
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRIGREASON: TRIGGER-BASED COLLABORATION
BETWEEN SMALL AND LARGE REASONING MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Reasoning Models (LRMs) achieve strong performance on complex tasks
through extended chains of thought but suffer from high inference latency due to
autoregressive reasoning. Recent work explores using Small Reasoning Models
(SRMs) to accelerate LRM inference, yet existing frameworks such as SpecRea-
son adopt a polling-based design that repeatedly invokes the LRM for verification
at every step. This approach is inefficient, as frequent LRM calls introduce a high
computational overhead, and is unreliable, since the LRM as a judge is prone
to errors. In this paper, we systematically characterize the capability boundaries
of SRMs and identify three common types of reasoning risks: (1) path diver-
gence, where SRMs lack the strategic ability to construct an initial plan, causing
reasoning to deviate from the most probable path; (2) cognitive overload, where
SRMs fail to solve particularly difficult steps; and (3) recovery inability, where
SRMs lack robust self-reflection and error correction mechanisms. To address
these challenges, we propose TrigReason, a trigger-based collaborative reason-
ing framework that replaces continuous polling with selective intervention. Tri-
gReason delegates most reasoning to the SRM and activates LRM intervention
only when necessary—during initial strategic planning (strategic priming trigger),
upon detecting extraordinary overconfidence (cognitive offload trigger), or when
reasoning falls into unproductive loops (intervention request trigger). We show
that TrigReason enables more reliable and efficient collaboration between small
and large reasoning models, with broad practical application. Under edge–cloud
conditions, TrigReason reduces latency by 43.9% and API cost by 73.3% com-
pared to SpecReason.

1 INTRODUCTION

Large Reasoning Models (LRMs) (OpenAI, 2024; DeepSeek-AI, 2025) have recently emerged
as a powerful paradigm for tackling complex problem by leveraging extended chains of thought
(CoT) (Wei et al., 2022; Yao et al., 2024a;b) during inference. Unlike standard large language mod-
els (LLMs) that directly generate output tokens, LRMs performs an internal reasoning process by
generating a sequence of thinking tokens, which break down the input question into intermediate
reasoning steps prior to producing the final answer. This structured reasoning behavior enables
state-of-the-art performance across diverse domains such as mathematical reasoning (Qwen Team,
2025a), code generation (Ahmad et al., 2025), and agent (Kimi Team, 2025). However, this en-
hanced reasoning capacity comes at a significant cost: the autoregressive generation of long CoT
sequences, often spanning thousands of thinking tokens, leads to prolonged response delays. This
limitation has driven recent research into accelerating LRM inference.

Previous approaches to reasoning efficiency have primarily focused on refining the effective density
of CoT to mitigate redundant or excessive reasoning. Among these, reinforcement learning with
a length penalty is widely adopted to encourage concise and effective reasoning trajectories (Luo
et al., 2025; Yang et al., 2025). Alternative methods explore supervised fine-tuning using variable-
length CoT data to promote efficient inference (Xia et al., 2025; Kang et al., 2024; Ma et al., 2025).
Moreover, prompt engineering also have been proposed to guide models toward more streamlined
reasoning through carefully designed input prompts (Wu et al., 2025; Xu et al., 2025). Although
these approaches enhance inference efficiency, they typically impose a reduced token budget for
reasoning, which may lead to skipping critical logical steps or preventing necessary self-correction in

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Polling

Reasoning steps: “Alright, so I have this
geometry problem here. Let me try...”
Request evaluation: “Evaluate the last
reasoning step based on correctness.”

✔: Keep going
❌ : The step should be: “…”

Small Model
(Speculative)

Large Model
(Target)

(a) SpecReason framework.

Strategic Priming
Trigger

Cognitive Offload
Trigger

Intervention Request
Trigger

Not Triggered
Small Model Reasoning:
“Triangle ABC with sides 5, 9,
10. So, it's a scalene
triangle…”

Triggered
Large Model Reasoning:
“E = (-33√14)/28, so -E/2 =
(33√14)/56. So center O is
(9/2, 33√14/56)…”

Small Model
(Speculative)

Large Model
(Target)

(b) TrigReason framework.
SRM SpecReason TrigReason LRM

5

15

25

35

pa
ss

@
1

(%
)

13.8%

28.8% 29.6% 29.2%
AIME24

(c) Accuracy comparison.

0.0

0.5

1.0

1.5

2.0
To

ke
n

C
on

su
m

pt
io

n 1e6

100.00% 35.55% 61.37% 0.00%
Percentage of SRM Tokens

AIME24
SRM Tokens LRM Tokens

(d) Token usage percentage.

0

100

200

300

400

Av
er

ag
e

La
te

nc
y

(s
)

137.85s

330.35s
267.55s

413.08s
AIME24

(e) Latency comparison.

Figure 1: Overview of the reasoning frameworks and performance evaluation between SpecReason
and TrigReason. The evaluation is on AIME24 benchmark using DeepSeek-R1-1.5B as SRM and
QwQ-32B as LRM

the reasoning process. A separate strand of work aims to develop small language models with strong
reasoning capabilities (Dang & Ngo, 2025). However, these methods may also suffer performance
degradation due to the limited capabilities of small models.

Recently, SpecReason (Pan et al., 2025) observes that many LRM reasoning steps can be semanti-
cally covered by small reasoning model (SRM), and proposes a speculative paradigm that verifies
SRM-generated steps via an LRM-as-a-Judge mechanism. While SpecReason can effectively re-
duce latency, it faces two key limitations. First, the LRM’s judgment is often unreliable(§2.1).
Model judgment is inherently subjective due to behavior biases ingrained during training. Besides,
evaluating individual reasoning steps is challenging, as the full chain of thought remains incom-
plete. Second, as illustrated in Figure 1a, its polling-based design, where the LRM is invoked at
every reasoning step to validate the SRM’s output regardless of the complexity, resulting in signif-
icant overhead, especially in edge-cloud collaboration (§2.2). These limitations lead to inefficient
speculative inference, as excessive LRM intervention results in the final output being dominated by
LRM-generated corrections rather than SRM reasoning.

These inefficiencies originate from an incomplete understanding of when and why SRM fails. Ex-
isting methods resort to frequent and blind verification, sacrificing efficiency for effectiveness. In
this paper, we first characterize the capability boundaries of the SRM to identify the most common
reasoning errors: path divergence risk, cognitive overload risk, and recovery inability risk (§3.1).
Based on this analysis, we propose TrigReason, a event-triggered collaborative reasoning frame-
work that shifts LRM correction from polling to selective intervention. As shown in Figure 1b,
instead of continuous verification, TrigReason allows the SRM to reason autonomously until one
of three purpose-designed triggers fires: (1) a strategic priming step from the LRM at the start, (2)
a cognitive offload trigger when confidence becomes extraordinary, or (3) an intervention request
when the SRM detects stagnant reasoning loops. As shown in Figure 1c, 1d and 1e, this shift en-
ables TrigReason to significantly increase the proportion of tokens generated by SRM (from 35.55%
to 61.37% of total token consumption) while maintaining accuracy and substantially reducing end-
to-end latency.

We evaluate TrigReason extensively on three challenging reasoning benchmarks, AIME24 (AIME,
2024), AIME25 (AIME, 2025), and GPQA Diamond (Rein et al., 2024), across diverse SRM-LRM
combinations. Results show that TrigReason maintains accuracy compared with both the full LRM
and SpecReason, while utilizing 1.70× to 4.79× more SRM-generated tokens than SpecReason,
indicating significantly higher reasoning steps offloading efficiency. Under edge-cloud collaboration

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

scenarios, TrigReason achieves reduction of 43.9% in latency and 73.3% in API cost compared
to SpecReason. These results demonstrate that TrigReason establishes a more effective paradigm
for collaborative reasoning between small and large models, achieving significant improvements in
inference efficiency without compromising accuracy.

