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Abstract
We propose a simple, training-free mechanism
which explains the generalization behaviour of
diffusion models. By comparing pre-trained dif-
fusion models to their theoretically optimal em-
pirical counterparts, we identify a shared local
inductive bias across a variety of network architec-
tures. From this observation, we hypothesize that
network denoisers generalize through localized
denoising operations, as these operations approxi-
mate the training objective well over much of the
training distribution. To validate our hypothesis,
we introduce novel denoising algorithms which
aggregate local empirical denoisers to replicate
network behaviour. Comparing these algorithms
to network denoisers across forward and reverse
diffusion processes, our approach exhibits consis-
tent visual similarity to neural network outputs,
with lower mean squared error than previously
proposed methods.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021) have become the de facto stan-
dard for modelling image (Rombach et al., 2022) and video
(Harvey et al., 2022) data due to their high sample quality
and generalization abilities. When properly tuned, diffusion
models produce samples that are distributionally similar to
their training set, but are not exact copies of training data
(Zhang et al., 2023).

This behaviour is remarkable, as linear increases in data di-
mensionality require exponentially more training samples to
model the data density (Bellman, 1966). Avoiding this curse
of dimensionality requires inductive biases that enable gen-
eralization from sparse examples (Goyal & Bengio, 2022).
Recently, research has found that diffusion models produce
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Figure 1. Denoiser outputs given shared reverse process noisy in-
puts from CIFAR-10. Column 1: Optimal empirical denoiser,
i.e. what a “perfect” neural network denoiser would output if ap-
propriately parameterized and trained to achieve minimal loss on
the diffusion denoising loss (Equation (5)). Columns 2-4: Outputs
from various denoising neural networks. For t < 3.3 all net-
works deviate from the optimal denoiser in similar ways. Column
5: Our learning-free patch set posterior composite denoiser pro-
duces qualitatively similar outputs to the neural network denoisers,
suggesting that neural networks may generalize in part via patch
denoising and composition.

near-identical samples despite differences in architecture,
optimization, or diffusion hyperparameters (Zhang et al.,
2023), suggesting the presence of inductive biases common
to all image diffusion models.

Diffusion models generate samples through an iterative pro-
cess in which noise is progressively removed via repeated
denoising operations. Crucially, at each step of this process,
there exists an optimal denoiser function that can be ex-
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pressed as a simple weighted average of the training dataset
(Vincent, 2011; Karras et al., 2022). However, using this op-
timal function in the denoising sampling procedure results
in exact replication of the training dataset without gener-
alization (Gu et al., 2023). The remarkable generalization
capabilities of diffusion models therefore emerge from re-
peated neural network approximation errors relative to this
optimal denoiser. These deviations from optimality, accu-
mulated over the sampling procedure, compound to produce
diverse samples.

In this work, we study diffusion model inductive biases
through analysis of these network denoiser approximation
errors. Using this approach, we find that irrespective of neu-
ral network architecture, denoisers make similar approxima-
tion errors in both magnitude and quality. Through analysis
of the gradients of these denoisers, we find evidence of a
shared local inductive bias across image diffusion models.

From this, we hypothesize that neural diffusion model gen-
eralization arises in part through locally biased operations.
We establish evidence for this hypothesis by approximat-
ing these operations with patch-based empirical denoisers.
Using these patch estimators, we demonstrate that for large
portions of the forward diffusion process, local denoisers
are equivalent to regions of the optimal denoiser. Further,
we find that over the portion of the sampling procedure in
which network denoisers deviate from optimal denoisers,
patches of network outputs are closely approximated by
patch empirical denoisers.

Finally, we propose our Patch Set Posterior Composites
(PSPC) denoiser which aggregates patch empirical denoisers
across varying spatial locations to approximate the hypoth-
esized local mechanism of denoiser generalization. Com-
paring our fully training-free, empirical denoiser to network
denoisers, we find PSPC and network denoisers are more
similar to each other than to the optimal denoiser (Figure 1).
Furthermore, samples produced using our denoiser share
structural similarities to those produced by neural-network
parameterized diffusion models. These findings provide
strong evidence to conclude that patch denoising and com-
position comprise a significant portion of the generalization
behaviour of image diffusion models. Our open-source im-
plementation of PSPC and other denoisers is available at
https://github.com/plai-group/pspc.

2. Background
Diffusion models are based on a forward diffusion process
that gradually adds Gaussian noise to a data distribution
p(x),x ∈ Rd. This forward diffusion process can be de-
scribed through stochastic differential equations of the form

dz = f(z, t)dt+ g(t)dw, (1)

where f(z, t) and g(t) are known as the drift and diffusion
functions and dw is the standard Wiener process (Song
et al., 2021).

At every point t ∈ (0, T ], Equation (1) produces marginal
latent variable distributions pt(z) =

∫
pt(z|x)p(x)dx, z ∈

Rd. With appropriate f(z, t) and g(t), pt(z|x) is a Gaussian
distribution with closed form mean and variance. Generally,
these g and f are also selected such that pT (z) ≈ π(z), a
simple Gaussian prior.

