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ABSTRACT

We propose a simple, non-learnable, and nonparametric prediction head to be used
with any neural network architecture. The proposed head can be viewed as a clas-
sic Nadaraya-Watson (NW) model, where the prediction is a weighted average of
labels from a support set. The weights are computed from distances between the
query feature and support features. This is in contrast to the dominant approach of
using a learnable classification head (e.g., a fully-connected layer) on the features,
which can be challenging to interpret and can yield poorly calibrated predictions.
Our empirical results on an array of computer vision tasks demonstrate that the
NW head can yield better calibration than its parametric counterpart, while hav-
ing comparable accuracy and with minimal computational overhead. To further
increase inference-time efficiency, we propose a simple approach that involves a
clustering step run on the training set to create a relatively small distilled support
set. In addition to using the weights as a means of interpreting model predictions,
we further present an easy-to-compute “support influence function,” which quan-
tifies the influence of a support element on the prediction for a given query. As
we demonstrate in our experiments, the influence function can allow the user to
debug a trained model. We believe that the NW head is a flexible, interpretable,
and highly useful building block that can be used in a range of applications.

1 INTRODUCTION

Many state-of-the-art classification models are parametric deep neural networks, which can be
viewed as a combination of a deep feature extractor followed by one or more fully-connected (FC)
classification layers (He et al., 2015; Huang et al., 2016; Dosovitskiy et al., 2020). Two common
problems with parametric deep learning models are that they can be hard to interpret (Li et al., 2021)
and often suffer from poor calibration (Guo et al., 2017).

Nonparametric (and, similarly, attention-based) modeling strategies have been explored extensively
in deep learning (Wilson et al., 2015; Papernot & McDaniel, 2018; Chen et al., 2018; Kossen et al.,
2021; Laenen & Bertinetto, 2020; Iscen et al., 2022; Frosst et al., 2019). In this approach, the
prediction for a given test input (which we will also refer to as a query) is computed as an explicit
function of training datapoints. These models can be more interpretable, since the dependence
on other datapoints gives an indication about what is driving the prediction Hanawa et al. (2021).
Yet, they can suffer from significant computational overhead, can take a hit in performance versus
parametric approaches, and/or require complex approximate inference schemes (Bui et al., 2016;
Salimbeni & Deisenroth, 2017).

In this work, we propose the Nadaraya-Watson (NW) head, a simple, non-learnable, and non-
parametric prediction layer based on the Nadaraya-Watson model (Nadaraya, 1964; Watson, 1964;
Bishop, 2006). For a given query, a pre-defined similarity or distance is computed between query
features and the features in a “support set”, which can be made up of samples from the training data.
These scores are in turn used to compute a weighted average of the labels in the support set.

As we discuss in this paper, the choice of the support set for the NW head affords the user an
additional degree of freedom in implementation. We demonstrate several ways of constructing the
support set, including a simple support set distillation approach based on clustering, and discuss
the relative advantages and trade-offs. In our experiments, we show that the NW head can achieve
comparable (and sometimes better) performance than the FC head on a variety of computer vision
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Figure 1: Proposed NW head. Query image and support images are fed through a feature extractor
gθ. Pairwise similarities s(·, ·) (e.g. negative Euclidean distance) are computed between the query
and each support feature. These similarities are normalized and used as weights for computing the
weighted sum of corresponding support labels.

datasets, with little sacrifice to computation time. In particular, we find that the NW head exhibits
better calibrated predictions.

In addition, we explore two means of interpretability/explainability which fall naturally from
the NW head. The first is interpreting the support set weights, which directly correspond to the
degree of contribution a specific training datapoint has on the prediction. The second is our novel
concept of “support influence”, which highlights helpful and harmful support examples and can
be used as a diagnostic tool to understand and explain model behavior. In our experiments, we
demonstrate the utility of these methods for purposes of interpreting, explaining, and potentially
intervening in model predictions.

2 RELATED WORK

2.1 NONPARAMETRIC DEEP LEARNING AND ATTENTION

Nonparametric models in deep learning have received much attention in previous work. Deep Gaus-
sian Processes (Damianou & Lawrence, 2013), Deep Kernel Learning (Wilson et al., 2015), and
Neural Processes (Kossen et al., 2021) build upon Gaussian Processes and extend them to represen-
tation learning. Other works have generalized k-nearest neighbors (Papernot & McDaniel, 2018),
decision trees (Zhang et al., 2018), density estimation (Fakoor et al., 2020), and more general kernel-
based methods (Nguyen et al., 2021; Zhang et al., 2021; Ghosh & Nag, 2001) to deep networks and
have explored the interpretability that these frameworks provide.