2 MOTIVATION

Recent advances in speculative reasoning have shown that collaboration between SRM and LRM can
accelerate inference without sacrificing solution quality. SpecReason (Pan et al., 2025) exemplifies
this progress by adopting an LRM-as-a-Judge framework, where the LRM is prompted to score each
reasoning step generated by the SRM, determining whether to accept or reject it. In this section, we
explore two key limitations hindering its practical effectiveness:

Unreliable LRM judgment: (1) the inherent biases of each model, which make the judge prone to
subjectivity rather than serving as an objective detector of errors; and (2) the difficulty of assessing
intermediate reasoning steps when chains of thought are not yet fully formed, thus often unclear.

Inefficiency of polling-based execution: the step-level granularity of LRM invocation leads to
frequent communication and computation overhead, especially in edge-cloud collaboration.

These limitations undermine intended acceleration benefits of speculative reasoning, as the majority
of the final output is derived from the corrections of LRM.

2.1 UNRELIABILITY OF LRM JUDGMENT

While SpecReason advances speculative inference efficiency in reasoning acceleration, its LRM-as-
a-Judge mechanism suffers from a critical flaw, as LRM fails to reliably validate the correctness of
reasoning steps from SRM.

Due to inherent biases in model training, LRM judgments are often preference-driven, leading to
subjective judgments for the same content across different models. We evaluate identical reasoning
trajectories using four different LRMs. As shown in Figure 2a, the LRMs assign widely divergent
scores to the same trajectory (from 1.87 to 8.93). This polarization indicates that LRM judgments
are heavily influenced by model-specific priors, rather than objective reasoning quality.

Furthermore, to assess the difficulty of verifying intermediate reasoning steps in incomplete chains
of thought, we sample reasoning trajectories from the AIME24 dataset. We categorize these tra-
jectories into three types (defined below), and evaluate SpecReason to quantify the unreliability
verification, using QwQ-32B as the LRM and DeepSeek-R1-1.5B as the SRM:

• SpecReason: trajectories of SpecReason with mixed steps from SRM and LRM;

• SRM-Correct: trajectories from the SRM that yield correct final answers;

• LRM-Own: trajectories generated independently by the LRM itself.

We follow SpecReason’s experimental setup: the LRM assigns scores in the range [0, 9], with a
threshold of 7 for acceptance, and each question is evaluated over 16 runs to compute the average
rejection rate across reasoning trajectories. Figure 2b presents results on three questions where the
SRM can correctly solve, as the remaining results are shown in Appendix A. The results reveal that
the LRM rejects 50.1% to 80.9% of correct and valid reasoning steps generated by the SRM. More
surprisingly, the LRM even rejects up to 63.7% of its own generation.

These results indicate that the LRM-as-a-Judge paradigm is unreliable in verifying reasoning steps.
Due to discrepancies of model inherent biases and the difficulty of assessing intermediate reasoning
steps, the LRM is prone to regenerate the correct draft of SRM that differ only in phrasing or rea-
soning path. This unreliable judgment forces excessive LRM intervention to ensure solution quality,
significantly undermining the efficiency of speculative reasoning.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0

3

6

9

Av
er

ag
e

Ju
dg

e
Sc

or
e

5.56

7.22

1.87

8.93

QwQ-32B
Skywork-OR1-32B
Qwen3-30B-A3B-Thinking
DeepSeek-V3.1

(a)

64 65 66
Question ID

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

R
ej

ec
tio

n
R

at
e

45.8% 47.8%

65.4%

50.1%

42.3%

80.9%

39.8% 41.2%

63.7%

SpecReason
SRM-Correct
LRM-Own

(b)

200

400

600

Av
er

ag
e

La
te

nc
y

(s
)

504.8

618.1

346.8

LRM-only
SpecReason
TrigReason

(c)

0

1

2

3

4

N
or

m
al

iz
ed

 A
PI

 C
os

t

2.6

3.7

1.0

LRM-only
SpecReason
TrigReason

(d)

Figure 2: (a) Average judge scores of same trajectories from four different LRM, showing extreme
inter-judge inconsistency. (b) Average rejection rate on three reasoning trajectories. Even for correct
steps and LRM-own generation, LRM judgment still shows high-level rejection rate. (c) and (d) are
comparison of average latency and API cost in edge-cloud collaborative reasoning, respectively.

2.2 INEFFICIENCY OF POLLING-BASED EXECUTION

SpecReason adopts polling-based execution that requires the LRM to intervene at every reasoning
step, ignoring both step complexity and the SRM’s internal confidence. Frequent LRM calls incur
substantial overhead, and also diminish the expected efficiency gains of speculative reasoning.

In edge-cloud setups, a representative deployment for speculative reasoning, the SRM executes on
resource-constrained edge devices while the LRM operates in the cloud. Frequent polling under this
architecture induces significant network round-trips and API costs, exacerbating system-level in-
efficiencies. We implement a edge-cloud deployment to quantify the effect, as the SRM (DeepSeek-
R1-1.5B) runs locally and the LRM is accessed via DeepSeek API. As shown in Figure 2c and
2d, even compared to LRM-only execution, SpecReason exhibits lower efficiency, with a 22.44%
increase in latency and a 42.31% higher API cost.

3 METHOD

To address the shortcomings of polling-based LRM verification, we propose TrigReason, guided
by two key ideas: (1) studying how SRM fails in order to identify the most common reasoning
risks, thereby enabling more objective targeting and reducing blind reliance on LRM judges; and
(2) triggering LRM for speculative reasoning correction based on event signals rather than at every
step (polling), which reduces the number of LRM calls and significantly lowers latency. Allowing
SRM to generate the reasoning chain to some extent before intervention also makes the reasoning
path more explicit, enabling LRM to deliver more effective corrections.

3.1 CHARACTERIZATION OF SRM REASONING RISKS

The limitations of current speculative reasoning originate from an insufficient understanding of
when and why SRM fails, resulting in an inability to distinguish between harmless reasoning varia-
tions and high-risk steps. By characterizing the capability boundaries of the SRM, LRM intervention
can be reserved only for critical steps, avoiding excessive verification and missed interventions. To
address this issue, we conduct a systematic analysis of reasoning trajectories generated by SRM and
identify three core failure modes that cause distinct capability gap between SRM and LRM: path
divergence risk, cognitive overload risk, and recovery inability risk.

To identify the critical steps and risk patterns, we compared correct and incorrect reasoning trajecto-
ries through different scaled reasoning models on the AIME24 datasets. Figure 3 shows three typical
risk patterns, which characterize the capability gap between different model scales. Examples of the
three risks are shown in Appendix B.

(1) Path Divergence Risk: occurs at the beginning of reasoning process, representing a fault-
oriented solution branch. Unlike factual hallucinations or arithmetic mistakes, it arises from the
SRM’s failure to decompose the problem or anticipate the implications of alternative approaches.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

…
(a) Path Divergence Risk (b) Cognitive Overload Risk (c) Recovery Inability Risk

Right Way
Wrong Way
Right Action
Wrong Action
Chosen Path

…

…
…

Start Point

❌

Stuck

Right N Steps

Hard Step

Figure 3: Illustration of three typical risk patterns reflecting the SRM-LRM capability gap.

As the study case shown in Appendix B, SRMs often jump to computation or apply familiar but
unsuitable methods, whereas larger models first analyze problem structure and plan strategically.
The observation highlights the lack of strategic foresight in smaller models during initial planning.

Insight: let the LRM generate initial reasoning steps for strategic planning or problem decomposi-
tion, enabling the SRM to efficiently execute downstream steps under a validated reasoning path.

(2) Cognitive Overload Risk: occurs in a subset of specific steps that demand high cognitive load,
such as complex arithmetic computations requiring the retention of numerous intermediate states
(e.g., multi-step fraction simplification, symbolic manipulation, or multi-hop logical inference).

As the study case shown in Appendix B, although relatively infrequent, these errors are highly
consequential, leading cascading failures in subsequent reasoning steps. Yet for routine reasoning
(e.g., interpretation, sequencing, and simple calculation), smaller models are reliable. Therefore, the
key lies in identifying a insightful signal to detect cognitive overload in the SRM.