The aim of diffusion models is to learn the reversal of Equa-
tion (1), described by a matching SDE (Song et al., 2021)

dz =
[
f(z, t)− g(t)2∇z log pt(z)

]
dt+ g(t)dw̃ (2)

Starting from any pT (z) ≈ π(z), every marginal distribu-
tion of the solutions to Equation (2) match those of Equa-
tion (1). Notably, the reverse time SDE has a corresponding
probability flow ODE (PF-ODE) which also shares this
property

z =

[
f(x, t)− 1

2
g(t)2∇z log pt(z)

]
dt. (3)

Although multiple choices of f(z, t) and g(t) are possible,
Karras et al. (2022) demonstrate that many such choices
are equivalent. We therefore adopt their parameteriza-
tion with f(z, t) = 0 and g(t) =

√
2t resulting in tran-

sition distributions pt(z | x) = N
(
x, t2Id

)
and prior

π(z) = N
(
0, T 2Id

)
. Note that for these choices, the stan-

dard deviation of the added noise is σ(t) = t.

Solving Equation (2) or Equation (3) requires estimation of
∇z log pt(z), known as the score function. For our choice
of diffusion process, the score has the form

∇z log pt(z) =
E [x | z, t]− z

t2
. (4)

From Equation (4), score estimation is equivalent to esti-
mating the posterior mean E [x|z, t], an operation referred
to as denoising. As the analytic form of p(x) is generally
unknown, exact computation of the posterior pt(x|z) and
therefore E [x|z, t] is intractable. Instead, diffusion mod-
els use neural-network denoisers to approximate E [x|z, t].
These denoisers are trained using an empirical data dis-
tribution pD(x) = 1

N

∑
x(i)∈D δ(x − x(i)), with dataset

D =
{
x(1), . . . ,x(N) | x(i) ∼ p(x)

}
, by minimizing

E
x(i)∼pD(x),z∼pt(z|x(i)),t∼p(t)

[
λ(t)

∥∥∥x(i) −Dθ(z, t)
∥∥∥2
2

]
(5)

where λ(t) is a weighting parameter. The minimizer of
Equation (5) and optimal denoiser for any (z, t) is the em-
pirical posterior mean (Vincent, 2011; Karras et al., 2019)

E
x∼pD

[x|z, t] =
∑

x(i)∈D

pt(x
(i)|z)x(i) (6)
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Figure 2. Left: Mean squared error between empirical and network denoisers for three architectures on CIFAR-10. Right: Comparison of
network and empirical denoiser for a shared z ∼ pt(z|x) at three t values. Network estimators have low error for small and large t, but
large errors around t = 3. At this point, each network varies substantially from the empirical denoiser in the same way.

which is a simple average over the images of the dataset D,
weighted by their posterior probability

pt(x
(i)|z) =

pt
(
z|x(i)

)∑
x(j)∈D pt

(
z|x(j)

) . (7)

Hereafter, we refer to the denoiser of Equation (6) as the
optimal denoiser.

3. Inductive Biases of Network Denoisers
Although Equation (6) is the optimal solution to the diffu-
sion score matching objective, sampling using this denoiser
can only reproduce exact copies of training data (Gu et al.,
2023). The presence of generalization in image diffusion
models beyond their training set therefore implies that de-
noiser networks make approximation errors relative to the
optimal empirical denoiser. Further, the similarity of dif-
fusion samples across several confounding factors (Zhang
et al., 2023) suggests a shared class of approximation bias.
To understand the generalization of diffusion models, we
must understand and characterize these approximation er-
rors.

To begin, we simply compare the denoiser outputs of
four unconditional diffusion models trained on CIFAR-10
(Krizhevsky et al., 2009) to the optimal denoiser of that
dataset. We evaluate models parameterized by NCSN++
(Song et al., 2021; Karras et al., 2022), DDPM++(Song
et al., 2021; Karras et al., 2022), DiT (Peebles & Xie, 2023)
and U-ViT (Bao et al., 2022) architectures1.

Figure 2 plots the mean squared error (MSE) between net-
work and optimal denoisers, evaluated over 150 discrete

1For architecture details, see Appendix A.

values of t ∈ [0.01, 100]. For each t, we compute MSE
over 10,000 z ∼ pt(z|x)pD(x) drawn from the forward
process. Across all architectures, we observe similar be-
haviour to Niedoba et al. (2024), Figure 3 - that network
denoisers exhibit low MSE for both small and large values
of t, but substantial error for t ∈ [0.3, 10]. From the the
right portion of Figure 2, only the middle t = 3 row has
significant differences between the optimal and network de-
noiser outputs2. At this t, we observe that all three networks
make qualitatively similar approximation errors, despite
significant differences in architecture and training hyperpa-
rameters (see Appendix A). This observation builds upon
those of Zhang et al. (2023), suggesting that the similarity
of samples produced by generalizing diffusion models is the
product of corresponding similarities in denoiser outputs
throughout the diffusion process. These denoiser output sim-
ilarities further imply that denoiser approximation errors are
not random optimization artifacts, but the result of a shared
inductive bias common to all image network denoisers.