Closely-related but orthogonal to nonparametric models are attention-based models, most notably
self-attention mechanisms popularized in Transformer-based architectures in natural language pro-
cessing (Vaswani et al., 2017) and, more recently, computer vision (Dosovitskiy et al., 2020; Jaegle
et al., 2021; Parmar et al., 2018). Retrieval models in NLP learn to look up relevant training in-
stances for prediction (Sachan et al., 2021; Borgeaud et al., 2021) in a nonparametric or semipara-
metric manner. Many works have recognized the inherent interpretable nature of attention and have
leveraged it in vision (Chen et al., 2018; Guan et al., 2018; Wang et al., 2017; Xu et al., 2015). More
recently, nonparametric transformers (NPT) (Kossen et al., 2021) applied attention in a nonparamet-
ric setting. NPT leverages self- and cross-attention between both attributes and datapoints, which
are stacked up successively in an alternating fashion to yield a deep, non-linear architecture.

Building upon and in contrast to these prior works, we propose a comparatively simple nonpara-
metric head which is computationally-efficient and performant, and which additionally lends itself
naturally to being interpretable.

2.2 METRIC LEARNING

Metric learning seeks to quantify the similarity between datapoints for use in downstream tasks (e.g.,
unsupervised pretraining (Wu et al., 2018) or retrieval (Chen et al., 2021)). Of particular relevance
to our method is metric learning in the context of low-shot classification (Snell et al., 2017; Vinyals
et al., 2016; Sung et al., 2017; Santoro et al., 2016). In particular, Matching Networks (Vinyals
et al., 2016) are most similar to our model in the sense that it uses an NW-style model to compute
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predictions, where both the query image and support set are composed of examples from unseen
classes. In contrast, we propose the NW head from a nonparametric perspective in the typical,
many-shot image classification setting.

2.3 INFLUENCE FUNCTIONS

Following classical work by Cook & Weisberg (1982), Koh & Liang (2017) propose the influence
function as a means of explaining black-box neural network predictions. Let h denote a function
parameterized by θ. D = {zi : (xi, yi)}ni=1 is a set of training examples and L(hθ(z)) indicates
the loss for a training example z. θ∗ is the set of optimal parameters which minimizes the empirical
risk. Similarly, the parameter set associated with up-weighting a training example z by ϵ is found
by solving:

argmin
θ

1

n

n∑
i=1

L(hθ(zi)) + ϵL(hθ(z)). (1)

Koh & Liang (2017) define influence as the change in the loss value for a particular test point zt
when a training point z is up-weighted. Using a first-order Taylor expansion and the chain rule,
influence can be approximated by a closed-form expression:

I(zt, z) = −∇L(hθ∗(zt))
TH−1

θ∗ ∇L(hθ∗(z)), (2)

where Hθ∗ represents the Hessian with respect to θ∗. I(zt, z)/n is approximately the change in
the loss for the test-sample zt when a training sample z is removed from the training set. However,
this result is based on the assumption that the underlying loss function is strictly convex in θ and
that the Hessian matrix is positive-definite. Follow-up work has questioned the efficacy of influence
functions in practical scenarios where these assumptions are violated (Basu et al., 2020).

In this work, we define the support influence function which follows naturally from the NW head;
it computes the change in the loss directly on the prediction vector itself (and not indirectly through
the model parameters θ). Furthermore, it is easy-to-compute, requires no approximations, and does
not require any assumptions on convexity or differentiability.

3 PROPOSED METHOD

3.1 NADARAYA-WATSON HEAD

Consider a “support set” of Ns examples and their associated labels, S = {zi : (xi, yi)}Ns
i=1. This

support set can be a subset, or the whole, of the training dataset. In this paper, we will focus on the
image classification setting, where x’s are images and y’s are integer class labels from a label set
C = {1, ..., C}. We will use y⃗ to denote the one-hot encoded version of y. We note that the proposed
NW head can be used with any input data type, not just images, and can be readily extended to the
regression setting.

For a query image x, the Nadaraya-Watson prediction is computed as the weighted sum of support
labels y⃗i, where the weights quantify the similarity of the query image with each support image xi:

f(x,S) =
Ns∑
i=1

w(x, xi)y⃗i. (3)

Classically, the weights are defined as a function of handcrafted kernel functions κ:

w(x, xi) =
κ(x, xi)∑Ns

j=1 κ(x, xj)
, (4)

where κ(·, ·) quantifies the non-negative similarity between its two arguments (Bishop, 2006).
Higher similarity values correspond to more similar pairs of datapoints.