We analyze 160 reasoning trajectories from SRMs on 10 problems with significant SRM–LRM
performance gaps. Among the 93 trajectories containing clear SRM incorrect reasoning steps, 94.6%
steps exhibit overconfident steps (i.e., over 85% of tokens have perplexity < 1.05), compared to only
38.1% overconfidence steps across all steps (see Appendix C for details). This pattern shows SRM
failure is often preceded by abnormally low token-level perplexity, indicating overconfident and
deterministic generation. The overconfidence is not a sign of capability, but rather a symptom of
mechanical pattern completion under cognitive overload.

Insight: SRMs are limited not by reasoning ability throughout the process, but by cognitive capacity.
This pattern motivates a light-touch intervention strategy: leveraging overconfidence as a signal of
cognitive overload to trigger LRM assistance, keeping the SRM on a correct reasoning trajectory.

(3) Recovery Inability Risk: occurs when minor errors or ambiguous interpretations lead the SRM
to deviate from the correct path, resulting in increasingly incoherent reasoning. In contrast, LRM
can implicitly reflect, detect anomalies, and backtrack to correct its approach.

As the study case shown in Appendix B, SRMs lack the ability to detect deviations or initiate self-
correction, causing them to persist on erroneous paths and eventually stagnate.

Insight: let LRM to reflect and re-guide the path-enabling corrective when signs of stagnation or
contradiction are detected in the SRM’s reasoning trajectory.

3.2 EVENT-TRIGGERED LRM INTERVENTION

Based on the observations in §3.1, we propose TrigReason, a trigger-based framework for collabo-
rative SRM-LRM execution. TrigReason introduces three targeted triggers to address critical failure
risks in SRM reasoning: strategic priming trigger, cognitive offload trigger, and intervention
request trigger. Owing to sparse yet crucial LRM intervention, TrigReason ensures high answer
quality while enabling efficient and low-cost collaborative reasoning, as shown in Figure 2c and 2d.

3.2.1 STRATEGIC PRIMING TRIGGER

The Strategic Priming Trigger is designed to address the Path Divergence Risk. By decoupling
strategic planning from step-by-step execution, TrigReason uses the LRM to perform initial reason-
ing, ensuring the SRM begins on a valid and coherent trajectory.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Specifically, given an input question x, we first sample the first n reasoning steps from the LRM L:

y1:n ∼ pL(y1:n | x), (1)

where pL denotes the conditional distribution of the LRM, and n is a pre-defined priming steps.
After this priming phase, control is transferred to the SRM S, which continues the reasoning chain:

yt ∼ pS(yt | y<t, x), for t > n. (2)

3.2.2 COGNITIVE OFFLOAD TRIGGER

The Cognitive Offload Trigger aims to address the Cognitive Overload Risk. TrigReason leverages
the extraordinary overconfidence of SRM as an early warning signal to trigger LRM intervention at
critical junctures.

To quantify this behavior, we define the token-level perplexity at position t as:

PPL(t) = exp (− log pS(yt | y<t, x)) , (3)

where pS(yt | y<t, x) is the probability assigned by the SRM to token yt, given the prefix y<t and
input x. For a given reasoning step s, let Ts denote the set of token positions in s. We compute the
low-perplexity ratio rs as the fraction of tokens in s with perplexity below a threshold τ :

rs =
1

|Ts|
∑
t∈Ts

1 [PPL(t) < τ] , (4)

where τ is a sensitivity threshold and 1 [·] is the indicator function, equal to 1 if the condition is true,
and 0 otherwise. The Cognitive Offload Trigger fires when rs > ρ, where ρ is a coverage threshold:

Trigcognitive(s) = 1 [rs > ρ] . (5)

Upon activation, the current step s is regenerated by the LRM:

ys ∼ pL(· | y<s, x). (6)

3.2.3 INTERVENTION REQUEST TRIGGER

The Intervention Request Trigger aims to mitigate the Recovery Inability Risk. TrigReason monitors
for linguistic markers of reasoning stagnation, and invokes the LRM to realign the reasoning path
upon detection. Obesevation indicates that, SRM often generates distinctive hesitation patterns (e.g.,
”wait”, ”hmm”, ”alternatively”), which reflects an implicit recognition of difficult reasoning steps.

We define a finite setH of hesitation words for detection (Appendix D includes the complete list):

H = {wait, hmm, alternatively, . . .}. (7)

At each reasoning step s, we determine whether the generation contains at least one token fromH:

hs = 1 [∃ yt ∈ ys such that yt ∈ H] . (8)

The Intervention Request Trigger fires when hesitation is observed in k consecutive steps:

Trigintervention = 1

[
k−1∑
i=0

hs−i = k

]
, (9)

Upon activation, the system transfers control to the LRM for the next m steps:

ys+1:s+m ∼ pL(· | y≤s, x), (10)

then LRM is able to assess the current state, identify inconsistencies, and recorrect reasoning path.
After m steps, control returns to the SRM. The main algorithm of TrigReason is shown in Appendix
E Algorithm 1 and the theoretical Characterization of reliability is discussed in Appendix G.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 SETUP

Models. LRM: QwQ-32B (Qwen Team, 2025a) (32B dense model) and Qwen3-30B-A3B-
Thinking-2507 (Qwen Team, 2025b) (30B MoE model, 3B active). SRM: DeepSeek-R1-
1.5B (DeepSeek-AI, 2025) and Qwen3-0.6B (Qwen Team, 2025b). Both models are equipped with
CoT reasoning capabilities. We conduct experiments across four SRM-LRM pairings to evaluate
the generalization of TrigReason under diverse model architectures and scales. In the edge-cloud
deployment setting, the LRM (DeepSeek-V3.1, 671B MoE) is accessed via DeepSeek API.

Datasets. AIME24 (AIME, 2024) and AIME25 (AIME, 2025) are high-school math competition
problems requiring multi-step algebraic and combinatorial reasoning. GPQA Diamond (Rein et al.,
2024) is a graduate-level multiple-choice question set that covers advanced topics in physics, chem-
istry and biology, known for its high factual and logical complexity.

Evaluation Metrics. (1) Accuracy: following prior work (Pan et al., 2025), we use pass@1 with
k = 16. Specifically, 16 responses are sampled for each question at temperature = 0.6, and the
final accuracy is calculated as the average accuracy for every response. (2) Efficiency: as the total
token consumption across methods is similar, we utilize the ratio of tokens generated by the SRM
to the total reasoning tokens as a robust efficiency metric, donated as SMT percentage. We exclude
latency from evaluation, as it is highly sensitive to hardware, system load, and scheduling variability,
which could confound cross-method comparisons.

The method performance is visualized through the Accuracy-Efficiency plane, where the x and y
axis represent SMT percentage and pass@1, respectively. Closer to the top-right performs better.

Baselines. (1) SpecReason (Pan et al., 2025), a polling-based collaborative method. (2) standalone
reasoning framework using only the SRM or only the LRM.

Implementation Details. All experiments are conducted on 8 NVIDIA RTX 4090 GPUs using
SGLang v0.4.9 (Zheng et al., 2023) as the inference engine, with prefix caching and tensor paral-
lelism (degree 4) enabled. Unless otherwise stated, generation uses temperature = 0.6 and top p
= 0.95. The default token budget is 8192 tokens; for the impact of thinking budget analysis (Ap-
pendix F), we evaluate budgets ranging from 2K to 32K. For TrigReason parameters, we set the
priming step count n = 20 and rectification steps m = 1. The cognitive overload threshold ρ is
set to 0.85 for DeepSeek-R1-1.5B and 0.75 for Qwen3-0.6B with τ = 0.85. The rationale for these
hyperparameter choices is justified through ablation studies in (§4.4).

4.2 MAIN RESULTS

We evaluate TrigReason on AIME24, AIME25, and GPQA Diamond across four SRM-LRM com-
binations, comparing against vanilla LRM/SRM baselines and SpecReason. The results are shown
in Figure 4.

Stable Accuracy. Despite offloading substantial reasoning to the SRM, TrigReason consistently
matches or even exceeds LRM performance. On average, it achieves 105.8% (AIME24), 104.7%
(AIME25), and 99.6% (GPQA Diamond) of the LRM’s accuracy across model pairs, with individ-
ual configurations (Qwen3-0.6B + Qwen3-30B-A3B-Thinking- 2507 on AIME24) reaching up to
119.3%. In several cases, TrigReason surpasses the LRM baseline, suggesting that trigger-based
intervention can yield robust and effective reasoning trajectories.