To focus our analysis and avoid redundancy, we hereafter re-
strict our attention to DDPM++ as a representative network
denoiser. Additional quantitative and qualitative results
for NCSN++, DiT, and U-ViT denoisers, confirming the
consistency of our results across diverse architectures, are
provided in Appendix D.

3.1. Network Denoiser Gradients

One potential inductive bias (Goyal & Bengio, 2022) of
network denoisers is local inductive bias, where denoiser
outputs are more sensitive to spatially local perturbations of

2The noise in U-ViT’s output for t = 30 is due to the amplifi-
cation problem for ϵ-predictor networks (Karras et al., 2022).
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Figure 3. Left: Comparison of average square patch sizes required to capture 50%, 75%, and 95% of the total gradient sensitivity heatmap.
As t increases, larger patch sizes are required to capture a fixed percentage of the total gradient sensitivity heatmap. Right: Gradient
sensitivity heatmaps for DDPM++ denoiser on CIFAR-10 for output pixel (15,15) across varying t.

z than distant ones. We investigate potential local inductive
bias in network denoisers by measuring the sensitivity of the
DDPM++ denoiser (Karras et al., 2019) to each input pixel
through their gradients. For each t, we define the gradient
sensitivity heatmap as

G(x, y, t) = E
z∼pt(x(i),z)

[
3∑

c=1

|∇zcDθ(z, t)x,y,c|

]
. (8)

Here, Dθ(z, t)x,y,c indicates the output of the network de-
noiser at spatial position (x, y) and channel c where where
x ∈ 1, . . . , w, y ∈ {1, . . . , h}, and c ∈ {1, 2, 3} for an
RGB image of height h and width w.

G(x, y, t) captures the channel-averaged absolute gradient
of the network denoiser output at pixel (x, y) with respect
to z, a measure of the sensitivity of an output pixel of the
network denoiser to each input pixel. In practice, we evalu-
ate the expectation of Equation (8) using 1,000 z samples
drawn from the forward process per t. We plot four such
heatmaps in Figure 3.

The right portion of Figure 3 confirms that network denois-
ers demonstrate strong local inductive bias. At t = 0.03,
the network denoiser is almost exclusively sensitive to the
same spatial location as the output pixel. As t increases, so
does the area over which the input gradient is concentrated.

We quantify this local inductive bias by measuring the av-
erage side length of a square patch centered at pixel (x, y)
required to capture a fixed percentage of

∑
i,j G(x, y, t)i,j .

We plot this quantity in the left panel of Figure 3. For all t,
the majority of the input gradient is concentrated within a
square 15×15 pixel region around the output pixel. Further,
the strength of the local inductive bias is inversely correlated

with t. While a 13 × 13 patch is required to capture 50%
of

∑
i,j G(x, y, t)i,j at t = 30, the same percentage can be

accounted for in a 3× 3 patch at t = 0.03.

Figure 3 provides preliminary evidence that network de-
noisers are predominantly locally sensitive to changes in
z. This is somewhat surprising, as the optimal denoiser is
by definition globally sensitive to any changes in z. Since
pt(x

(i)|z) ∝ pt(z|x(i)) and pt(z|x(i)) is Gaussian, the pos-
terior probability of any x(i) is related to the squared dis-
tance between every pair of pixels in x(i) and z.

4. Local Denoising Mechanisms
Section 3 presents strong evidence that diffusion model de-
noisers deviate substantially and similarly from the optimal
denoiser. Moreover, Section 3.1 finds that network denoiser
gradients show evidence of local inductive bias. However,
Figure 2 also shows that network denoisers accurately es-
timate the empirical posterior mean for most t, despite the
inherent global sensitivity of this quantity. To resolve this
apparent contradiction, we hypothesize that network denois-
ers perform local computations whose combined result is
equivalent to the optimal denoiser for most values of t.

One example of such a local computation is denoising over
patches of the input z. Formally, we denote cropping ma-
trices as C ∈ {0, 1}n×d. Then, for any such C, which
produces patches x

(i)
C = Cx(i) and zC = Cz, we define

the patch posterior with pt(zC | x(i)
C ) = N (x

(i)
C , t2In) as

pt(x
(i)
C | zC) =

pt

(
zC | x(i)

C

)
∑

x(j)∈D pt

(
zC | x(j)

C

) (9)
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Figure 4. Left: Comparison of patch posterior means with varying patch sizes to corresponding patches of the optimal denoiser over
forward process samples. For t < 1, relatively small square patch posterior means exactly match the optimal denoiser. As t increases,
larger patch sizes are required to exactly estimate patches of the optimal denoiser. Right: Comparison of patch posterior means with
varying patch sizes to DDPM++ denoiser patches on z drawn from the reverse process. Patch posterior means estimate the network
denoiser patches better than the optimal denoiser for all t < 3. As t decreases, so does the patch size which best estimates network
denoiser patches.

and the empirical patch posterior mean as

E
pD

[xC | zC, t] =
∑

x(i)∈D

pt

(
x
(i)
C | zC

)
x
(i)
C . (10)

Like the empirical denoiser of Equation (6), the patch
posterior mean is a simple average over dataset elements,
weighted by posterior probabilities. However, unlike the
empirical denoiser which uses full images x(i), the patch
posterior mean is computed over a spatial subset of the
dataset where each image is cropped by C.