In the proposed NW head, we define the weights as:

wθ(x, xi) =
exp {−∥gθ(x)− gθ(xi)∥2/τ}∑Ns

j=1 exp {−∥(gθ(x)− gθ(xj))∥2/τ}
. (5)
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Here, gθ is a feature extractor with parameters θ, which we implement as a neural network. τ is
a temperature hyperparameter. ∥ · ∥2 denotes Euclidean distance. Since

∑Ns

i=1 wθ(x, xi) = 1 and
y⃗i’s are one-hot encoded vectors, the output f of the estimator can be interpreted as a conditional
probability for the class label given the image and support set.

3.2 LOSS FUNCTION AND TRAINING

Let D be a training set of image and label pairs. Our objective to minimize is:

argmin
θ

∑
(x,y)∈D

ES∼D L(fθ(x,S), y), (6)

where L is the cross-entropy loss. This indirectly encourages similar-looking images to have higher
similarity score, since more similar images will tend to have the same labels.

We optimize this objective using stochastic gradient descent (SGD) by sampling a mini-batch size
Nb of query-support pairs and computing gradients with respect to the mini-batch. Note that our
model assumes no dependency between support set samples; indeed, we are free to sample any
arbitrary S and query x, as long as the class of x is within the support classes. Therefore, the
support set size Ns = |S| is a hyperparameter analogous and orthogonal to the batch size Nb.

3.3 INFERENCE

The ability to select and manipulate the support set at inference time unlocks a degree of flexibility
not possible with parametric classification models. In particular, the label set C of the support
set directly determines the label set of the resulting prediction. For example, if the user has prior
knowledge of which classes a particular query is most likely to be, the support set can be restricted
to only contain those classes.

Note that we assume the model has been trained with random support sets drawn from the training
data for each mini-batch. To characterize the effect of the support set on inference, in our experi-
ments we implement the following “inference modes”:

1. Full. Use the entire training set: S = D.

2. Random. Sample uniformly at random over the dataset, such that each class is represented
k times: S ∼ D and |S| = k|C|.

3. Cluster. Given the trained model, we first compute the features for all the training data-
points. Then, we perform k-means clustering on the features of the training datapoints for
each class. These k cluster centroids are then used as the support features for each class.
Note that in cluster mode, the support set does not correspond to observed datapoints.

4. Closest cluster (CC). Same as Cluster, except the support features correspond to real train-
ing datapoints that are closest to the cluster centroids in terms of Euclidean distance.

Each mode except Full assumes that each class is represented k times in S. One can, obviously,
modify this assumption to reflect any class imbalance that might exist in the training data.

3.4 SUPPORT INFLUENCE

Koh & Liang (2017) define influence as the change in the loss as a result of upweighting a particular
training point. With an NW head, quantifying the influence of a support image to the given query
is straightforward and can be computed in closed-form. Indeed, the proposed support influence
computes the change in the loss directly on the prediction vector itself (and not indirectly through
the model parameters θ), and furthermore does not require approximations, nor assumptions on
convexity or differentiability.

Denote by S−zs = S \ zs, i.e. the support set with an element removed. For a fixed query x:

f(x,S−zs) =
f(x,S)− w(x, xs)y⃗s

1− w(x, xs)
. (7)
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Figure 2: Model performance across different support set sizes for DenseNet-121. Full mode and
parametric baseline are constant across support set size and are depicted as horizontal lines.

Figure 3: Corresponding images of embeddings closest to cluster centroids, for k = 1 and k = 9.

We define the support influence of zs on z as the change in the cross-entropy loss incurred from
removing a support element zs:

I(z, zs) = L(f(x,S−zs), y)− L(f(x,S), y) = log

(
fy − fyw(x, xs)

fy − w(x, xs)1{y=ys}

)
, (8)

where superscript denotes indexing into a vector and 1 is the indicator function. The derivation is
provided in the Appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We experiment with CUB-200-2011 (Bird) (Wah et al., 2011), Stanford Dogs
(Dog) (Khosla et al., 2011), Oxford Flowers (Flower) (Nilsback & Zisserman, 2008), and FGVC-
Aircraft (Aircraft) (Maji et al., 2013).