Higher Efficiency. While matching SpecReason in accuracy, TrigReason achieves significantly
greater efficiency. On average, TrigReason utilizes 1.70×−4.79×more SRM tokens than SpecRea-
son across benchmarks. Specifically, the SMT Percentage increases by 1.70×, 4.79×, 1.88×, and
3.94× across the four combinations. This substantial gain indicates that TrigReason’s mechanism
more effectively identifies and accepts valid reasoning steps.

In general, the results show that TrigReason achieves accuracy on par with full LRM and SpecRea-
son, while significantly improving efficiency through increased SRM utilization and less LRM calls.
The evaluation results indicate that TrigReason achieves a superior efficiency-accuracy trade-off,
representing a clear advancement in step-level speculative reasoning for collaborative inference.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

LRM SpecReason TrigReason SRM

0 25 50 75 100
SMT Percentage (%)

10

20

30
pa

ss
@

1
(%

)

Bett
er

AIME24

0 25 50 75 100
SMT Percentage (%)

30
40
50
60

pa
ss

@
1

(%
)

Bett
er

GPQA-D

0 25 50 75 100
SMT Percentage (%)

10

20

30

pa
ss

@
1

(%
)

Bett
er

AIME25

(a) DeepSeek-R1-1.5B + QwQ-32B

0 25 50 75 100
SMT Percentage (%)

10

20

30

pa
ss

@
1

(%
)

Bett
er

AIME24

0 25 50 75 100
SMT Percentage (%)

40

60

80

pa
ss

@
1

(%
)

Bett
er

GPQA-D

0 25 50 75 100
SMT Percentage (%)

10

20

30

pa
ss

@
1

(%
)

Bett
er

AIME25

(b) Qwen3-0.6B + Qwen3-30B-A3B-Thinking

0 25 50 75 100
SMT Percentage (%)

10

20

30

pa
ss

@
1

(%
)

Bett
er

AIME24

0 25 50 75 100
SMT Percentage (%)

30
40
50
60

pa
ss

@
1

(%
)

Bett
er

GPQA-D

0 25 50 75 100
SMT Percentage (%)

10

20

30

pa
ss

@
1

(%
)

Bett
er

AIME25

(c) Qwen3-0.6B + QwQ-32B

0 25 50 75 100
SMT Percentage (%)

10

20

30

pa
ss

@
1

(%
)

Bett
er

AIME24

0 25 50 75 100
SMT Percentage (%)

40

60

80

pa
ss

@
1

(%
)

Bett
er

GPQA-D

0 25 50 75 100
SMT Percentage (%)

10

20

30
pa

ss
@

1
(%

)

Bett
er

AIME25

(d) DeepSeek-R1-1.5B + Qwen3-30B-A3B-Thinking

Figure 4: Performance comparison across benchmarks and model combinations. The vertical axis
shows accuracy (higher is better), and the horizontal axis shows the percentage of tokens generated
by the SRM (SMT Percentage), reflecting reasoning efficiency (higher is more efficient). Methods
closer to the top-right corner achieve better accuracy with greater computational offloading to the
SRM, indicating a favorable trade-off between performance and efficiency.

0 25 50 75 100
SMT Percentage (%)

10

20

30

pa
ss

@
1

(%
)

AIME24

LRM
SpecReason
TrigReason
SRM

Figure 5: Accuracy on AIME24 in
an edge-cloud setup.

4.3 EVALUATION IN EDGE-CLOUD COLLABORATION

To assess TrigReason in realistic deployment scenarios, we
simulate an edge-cloud setup: the SRM (DeepSeek-R1-1.5B)
runs locally, while the LRM is accessed remotely via the
DeepSeek API (DeepSeek API, 2025), which internally uses
DeepSeek-V3.1. Latency and API cost are reported in Fig-
ure 2c and Figure 2d; here, we present accuracy results on
AIME24 in Figure 5.

TrigReason successfully offloads up to 59.4% of reasoning tokens to the SRM—requiring the LRM
to generate only 40.6%, with just a 2.49% absolute accuracy drop compared to full LRM execution.
In contrast, SpecReason suffers from degraded accuracy despite high SRM token usage, due to unre-
liable verification by the LRM, as analyzed in Section 2.1. We observe that when acting as verifier,
DeepSeek-V3.1 often assigns high scores to semantically weak or incomplete SRM-generated steps,
likely influenced by its own inductive biases in reasoning style. This leads to acceptance of invalid
speculative steps, enabling error propagation and ultimately compromising solution correctness.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 ABLATION STUDY

To evaluate the contribution of each component in TrigReason, we conduct ablation studies on the
three proposed triggers and their associated hyperparameters: Strategic Priming, Cognitive Offload,
and Intervention Request. All experiments are conducted on AIME24.

Cognitive Overload Threshold ρ. We analyze ρ, which governs activation of the Cognitive Of-
fload Trigger. Lower ρ prompts earlier LRM intervention; ρ = 1 disables the trigger entirely. We
fix n = 20, m = 1, and use two representative model pairs: DeepSeek-R1-1.5B + QwQ-32B and
Qwen3-0.6B + Qwen3-30B-A3B-Thinking.

20 30 40 50 60 70 80
SMT Percentage (%)

20

24

28

32

pa
ss

@
1

(%
)

1

0.950.9
0.85

0.8
0.75

0.7

Overload Threshold :

DeepSeek-R1-1.5B +
QwQ-32B
Qwen3-0.6B +
Qwen3-30B-A3B-Thinking

(a)

20 30 40 50 60 70 80
SMT Percentage (%)

20

24

28

32

pa
ss

@
1

(%
)

0

10
20

30

40
50Priming

 Steps n:

(b)

20 30 40 50 60 70 80
SMT Percentage (%)

20

24

28

32

pa
ss

@
1

(%
)

0

12
3

Rectification Steps m:

(c)
Figure 6: Ablation studies on TrigReason’s three triggers and their hyperparameters. (a) Impact
of the cognitive overload threshold ρ on accuracy and SRM token percentage across two model
pairs. (b) Effect of varying the number of priming steps n on accuracy and SRM token usage. (c)
Performance and efficiency under different rectification step counts m.

As shown in Figure 6a, disabling the Cognitive Offload Trigger (ρ = 1) causes a significant ac-
curacy drop, confirming its critical role in preventing error accumulation when the SRM exceeds
its capacity. Crucially, the optimal ρ is model-dependent: DeepSeek-R1-1.5B + QwQ-32B pair
achieves peak performance at ρ = 0.85, while Qwen3-0.6B + Qwen3-30B-A3B-Thinking pair per-
forms more stably at ρ = 0.75. This reflects intrinsic SRM differences in average perplexity and
reasoning reliability. While higher ρ improves accuracy, it reduces SMT percentage, trading off
efficiency. Thus, ρ acts as a tunable knob balancing accuracy and efficiency based on the specific
SRM-LRM pair.

Priming Steps n. We vary n from 0 to 50 (withρ = 0.85 and m = 1) to assess the Strategic
Priming Trigger, which enables LRM-provided planning before SRM execution.

Figure 6b shows that reducing n from 20 to 0 incurs a 25.4% absolute accuracy drop, underscoring
the importance of strategic guidance in enabling autonomous SRM reasoning. However, increasing
n beyond 30 yields diminishing returns and degrades efficiency. This indicates that early strategic
guidance is critical, while excessive priming wastes LRM capacity on execution.

Rectification Steps m. We evaluate the Intervention Request Trigger by varying m, the number
of LRM-generated steps after detecting stagnant reasoning loops. We fix ρ = 0.85, n = 20.

Figure 6c shows that m = 1 already recovers most of the performance gap, with marginal gains from
m = 2 or m = 3. This suggests that the LRM’s corrective capability is highly concentrated: a single
high-quality step often suffices to realign the reasoning path. Larger m unnecessarily increases LRM
usage and reduces efficiency, making m = 1 the optimal trade-off in practice.