It is particularly convenient to work with the set of square
cropping matrices. We define C(x, y, s) as a square crop-
ping matrix such that C(x, y, s)x(i) is the s× s pixel patch
of x(i) with upper left corner at pixel (x, y). For a patch
size s and a square image of spatial size h× h, we denote
Cs = {C(x, y, s) | x {0, . . . , h− s} , y ∈ {0, . . . , h− s}}
as the set of all such cropping matrices. Notably, Cs does not
include cropping matrices which would require any padding
of x(i) at the image boundaries.

We have hypothesized that local inductive biases in network
denoisers are the result of local denoising operations which
approximate the optimal denoiser. However, in general,
EpD [xC | zC, t] ̸= CEpD [x | z, t] because pt(x

(i)
C | zC) ̸=

pt(x
(i) | z). Why then would we expect network denoisers

to use local posterior mean estimates to estimate the global
posterior mean?

Critically, there are two cases when these distributions are
similar. For sufficiently small t and z drawn from the for-
ward process, pt(x

(i)
C | zC) ≈ pt(x

(i)|z) ≈ δ(x(i)). Sim-

ilarly, as t becomes large, both posteriors will approach a
uniform distribution over D. We note that these two cases
correspond to the regions of Figure 2 in which network
estimators accurately estimate the empirical posterior mean.

The left portion of Figure 4 empirically confirms these
cases of similarity. It plots MSE between E[x(i)

C | zC, t]
and CE[x(i) | z, t], averaged across C ∈ Cs and 10,000
z ∼ pt(z,x

(i)) for varying t and patch sizes s. For both
t < 0.1 and large t, patch posterior means are similar to
optimal denoiser patches, regardless of patch size. Further,
as t increases, larger patch sizes are required to accurately
estimate the optimal denoiser. This matches the correlation
between local sensitivity and t observed in Figure 3. No-
tably, the region in which patch posterior means are poor
estimators of the optimal denoiser is similar to the regions
of Figure 2 in which network denoisers do not match the
optimal denoiser.

If network denoisers utilize localized denoising mechanisms
to approximate the optimal denoiser over the forward pro-
cess, we would expect this mechanism to be used for reverse
process samples as well. Although patch posterior means
approximate optimal denoiser patches well over the forward
process, from the right subplot of Figure 4 this is not the case
for z sampled from the reverse process. Instead, we find
patch-based denoisers estimate network denoiser patches
well for all t < 5 and especially for 3× 3 patch denoisers
when t < 0.3. This provides further evidence that network
denoisers may utilize local denoising operations such as
patch posterior means to approximate the optimal denoiser.
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Figure 5. Our PSPC denoiser. First, z is decomposed into patches
using a set of cropping matrices. For each patch, we compute the
patch posterior mean via Equation (9). Resulting means are then
combined into one image and normalized by the by the number
of patches that overlap each pixel. Although square patches are
visualized, PSPC can be used with any set of cropping matrices.

5. Patch Set Posterior Composites
Figure 4 demonstrates that patch posterior means of varying
sizes approximate patches of diffusion network denoisers
well over both forward and reverse processes. This finding
motivates our proposed methodology, which combines patch
posterior means at multiple spatial locations.

Formally, given an arbitrary set of cropping matrices C =
{C1, . . . ,CL} which denote these spatial locations, we de-
fine our Patch Set Posterior Composite (PSPC) method as

D (z, t, C) =
( ∑

C∈C

C⊤C

)−1 ∑
C∈C

C⊤E
[
x
(i)
C | zC, t

]
.

(11)
The patch set posterior composite of Equation (11) estimates
the patch posterior mean for every patch C ∈ C of z. The
output is produced by summing each of these patch posterior
means together before normalizing by

(∑
C⊤C

)−1
, the

number of patches which overlap each pixel. This process is
described in Figure 5. In practice, we estimate patch poste-
rior means using the fast nearest-neighbour score estimators
of Niedoba et al. (2024).

The performance of Equation (11) is dependent on the
choice of patch set C. We introduce two possible choices of
patch set below which represent two variants of our method-
ology.

5.1. PSPC-Square

A natural choice of patch set is Cs, the set of overlapping
square patches of spatial size s × s defined in Section 4.
However, Figure 4 shows that the optimal patch size varies
substantially across the reverse diffusion process. To adapt
our method to this observation, we define a patch size sched-
ule s(t) : R+ → {1, . . . , h}. The square Patch Set Posterior
Composite (PSPC-Square) is defined by Equation (9) with
C = Cs(t). In practice, we set s(t) according to Figure 4,
choosing patch size at each t with the lowest error versus

G(x, y, t) CG, λ=0.3 CG, λ=0.5 CG, λ=0.7

Figure 6. CIFAR-10 gradient sensitivity maps and corresponding
PSPC-Flex cropping matrices for varying λ at t = 3. Coloured re-
gions indicate areas cropped by CG. Unlike PSPC-Square, PSPC-
Flex patches are adaptive to average network sensitivity.

the network denoiser. Patch size schedules can be found in
Appendix B.