Network Architecture and Hyperparameters. For the feature extractor gθ, we use a convolutional
neural network (CNN) followed by a linear projection to an embedding space of dimension d. In
this work, we experiment with the ResNet-18 (He et al., 2015) and DenseNet-121 (Huang et al.,
2016) architectures and set d = 128 and τ = 1.

1Computed on Bird dataset, where k = 5994.
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Table 1: Accuracy ↑ / ECE ↓ (%). Bold is best and underline is second best. k = 1 for NW models.
Model Bird Dog Flower Aircraft

ResNet-18 FC 50.23 / 20.23 62.58 / 16.02 53.00 / 22.26 50.59 / 24.55
NW, Random 48.55 / 7.762 54.67 / 5.583 56.14 / 19.59 58.24 / 12.16
NW, Cluster 53.40 / 6.051 61.90 / 4.025 57.13 / 19.83 60.06 / 12.12
NW, CC 52.24 / 6.224 61.00 / 4.757 56.30 / 20.09 60.01 / 11.66
NW, Full 53.02 / 3.327 61.93 / 4.256 57.03 / 19.10 60.07 / 9.235

DenseNet-121 FC 54.32 / 17.67 67.38 / 12.74 46.46 / 26.79 50.26 / 25.03
NW, Random 55.41 / 10.74 61.53 / 10.26 55.02 / 21.89 54.67 / 12.40
NW, Cluster 56.77 / 10.78 66.58 / 8.709 55.64 / 22.27 57.58 / 11.23
NW, CC 56.32 / 10.23 66.04 / 9.535 55.44 / 22.11 56.98 / 11.39
NW, Full 56.67 / 7.997 66.93 / 4.892 55.72 / 21.39 57.73 / 8.248

Table 2: Accuracy ↑ / ECE ↓ (%) for label smoothing (LS) and temperature scaling (TS) for ResNet-
18. Bold is best. Cluster and k = 1 for NW models.
Model Bird Dog Flower Aircraft

FC-LS 54.64 / 15.83 62.42 / 10.79 53.65 / 3.84 51.28 / 7.16
NW-LS 54.90 / 2.097 61.71 / 2.24 56.77 / 1.99 54.24 / 3.61
FC-TS 50.23 / 2.711 62.58 / 2.208 53.00 / 4.426 50.59 / 4.423
NW-TS 53.40 / 2.460 61.90 / 1.911 57.13 / 2.693 60.06 / 5.191

Table 3: GPU inference times ↓ for ResNet-18.

Model Time (10−3 sec)

FC 4.00
NW, k = 1 4.05
NW, k = 10 4.78
NW, Full1 7.76

We train each model 3 times with different ran-
dom initializations. During training, we set the
randomly sampled support size to be Ns = 10
for all datasets, and the mini-batch size to be
Nb = 4. Empirically, we find that Ns > 5
is necessary in order to have a sufficient num-
ber of “negative” samples to compare against.
We use SGD with momentum 0.9, weight de-
cay 1e-4, and an initial learning rate of 1e-3.
The learning rate is divided by 10 after 20K and
30K gradient steps, and training stops after 40K
gradient steps. We use the standard data augmentation technique of random flipping and cropping.
All training and inference is done on an Nvidia A6000 GPU and all code is written in Pytorch2.

Baseline. We compare our proposed NW head to a standard parametric model with a fully-
connected (FC) head. For the parametric model, all hyperparameters are identical to NW except
we train for 200 epochs, use an initial learning rate of 0.1, and divide the learning rate by 10 after
epochs 100 and 150. We found that this setting yielded better results for the baseline models.

4.2 MODEL PERFORMANCE

We measure performance using accuracy (the fraction of correctly classified test cases) and expected
calibration error (ECE) (Guo et al., 2017; Naeini et al., 2015). ECE approximates the difference
in expectation between confidence and accuracy, computed by partitioning the model predictions
into bins and taking a weighted average of each bins’ difference between confidence and accuracy.
Table 1 shows these metrics for all models and datasets, and Fig. 4 further shows reliability diagrams.
We generally observe that the NW head achieves an accuracy that is comparable and at times better
than its parametric counterpart, and always with improved calibration.

Table 3 shows inference times for both parametric and our proposed models, where we assume that
all support embeddings, cluster centroids, and closest cluster embeddings have been precomputed.
We observe that inference times are nearly identical to the FC head, except Full.

2Code to be provided upon publication.
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Figure 4: Reliability diagrams for ResNet-18. DenseNet-121 in Appendix.

