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ABSTRACT

Learning to synthesis realistic images of new categories based on just one or a few
examples is a challenge task for deep generative models, which usually require
to train with a large amount of data. In this work, we propose a data efficient
meta-learning framework for fast adapting to few-shot image generation task with
an adversarial variational auto-encoder and feedback augmentation strategy. By
training the model as a meta-learner, our method can adapt faster to the new task
with significant reduction of model parameters. We designed a novel feedback
augmented adversarial variational auto-encoder. This model learns to synthesize
new samples for an unseen category just by seeing few examples from it and
the generated interpolated samples are then used in feedback loop to expand the
inputs for encoder to train the model, which can effectively increase the diversity
of decoder output and prevent the model collapse. Additionally, this method can
also generalize to adapt to more complex color image generation tasks.

1 INTRODUCTION

Following the great success of deep learning, deep generative models, such as Generative Adver-
sarial Network (GAN)( Goodfellow et al. (2014)) and Variational Autoencoder (VAE)( Kingma &
Welling (2014)), achieved tremendous progress in the task of generating realistic image by training
with large-scale datasets. However, due to the high expense of collecting and annotating a large
amount of data, given only one or a few images from a category, it is still a challenging task for
the typical deep generative models to learn fast and adapt to synthesis realistic and diverse im-
ages. This task is referred to as few-shot image generation(FSIG). Several recent efforts have been
devoted to improve the learning efficiency of models for the FSIG task. These approaches can
roughly fallen into three categories, that are transformation-based methods, fusion-based methods
and optimization-based methods. For the transformation-based methods, DAGAN( Antoniou et al.
(2018)) is an GAN-based approach that captures cross-class transformations on one conditional
image and injects random vectors into the generator for generating different images. However, the
diversity of generated images from this method is quite limited and it fails to capture the information
from multiple images in the same category. Among the fusion-based methods, GMN( Bartunov &
Vetrov (2018)) is inspired by the matching network( Vinyals et al. (2016)) and combines a matching
procedure with VAE. Due to the limited generation capacity of GMN, this method can only gener-
ate binary digits. For generating more diversified and realistic images, MatchingGAN( Hong et al.
(2020)) combines adversarial learning and matching generators and is capable to fully exploit several
conditional images from the same class. Nevertheless, this method still struggles with more com-
plex natural color image generation and training these models is time-consuming due to complexity
of the networks. Optimization-based methods are proposed based on the concept of meta-learning
and initialize a generator with images from seen categories and fine-tuning the trained model with
images from each unseen category. Clouâtre & Demers (2019) proposed a FIGR by applying meta-
learning algorithm Reptile( Nichol et al. (2018)) to GAN. It can significantly reduce the trainable
parameters of the model and fast adapt to the new generation task in the few-shot setting. DAW-
SON Liang et al. (2020) is another method incorporating meta-learning model of MAML( Finn
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et al. (2017)) with GAN for the few-shot generation task. Nevertheless, the DAWSON generates
images without diversity and is inapplicable for color images. Both models adopted a similar idea
of meta-learning method, but can hardly produce sharp and realistic images or adapt to complex
natural color images. FAML ( Phaphuangwittayakul et al. (2021)) is another meta-learning inspired
method that can significantly reduce the model parameters and fast adapt to generate images from
color image dataset. This simple and effective model increased the number of generator iterations
and utilized conditional feature vectors. However, given the insufficient input of unseen category,
only conditioning the feature vectors from the encoder can not guarantee the exploitation of the key
input features. Moreover, training GAN-based model is time-consuming and mode collapse issues
are remained, while VAEs have limited capacity of generating high-quality images.

To tackle the above problems, we propose a Meta-learning-based Feedback augmented Adversarial
Variational Auto-Encoder (Meta-FAVAE),that learns optimal model parameters to fast adapt to few-
shot image generation task and increases the diversity by a feedback augmentation strategy. This
model is trained in a meta-learning mechanism with an inner-loop and outer-loop. By integrating
meta-learning, this method has less than 10M parameters and thus leads to a faster adaption to the
new generation tasks of unseen categories. In order to combine the advances from VAE and GAN
( Plumerault et al. (2021)), we introduced an optimal adversarial variational auto-encoder to gener-
ate high-quality images while retrieving key latent features. More specifically, the model utilized
Relativistic average GAN ( Jolicoeur-Martineau (2018)) and beta-VAE ( Higgins et al. (2016)) to
significantly improve data quality and stability of the generated images with 64×64 size outputs.
By introducing a novel feedback augmentation technique, we can significantly increase the diver-
sity of the generated images by adding interpolated samples to the inputs, which can also prevent
model collapse. Additionally, we utilize the dual fusion of latent code and random noise vectors
and mode-seeking regularization term from FAML for improving the generalization of few-shot im-
age generation task to natural color images. Extensive experiments validate the superiority of our
Meta-FAVAE in terms of fast adaptation and diverse image generation over other state-of-the-art
methods.

