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Abstract

Evaluating audio captioning systems is a chal-001
lenging problem since the evaluation process002
must consider numerous semantic alignments003
of candidate captions, such as sound event004
matching and the temporal relationship among005
them. The existing metrics fail to take these006
alignments into account as they consider either007
statistical overlap (BLEU, SPICE, CIDEr) or008
latent representation similarity (FENSE). To009
tackle the aforementioned issues of the current010
metrics, we propose the graph-score, which011
grounds audio captions to semantic graphs, for012
better measuring the performance of AAC sys-013
tems. Our proposed metric achieves the highest014
agreement with human judgment on the pair-015
wise benchmark datasets. Furthermore, we016
contribute high-quality benchmark datasets to017
make progress in developing evaluation metrics018
for the audio captioning task.019

1 Introduction020

Automated audio captioning (AAC) aims to gener-021

ate textual descriptions of a given audio. There has022

been significant progress in the AAC task due to023

framework development (Kim et al., 2024), data024

curation (Mei et al., 2023), and prefix-tuning lan-025

guage model (Deshmukh et al., 2023; Kim et al.,026

2023). However, there is little progress in devel-027

oping reliable evaluation metrics for the AAC task.028

Furthermore, evaluating AAC systems is challeng-029

ing due to the diversity of reference captions in030

terms of style and content.031

To assess the quality of AAC systems, the most032

popular metrics are BLEU (Papineni et al., 2002),033

SPICE (Anderson et al., 2016), and FENSE (Zhou034

et al., 2022). However, these metrics are not able to035

reflect the alignment between audio and candidate036

captions. The BLEU score is designed to measure037

n-gram overlap between candidate and reference038

sentences. Therefore, it is incapable of measuring039

semantic similarity. SPICE score is proposed to040

Figure 1: Several qualitative examples from the Audio-
Caps benchmark. The sound-events are highlighted in
blue, and temporal relations are highlighted in orange.

