extracted audio
event from the caption, it is mapped to the most
similar semantic audio events in the predefined list
as follows

b = arg max s(f(e), £(b:)) (1)

b,eB

where B is the list of AudioSet’s labels. s(.) and
f(.) are the cosine similarity and the embedding
functions, respectively.

2.2 Graph-grounded Evaluation Metric

Optimal transport for semantic graph compar-
ison. The size of a candidate graph is always
smaller than the size of the reference graph uni-
fied from its reference captions. Hence, there is
more than one matching between a candidate and a
reference graph. Exact matching is not able to con-
sider all matchings between two graphs to measure
the distance between them. Therefore, We utilize
the optimal transport framework to perform bipar-
tite matching and then measure the discrepancy
between semantic graphs. We embed triplets of



extracted semantic graphs as described in the Sec-
tion. 2.1 into an embedding space and then perform
matching between two sets of embedding vectors.
Each triplet in the semantic graph is verbalized by
a template: "The sound of <e1> is <r> the sound
of <ea>"to generate a textual description for the
triplet. Formally, the candidate graph G and the
unified reference graph G = {G,,,...,G,, } are
transcribed into two sets of textual descriptions. Af-
ter that, textual descriptions are fed into the CLAP
text encoder to achieve the embedding of the can-
didate graph Z, = {2} i, and the embedding of
the unified reference graph Zg = {zé }ity. We
utilize the optimal transport framework to perform
point set matching between two sets of embedding
vectors and then use the optimal matching solution
to measure the discrepancy between them
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Semantic graph-based score. Given a triplet
(a, ¢, R) of an audio, a candidate caption, and a list
of reference captions, we first compute the dissim-
ilarity between the given audio and the candidate
caption as D(a,c) =1 — %, where f(-)
and g(-) are the pretrained text and audio encoder
from CLAP model. Then, we compute the distance
between the candidate caption and the list of ref-
erences D(c, R) as in Eq. 2. The final score is
the convex combination of audio-candidate caption
distance and candidate-references caption distance

GRAPH-S(a, ¢, R) = aD(a,c) + (1 — a)D(c, R)
(3)
where 0 < o < 1. if @ = 1, the score is similar

with CLIPScore (Hessel et al., 2021). If « = 0, the
score is based on the semantic graph distance.

3 Experiments

3.1 Eperimental settings

Evaluation datasets. @ We evaluate our pro-
posed metric, graph-score, on two benchmark

Fleiss Kappa
AudioCaps Clotho
(Zhou et al., 2022) 0.287(0.48) 0.24(0.33)
Our benchmark 0.53 0.42

Table 1: The inter-rater reliability for audio captioning
benchmark based on human rating. *We recompute the
inter-rater reliability of benchmarks in the FENSE paper
and report the reliability in this table, the numbers in
parentheses are the ones reported in the original paper.

datasets. The first benchmark is the FENSE’s
benchmark (Zhou et al., 2022), which are two
subsets of AudioCaps and Clotho test data. The
FENSE’s benchmark consists of 1,750 pairs on
Clotho and 1,671 pairs on AudioCaps human judg-
ments regarding audio caption quality. Although
the FENSE’s benchmark is the first curated dataset
for evaluating audio captioning metrics, its inter-
rater reliability is low, 0.28 on AudioCaps and 0.24
on Clotho. Therefore, we curate a new high-quality
benchmark for better evaluating audio captioning
metrics based on two AudioCaps and Clotho test
data subsets. There are 400 samples of three hu-
man raters’s preferences for AudioCaps and Clotho
in our new benchmark. The data annotation detail
is described in the Appendix D. As shown in the
Table 1, our new benchmark datasets are more high-
quality than the previous benchmark datasets (Zhou
et al., 2022) in terms of rater-inter reliability due
to the filtering procedure and a rigorous quality
control process using the guideline in Appendix D.