Figure 1: The framework follows a meta-learning mechanism. The inner loop contains an
Adversarial-VAE including an encoder Enc1, a decoder Dec1, a generator G1 and a discrimina-
tor D1. The outer loop also has the same components containing an encoder Enc2, a decoder Dec2,
a generator G2 and a discriminator D2. The feedback augmentation takes the generated images
from generator G1 in the inner loop and perform a feedback loop operation to add the interpolated
samples into the inputs of Enc1.

2 METHODOLOGY

Figure 1 illustrates the pipeline of proposed model in this study. Given a set of tasks {Ti}mi=1 con-
taining various tasks where each task τ is an image generation for one class of images (Xτ ). The
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model can generate a set of images for the unseen classes. This framework is composed of two main
phase, which are training phase and generation phase. During the inner loop of the training phase,
the encoder Enc1 of VAE extracts mean µ and variance σ from images x of the training task to
form a latent code c. Then, the decoder Dec1 of VAE reproduces images x̂ from the latent code.
The generator G1 takes the latent code concatenated with two random noise vectors (z1 and z2) as
the input and generates output images, y1 = G1(z1, c) and y2 = G1(z2, c). The discriminator net-
work D1 distinguishes the real images (input x) and fake images (output samples y from generator
network G1). The Adam optimizer Kingma & Ba (2014) is used to optimize the encoder Enc1,
decoder Dec1, generator G1, and discriminator D1 networks in the loss computation. The objective
functions to calculate the loss of Enc1, Dec1, G1, and D1 are defined as follows.

Instead of training the model with only input images as traditional method, we increase the number
of training images by fusing the interpolated samples. The interpolated samples are produced based
on the images generated by our model. The linear interpolation is performed based on the four
generated images in each episode. The linear interpolation is a technique to visualize the data in
a subspace. With two images multiplied by the interpolation coefficients ranging in [0.1,0.9], the
new examples between these two images can be explored in the space of generated images. The
total number of interpolated samples are equal to loop n2 , where n > 0 . For example, a total of
16 interpolated images with n = 4 are produced by random images generated by the latent code
of Meta-AVAE and four random noise vectors. Once the interpolated images are generated, these
images are used to combine with the input images and step the model with the inner loop gradient
one more episode.

To train VAE for extracting the latent code and producing reconstructed images, a reconstruction
loss and a Kullback-Leibler (KL) divergence Larsen et al. (2016) loss are computed as equation (1).

LV AE =
1

g

∑
(x− x̂)2 + βKL(q(c|x) ‖ p(c)) (1)

where g denotes the number of images sampled from a class of images Xτ . β indicates adjustable
hyperparameter, set to 10. The loss functions of both discriminator and generator followed the two
random noise vectors z1 and z2 as follows.
The Discriminator objective function is:

Ldisc,1 = −Ex[log(D1(x)]− Ey1 [log(1−D1(y1)] (2)
Ldisc,2 = −Ex[log(D1(x)]− Ey2 [log(1−D1(y2)] (3)

Thus, Ldisc is the average of Ldisc,1 and Ldisc,2 and the Generator objective function is as below
and Lgen is the average of Lgen,1 and Lgen,2 :

Lgen,1 = −Ey1 [log(D1(y1)]− Ex[log(1−D1(x)] (4)
Lgen,2 = −Ey2 [log(D1(y2)]− Ex[log(1−D1(x)] (5)

For each sampled task τ including training and test tasks, Meta-FAVAE first initializes and then
minimizes the parameters of the encoder Φ1,enc, decoder Φ1,dec, discriminator Φ1,disc, and generator
Φ1,gen in the K inner loop through objective functions LV AE , Ldisc, and Lgen, respectively. The
local minimum parameters of the encoder, decoder, discriminator, and generator are achieved by
minimizing loss LV AE , Ldisc, and Lgen. The total loss function of our Meta-FAVAE method can
be written as

L = LV AE + Ldisc + Lgen + λmsLms (6)
Where Lms represents a mode-seeking regularization termMao et al. (2019) that maximizes the ratio
of the distance between G1(z1, c) and G1(z2, c) corresponding to the distance between z1 and z2,
as expressed in equation (7).