evaluate the semantic similarity for image caption- 041

ing via semantic graph matching. However, it only 042

focuses on object’s attributes and their spatial rela- 043

tionships, which are not vital for audio captioning 044

evaluation. To tackle the shortcomings of prior 045

metrics, FENSE is developed to measure the se- 046

mantic similarity for AAC systems by combining 047

the Sentence-Bert score (Reimers and Gurevych, 048

2019) with a fluency penalization score. Although 049

FENSE is effective and well-aligned with human 050

judgment, it struggles to determine genuine tem- 051

poral relations among sound events. As shown in 052

Figure. 1, the caption C1 is well-aligned with refer- 053

ence captions. While even the caption C2 refers to 054

the same sound events, it might describe a different 055

audio due to the difference in temporal relations 056

among sound events. Human raters are able to 057

recognize the difference in temporal relations de- 058

scribed in these two candidate captions and give a 059

genuine judgment. 060

To better compare the performance of AAC sys- 061

tems, we propose a new evaluation metric for the 062

AAC task, coined graph-score. Our proposed met- 063

ric first extracts semantic graphs from the candidate 064

and reference captions to measure their dissimilar- 065

ity. The semantic graph consists of a list of triplets, 066

each triplet represents a pair of sound events and 067

1



their temporal relationship. For example, the can-068

didate caption "A man speaks followed by chirping069

birds" in Figure. 1 can be represented as <man070

speaking, following by, bird chirping>. There are071

several ways to express an acoustic event, such as072

paraphrasing or using a generic/specific expression.073

The diversity of acoustic event expression causes074

difficulty in measuring the discrepancy between075

two graphs. We map the extracted sound events076

to a predefined list of 527 audio events extracted077

from the AudioSet dataset (Gemmeke et al., 2017)078

which is a comprehensive ontology for acoustic079

events. Therefore, the semantic graph is a better080

representation of captions for measuring the align-081

ment in terms of sound events and their temporal082

relationships. By leveraging semantic graphs, we083

utilize the optimal transport framework to measure084

the dissimilarity between candidate and reference085

captions, moreover, we also leverage the pretrained086

CLAP model (Elizalde et al., 2023) to compute087

semantic dissimilarity across audio and textual de-088

scription. Finally, our graph-score metric is the089

convex combination of both semantic graph and090

cross-modal dissimilarity. To sum up, our key con-091

tributions are two-fold:092

1. We propose a new evaluation metric, coined093

graph-score, for the AAC task to better assess094

the alignment between candidate caption and095

audio and a list of reference captions.096

2. Due to the lack of high-quality benchmark097

datasets for developing automatic metrics, we098

extend subsets of AudioCaps and Clotho test099

sets with high-quality human judgements.100

2 Methodology101

2.1 Semantic Graph Construction102

The semantic graph of a given audio describes the103

temporal relationship among audio events that oc-104

cur in the audio. The semantic graphs consist105

of a list of triplets G(c) = {< e1, r, e2 >}ni=1,106

where e1 and e2 are two audio events occurring107

in a caption c that have the temporal relationship108

r = {following by, concurrent with}. As discussed109

in (Xie et al., 2023), the temporal relationships of110

audio events can be narrowed down to sequential111

or concurrent relationships to understand the au-112

dio content correctly. We formulate the semantic113

graph extraction from the caption as an open infor-114

mation extraction task. Given an audio caption,115

we can extract a corresponding semantic graph116

reflecting the temporal relationship among audio 117

events in the caption. We conduct experiments 118

on using either GPT-4 (Achiam et al., 2023) or 119

LLaMa3.1-8B (Dubey et al., 2024) to construct 120

semantic graphs from the caption of audio. The 121

prompt design can be found in the Appendix C. 122

Grounded audio events. The extracted seman- 123

tic graphs from GPT-4 consist of open-ended au- 124

dio events from the given captions. Due to node 125

mismatching, estimating the distance between a 126

pair of graphs is challenging. Therefore, we pro- 127

pose to use a predefined audio events list to ground 128

open-audio events from GPT-4 to assist in graph 129

comparison. The predefined audio events list con- 130

sists of 527 audio events extracted from the Au- 131

dioSet dataset (Gemmeke et al., 2017). The ra- 132

tionale behind choosing AudioSet’s labels is that 133

this dataset covers a wide range of sound events in 134

the wild. The covered sound events range from 135

daily sounds like human and animal sounds to 136

source-ambiguous sounds like surface contact. Af- 137

ter extracting semantic graphs from a given audio 138

caption, the extracted sound events from the cap- 139

tion are mapped to the AudioSet’s sound events by 140

nearest-neighbor search. We utilize the pretrained 141

BERT model (Devlin et al., 2018) to embed both 142

AudioSet’s labels and the extracted sound events 143

into the embedding space and then compute the 144

similarity score between the extracted audio events 145

and AudioSet’s labels. Given an extracted audio 146

event from the caption, it is mapped to the most 147

similar semantic audio events in the predefined list 148

as follows 149

b = argmax
bi∈B

s(f(e), f(bi)) (1) 150

where B is the list of AudioSet’s labels. s(.) and 151

f(.) are the cosine similarity and the embedding 152

functions, respectively. 153

2.2 Graph-grounded Evaluation Metric 154

Optimal transport for semantic graph compar- 155

ison. The size of a candidate graph is always 156

smaller than the size of the reference graph uni- 157

fied from its reference captions. Hence, there is 158

more than one matching between a candidate and a 159

reference graph. Exact matching is not able to con- 160

sider all matchings between two graphs to measure 161

the distance between them. Therefore, We utilize 162

the optimal transport framework to perform bipar- 163

tite matching and then measure the discrepancy 164

between semantic graphs. We embed triplets of 165
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extracted semantic graphs as described in the Sec-166

tion. 2.1 into an embedding space and then perform167

matching between two sets of embedding vectors.168

Each triplet in the semantic graph is verbalized by169

a template: "The sound of <e1> is <r> the sound170

of <e2>" to generate a textual description for the171

triplet. Formally, the candidate graph Gc and the172

unified reference graph G = {Gr1 , ..., GrN } are173

transcribed into two sets of textual descriptions. Af-174

ter that, textual descriptions are fed into the CLAP175

text encoder to achieve the embedding of the can-176

didate graph Zc = {zic}ni=1 and the embedding of177

the unified reference graph ZG = {zjG}mj=1. We178

utilize the optimal transport framework to perform179

point set matching between two sets of embedding180

vectors and then use the optimal matching solution181

to measure the discrepancy between them182

DOT (µ
Gc , νG) = min

π∈Π(µGc ,νG)

n∑
i=1

m∑
j=1

πi,j .c(z
i
c, z

j
G)