5.2. PSPC-Flex

While square patches mimic the square receptive fields of
convolutional U-Nets, Figure 3 suggests that denoisers gra-
dients are not perfectly square. To enable more flexible,
non-square patches of varying shapes and sizes, we intro-
duce PSPC-Flex, which utilizes adaptive patch sets based
on average gradient sensitivity maps.

We precompute sensitivity maps using Equation (8), averag-
ing DDPM++ denoiser gradients over 1000 forward process
z samples for each t from the EDM sampling schedule.
Then, for each G(x, y, t), we construct a flexible cropping
matrix CG(x, y, t, λ) by greedily selecting pixels at po-
sition (i, j) in descending order of G(x, y, t)i,j until the
cropped region defined by CG(x, y, t, λ) contains a fixed
portion λ ∈ [0, 1] of the total gradient∑

i,j

(CG(x, y, t, λ)G(x, y, t))i,j = λ
∑
i,j

G(x, y, t)i,j .

(12)
Figure 6 demonstrates how adaptive cropping matrices
better capture the average sensitivity shown in the
gradient sensitivity maps. We construct the patch set
of PSPC-Flex using these adaptive patches CG(t,λ) =
{CG(x, y, t, λ) | x ∈ {0, . . . , w − 1} , y ∈ {0, . . . , h− 1}}.
Similarly to PSPC-Square, we utilize a time varying thresh-
old function λ(t) which is described in Appendix B.

6. Results
We evaluate our method on three image datasets – CIFAR-
10 (Krizhevsky et al., 2009), FFHQ 64×64 (Karras et al.,
2019), and AFHQv2 64×64 (Choi et al., 2020). For each

6
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Figure 7. Comparison of various denoisers against DDPM++ over forward and reverse processes. For every dataset, PSPC denoisers
consistently provide better estimates of DDPM++ outputs than the optimal denoiser. In most cases, PSPC-Flex yields the best estimate of
network denoisers, outperforming the Gaussian and CFDM denoisers. For comparisons against other network baselines, see Appendix D.

dataset, we generate an evaluation set of samples drawn
from the forward and reverse processes. For both sets, we
use the t values defined by the EDM sampling procedure
(Karras et al., 2022), with 18 steps for EDM and 40 steps
for both FFHQ and AFHQ. To produce our reverse process
evaluation set, we utilize pretrained DDPM++ EDM models
with their default Heun sampler to generate solutions to
Equation (3). For each t, we draw 10, 000 z from each
process for CIFAR-10 and 2000 z for FFHQ and AFHQ.

6.1. Network Denoiser Comparison

To evaluate the similarity of PSPC to network denoisers,
we compare various empirical denoisers against the EDM
DDPM++ denoiser outputs for each dataset. In addition
to our PSPC-Square an PSPC-Flex methods, we evaluate
the empirical denoiser of Equation (7), the Gaussian de-
noiser decribed by Wang & Vastola (2024); Li et al. (2024),
and the Closed-Form Diffusion Model (CFDM) denoiser of
Scarvelis et al. (2023).

Figure 7 plots the MSE of each of the denoisers against the
neural network denoiser. We find that for both forward and
reverse processes, both PSPC variants have substantially
lower MSE against the network denoiser outputs as com-
pared to the empirical and CFDM denoisers. Compared to
the Gaussian denoiser, our methods generally have better
MSE for t ∈ [0.3, 3]. Comparing our methods, the flexi-
bility of the PSPC-Flex patch set produces better estimates
than those of PSPC-Square. Over the reverse process evalu-
ation sets on every dataset, PSPC-Flex generally estimates
the network denoiser better than PSPC-Square and all other
methods.

Qualitatively, we compare the output of PSPC-Flex to sev-
eral CIFAR-10 network denoisers and the empirical denoiser
in Figure 1. For every t, PSPC-Flex outputs are visually sim-
ilar to the outputs of the various network denoisers, suggest-
ing that local denoising operations comprise a significant
portion of the generalization mechanism of diffusion models.
Additional denoiser outputs can be found in Appendix E.

6.2. PSPC Sampling

Inspired by the remarkable similarity between network de-
noisers and PSPC-Flex evidenced by Figures 1 and 7, we
investigate the efficacy of PSPC-Flex as fully training-free,
completely non-neural diffusion model.

Figure 8 compares PF-ODE sampling trajectories using
DDPM++ and PSPC-Flex denoisers, starting from a shared
z ∼ π(z) for each row. PSPC-Flex samples are remarkably
similar in structure to those of the diffusion model. For
example, the FFHQ samples for both denoisers resemble
a brown-haired subject on a blue background. However,
the sample quality of PSPC-Flex is consistently worse than
those of DDPM++. Although the outputs of both denoisers
is generally quite similar at each point of every trajectory,
the errors made by PSPC-Flex starting in the middle of each
trajectories appear to compound negatively. This leads to
substantial visual artifacts in the final samples of PSPC-Flex.