Lms = max
G1

(
d(G1(z1, c)), G1(z2, c))

d(z1, z2)
) (7)

where d(·, ·) indicates the L1 norm distance metric. Following the same settingMao et al. (2019),
we set the hyper-parameters λms = 1. The outer loop is performed after the K steps of the inner
loop operation. The global parameters Φ2 of the encoder Enc2, decoder Dec2, generator G2, and
discriminator D2 are updated with parameters Φ1 by setting it to Φ2 − Φ1. The pseudo-code of
Meta-FAVAE for the training process and generation process is described in supplementary
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3 EVALUATIONS AND CONCLUSION

The experiments are conducted on three few-shot image datasets: MNIST( LeCun & Cortes (2010)),
Omniglot( Lake et al. (2011)) and VGG-Faces( Cao et al. (2018)).The quality of generated images
are evaluated by FID ( Heusel et al. (2017)), while the diversity of output are evaluated through
LPIPS( Zhang et al. (2018)) and IS( Xu et al. (2018)).Based on the 1000 generated images of
the unseen classes, we compare our model with baseline approaches including DAGAN( Antoniou
et al. (2018)), FIGR( Clouâtre & Demers (2019)), DAWSON( Liang et al. (2020)) and FAML( Pha-
phuangwittayakul et al. (2021)). The results presented in Table 1 show our method achieves the best
performance in terms of quality and diversity in the evaluations on all three datasets. Additionally,
the feedback operation is leveraged to increase the diversity of output images and generalize the
model across different categories. The model with feedback operation not only augments the data
to increase the size of input but also avoids the model collapse by only a few training samples. Al-
though a variational auto-encoder has been added to the network, our model can significantly reduce
the number of parameters to 8.3M, which is merely one-quarter of FIGR. Furthermore, it converges
over ten times faster than the baseline models. Thus, our model can fast adapt to new generation
tasks with limited steps as shown in Figure 2. Comparing with the generated images from other
methods, the Meta-FAVAE can not only retain the compact features due to the latent representations
but also generate a wide variety of samples within limited episodes by using feedback augmentation.

In this work, we have introduced a novel FSIG approach based on meta-learning with a feedback
augmented variational auto-encoder. This model can outperform the existing approaches in terms of
fast adaptation and the diversity of outputs.

Table 1: The evaluation metrics for the images of unseen class generated by baseline and our meth-
ods on three datasets.

Method MNIST Omniglot VGG-Faces
FID (↓) FID (↓) FID (↓) IS (↑) LPIPS (↓)

DAGAN 78.56 72.23 196.12 2.22 0.2674
FIGR 36.62 68.95 250.14 2.85 0.6701

DAWSON 86.72 75.59 184.15 2.56 0.8672
FAML 33.94 78.69 42.72 7.10 0.4011

Meta-AVAE 28.65 63.29 54.44 11.53 0.2431
Meta-FAVAE 24.23 73.74 42.11 15.58 0.2056

Figure 2: The generated images from the VGG-Face dataset by the baseline meta-learning based
models (FIGR, DAWSON) and our Meta-FAVAE model.
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Antoine Plumerault, Hervé Le Borgne, and Céline Hudelot. Avae: Adversarial variational auto
encoder. In 2020 25th International Conference on Pattern Recognition (ICPR), pp. 8687–8694.
IEEE, 2021.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. In Advances in Neural Information Processing Systems, pp.
3637–3645, 2016.

Qiantong Xu, Gao Huang, Yang Yuan, Chuan Guo, Yu Sun, Felix Wu, and Kilian Q. Weinberger. An
empirical study on evaluation metrics of generative adversarial networks. CoRR, abs/1806.07755,
2018. URL http://arxiv.org/abs/1806.07755.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

A META-AVAE TRAINING AND GENERATION PROCESSES

The pseudo-code of Meta-AVAE training algorithm is described in in Algorithm 1.

Besides, the generation process is performed using the gradient from training process to generate
the images from unseen class. The Meta-AVAE generation process is described in Algorithm 2.