(2)183

where µGc = 1
n

∑n
i=1 δGc and νG = 1

m

∑m
j=1 δG184

are two discrete probability measure of candidate185

and reference embeddings, Π(µGc , νG) = {π ∈186

Rn×m|π1n = 1n/n, π1m = 1m/m} denotes the187

set of transportation plans or coupling between µGc188

and νG . The distance metric c(zic, z
j
G) is defined as189

1− <zic,z
j
G>

||zic||.||z
j
G ||

to measure the distance between two190

embedding vectors.191

Semantic graph-based score. Given a triplet192

(a, c,R) of an audio, a candidate caption, and a list193

of reference captions, we first compute the dissim-194

ilarity between the given audio and the candidate195

caption as D(a, c) = 1− <f(c),g(a)>
||f(c)||.||g(a)|| , where f(·)196

and g(·) are the pretrained text and audio encoder197

from CLAP model. Then, we compute the distance198

between the candidate caption and the list of ref-199

erences D(c,R) as in Eq. 2. The final score is200

the convex combination of audio-candidate caption201

distance and candidate-references caption distance202

GRAPH-S(a, c,R) = αD(a, c) + (1− α)D(c,R)
(3)203

where 0 ≤ α ≤ 1. if α = 1, the score is similar204

with CLIPScore (Hessel et al., 2021). If α = 0, the205

score is based on the semantic graph distance.206

3 Experiments207

3.1 Eperimental settings208

Evaluation datasets. We evaluate our pro-209

posed metric, graph-score, on two benchmark210

Fleiss Kappa
AudioCaps Clotho

(Zhou et al., 2022) 0.28∗(0.48) 0.24(0.33)

Our benchmark 0.53 0.42

Table 1: The inter-rater reliability for audio captioning
benchmark based on human rating. *We recompute the
inter-rater reliability of benchmarks in the FENSE paper
and report the reliability in this table, the numbers in
parentheses are the ones reported in the original paper.

datasets. The first benchmark is the FENSE’s 211

benchmark (Zhou et al., 2022), which are two 212

subsets of AudioCaps and Clotho test data. The 213

FENSE’s benchmark consists of 1,750 pairs on 214

Clotho and 1,671 pairs on AudioCaps human judg- 215

ments regarding audio caption quality. Although 216

the FENSE’s benchmark is the first curated dataset 217

for evaluating audio captioning metrics, its inter- 218

rater reliability is low, 0.28 on AudioCaps and 0.24 219

on Clotho. Therefore, we curate a new high-quality 220

benchmark for better evaluating audio captioning 221

metrics based on two AudioCaps and Clotho test 222

data subsets. There are 400 samples of three hu- 223

man raters’s preferences for AudioCaps and Clotho 224

in our new benchmark. The data annotation detail 225

is described in the Appendix D. As shown in the 226

Table 1, our new benchmark datasets are more high- 227

quality than the previous benchmark datasets (Zhou 228

et al., 2022) in terms of rater-inter reliability due 229

to the filtering procedure and a rigorous quality 230

control process using the guideline in Appendix D. 231

Evaluation metrics. We measure the perfor- 232

mance of audio captioning metrics by evaluating 233

their correlation with human judgment. The evalua- 234

tion metrics are evaluated in four scenarios: human- 235

human caption correct (HC), human-human cap- 236

tion incorrect (HI), human-machine caption (HM), 237

and machine-machine caption (MM). We consider 238

the caption rated by the majority of human raters 239

to be correct and measure how frequently the eval- 240

uation metrics assign a higher score to the correct 241

caption of the pair. 242

3.2 Agreement with human judgment 243

Table 8 illustrates the agreement of evaluation met- 244

rics with human judgment for four evaluation sce- 245

narios on (Zhou et al., 2022) benchmarks. The 246

graph-score achieves the highest agreement with 247

human judgment on the human-human incorrect 248

and human-machine caption scenarios on the Au- 249

dioCaps benchmark, therefore, it aligns well with 250
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Metrics AudioCaps Clotho
HC HI HM MM Avg HC HI HM MM Avg