Despite these artifacts, Figure 9 quantitatively demonstrates
that PSPC-Flex samples are still significantly more similar
to network denoiser samples than the samples produced by
the optimal, CFDM, or Gaussian denoisers. We measure
similarity using the cosine similarity of SSCD descriptors
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Figure 8. PF-ODE sampling trajectories starting from the same initial z, comparing the DDPM++ score estimator (Left) with our
PSPC-Flex estimator (Right). At each t, we display the noisy image z along with the output of the DDPM++ denoiser and PSPC-Square
on that z. In all cases, minor differences between DDPM++ and PSPC-Square outputs only occur over intermediate t. Sampling using
PSPC-Flex yields samples which are similar in content to the network samples. However, compounding errors lead to suboptimal final
samples.

(Pizzi et al., 2022), a embedding model used to detect image
copies (details in Appendix C.1). Notably, across all net-
work architectures, PSPC-Flex similarity scores approach
0.6, the threshold used to determine copying by Zhang et al.
(2023).

7. Related Work
Diffusion generalization There is a broad literature consid-
ering diffusion generalization. Comparing a variety of net-
works, Zhang et al. (2023) finds diffusion models produce
consistent samples despite differences in architecture and
training. Both Niedoba et al. (2024) and Xu et al. (2023) find
that diffusion models only deviate from empirical denoisers
for intermediate t. Further, Niedoba et al. (2024) identify
that errors in this region are primarily responsible for dif-
fusion generalization. Similarly, Yi et al. (2023) attributes
diffusion generalization to “slight differences” between the
network and empirical denoisers. Kadkhodaie et al. (2024)
suggest that generalization stems from geometrically adap-
tive harmonic bases. However, they do not consider how
trained models deviate from empirical denoisers.

Several other methods have been proposed to reproduce
diffusion generalization. Both Wang & Vastola (2024) and
Li et al. (2024) find strong correlations between network de-
noisers and optimal denoisers under the simplistic model of
a Gaussian p(x). Closed-form diffusion models (Scarvelis

Optim
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Figure 9. SSCD cosine similarity of CIFAR-10 PF-ODE samples
produced with varying denoisers from shared z initial conditions.
Average PSPC-Flex similarity vs. neural-networks (µ = 0.55)
is significantly higher than the similarity of optimal (µ = 0.34),
CFDM (µ = 0.23), or Gaussian (µ = 0.34) denoisers.
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et al., 2023) bias the empirical denoiser with a spectral bias
(Rahaman et al., 2019) to produce a generalization mecha-
nism.

Concurrent to our work, Kamb & Ganguli (2024) propose
a empirical, patch-based denoiser which leverages empir-
ical patch posterior means and an increasing schedule of
square patch sizes to approximate network denoiser outputs.
While their method shares similarities with PSPC-Square,
our work differs in several key ways. First, PSPC estimates
patch-posterior means exclusively over localized patch sets.
We found this to be particularly beneficial on datasets such
as FFHQ, where image features are correlated to specific
image positions. Second, while Kamb & Ganguli (2024)
focus their analysis on convolutional diffusion denoisers,
our work extends to both U-Net and DiT architectures. This
broader evaluation is essential to our conclusion that local
inductive biases form an important component of diffusion
model generalization, regardless of architecture.

Patch-based Methods Patch-based methods have long been
used in image processing. Classical image denoising meth-
ods such as Field of Experts (Roth & Black, 2005) model
images as Markov Random Fields to learn patch-based pri-
ors. Methods such as expected patch log likelihood (Zoran
& Weiss, 2011) and half quadratic splitting (Elad & Aharon,
2006; Zoran & Weiss, 2011; Friedman & Weiss, 2021) lever-
age such patch-based priors to enable maximum a priori
image reconstructions. Importantly, these methods typically
focus on recovering clean images rather than estimating
posterior means, and typically operate on lower levels of ad-
ditive Gaussian noise than is typical in the diffusion setting.

Patch-based methods have also been used in image genera-
tion. classical single image generation methods synthesize
images by ensuring similarity between patches of the in-
put and output images (De Bonet, 1997; Efros & Leung,
1999; Barnes et al., 2009; Simakov et al., 2008) while more
recent, deep learning approaches leverage patches to train
GANs(Shaham et al., 2019) and diffusion models (Nikankin
et al., 2023; Wang et al., 2025). In the area of unconditional
image generation, Ding et al. (2023) and Wang et al. (2023)
utilize patch-based approaches to improve diffusion model
training and performance.

8. Conclusions
Our work investigates the generalization mechanisms of
image diffusion models. By comparing network denoisers
and the optimal denoiser, we find strong evidence that a
persistent local inductive bias in network denoisers results in
denoiser approximation errors which are both qualitatively
and quantitatively similar across all evaluated networks.
We hypothesize that this local bias is the result of network
denoisers employing local denoising operations to partially

approximate the optimal denoiser. Approximating such
local operations with patch posterior means, we find that
these means are excellent approximators of optimal denoiser
patches over the majority of the forward diffusion process.