Evaluation metrics. We measure the perfor-
mance of audio captioning metrics by evaluating
their correlation with human judgment. The evalua-
tion metrics are evaluated in four scenarios: human-
human caption correct (HC), human-human cap-
tion incorrect (HI), human-machine caption (HM),
and machine-machine caption (MM). We consider
the caption rated by the majority of human raters
to be correct and measure how frequently the eval-
uation metrics assign a higher score to the correct
caption of the pair.

3.2 Agreement with human judgment

Table 8 illustrates the agreement of evaluation met-
rics with human judgment for four evaluation sce-
narios on (Zhou et al., 2022) benchmarks. The
graph-score achieves the highest agreement with
human judgment on the human-human incorrect
and human-machine caption scenarios on the Au-
dioCaps benchmark, therefore, it aligns well with



Metrics AudioCaps Clotho
HC T HI [ HM [ MM [ Avg HC T HI [ HM [ MM [ Avg

BERTScore 60 51 49 49 5225 58 53 1 53 60 56
BLEURT 62 84 | 61 72 69.75 58 91 67 60 69
Sentence-BERT 61 94 | 61 76 73 63 91 71 68 73.25
FENSE 61 94 | 63 76 73.5 63 91 71 67 73
Graph-score + GPT4 65 98 | 67 74 76 64 98 | 70 67 74.75
Graph-score + LLaMa3.18B | 64 99 | 63 75 75.25 60 98 | 67 68 73.25

Table 2: Correlation with human judgment on our curated benchmark datasets sampled from AudioCaps and Clotho
test sets. a = 0.6 for both AudioCaps and Clotho benchmarks.

Metric Clotho

HC HI HM MM Avg
BERTScore 57.1 | 955 | 703 | 61.3 | 675
BLEURT 59 93.9 754 67.4 71.6
Sentence-BERT 60 955 | 759 | 66.9 | 71.8
FENSE 60.5 | 947 | 758 | 66.8 | 744
Graph-score+ GPT4 | 569 | 97.1 | 77.1 | 64.6 | 73.9

Table 3: Correlation with human judgment on Clotho
benchmark from (Zhou et al., 2022) with o = 0.6. See
Table. 8 in the Appendix. E for experiment on both
AudioCaps and Clotho.

human judgment. On the other hand, an identical
finding is observed in the Clotho dataset, and our
proposed metric achieves comparable performance
with the state-of-the-art metric, FENSE.

We also recognize an issue for the previous
benchmark datasets: low inter-rater reliability. Fur-
thermore, the ranking of evaluation metrics on the
Clotho benchmark is different, as shown in Table 2
and Table 3. Previous benchmarks used outdated
audio captioning systems to generate annotation
data with numerous grammatical errors. Due to
model development, these types of errors rarely oc-
cur in state-of-the-art AAC systems, but the hallu-
cination issue is a more critical issue for the current
AAC systems. Therefore, we annotate new high-
quality benchmarks using state-of-the-art AAC sys-
tems to generate annotation data for better evalu-
ating the new metrics. As shown in Table 2, the
graph-score significantly outperforms all baseline
methods on the AudioCaps benchmark, while our
metric is 1.75 points better than the FENSE metric
on average measured on the Clotho benchmark. We
further provide Spearman’s Correlation shown in
Table. 4. The graph-score is the most correlated
metric with human preference, therefore, it can
better evaluate machine-generated captions.

AudioCaps(Spearman’s p) | Clotho(Spearman’s p)
BertScore 0.04 0.122
BLEURT 0.392 0.375
Sentence-BERT 0.46 0.46
FENSE 0.462 0.445
Graph-score 0.512 0.492

Table 4: Spearman Correlation between human prefer-
ences and metric preferences. All p-values < 0.05.
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Figure 2: Failure cases on AudioCaps benchmark in
which Graph-score failed to align with human judgment.

3.3 Failure analysis

Figure. 2 demonstrates cases in which the Graph-
score fails to align with human judgment on Audio-
Caps benchmark. The major failure is due to the
inability to comprehend the importance of sound
events. Some sound events are referred to multiple
times in reference captions, thereby, they are more
crucial and should be weight with higher score. In
the failure examples, the graph-score failed to take
the importance of "bird chirping" in the top-left ex-
ample into account, therefore, it is not well aligned
with human judgment.