5 CONCLUSION

We introduced TrigReason, a trigger-based framework for efficient large-small reasoning model
collaboration. By replacing polling with risk-aware, selective intervention, TrigReason enables au-
tonomous SRM reasoning while invoking LRMs only when neccessary. Across mathematical and
knowledge-intensive benchmarks, TrigReason sustains LRM-level accuracy while offloading up to
59.4% of tokens to SRMs, reducing latency by 43.9% and API cost by 73.3% in edge-cloud setups.
Our work shows that intelligent triggering, informed by failure analysis, enables an efficient and
reliable path to scalable reasoning systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain,
Jocelyn Huang, Vahid Noroozi, and Boris Ginsburg. Opencodereasoning: Advancing data distil-
lation for competitive coding, 2025. URL https://arxiv.org/abs/2504.01943.

AIME. Aime 2024 dataset. https://huggingface.co/datasets/HuggingFaceH4/
aime_2024, 2024.

AIME. Aime 2025 dataset. https://huggingface.co/datasets/math-ai/aime25,
2025.

Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small llms: What works
and what doesn’t, 2025. URL https://arxiv.org/abs/2503.16219.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

DeepSeek API. DeepSeek API Documentation. https://api-docs.deepseek.com/,
2025. Accessed: 2025-09-20.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-
thought without compromising effectiveness, 2024. URL https://arxiv.org/abs/
2412.11664.

Kimi Team. Kimi k2: Open agentic intelligence, 2025. URL https://arxiv.org/abs/
2507.20534.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning,
2025. URL https://arxiv.org/abs/2501.12570.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning, 2025. URL https://arxiv.org/abs/2502.
09601.

OpenAI. Introducing openai o1-preview. https://openai.com/index/
introducing-openai-o1-preview/, 2024.

Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro, Zhihao Jia, and Ravi Netravali. Specreason:
Fast and accurate inference-time compute via speculative reasoning, 2025. URL https://
arxiv.org/abs/2504.07891.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning. https://qwenlm.
github.io/blog/qwq-32b/, 2025a.

Qwen Team. Qwen3 technical report, 2025b. URL https://arxiv.org/abs/2505.09388.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=Ti67584b98.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yifan Wu, Jingze Shi, Bingheng Wu, Jiayi Zhang, Xiaotian Lin, Nan Tang, and Yuyu Luo. Concise
reasoning, big gains: Pruning long reasoning trace with difficulty-aware prompting, 2025. URL
https://arxiv.org/abs/2505.19716.

Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Control-
lable chain-of-thought compression in llms, 2025. URL https://arxiv.org/abs/2502.
12067.

10

https://arxiv.org/abs/2504.01943
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/math-ai/aime25
https://arxiv.org/abs/2503.16219
https://arxiv.org/abs/2501.12948
https://api-docs.deepseek.com/
https://arxiv.org/abs/2412.11664
https://arxiv.org/abs/2412.11664
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2502.09601
https://arxiv.org/abs/2502.09601
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://arxiv.org/abs/2504.07891
https://arxiv.org/abs/2504.07891
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://arxiv.org/abs/2505.19716
https://arxiv.org/abs/2502.12067
https://arxiv.org/abs/2502.12067

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less, 2025. URL https://arxiv.org/abs/2502.18600.

Junjie Yang, Ke Lin, and Xing Yu. Think when you need: Self-adaptive chain-of-thought learning,
2025. URL https://arxiv.org/abs/2504.03234.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024a.

Yao Yao, Zuchao Li, and Hai Zhao. GoT: Effective graph-of-thought reasoning in language mod-
els. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Findings of the Association for
Computational Linguistics: NAACL 2024, pp. 2901–2921, Mexico City, Mexico, June 2024b.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.183. URL
https://aclanthology.org/2024.findings-naacl.183.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Efficiently
programming large language models using sglang, 2023.

11

https://arxiv.org/abs/2502.18600
https://arxiv.org/abs/2504.03234
https://aclanthology.org/2024.findings-naacl.183

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A DETAILED ANALYSIS OF LRM JUDGMENT

To further investigate the unreliability of the LRM-as-a-Judge mechanism in SpecReason, we con-
duct a fine-grained analysis of rejection behavior on the AIME24 benchmark. Specifically, we
compare the step-level rejection rates of two conditions across all 30 questions: (1) the original
SpecReason setup, where the LRM judges SRM-generated reasoning steps, and (2) an LRM-own
control, where the LRM judges its own reasoning trajectory generated during full LRM execution.

Figure 7 presents the per-question rejection rates for both settings. Despite the semantic correctness
of its own reasoning path, the LRM rejects its own steps at a rate comparable to that of SRM-
generated steps—indicating inconsistent and preference-driven judgment. On average, the LRM
rejects 53.4% of its own reasoning steps, only slightly lower than the 56.8% rejection rate for SRM
steps. This high self-rejection rate suggests that the LRM’s scoring mechanism is not grounded in
logical validity, but rather in stylistic or strategic preferences.

This finding strongly supports our claim in Section 2.1: using the LRM as a judge introduces inher-
ent unreliability, as it cannot reliably distinguish between valid reasoning variations and genuinely
erroneous steps. Consequently, SpecReason may reject correct SRM reasoning or accept flawed
ones based on superficial alignment, undermining both efficiency and correctness.

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
Problem ID

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

R
ej

ec
tio

n
R

at
e SpecReason

LRM-Own

Figure 7: Per-question rejection rates of SRM-generated steps (SpecReason) vs. LRM-generated
steps (LRM-own) on AIME24. The LRM frequently rejects its own valid reasoning, revealing the
inconsistency of its judgment.

B CASE STUDIES OF THREE RISK PATTERNS

To provide intuitive illustrations of the three key risk patterns identified in Section 3.1, we present
visual case studies on representative problems from the AIME24 benchmark.

• Figure 8 demonstrates the Path Divergence Risk, where the SRM makes suboptimal proce-
dural choices that lead to intractable computation, while the LRM adopts a more strategic
formulation.

• Figure 9 illustrates Cognitive Overload Risk: the SRM performs correctly for hundreds of
steps but fails at a critical late-stage computation due to arithmetic or attentional lapse.

• Figure 10 showcases Recovery Inability Risk, where the SRM enters a loop of indecisive
reasoning after hitting a bottleneck, failing to self-correct or switch strategies.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Path Divergence Risk
Question (AIME24-61):

Let ABC be a triangle inscribed in circle ω. Let the tangents to ω at B and C

intersect at point D, and let \overline{AD} intersect ω at P. If $AB=5$, $BC=9$, and

$AC=10$, AP can be written as the form $\frac{m}{n}$, where m and n are relatively prime

integers. Find $m + n$.

SRM Answers:

Alright, so I have this geometry problem here. Let me try to visualize it first. There's a triangle ABC

inscribed in a circle ω. The tangents at points B and C intersect at point D. Then, the line AD intersects the

circle ω again at point P. I know the lengths of the sides: AB is 5, BC is 9, and AC is 10. I need to find AP

expressed as a fraction m/n where m and n are coprime, and then compute m + n.

Hmm, okay. Let me recall some geometry concepts that might help here. Since AD intersects the circle

again at P, maybe I can use power of a point or some properties of cyclic quadrilaterals. Also, since D is the

intersection of the tangents at B and C, D must be the ex-pole or something related to the circumcircle.

Wait, tangents from a common external point are equal in length. So, DB equals DC. That might be useful.

Also, since ABC is inscribed in ω, maybe I can use properties of cyclic quadrilaterals or intersecting chords.

I remember that the power of point D with respect to ω is equal to DB², since DB is tangent to ω at B.

Similarly, it's also equal to DC² because DC is tangent at C. So, DB = DC.

Now, since AD intersects ω again at P, perhaps I can apply the power of point A with respect to ω. The

power of A would be equal to AP * AD. Also, the power of A can be expressed as AB * AC because A is

outside the circle and AB and AC are the secant segments from A to the circle.

Wait, is that right? Let me think. The power of a point outside a circle is equal to the product of the lengths

of the segments from the point to the points of intersection with the circle. So, for point A, the power with

respect to ω is AB * AC because AB and AC are the two secant segments from A to points B and C on the

circle. But actually, in this case, A is connected to P, which is another point on the circle. So, AP * AD

should equal AB * AC.