B ADDITIONAL COMPARISONS

We compare the generated output images between FAML and Meta-FAVAE. The samples from
MNIST, Omniglot, and VGG-Face datasets are selected as representative for representing the per-
formance of generative models. It can be observed that Meta-FAVAE with loopback operation can
generate more diverse samples than FAML as shown in Figure 3

Figure 3: The comparison of generated output images generated by FAML and Meta-FAVAE on
MNIST, Omniglot, and VGG-Face datasets with sample images.

C MORE GENERATED RESULTS

The samples of multiple generated output images that are produced by the Meta-FAVAE on MNIST,
Omniglot, and VGG-Face datasets are illustrated in Figure 4, 5, 6, respectively. The images in blue
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Algorithm 1 Meta-AVAE training process The parameters of the implemented model in the paper
are defaulted as: niter = 100000, nV AE = 5, nD = 1, nG = 5, g = 4, K = 10, α1,enc = α1,dec =
0.0001, α1,disc = α1,gen = 0.001, α2,enc = α2,dec = 0.00001, α2,disc = α2,gen = 0.0001

Require: Φ1, parameters of Enc1, Dec1, G1, and D1. Φ2, parameters of Enc2, Dec2, G2, and
D2. niter, number of global iterations called episodes. nV AE , number of variational autoencoder
iterations. nD, number of discriminator iterations. nG, number of generator iterations. g, batch size
of images, K, number of inner loop iterations. α’s, learning rate.

1: Initialize Φ2

2: for i < niter do
3: Set Φ1 = Φ2

4: Sample training task τ
5: Sample g images as x from Xτ

6: for i < K do
7: # Train VAE
8: for j < nV AE do
9: c, µ, σ ← Enc1(x)

10: x̂← Dec1(c)
11: Φ1,enc ← Φ1,enc + α1,enc∇Φ1{Lrec + LKL}
12: Φ1,dec ← Φ1,dec + α1,dec∇Φ1{Lrec + LKL}
13: end for
14: # Train discriminator D1

15: for j < nD do
16: z1 ← N (0, 1), z2 ← N (0, 1)
17: y1 ← G1(z1, c), y2 ← G1(z2, c)
18: Φ1,disc ← Φ1,disc + α1,disc∇Φ1

{Ldisc}
19: end for
20: # Train generator G1

21: for j < nG do
22: z1 ← N (0, 1), z2 ← N (0, 1)
23: y1 ← G1(z1, c), y2 ← G1(z2, c)
24: Φ1,gen ← Φ1,gen + α1,gen∇Φ1{Lgen + Lms}
25: end for
26: end for
27: Set gradient Φ2 of Enc2, Dec2, D2, G2 to Φ2 − Φ1

28: Perform step of Adam update on Φ2 with learning rate α2,enc, α2,dec, α2,disc, α2,gen
29: end for
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Algorithm 2 Meta-AVAE generation process
1: Using Φ2 from the training process
2: Set Φ1 = Φ2

3: Sample test task τ
4: Sample g images as x from Xτ

5: for i < K do
6: # Train VAE
7: for j < nV AE do
8: c, µ, σ ← Enc1(x)
9: x̂← Dec1(c)

10: Φ1,enc ← Φ1,enc + α1,enc∇Φ1{Lrec + LKL}
11: Φ1,dec ← Φ1,dec + α1,dec∇Φ1{Lrec + LKL}
12: end for
13: # Train discriminator D1

14: for j < nD do
15: z1 ← N (0, 1), z2 ← N (0, 1)
16: y1 ← G1(z1, c), y2 ← G1(z2, c)
17: Φ1,disc ← Φ1,disc + α1,disc∇Φ1

{Ldisc}
18: end for
19: # Train generator G1

20: for j < nG do
21: z1 ← N (0, 1), z2 ← N (0, 1)
22: y1 ← G1(z1, c), y2 ← G1(z2, c)
23: Φ1,gen ← Φ1,gen + α1,gen∇Φ1{Lgen + Lms}
24: end for
25: end for
26: z ← N (0, 1), c← N (0, 1)
27: # Generate fake image y
28: y ← G1(z, c)
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square are input images from unseen classes in each dataset. The images highlighted in yellow
are output images generated by Meta-AVAE. The images in last three row highlighted in green are
the samples generated by Meta-FAVAE using the original input images and generated results as the
input for Meta-AVAE.

Figure 4: The input images from unseen class in MNIST dataset and generated images from Meta-
FAVAE.

Figure 5: The input images from unseen class in Omniglot dataset and generated images from Meta-
FAVAE.

Figure 6: The input images from unseen class in VGG-Face dataset and generated images from
Meta-FAVAE.
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