4 Conclusion

To better assess the quality of AAC systems, we
propose a new evaluation metric, graph score,
grounded in audio and semantic graphs. The exper-
imental results on benchmark datasets demonstrate
the superior agreement of our proposed metric with
human judgments. The graph-score is able to mea-
sure the discrepancy in terms of sound-events and
their temporal relations, therefore provide a bet-
ter metric for evaluating the quality of machine-
generated captions. We also contribute new high-
quality benchmark datasets to facilitate the develop-
ment of more reliable automatic evaluation metrics
for the AAC task.



Limitation

Our proposed metric, the graph-score, has a few
limitations. First, the graph-score metric is a model-
based evaluation metric, therefore, its performance
heavily depends on the quality of the pretrained
CLAP model. Second, we primarily utilize Chat-
GPT, an API LLM, to extract semantic graphs from
audio captions. It is worth exploring the other open-
source LLMs such as Llama3 or Vicuna to reduce
the inference costs and latency. We plan to use
open-source LLMs to develop a totally transparent
evaluation metric for audio captioning.
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A Related Works

Statistics-based evaluation. This line of eval-
uation compares statistical overlap of candidate
and reference captions to determine alignment
between them, such as BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005),
ROUGE/, (Lin, 2004), and CIDEr (Vedantam et al.,
2015). SPICE (Anderson et al., 2016) is a scence-
graph-based evaluation metric for the captioning
tasks.

Model-based evaluation. This type of eval-
uation leverages pretrained models to assess the
quality of generated captions. ClipScore (Hessel
et al., 2021) and InfoMetIC (Hu et al., 2023) are
reference-free evaluation metrics for audio caption-
ing by utilizing pretrained CLIP encoders (Rad-
ford et al., 2021). Sentence-Bert (Reimers and
Gurevych, 2019), BertScore (Zhang et al., 2019),
and BLEURT (Sellam et al., 2020) are evaluation
metric for text-generation tasks by fine-tuning the
pretrained BERT model. Recently, FENSE (Zhou
et al., 2022) proposed a state-of-the-art evaluation
metric to assess the quality of audio caption by
combining the Sentence-Bert score and the fluency
score. SPICE+ (Gontier et al., 2023) is a modifi-
cation of SPICE which leverages a pretrained lan-
guage model for semantic graph extraction and soft-
matching for sound-events comparison. All the
prior evaluation metrics are either text-generation
metrics or text-based evaluation metrics, therefore,
they lack an understanding of the alignment be-
tween audio and generated captions. In addition,
there have not been evaluation metrics considering
the temporal relationship of sound events in audio
to assess the quality of candidate captions.

B Model details

CLAP (Elizalde et al., 2023) is a cross-modal audio-
text retrieval model trained on 128k audio-text pairs
from 4 datasets. The CLAP model consists of two
encoders, text and audio encoders, trained using the
contrastive learning method to bridge the modality
gap between audio and captions. The audio en-
coder is HTSAT model (Chen et al., 2022), which
is pretrained on 2M audio clips from the AudioSet
dataset for sound event tagging. The text encoder
is GPT2 model (Radford et al., 2019), which is
pretrained on text data for language modeling.

Given an audio caption consisting of some sound
events. You are able to extract sound events and
temporal relations among sound events using the
following template: [sound event | temporal
relationship | sound event]. There are two possible
temporal relations: concurrent with and following
by.

{In-context examples}

Following given examples and extract all temporal
relation among sound events in the caption:
{caption}