……

Wait, maybe using Ceva's theorem or Menelaus' theorem. But without knowing certain angles or lengths, it's

difficult.

Wait, maybe I can compute the coordinates. Let me set up coordinate system.

Let me place triangle ABC in coordinate plane. Let me assign coordinates to points A, B, C. Let me let

point A be at (0, 0), point B at (5, 0), and point C somewhere in the plane. Wait, but I don't know the

coordinates yet.

Comment:

While placing A at $(0,0)$ and B at $(5,0)$ is mathematically valid, this coordinate system leads to

significantly more complex algebraic expressions in subsequent steps—such as solving for the circumcircle,

computing tangent lines, and finding intersection points—making it extremely difficult to reach the correct

solution within the token budget. This illustrates a key aspect of path divergence risk: even when an SRM

follows a logically sound high-level strategy, suboptimal procedural choices (e.g., coordinate placement)

can lead to intractable computational paths. In contrast, we observe that LRMs frequently adopt a more

strategic setup—placing B at $(0,0)$ and C at $(9,0)$—which aligns the base BC with the x-axis

and leverages the known side length $BC = 9$ as a natural coordinate anchor. This choice dramatically

simplifies symmetry and distance calculations, reducing reasoning complexity and increasing the likelihood

of success. The SRM’s failure to anticipate such downstream computational consequences highlights its

limited global planning capability, motivating the need for strategic priming (e.g., via the Strategic Priming

Trigger in TrigReason) to guide early critical decisions.

Figure 8: Case study of Path Divergence Risk.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Cognitive Overload Risk
Question (AIME24-61):

Let ABC be a triangle inscribed in circle ω. Let the tangents to ω at B and C

intersect at point D, and let \overline{AD} intersect ω at P. If $AB=5$, $BC=9$, and

$AC=10$, AP can be written as the form $\frac{m}{n}$, where m and n are relatively prime

integers. Find $m + n$.

SRM Answers1:

……

Let me place triangle ABC in the coordinate plane. Let me assign coordinates to the points A, B, and C. Let

me assume point B is at (0,0), point C is at (9,0), since BC is 9 units. Then, point A is somewhere in the

plane such that AB = 5 and AC = 10.

Let’s set B at (0,0). Let’s set C at (9,0). Let’s let A be at (x,y). Then, the distance from A to B is 5, so

sqrt((x)^2 + (y)^2) = 5, so x^2 + y^2 = 25.

……

(1/3)^2 + y^2 = 25 => 1/9 + y^2 = 25 => y^2 = 25 - 1/9 = 225/9 - 1/9 = 224/9 => y = sqrt(224/9) =

(sqrt(224))/3 = (2*sqrt(56))/3 = (2*2*sqrt(14))/3 = 4*sqrt(14)/3.

So, coordinates of A are (1/3, 4√14/3).

……

Thus, the equation of circle ω is:

x^2 + y^2 - 9x - (33√14/28)y = 0.

……

So, the tangent at C is 84x - 11√14 y - 756 = 0.

Now, we have the equations of the two tangents:

Tangent at B: 84x + 11√14 y = 0.

Tangent at C: 84x - 11√14 y - 756 = 0.

We can solve these two equations to find the coordinates of point D.

……

Therefore, power of D: DB^2 = DA * DP => (225/22)^2 = (325/22) * DP.

So, solve for DP:

50625 /22 /325 = (50625 /22) * (1/325) = (50625 / (22*325)).

Simplify numerator and denominator:

50625 ÷25=2025, 22*325=7325.

So, 2025 /7325.

……

==

SRM Answers2:

……

AP = sqrt[(1100² + (1000√14)²)/507²] = sqrt[(1,210,000 + 1,400,000)/507²] = sqrt[(2,610,000)/507²] =

sqrt[2,610,000]/507.

……

Comment:

We observe a hallmark of cognitive overload risk: the SRM performs correctly over hundreds of reasoning

steps but fails at a single, critical computation late in the process—often due to arithmetic fatigue or

attention drift under long context. The two examples above illustrate this phenomenon starkly. In the first

case, after correctly deriving $DP = 50625 / (22 \times 325)$, the SRM attempts to simplify by dividing

both numerator and denominator by 25, but erroneously applies the division only to the numerator ($50625

\div 25 = 2025$), leaving the denominator unmodified. This inconsistent operation breaks the equality and

invalidates the result. In the second case, the model correctly sets up the expression for AP and is very

close to the final correct result, but during the final computation of $(1000\sqrt{14})^2$, it computes

$1,400,000$ instead of the correct $14,000,000$—a single-digit error (missing a zero) that nullifies

hundreds of prior correct steps. Both failures occur not from flawed logic, but from transient computational

lapses under cognitive strain. This supports our design of the Cognitive Offload Trigger, which monitors

confidence and irregularity in intermediate computations to proactively offload high-risk steps before such

errors occur.

Figure 9: Case study of Cognitive Overload Risk.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Recovery Inability Risk
Question (AIME24-61):

Let ABC be a triangle inscribed in circle ω. Let the tangents to ω at B and C

intersect at point D, and let \overline{AD} intersect ω at P. If $AB=5$, $BC=9$, and

$AC=10$, AP can be written as the form $\frac{m}{n}$, where m and n are relatively prime

integers. Find $m + n$.

SRM Answers:

……

Thus, AP= (1,292,735 /1,084,519)*(sqrt(68,324,697)/1188).

Wait, but that seems messy.

Wait, perhaps another approach. Since P lies on AD, and we have the coordinates of D, which is (7441/1188,

481 sqrt(14)/594), and P is beyond D, so P is a scalar multiple of AD beyond D.

Thus, vector AD is D - A= (7441/1188, 481 sqrt(14)/594).

Thus, P= D + k*(D - A), where k>0.

But perhaps this is not helpful.

Alternatively, since we have the coordinates of P as:

x= (1,292,735 /1,084,519)*(7441/1188)= (1,292,735 *7441)/(1,084,519 *1188).

Similarly, y= (1,292,735 /1,084,519)*(481 sqrt(14)/594)= (1,292,735 *481 sqrt(14))/(1,084,519 *594).

But this seems too cumbersome. Maybe we can find the ratio t=1,292,735 /1,084,519.

But 1,292,735 ÷5=258,547.

1,084,519 ÷5=216,903.8, which is not integer. So, maybe t is already in simplest terms.

Alternatively, maybe we can rationalize AP.

But perhaps it's better to recall that AP= t*AD.

……

But we need AP in exact terms.

Alternatively, perhaps we can find AP as the length from A to P, which is beyond D on AD.

But without knowing the exact coordinates, it's difficult.

Alternatively, perhaps we can use power of a point.

Wait, another idea: since A is on the circumcircle, and AD is a secant. So, power of A with respect to ω is

zero, as A is on ω.

But perhaps using power of point P with respect to ω.

Power of P: PA * PD = PB * PC.

But since P is on AD, which is a secant, and also, P is on the circumcircle ω.

Wait, no, P is on ω, so PA * PD=0, but that doesn't help.

Alternatively, since P is the intersection of AD with ω, and D is the other intersection point, so PA * PD=

power of A with respect to ω, but A is on ω, so power is zero, which again PA * PD=0, which only tells us

that either PA=0 or PD=0, which isn't helpful.

Wait, perhaps it's better to consider triangle ABD and power of point.

Wait, point P lies on AD and on ω. So, PA * PD= power of A with respect to ω. But since A is on ω, power

is zero, so PA * PD=0. So, either PA=0 or PD=0, which is trivial.

So, that approach doesn't help.

Alternatively, since A is on ω, and AD is a secant through D, then power of D with respect to ω is equal to

DA * DP= DB * DC.

Wait, yes, that's the power of a point theorem.