By spatially aggregating local patch denoisers, we find the
resulting PSPC denoisers are remarkably similar to network
denoisers when evaluated at identical (z, t) inputs. Addi-
tionally, PSPC samples share structural similarity to those
produced by diffusion models when sampling is identically
initialized. We believe that the performance of PSPC is
strong empirical evidence that a significant portion of the
generalization behaviour of image diffusion models arises
from a mechanism which is substantially similar to simple
time-varying patch denoising and compositing operations.

Our work has numerous applications. Understanding the
mechanisms of diffusion generalization helps to determine
the cases when models fail to generalize, mitigating claims
of “digital forgery” (Somepalli et al., 2023). Specifically,
patch posterior probabilities (Equation (9)) are a promising
signal for identifying specific training images which influ-
ence the generation of a sample, with copyright and training-
data licensing implications. In addition, patch-based dif-
fusion generalization mechanisms may be exploited to im-
prove training and sampling efficiency, as demonstrated
by the preliminary exploration of Wang et al. (2023). Fi-
nally, further improvements to empirical denoisers such as
PSPC-Flex may result in fully training-free models of simi-
lar quality to neural diffusion models, eliminating the fiscal
and environmental costs of diffusion training.
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A. Network Denoiser Architecture Details
A.1. CIFAR-10

Our work analyzes diffusion generalization across a diverse set of network architectures, A summary of some of the
differences between the networks compared in Figures 2 and 9 is given in Table 1

Table 1. Differences in hyperparameters between evaluated CIFAR-10 Network Denoisers
DDPM++ NCSN++ DiT U-ViT

Network Architecture U-Net U-Net Vision Transformer Vision Transformer
Output EDM Residual EDM Residual EDM Residual ϵ prediction
Diffusion Process EDM EDM EDM Variance Preserving
Patch Size N/A N/A 4 2
Hidden Size varies varies 768 384
Noise Encoding positional fourier positional token

For the NSCN++ and DDPM++ architectures, we utilize the pretrained unconditional model checkpoints provided by (Karras
et al., 2022). For the Diffusion Transformer, we adopt the code of (Peebles & Xie, 2023), utilizing the EDM preconditioning
scheme and data augmentation pipeline. We trained a DiT-B/4 network from scratch on 200 million examples using the
Adam (Kingma & Ba, 2015) optimizer and the hyperparamters given in Table 2

Table 2. Hyperparameters for DiT training on CIFAR-10
Hyperparameter Value

Batch Size 512
Learning Rate 0.0001

β1 0.9
β2 0.999
ϵ 1E-8

Patch Size 4
# Heads 12

Hidden Size 768
Transformer Blocks 12

Dropout Ratio 0.12
Augmentation Rate 0.12

For U-ViT (Bao et al., 2022), we utilize their pretrained checkpoint. Since U-ViT is an ϵ prediction network, with a variance
preserving diffusion process, we convert ϵ predictions from their network into x predictions through the equation

x =
z− t(t)ϵ

s(t)
= x (13)

In general, the diffusion models analyzed in this work produce high quality samples, as measured by Frechet Inception
Distance (FID) (Heusel et al., 2017). The 50k FID scores for each model are given below in Table 3

Table 3. FID Scores for CIFAR-10 diffusion models
Model FID

DDPM++ (Karras et al., 2022) 1.97
NCSN++ (Karras et al., 2022) 1.98
DiT++ (Peebles & Xie, 2023) 9.08

U-ViT (Bao et al., 2022) 3.08

A.2. FFHQ and AFHQ

For all FFHQ and AFHQ experiments, we utilize a pretrained DDPM++ EDM checkpoint (Karras et al., 2022).
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Figure 10. Patch Schedule for 32x32 Datasets

B. Patch Composite Algorithm Details
For each dataset, we tuned an individual schedule for the patch size and gradient threshold for PSPC-Square and PSPC-Flex
respectively. Schedules were tuned by minimizing the average path posterior mean error over forward process samples for
each dataset. Figures 10 and 11 shows the patch schedule s(t) used for all PSPC-Square results while Figure 12 shows the
threshold schedule for all PSPC-Flex results.

C. Experimental Details
C.1. SSCD Details

To compute the SSCD cosine simiilarities of Figure 9, we use the sscd imagenet mixup checkpoint provided by the
official SSCD github repository (Pizzi et al., 2022). SSCD is a self-supervised method trained which produces a image
descriptor which is similar among copied images.

For our application, we started from a shared set of 1000 z ∼ π(z) and then used each of the denoisers listed in Figure 9
to draw samples from those initial points. We used deterministic PF-ODE sampling with an Euler solver and the EDM
sampling schedule (Karras et al., 2022). We then encoded each denoiser’s samples using the SSCD encoder and computed
cosine similarities between each set of images

DSSCD(x1,x2) =
sscd(x1) · sscd(x2)

∥sscd(x1)∥∥sscd(x2)∥
(14)

We averaged the cosine similarities across the 1000 images per denoiser to obtain the results in Figure 9.