BERTScore 60 51 49 49 52.25 58 53 53 60 56
BLEURT 62 84 61 72 69.75 58 91 67 60 69
Sentence-BERT 61 94 61 76 73 63 91 71 68 73.25
FENSE 61 94 63 76 73.5 63 91 71 67 73
Graph-score + GPT4 65 98 67 74 76 64 98 70 67 74.75
Graph-score + LLaMa3.1 8B 64 99 63 75 75.25 60 98 67 68 73.25

Table 2: Correlation with human judgment on our curated benchmark datasets sampled from AudioCaps and Clotho
test sets. α = 0.6 for both AudioCaps and Clotho benchmarks.

Metric Clotho
HC HI HM MM Avg

BERTScore 57.1 95.5 70.3 61.3 67.5
BLEURT 59 93.9 75.4 67.4 71.6
Sentence-BERT 60 95.5 75.9 66.9 71.8
FENSE 60.5 94.7 75.8 66.8 74.4
Graph-score+ GPT4 56.9 97.1 77.1 64.6 73.9

Table 3: Correlation with human judgment on Clotho
benchmark from (Zhou et al., 2022) with α = 0.6. See
Table. 8 in the Appendix. E for experiment on both
AudioCaps and Clotho.

human judgment. On the other hand, an identical251

finding is observed in the Clotho dataset, and our252

proposed metric achieves comparable performance253

with the state-of-the-art metric, FENSE.254

We also recognize an issue for the previous255

benchmark datasets: low inter-rater reliability. Fur-256

thermore, the ranking of evaluation metrics on the257

Clotho benchmark is different, as shown in Table 2258

and Table 3. Previous benchmarks used outdated259

audio captioning systems to generate annotation260

data with numerous grammatical errors. Due to261

model development, these types of errors rarely oc-262

cur in state-of-the-art AAC systems, but the hallu-263

cination issue is a more critical issue for the current264

AAC systems. Therefore, we annotate new high-265

quality benchmarks using state-of-the-art AAC sys-266

tems to generate annotation data for better evalu-267

ating the new metrics. As shown in Table 2, the268

graph-score significantly outperforms all baseline269

methods on the AudioCaps benchmark, while our270

metric is 1.75 points better than the FENSE metric271

on average measured on the Clotho benchmark. We272

further provide Spearman’s Correlation shown in273

Table. 4. The graph-score is the most correlated274

metric with human preference, therefore, it can275

better evaluate machine-generated captions.276

AudioCaps(Spearman’s ρ) Clotho(Spearman’s ρ)
BertScore 0.04 0.122
BLEURT 0.392 0.375

Sentence-BERT 0.46 0.46
FENSE 0.462 0.445

Graph-score 0.512 0.492

Table 4: Spearman Correlation between human prefer-
ences and metric preferences. All p-values < 0.05.

Figure 2: Failure cases on AudioCaps benchmark in
which Graph-score failed to align with human judgment.

3.3 Failure analysis 277

Figure. 2 demonstrates cases in which the Graph- 278

score fails to align with human judgment on Audio- 279

Caps benchmark. The major failure is due to the 280

inability to comprehend the importance of sound 281

events. Some sound events are referred to multiple 282

times in reference captions, thereby, they are more 283

crucial and should be weight with higher score. In 284

the failure examples, the graph-score failed to take 285

the importance of "bird chirping" in the top-left ex- 286

ample into account, therefore, it is not well aligned 287

with human judgment. 288

4 Conclusion 289

To better assess the quality of AAC systems, we 290

propose a new evaluation metric, graph score, 291

grounded in audio and semantic graphs. The exper- 292

imental results on benchmark datasets demonstrate 293

the superior agreement of our proposed metric with 294

human judgments. The graph-score is able to mea- 295

sure the discrepancy in terms of sound-events and 296

their temporal relations, therefore provide a bet- 297

ter metric for evaluating the quality of machine- 298

generated captions. We also contribute new high- 299

quality benchmark datasets to facilitate the develop- 300

ment of more reliable automatic evaluation metrics 301

for the AAC task. 302
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Limitation303