……

Comment:

A key strength of advanced reasoning models is their ability to self-reflect, backtrack, and recover from

incorrect paths—often through iterative hypothesis testing and strategic redirection. However, we observe

that SRMs frequently lack this recovery capability, leading to what we term Recovery Inability Risk. As

shown in the example, after hitting a reasoning bottleneck, the SRM begins to generate repetitive, indecisive

patterns marked by phrases like“Alternatively,”“perhaps,” and“Wait”, indicating uncertainty and failed

hypothesis generation. Rather than backtracking to a valid state or switching to a fundamentally different

strategy, the model loops in a state of semantic hesitation, unable to escape the flawed trajectory. In contrast,

LRMs typically detect such stagnation and invoke insights to break the deadlock. This fundamental

disparity motivates the Intervention Request Trigger in TrigReason, which identifies linguistic and structural

markers of stagnation and requests timely LRM intervention to reset and redirect the reasoning process.

Figure 10: Case study of Recovery Inability Risk.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C OVERCONFIDENCE AS A SIGN OF COGNITIVE OVERLOAD

We analyze 160 reasoning trajectories from SRMs across 10 problems where SRMs and LRMs ex-
hibit significant performance gaps. In this analysis, we identify 93 trajectories containing clearly
incorrect reasoning steps. A striking pattern emerges: these erroneous steps frequently exhibit over-
confidence. To quantify this, we compute the proportion of low-perplexity tokens (defined as tokens
with per-token perplexity < 1.05) within each reasoning step. Among the 93 trajectories with iden-
tifiable errors, 88 (94.6%) contain steps where over 85% of tokens are low-perplexity. In contrast,
only 38.1% of all reasoning steps in the full set exceed this threshold.

This stark discrepancy suggests that high confidence in SRM outputs is not indicative of correct or
deep reasoning, but rather reflects a tendency to fall back on memorized patterns from training data.
We present representative examples in Table 1 and Table 2, where seemingly confident steps lead to
incorrect conclusions despite low token-level perplexity.

We interpret this overconfidence as a symptom of cognitive overload: when faced with challeng-
ing reasoning junctures, the SRM fails to engage in exploratory or reflective thinking and instead
generates superficially fluent but semantically shallow continuations, effectively giving up by de-
faulting to familiar sequences. This behavior motivates our design of the Cognitive Offload Trigger
in TrigReason, which detects such states and delegates to a more capable model before critical errors
occur.

Table 1: Example of incorrect reasoning steps with corresponding perplexity ratios (ppl ratio).

Reasoning Step ppl ratio
AP = sqrt[(1100² + (100014)²)/507²] = sqrt[(1,210,000 + 1,400,000)/507²] =
sqrt[(2,610,000)/507²] = sqrt[2,610,000]/507. 0.955

b2

1 +m2
· 1

120
= 1

So:
b2 = 120(1 +m2)

Therefore, b2 = 120(1 +m2) and a2 = 120(1+m2)
6−5m2 .

0.916

Simplify numerator and denominator:
50625÷25=2025, 22*325=7325.
So, 2025/7325.

0.931

Okay, so from n=1 to n=20, the losing positions (L) are:
2, 5, 6, 10, 11, 15, 16, 20. 0.872

Let me denote the diagonals as vectors d⃗1 and d⃗2, which are perpendicular. So, if the
rhombus is centered at the origin, then the vertices can be expressed as d⃗1

2 , d⃗2

2 , − d⃗1

2 ,

and − d⃗2

2 .

0.863

Finally, when her walking speed is s+ 1
2 = 3 km/h, the time taken is:

9

3
+ t = 3 + t

Since t = 4− 3 = 1 hour, the total time is:

3 + 1 = 4 hours

0.962

For the second scenario: - Walking speed: s+ 2 km/h - Total time: 2 hours and 24
minutes = 144 + 24 = 168 minutes - Time in the coffee shop: t minutes - Walking
time: 168− t minutes

0.960

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 2: Example of incorrect reasoning steps with corresponding perplexity ratios (ppl ratio).

Reasoning Step ppl ratio
Subtracting Equation 1 from Equation 2:

540

s+ 2
− 540

s
= 144− 240 = −96

540

(
1

s+ 2
− 1

s

)
= −96

540

(
−2

s(s+ 2)

)
= −96

1080

s(s+ 2)
= −96

0.974

V = (sqrt((a+ b− c)(a+ c− b)(b+ c− a)))/(6 ∗ sqrt(2)) 0.952

I can eliminate t and find the value of s:
9

s
− 9

s+ 2
= 1.6

Simplifying this, I get:
18

s(s+ 2)
= 1.6

Solving for s, I find:
s = 5 km/h

0.876

Finally, when walking at s+ 1
2 = 3 km/h, the time taken for the walk is:

9

3
= 3 hours = 180 minutes 0.935

n — Outcome (Winning or Losing for Alice) ——— 1 — Winning (Alice takes 1) 2
— Losing (Alice leaves Bob with 1) 3 — Winning (Alice takes 1, leaving 2 for Bob)
4 — Winning (Alice takes 4) 5 — Losing (Alice leaves Bob with 4 or 1) 6 — Losing
(Alice leaves Bob with 5 or 2) 7 — Winning (Alice leaves Bob with 6 or 3) 8 —
Winning (Alice leaves Bob with 7 or 4) 9 — Losing (Alice leaves Bob with 8 or 5)
10 — Losing (Alice leaves Bob with 9 or 6) 11 — Winning (Alice leaves Bob with
10 or 7) 12 — Winning (Alice leaves Bob with 11 or 8) 13 — Losing (Alice leaves
Bob with 12 or 9) 14 — Losing (Alice leaves Bob with 13 or 10) 15 — Winning
(Alice leaves Bob with 14 or 11) 16 — Winning (Alice leaves Bob with 15 or 12) 17
— Losing (Alice leaves Bob with 16 or 13) 18 — Losing (Alice leaves Bob with 17
or 14) 19 — Winning (Alice leaves Bob with 18 or 15) 20 — Winning (Alice leaves
Bob with 19 or 16) 21 — Losing (Alice leaves Bob with 20 or 17) 22 — Losing
(Alice leaves Bob with 21 or 18) 23 — Winning (Alice leaves Bob with 22 or 19) 24
— Winning (Alice leaves Bob with 23 or 20) 25 — Losing (Alice leaves Bob with
24 or 21) 26 — Losing (Alice leaves Bob with 25 or 22) 27 — Winning (Alice
leaves Bob with 26 or 23) 28 — Winning (Alice leaves Bob with 27 or 24) 29 —
Losing (Alice leaves Bob with 28 or 25) 30 — Losing (Alice leaves Bob with 29 or
26) 31 — Winning (Alice leaves Bob with 30 or 27) 32 — Winning (Alice leaves
Bob with 31 or 3

0.929

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D COMPLETE LIST OF HESITATION WORDS

To operationalize the linguistic markers of Recovery Inability Risk, we define a set of hesitation
words and phrases that indicate uncertainty, self-doubt, or backtracking in reasoning trajectories.
These patterns are used to detect when the SRM enters a state of semantic hesitation. We implement
a case-insensitive regular expression matcher to identify such expressions in generated text. The full
list of hesitation patterns is shown in Table 3.

Table 3: List of hesitation words and phrases.

Word/Phrase

wait hmm debatable
maybe perhaps could be
might be possibly on the other hand
alternatively another possibility or perhaps
actually now that I think about it I think I made a mistake
let me reconsider not sure I’m not entirely sure
this might be wrong I could be mistaken unless I’m wrong
thinking unsure confused

E THE MAIN ALGORITHM OF TRIGREASON

The main algorithm of TrigReason is shown in Algorithm 1.

Algorithm 1 TrigReason

Input: Question x, small reasoning model S, large reasoning model L, priming steps n, overload
threshold ρ, rectification steps m

1: Initialize: y ← [], rectify step← 0, t← 0
2: while not finished do
3: t← t+ 1
4: if t < n then ▷ Strategic Priming Trigger
5: yt ∼ pL(· | y<t, x)
6: else
7:

(
ySt ,finished, ppl ratiot

)
← GenerateStep(S, x, y<t)

8: if rectify step > 0 or ppl ratiot > ρ then ▷ Cognitive Offload or Recovery Trigger
9: yt ∼ pL(· | y<t, x)

10: if ppl ratiot <= ρ then
11: rectify step← rectify step− 1
12: end if
13: else
14: yt ← ySt ▷ Accept small model output
15: if Detect hesitation(yt, yt−1, yt−2)) then
16: rectify step← m ▷ Intervention Request Trigger fires
17: end if
18: end if
19: end if
20: Append yt to y
21: end while
22: return y
Output: Reasoning trajectory y, final answer

F PERFORMANCE UNDER VARYING TOKEN BUDGETS

We evaluate the effect of varying thinking token budgets (2K, 4K, 8K, 16K, 32K) on performance
using AIME24. As shown in Figure 11, TrigReason consistently outperforms the SRM-only baseline

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

across all settings and matches the performance of both LRM-only and SpecReason, demonstrating
its effectiveness and generalization under constrained reasoning resources.