D. Additional Network Baselines
Figure 2 compares four network denoisers on CIFAR-10 and finds that their outputs are qualitatively similar, and that they
have similar mean squared error when compared against the optimal denoiser. Due to the similarity between networks, for
clarity of presenation we utilized DDPM++ in Figures 3, 4 and 7 and did not present additional results using NCSN++, DiT
or U-ViT network denoisers. For completeness, we have included additional versions of these figures below
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D.1. Gradient Concentration

Figure 13 plots the average side length of a square patch required to capture a fixed percentage of the gradient concentration
heatmap for DDPM++, NCSN++ and DiT network denoisers. Although there are some differences in the gradient
concentrations, the general trend is consistent that network denoisers exhibit a more locally concentrated gradient for small
t, and less concentration as t increases.
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Figure 13. Comparison of the Gradient concentration of DDPM++, NCSN++ and DiT networks across varying diffusion time. All three
network denoisers display the same anti-correlation between gradient concentration and diffusion time.

D.2. Patch Errors

Figure 4 compares patch posterior means to patches of DDPM++ denoiser outputs for z drawn from that network’s reverse
process. In Figure 14, we produce similar plots for DDPM++, NCSN++, DiT and U-ViT network denoisers. Across each
denoiser, patch posterior means have similar errors when compared to patches of the network output. At both small and
large t, appropriately sized patch posterior means have low MSE against network denoiser patches, with poorer MSE over
intermediate t. Additionally, for each network we observe a similar trend that as t increases, network denoiser patches are
best estimated by patch posterior means of increasing spatial size.

Notably, for U-ViT, we find that patch posterior means do not estimate high t denoiser outputs well. This is a symptom of
the amplification problem for ϵ-predictor networks, described by (Karras et al., 2022).

D.3. Denoiser Errors

Figure 7 visualizes the mean squared error between a variety of proposed denoisers and a DDPM++ network denoiser
across the forward and reverse processes of three different datasets. However, other choices of network denoiser baseline
are possible. Figure 15 plots denoiser MSE against four different network baselines. As checkpoints are only available on
CIFAR-10 for DiT and U-ViT, no comparison is performed on FFHQ and AFHQ for these baselines. In addition to the
denoisers shown in Figure 7, Figure 15 also plots MSE between pairs of network denoisers.

Examining Figure 15, PSPC-Flex consistently has lower MSE versus each network baseline than any other non-network
denoiser. However, our method is consistently outperformed by the outputs of other network denoisers. We note that the gap
between our approach and the performance of DiT when compared against DDPM++ and NCSN++ baselines is remarkably
close. We believe closing this gap is a promising area of future research.

E. Additional Denoiser Outputs
E.1. CIFAR-10

We present additional examples of denoiser outputs for the same t values presented in Figure 1. All z are drawn from the
reverse process of the DDPM++ network denoiser.
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Figure 14. Comparison of patch posterior means of varying size against patches of network denoiser outputs for shared z drawn from each
network’s reverse process on CIFAR-10. Across each network, we observe that patch posterior means are better estimators of network
output patches than the optimal denoiser.

F. Additional PSPC-Flex Samples
We provide additional PSPC-Flex samples for CIFAR-10, FFHQ, and AFHQ datasets in Figure 24. For each row, the
images in the left subplot has been generated from an identical latent seed from the corresponding image in the right subplot.
In addition, Figure 25 compares samples from a larger set of denoisers, including PSPC-Flex, PSPC-Square, NCSN++,
Gaussian, optimal, and CFDM.
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Figure 15. Comparison of network and empirical denoisers against varying network denoiser baselines. For DiT and UViT, no comparison
is performed for FFHQ and AFHQ. Against each baseline, PSPC-Flex consistently outperforms Gaussian, CFDM, and optimal denoisers.
However, PSPC performance consistently lags behind neural network performance.
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Figure 16. Additional CIFAR-10 denoiser outputs for t = 0.3
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Figure 17. Additional CIFAR-10 denoiser outputs for t = 0.6
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Figure 18. Additional CIFAR-10 denoiser outputs for t = 1.1
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Figure 19. Additional CIFAR-10 denoiser outputs for t = 1.9
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Figure 20. Additional CIFAR-10 denoiser outputs for t = 3.3
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Figure 21. Additional CIFAR-10 denoiser outputs for t = 5.3
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Figure 22. Additional CIFAR-10 denoiser outputs for t = 8.4
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Figure 23. Additional CIFAR-10 denoiser outputs for t = 12.9
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Figure 24. Additional PSPC-Flex PF-ODE samples on CIFAR-10, FFHQ and AFHQ. Samples in the left column are generated by
PSPC-Flex, while those in the right column are generated by a DDPM++ network denoiser, starting from the same initial z.

22



Towards a Mechanistic Explanation of Diffusion Model Generalization

D
D

P
M

+
+

CIFAR-10 Samples - Shared Initial Conditions

P
S

P
C

-S
qu

ar
e

P
S

P
C

-F
le

x
G

au
ss

ia
n

E
m

p
ir

ic
al

C
F

D
M

Figure 25. Comparison of PF-ODE CIFAR-10 samples generated using varying denoisers, starting from a shared initial z.
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