In Fig. 2, we plot various metrics across support set size k. Generally, performance improves as
support set size increases. This could be explained by the fact that more support images leads to
more robust predictions, as more support examples per class can average out potential errors. At the
limit, Full mode typically performs the best, at the cost of inference time.

Cluster mode often improves over Random mode and is on par with Full mode (at larger k) while
having favorable inference time. However, this comes at the cost of loss of interpretability, since the
cluster centroids do not correspond to actual images in the support set. Closest cluster addresses this
deficiency, often with minimal sacrifice to performance compared to Cluster.

Fig. 3 visualizes the support images used in Closest cluster for two classes, with k = 1 and k = 9.
These images are the prototypical examples of the class and can be interpreted as a summary or
compression of the class and dataset. We observe that for k = 1, the support image is a prototypical
example of the class. For k = 9, the images have a variety of poses and backgrounds, allowing
the model to have a higher chance of computing similarities with a wide range of class prototypes.
Further research might explore leveraging these prototypes.

Overall, our experiments indicate that the NW head has advantages in accuracy and calibration in
the datasets we tested. These datasets are small-medium in size and are relatively fine-grained; it
remains to be seen whether these results will hold on larger, diverse datasets, which we leave to
future work.

4.2.1 IMPROVING CALIBRATION

In this experiment, we explore whether existing calibration techniques originally proposed for para-
metric models can further improve calibration. We explore two popular and effective techniques:
label smoothing (LS) and temperature scaling (TS). Label smoothing Szegedy et al. (2015) uses soft
labels that are a weighted average of the one-hot labels and the uniform distribution. We choose
the weight used in the original paper, 0.1. Temperature scaling Guo et al. (2017) is a post-training
technique which optimizes the temperature τ in the softmax computation. Following the original
paper, τ is optimized with respect to the loss on the validation set.

We show the results in Table 2. In general, we find that the NW head outperforms the FC head under
both LS and TS techniques. In particular, the simple, post-training technique of TS is a simple
strategy that further improves our calibration performance.

4.3 INTERPRETABILITY AND EXPLAINABILITY

In the following section, we restrict our attention to Full mode and explore the interpretability and
explainability aspects of the NW head.

4.3.1 INTERPRETING THE WEIGHTS

Visualizing the support images ranked by weight w can give insight to users about how the model is
making a prediction. For cases where the model is unsure, visualizing the support images along with
confidence scores can uncover where the model is unsure and potentially allow for user intervention.

In Fig. 5, we plot three examples of a query image and the top support set images ranked by weight
w, along with the top 3 softmax predictions. We notice significant visual similarity between the
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Figure 5: Examples of correctly (dog) and incorrectly (bird and flower) classified query images and
their top support images ranked by w. Ordering is left to right, top to bottom.

query image and the top support set images. Notably, the second query of a “cardinal” is incorrectly
classified by the model. We notice that the model is confused between the top 2 classes in the support
set. The model thinks the third query of “barbeton daisy” is most similar to “sunflowers”, possibly
due to the similarity in color and shape. A user can look at the support set and potentially intervene,
either by correcting the model’s prediction or removing confounding elements from the support set.
An automated method for flagging conspicuous predictions could be based on confidence scores.

Additional visualizations are provided in Appendix A.3. In Appendix A.4, we compare against
ranking images by Euclidean distance in the feature space for the baseline FC model, and show that
the degree of semantic similarity between the query and top most similar images is lower than the
NW head.

4.3.2 EXPLAINING MODEL BEHAVIOR WITH SUPPORT INFLUENCE

Support influence can be used to debug and diagnose issues in otherwise black-box neural networks.
In this section, we explore the use of support influence in helping to determine helpful and harmful
training examples. Note that the support influence requires knowledge of the ground truth label for
the query image and thus cannot be used during inference/test time.

By ranking and visualizing the support set by support influence, we can see the support images which
are most helpful (highest I(z, zs) values) and most harmful (lowest I(z, zs) values) in predicting
the given query z. In Fig. 6, we visualize three query images and their top 5 most helpful and top
5 most harmful support images. The top images are “helpful” in the sense that they belong to the
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Figure 6: Query images and support images separated by most helpful influence (top row) and most
harmful influence (bottom row).

same class as the query and look visually similar. The bottom images are “harmful” since, despite
the fact that they are visually similar, they are a different class. For the first dog example, we see
that “redbone” and “walker hound” breeds are harmful examples for the “beagle” query image.