Our proposed metric, the graph-score, has a few304

limitations. First, the graph-score metric is a model-305

based evaluation metric, therefore, its performance306

heavily depends on the quality of the pretrained307

CLAP model. Second, we primarily utilize Chat-308

GPT, an API LLM, to extract semantic graphs from309

audio captions. It is worth exploring the other open-310

source LLMs such as Llama3 or Vicuna to reduce311

the inference costs and latency. We plan to use312

open-source LLMs to develop a totally transparent313

evaluation metric for audio captioning.314
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A Related Works468

Statistics-based evaluation. This line of eval-469

uation compares statistical overlap of candidate470

and reference captions to determine alignment471

between them, such as BLEU (Papineni et al.,472

2002), METEOR (Banerjee and Lavie, 2005),473

ROUGEL (Lin, 2004), and CIDEr (Vedantam et al.,474

2015). SPICE (Anderson et al., 2016) is a scence-475

graph-based evaluation metric for the captioning476

tasks.477

Model-based evaluation. This type of eval-478

uation leverages pretrained models to assess the479

quality of generated captions. ClipScore (Hessel480

et al., 2021) and InfoMetIC (Hu et al., 2023) are481

reference-free evaluation metrics for audio caption-482

ing by utilizing pretrained CLIP encoders (Rad-483

ford et al., 2021). Sentence-Bert (Reimers and484

Gurevych, 2019), BertScore (Zhang et al., 2019),485

and BLEURT (Sellam et al., 2020) are evaluation486

metric for text-generation tasks by fine-tuning the487

pretrained BERT model. Recently, FENSE (Zhou488

et al., 2022) proposed a state-of-the-art evaluation489

metric to assess the quality of audio caption by490

combining the Sentence-Bert score and the fluency491

score. SPICE+ (Gontier et al., 2023) is a modifi-492

cation of SPICE which leverages a pretrained lan-493

guage model for semantic graph extraction and soft-494

matching for sound-events comparison. All the495

prior evaluation metrics are either text-generation496

metrics or text-based evaluation metrics, therefore,497

they lack an understanding of the alignment be-498

tween audio and generated captions. In addition,499

there have not been evaluation metrics considering500

the temporal relationship of sound events in audio501

to assess the quality of candidate captions.502

B Model details503

CLAP (Elizalde et al., 2023) is a cross-modal audio-504

text retrieval model trained on 128k audio-text pairs505

from 4 datasets. The CLAP model consists of two506

encoders, text and audio encoders, trained using the507

contrastive learning method to bridge the modality508

gap between audio and captions. The audio en-509

coder is HTSAT model (Chen et al., 2022), which510

is pretrained on 2M audio clips from the AudioSet511

dataset for sound event tagging. The text encoder512

is GPT2 model (Radford et al., 2019), which is513

pretrained on text data for language modeling.514

Figure 3: GPT-4 prompt to extract semantic graph from
captions

C Prompt Design 515

Prompting for semantic graphs extraction. 516

Recently, large language models (LLMs) have 517

achieved a great performance in open information 518

extract tasks (Qi et al., 2023; Sainz et al.). The 519

given caption is concatenated with a predefined 520

prompt to input to LLMs to extract a correspond- 521

ing semantic graph. We give detailed instructions 522

on information extraction from a given audio cap- 523

tion to construct a semantic graph from the caption. 524

The prompt is used to extract the semantic graph 525

from the caption shown in C. Although GPT-4 is 526

capable of extracting relevant information from a 527

given audio caption, there are two problems with 528

information extraction using LLMs: inconsistent 529

response and incomparable performance with fine- 530

tuning models. We resolve the aforementioned 531

issues of LLMs by adopting the in-context learning 532

technique for information extraction (Wan et al., 533

2023; Wang et al., 2022). We provide represen- 534

tative examples as a part of the input prompt to 535

assist GPT-4 in better understanding the informa- 536

tion extraction task for the audio caption. The final 537

prompt is utilized to extract the semantic graph of 538

the audio caption is 539

P = I ∪ D|D = d1, ..., dk (4) 540

, where I and D = d1, ..., dk are the instruction 541

of information extraction for audio caption and k- 542

representative examples for the task. 543

D Dataset construction and annotation 544