Figure 3: GPT-4 prompt to extract semantic graph from
captions

C Prompt Design

Prompting for semantic graphs extraction.
Recently, large language models (LLMs) have
achieved a great performance in open information
extract tasks (Qi et al., 2023; Sainz et al.). The
given caption is concatenated with a predefined
prompt to input to LL.Ms to extract a correspond-
ing semantic graph. We give detailed instructions
on information extraction from a given audio cap-
tion to construct a semantic graph from the caption.
The prompt is used to extract the semantic graph
from the caption shown in C. Although GPT-4 is
capable of extracting relevant information from a
given audio caption, there are two problems with
information extraction using LLLMs: inconsistent
response and incomparable performance with fine-
tuning models. We resolve the aforementioned
issues of LLMs by adopting the in-context learning
technique for information extraction (Wan et al.,
2023; Wang et al., 2022). We provide represen-
tative examples as a part of the input prompt to
assist GPT-4 in better understanding the informa-
tion extraction task for the audio caption. The final
prompt is utilized to extract the semantic graph of
the audio caption is

P:IUD|D:d17--~,dk 4

, where Z and D = d3,...,d} are the instruction
of information extraction for audio caption and k-
representative examples for the task.

D Dataset construction and annotation
guideline

AudioCaps (Kim et al., 2019) and Clotho (Drossos
et al., 2020) are two popular datasets for training
and evaluating audio captioning systems. There
are currently 959 and 1045 available audio for the
AudioCaps and Clotho test data, respectively. To
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Caption 1: Constant rattling noise and sharp vibrations
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Figure 4: An overview of annotation platform

construct a high-quality benchmark dataset for the
audio captioning task, we annotate a representative
subset of test data for each dataset since annotat-
ing the whole test data for these datasets is time-
consuming and costly. We first cluster all audio in
the test set of two datasets into 20 clusters using the
K-mean algorithm on the audio embedding from
the audio encoder from the CLAP model (Elizalde
et al., 2023). Then, there are 5 audio samples ex-
tracted from each cluster as representative samples
for the cluster. To avoid ambiguity for the human
raters, we choose representative audio based on
the criteria: the semantics of ground-truth captions
of representative audio should be diverse, mean-
ing the cosine similarity between reference caption
embeddings should not be high. Eventually, we
sample 100 audio and their captions from both
AudioCaps and Clotho test data to build two bench-
mark datasets.

We follow the previous work (Zhou et al., 2022)
to construct the audio captioning evaluation dataset
based on human judgment. Given a triplet, an audio
and two candidate captions, three annotators are
asked to pick which candidate caption describes
sound events in the audio better in terms of cor-
rectness and fluency. The annotation guideline and
interface are demonstrated in the appendix D. We
build four pair caption groups: human-human cor-
rect (HC), human-human incorrect (HI), human-
machine (HM), and machine-machine (MM). The
HC consists of two out of five audio reference cap-
tions. The HI also contains two human-written
captions, one sampled from the given audio’s refer-
ence captions and the other randomly sampled from
a pool of reference captions. The HM is built from
a human-written caption sampled from the audio’s
reference captions and a machine-generated cap-
tion for the same audio. The MM is built from two
machine-generated captions describing the same

audio. Two state-of-the-art audio captioning sys-
tems, Enclap (Kim et al., 2024) and Pengi (Desh-
mukh et al., 2023), are utilized to generate machine-
generated captions. To give a clear instruction
guideline and avoid disagreement during the an-
notation stage, we perform a dry-run for 20 sam-
ples for each dataset and discuss with annotators
regarding our guideline and the dry-run annotation.

Annotation guideline. We give a detailed in-
struction to help human raters annotate bench-
mark data with high quality and agreement. The
overview of the annotation platform is demon-
strated in Figure. 4. Given an audio with a pair
of candidate captions, human raters are asked to
identify sound events described in each candidate
caption and then identify their temporal relation.
There are two valid temporal relations: sequential
and concurrent relations. For example, the cap-
tion "Constant rattling noise and sharp vibrations",
there are two sound-events described in the given
caption: rattling noise and sharp vibration, and
their relationship is concurrent. After that, human
raters listen to the audio at least twice to determine
which candidate caption is more aligned with the
audio.