The bird and flower queries are the same query images from Fig. 5, this time ranked by influence.
For the bird, we see that helpful and harmful support images separates the two classes that had
the highest weight and were confusing the model in Fig. 5. For the flower, we notice that the most
helpful support images are from the correct class but have different colors, whereas the images which
the model thinks are most similar to the query are in fact the most harmful. From this analysis, it
is evident that the model is using the shape and color to reason about the query image, which are
confounding features for this query.

5 CONCLUSION

We presented the Nadaraya-Watson (NW) head as a general-purpose, flexible, and interpretable
building block for deep learning. The NW head predicts the label for a given query by taking the
weighted sum of labels in a support set. We show that the NW head can be an efficient replacement
for the fully-connected layer and offer good accuracy with excellent calibration. Additionally, the
NW head is interpretable in the sense that the weights correspond to the contribution of each support
image on the query image. Finally, we define support influence, and show that this can be used as a
tool to explain model behavior by highlighting helpful and harmful support images.
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A APPENDIX

A.1 DERIVATION OF SUPPORT INFLUENCE

We derive the expression in Eq. (8). For brevity, let f = f(x,S) and f− = f(x,S−zs).

I(z, zs) = L(f−, y)− L(f, y) =

C∑
c=1

y⃗c log f c −
C∑

c=1

y⃗c log f c
−

= log fy − log fy
−.

If y = ys, then w(x, xs) must be subtracted from fy and re-normalized to a valid probability.
Otherwise, fy is simply re-normalized:

fy
− =

{
fy−w(x,xs)
1−w(x,xs)

, if y = ys
fy

1−w(x,xs)
, else.

Thus,

I(z, zs) = log fy − log

(
fy − w(x, xs)1{y=ys}

1− w(x, xs)

)
= log

(
fy − fyw(x, xs)

fy − w(x, xs)1{y=ys}

)
.

A.2 CONNECTION BETWEEN SUPPORT INFLUENCE AND WEIGHTS

We prove that ranking by helpful/harmful examples via the support influence is equivalent to ranking
by the weights for correct and incorrect classes. Let us start from the definition of support influence
in Eq. (8):

I(z, zs) = L(f(x,S−zs), y)− L(f(x,S), y) = log

(
fy − fyw(x, xs)

fy − w(x, xs)1{y=ys}

)
.

where 0 ≤ w ≤ fy ≤ 1. Note that w ≤ fy because they are related by Eq. (3).

Separate into two cases:

I(z, zs) =

{
log

(
1−w(x,xs)

1−w(x,xs)/fy

)
, if y = ys

log(1− w(x, xs)), else.

In the first case where y = ys, I(z, zs) increases as w increases, with the constraints on w and fy .

In the second case where y ̸= ys, I(z, zs) decreases as w increases.

In words, the support influence increases as the weight increases for the correct class, and decreases
as the weight increases for the incorrect class. Thus, the support influence can be interpreted as
simply ranking by the weights for correct and incorrect classes.

13



Under review as a conference paper at ICLR 2023

A.3 MORE NW VISUALIZATIONS

Figure 7: Query image, top 3 predicted probabilities, and top support ranked by weight for Bird
dataset.
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Figure 8: Query image, top helpful support images, and top harmful support images ranked via
support influence for Bird dataset.
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Figure 9: Query image, top 3 predicted probabilities, and top support ranked by weight for Flower
dataset.
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Figure 10: Query image, top helpful support images, and top harmful support images ranked via
support influence for Flower dataset.
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Figure 11: Query image, top 3 predicted probabilities, and top support ranked by weight for Dog
dataset.

18



Under review as a conference paper at ICLR 2023

Figure 12: Query image, top helpful support images, and top harmful support images ranked via
support influence for Dog dataset.
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A.4 RANKING FC IMAGES BY EUCLIDEAN DISTANCE IN FEATURE SPACE

Figure 13: Query image and top images ranked by Euclidean distance in feature space of FC model
for Bird dataset. The degree of semantic similarity between the query and the top images is lower
than the NW model.
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Figure 14: Query image and top images ranked by Euclidean distance in feature space of FC model
for Flower dataset. The degree of semantic similarity between the query and the top images is lower
than the NW model.
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Figure 15: Query image and top images ranked by Euclidean distance in feature space of FC model
for Dog dataset. The degree of semantic similarity between the query and the top images is lower
than the NW model.
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A.5 PERFORMANCE VS. SUPPORT SET SIZE ON RESNET-18

A.6 RELIABILITY DIAGRAM ON DENSENET-121
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