guideline 545

AudioCaps (Kim et al., 2019) and Clotho (Drossos 546

et al., 2020) are two popular datasets for training 547

and evaluating audio captioning systems. There 548

are currently 959 and 1045 available audio for the 549

AudioCaps and Clotho test data, respectively. To 550
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Figure 4: An overview of annotation platform

construct a high-quality benchmark dataset for the551

audio captioning task, we annotate a representative552

subset of test data for each dataset since annotat-553

ing the whole test data for these datasets is time-554

consuming and costly. We first cluster all audio in555

the test set of two datasets into 20 clusters using the556

K-mean algorithm on the audio embedding from557

the audio encoder from the CLAP model (Elizalde558

et al., 2023). Then, there are 5 audio samples ex-559

tracted from each cluster as representative samples560

for the cluster. To avoid ambiguity for the human561

raters, we choose representative audio based on562

the criteria: the semantics of ground-truth captions563

of representative audio should be diverse, mean-564

ing the cosine similarity between reference caption565

embeddings should not be high. Eventually, we566

sample 100 audio and their captions from both567

AudioCaps and Clotho test data to build two bench-568

mark datasets.569

We follow the previous work (Zhou et al., 2022)570

to construct the audio captioning evaluation dataset571

based on human judgment. Given a triplet, an audio572

and two candidate captions, three annotators are573

asked to pick which candidate caption describes574

sound events in the audio better in terms of cor-575

rectness and fluency. The annotation guideline and576

interface are demonstrated in the appendix D. We577

build four pair caption groups: human-human cor-578

rect (HC), human-human incorrect (HI), human-579

machine (HM), and machine-machine (MM). The580

HC consists of two out of five audio reference cap-581

tions. The HI also contains two human-written582

captions, one sampled from the given audio’s refer-583

ence captions and the other randomly sampled from584

a pool of reference captions. The HM is built from585

a human-written caption sampled from the audio’s586

reference captions and a machine-generated cap-587

tion for the same audio. The MM is built from two588

machine-generated captions describing the same589

audio. Two state-of-the-art audio captioning sys- 590

tems, Enclap (Kim et al., 2024) and Pengi (Desh- 591

mukh et al., 2023), are utilized to generate machine- 592

generated captions. To give a clear instruction 593

guideline and avoid disagreement during the an- 594

notation stage, we perform a dry-run for 20 sam- 595

ples for each dataset and discuss with annotators 596

regarding our guideline and the dry-run annotation. 597

Annotation guideline. We give a detailed in- 598

struction to help human raters annotate bench- 599

mark data with high quality and agreement. The 600

overview of the annotation platform is demon- 601

strated in Figure. 4. Given an audio with a pair 602

of candidate captions, human raters are asked to 603

identify sound events described in each candidate 604

caption and then identify their temporal relation. 605

There are two valid temporal relations: sequential 606

and concurrent relations. For example, the cap- 607

tion "Constant rattling noise and sharp vibrations", 608

there are two sound-events described in the given 609

caption: rattling noise and sharp vibration, and 610

their relationship is concurrent. After that, human 611

raters listen to the audio at least twice to determine 612

which candidate caption is more aligned with the 613

audio. 614

E Additional ablation studies 615

We conduct an ablation study on a range of 0 ≤ 616

α ≤ 1 to choose the best value of α for two bench- 617

mark datasets. As shown in Figure. 5. The highest 618

performance of the graph score metrics is 77.5% 619

with α = 0.8 on the AudioCaps benchmark and 620

74.75% with α = 0.6 on the Clotho benchmark. 621

The experimental results show that both audio- 622

caption and graph distance are vital for evaluating 623

audio caption. The audio-caption distance is capa- 624

ble of measuring semantic alignment across audio 625

and natural language modalities, while the graph 626

distance is able to take sound-event matching and 627
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Figure 5: Ablation study on AudioCaps and Clotho
benchmark for the graph-score metric with 0 ≤ α ≤ 1.