E Additional ablation studies

We conduct an ablation study on a range of 0 <
a < 1 to choose the best value of « for two bench-
mark datasets. As shown in Figure. 5. The highest
performance of the graph score metrics is 77.5%
with o = 0.8 on the AudioCaps benchmark and
74.75% with « = 0.6 on the Clotho benchmark.
The experimental results show that both audio-
caption and graph distance are vital for evaluating
audio caption. The audio-caption distance is capa-
ble of measuring semantic alignment across audio
and natural language modalities, while the graph
distance is able to take sound-event matching and
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Figure 5: Ablation study on AudioCaps and Clotho
benchmark for the graph-score metric with 0 < o < 1.

their temporal relationship into account for measur-
ing the discrepancy between candidate and refer-
ence captions We further conduct ablation studies

AudioCaps | Clotho
1-reference | 76.25 73.25
3-reference | 77.5 74.75

Table 5: Ablation study on the effectiveness of the uni-
fied reference graph by varying the number of reference
captions.

on the effectiveness of the unified reference graphs
by varying the number of reference captions. The
experimental results are shown in Table. 5. There
is a drop in terms of performance of our metric, the
agreement decreases from 77.5% to 76.25% and
from 74.75% to 73.25% on AudioCaps and Clotho
benchmark, respectively. We also conducted an ex-
tensive study on the quality of extracted semantic
graphs to our proposed metrics, the ablation results
can be found in the Appendix. E

Precision Recall Fl1
GPT-3.5 | 68.2 71.4 69.8
GPT-4 82.5 80.1 81.3

Table 6: The performance of GPT3.5 and GPT-4 on the
semantic graph extraction task on 200 random human-
written captions on the AudioCaps test set.

AudioCaps | Clotho
GPT-3.5 | 75 72.5
GPT-4 77.5 74.75

Table 7: Experiment on using GPT-3.5 and GPT-4 for
semantic graph extraction from audio captions for the
graph-score metric.

We conducted a study on the quality of LLM on
semantic graph extraction from audio captions and
then examined the effect of the quality of extracted
semantic graphs on the performance of our metric.
We first randomly sample 200 human-written cap-
tions from the AudioCaps test set and then leverage
GPT-4 to extract semantic graphs, the prompt and
procedure are described in the Appendix. C. After
that, an expert, one of the authors of this paper,
manually checks the extracted semantic graphs and
relabels them if needed. We use the human-labeled
data as ground-truth for the semantic graph extrac-
tion task. The performance of two LLMs, GPT-3.5
and GPT-4, on the semantic graph extraction task,
is reported in Table. 6. The performance of GPT-
3.5 is significantly lower than GPT-4 in terms of F1
score in extracting semantic graphs from audio cap-
tions; thereby, this reflects the lower performance
of using GPT-3.5 in graph-score metric than using
GPT-4 in Table. 7

To examine the influence of matching methods
for semantic graph comparison in the graph-score,
we compare the OT matching with exact matching
as a baseline. The experimental results are shown in
Table. 9. The exact distance is computed as follows
c(zi, zj) = 1, if z; = z;, otherwise ¢(z;, z;) = 0
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Metrics

HC | HI HM | MM | Avg || HC | HI HM | MM | Avg
BERTScore 60.6 | 97.6 | 92.9 | 65 743 || 57.1 | 955 | 703 | 61.3 | 67.5
BLEURT 773 | 939 | 88.7 | 72.4 | 793 || 59.0 | 939 | 754 | 674 | 71.6
Sentence-BERT | 64 99.2 | 925 | 73.6 | 79.6 || 60 955 | 759 | 66.9 | 71.8
FENSE 64.5 | 984 | 91.6 | 76.6 | 82.7 || 60.5 | 94.7 | 75.8 | 66.8 | 74.4
Graph-score 72.6 | 99.1 | 93.2 | 73.1 | 84.5 || 569 | 971 | 77.1 | 64.6 | 73.9

Table 8: Correlation with human judgment on AudioCaps and Clotho benchmark from (Zhou et al., 2022). o = 0.6
for both AudioCaps and Clotho benchmarks.

AudioCaps | Clotho
Exact matching 52.25 44.25
Optimal transport | 69.75 65.75

Table 9: Ablation study on our benchmarks to evaluate
the performance of matching methods for graph compar-
ison with a = 0. The reported numbers are the average
of correlation with human judgment.
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