their temporal relationship into account for measur-628

ing the discrepancy between candidate and refer-629

ence captions We further conduct ablation studies

AudioCaps Clotho
1-reference 76.25 73.25
3-reference 77.5 74.75

Table 5: Ablation study on the effectiveness of the uni-
fied reference graph by varying the number of reference
captions.

630
on the effectiveness of the unified reference graphs631

by varying the number of reference captions. The632

experimental results are shown in Table. 5. There633

is a drop in terms of performance of our metric, the634

agreement decreases from 77.5% to 76.25% and635

from 74.75% to 73.25% on AudioCaps and Clotho636

benchmark, respectively. We also conducted an ex-637

tensive study on the quality of extracted semantic638

graphs to our proposed metrics, the ablation results639

can be found in the Appendix. E

Precision Recall F1
GPT-3.5 68.2 71.4 69.8
GPT-4 82.5 80.1 81.3

Table 6: The performance of GPT3.5 and GPT-4 on the
semantic graph extraction task on 200 random human-
written captions on the AudioCaps test set.

640

AudioCaps Clotho
GPT-3.5 75 72.5
GPT-4 77.5 74.75

Table 7: Experiment on using GPT-3.5 and GPT-4 for
semantic graph extraction from audio captions for the
graph-score metric.

We conducted a study on the quality of LLM on 641

semantic graph extraction from audio captions and 642

then examined the effect of the quality of extracted 643

semantic graphs on the performance of our metric. 644

We first randomly sample 200 human-written cap- 645

tions from the AudioCaps test set and then leverage 646

GPT-4 to extract semantic graphs, the prompt and 647

procedure are described in the Appendix. C. After 648

that, an expert, one of the authors of this paper, 649

manually checks the extracted semantic graphs and 650

relabels them if needed. We use the human-labeled 651

data as ground-truth for the semantic graph extrac- 652

tion task. The performance of two LLMs, GPT-3.5 653

and GPT-4, on the semantic graph extraction task, 654

is reported in Table. 6. The performance of GPT- 655

3.5 is significantly lower than GPT-4 in terms of F1 656

score in extracting semantic graphs from audio cap- 657

tions; thereby, this reflects the lower performance 658

of using GPT-3.5 in graph-score metric than using 659

GPT-4 in Table. 7 660

To examine the influence of matching methods 661

for semantic graph comparison in the graph-score, 662

we compare the OT matching with exact matching 663

as a baseline. The experimental results are shown in 664

Table. 9. The exact distance is computed as follows 665

c(zi, zj) = 1, if zi = zj , otherwise c(zi, zj) = 0 666
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Metrics
AudioCaps Clotho

HC HI HM MM Avg HC HI HM MM Avg
BERTScore 60.6 97.6 92.9 65 74.3 57.1 95.5 70.3 61.3 67.5
BLEURT 77.3 93.9 88.7 72.4 79.3 59.0 93.9 75.4 67.4 71.6
Sentence-BERT 64 99.2 92.5 73.6 79.6 60 95.5 75.9 66.9 71.8
FENSE 64.5 98.4 91.6 76.6 82.7 60.5 94.7 75.8 66.8 74.4
Graph-score 72.6 99.1 93.2 73.1 84.5 56.9 97.1 77.1 64.6 73.9

Table 8: Correlation with human judgment on AudioCaps and Clotho benchmark from (Zhou et al., 2022). α = 0.6
for both AudioCaps and Clotho benchmarks.

AudioCaps Clotho
Exact matching 52.25 44.25
Optimal transport 69.75 65.75

Table 9: Ablation study on our benchmarks to evaluate
the performance of matching methods for graph compar-
ison with α = 0. The reported numbers are the average
of correlation with human judgment.
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