2K 4K 8K 16K 32K
Token Budget

0

20

40

60

pa
ss

@
1

(%
)

SRM
SpecReason
TrigReason
LRM

Figure 11: Accuracy comparison
under different token budgets.

However, as the budget increases, TrigReason and SpecRea-
son exhibit a relative performance gap compared to LRM-
only reasoning. This suggests that while collaborative reason-
ing is highly efficient at lower budgets, it may introduce slight
suboptimality when targeting very peak accuracy in resource-
abundant settings.

G THEORETICAL CHARACTERIZATION
OF TRIGREASON RELIABILITY

G.1 SETUP

Let a reasoning trajectory consist of T steps, divided into:

• Routine steps (Trout): Low-complexity inferences, forming the majority of steps.
• Complex steps (Tcomp): High-risk steps involving multi-hop logic or ambiguity resolution.

We assume Tcomp ∼ Poisson(λ) with λ≪ T , so E[Tcomp] = λ and E[Trout] = T − λ.

The initial strategy determines the overall path quality, modeled by a random variable γ ∈ (0, 1],
drawn from a distribution ΓM depending on the model M used for strategy selection. We assume:

E[ΓLRM] > E[ΓSRM],

reflecting LRM’s superior strategic coherence.

Per-step success probabilities (before strategy γ scaling) are:

• Routine step, SRM: 1− ϵr (ϵr is small)
• Routine step, LRM: 1− δr (δr ≈ ϵr)
• Complex step, SRM: 1− ϵc (ϵc ≫ ϵr)
• Complex step, LRM: 1− δc (δc ≪ ϵc)

G.2 TRIGGER MECHANISM

TrigReason employs:

• Strategic Priming Trigger: Adopt the strategy of LRM γLRM in the initial steps.
• Cognitive Overload Trigger: Fires on complex steps with probability αcomp. Empirically,
αcomp is close to 1 (refer to. Appendix C).

• Intervention Request Trigger: We assume reflection is only invoked if the reasoning step
failed. Reflection succeeds with probability ρl (LRM) or ρs (SRM), with ρl > ρs. If
successful, the error is corrected and reasoning continues; otherwise, the trajectory fails.

G.3 PROPOSITION 1 (EXPECTED FINAL ERROR PROBABILITY OF TRIGREASON)

Under the above model, the expected final error probability of TrigReason is approximately:

P Trig
fail ≈(T − λ)

(
1− E[γLRM] + E[γLRM]ϵr

)
+ λ

[
αcomp(1− E[γLRM]δc) + (1− αcomp)(1− ρl)(1− E[γLRM]ϵc)

]
,

where γLRM ∼ ΓLRM is the path quality induced by LRM’s initial strategy.

Proof:

We use the approximation Psuccess ≈ exp
(
−
∑T

t=1(1− pt)
)

, so for small cumulative error, Pfail =

1− Psuccess ≈ E
[∑T

t=1(1− pt)
]
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Routine steps: Each uses SRM, so success probability is E[γLRM](1− ϵr). Expected error per step:
1 − E[γLRM](1 − ϵr) ≈ 1 − E[γLRM] + E[γLRM]ϵr. Total contribution: (T − λ)(1 − E[γLRM] +
E[γLRM]ϵr).

Complex steps:

• With probability αcomp: Trigger fires, LRM generates the step. Error: 1− E[γLRM]δc.

• With probability 1−αcomp: SRM generates the step. It fails with probability 1−E[γLRM]ϵc.
The next step triggers reflection, which succeeds with probability ρl, so the residual error
after failed reflection is (1 − ρl)(1 − E[γLRM]ϵc). The expected error contribution is (1 −
αcomp)(1− ρl)(1− E[γLRM]ϵc).

Total expected error from complex steps:

λ
[
αcomp(1− E[γSRM]δc) + (1− αcomp)(1− ρl)(1− E[γSRM]ϵc)

]
Summing both contributions yields the stated approximation.

G.4 PROPOSITION 2 (EXPECTED COST OF TRIGREASON)

Let cs and cl be the cost of SRM and LRM steps, respectively, with cs ≪ cl. The expected total cost
of TrigReason is:

CTrig = Tcs + (Tstra + λ)cl.

Proof:

All T steps are initially generated by SRM, incurring cost Tcs. LRM is invoked in three cases:

• For strategic priming steps: Tstra steps for adopting the strategy of LRM in the initial
steps.

• For triggered complex steps: αcomp · Tcomp, with expected count αcompλ.
• For reflection after errors: (1− αcomp) · Tcomp, with expected count (1− αcomp)λ.

The total expected number of LRM calls is Tstra + λ(αcomp + 1 − αcomp) = Tstra + λ. Each call
costs cl, so the additional cost is λcl. The total expected cost is therefore Tcs + (Tstra + λ)cl.

G.5 COMPARISON WITH LRM REASONING

Let P LRM
fail and CLRM denote the failure probability and cost when LRM performs all reasoning steps

and selects the initial strategy. Then:

P LRM
fail ≈ (T − λ)(1− E[γLRM] + E[γLRM]δr) + λ(1− E[γLRM]δc), CLRM = Tcl.

Since δc ≪ ϵc, the dominant error terms in P Trig
fail are suppressed by either high trigger recall (αcomp)

and strong reflection (ρl). Thus, P Trig
fail is close to P LRM

fail , differing only in higher-order terms from
routine steps.

However, because λ+ Tstra ≪ T and cs ≪ cl, we have:

CTrig = Tcs + (Tstra + λ)cl ≪ Tcl = CLRM.

Therefore, TrigReason achieves near-LRM reliability at a fraction of the computational cost, demon-
strating the effectiveness of its targeted intervention design.

G.6 COMPARISON WITH SRM REASONING

Let P SRM
fail and CSRM denote the failure probability and cost when only the SRM is used for all steps,

without any intervention. Then:

P SRM
fail ≈ (T − λ)

(
1− E[γSRM] + E[γSRM]ϵr

)
+ λ(1− E[γSRM]ϵc), CSRM = Tcs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Compared to TrigReason, its failure probability is significantly higher due to E[ΓLRM] > E[ΓSRM],
δc ≪ ϵc and ρl > ρs. Thus, we have:

P Trig
fail ≪ P SRM

fail .

This demonstrates that TrigReason achieves a dramatic reliability improvement over SRM, by intel-
ligently allocating LRM resources to high-risk steps.

H THE USE OF LARGE LANGUAGE MODELS

In this work, large language models are used exclusively to assist with language editing and clarifica-
tion during the writing of this paper. All technical ideas, method design, analysis, and experimental
work are conducted by human authors.

21

	Introduction
	Motivation
	Unreliability of LRM Judgment
	Inefficiency of Polling-based Execution

	method
	Characterization of SRM Reasoning Risks
	Event-triggered LRM intervention
	Strategic Priming Trigger
	Cognitive Offload Trigger
	Intervention Request Trigger

	Experiments
	Setup
	Main Results
	Evaluation in Edge-Cloud Collaboration
	Ablation Study

	Conclusion
	Detailed analysis of LRM Judgment
	Case Studies of Three Risk Patterns
	Overconfidence as a Sign of Cognitive Overload
	Complete List of hesitation words
	The Main Algorithm of TrigReason
	Performance under Varying Token Budgets
	Theoretical Characterization of TrigReason Reliability
	Setup
	Trigger Mechanism
	Proposition 1 (Expected Final Error Probability of TrigReason)
	Proposition 2 (Expected Cost of TrigReason)
	Comparison with LRM Reasoning
	Comparison with SRM Reasoning

	The Use of Large Language Models

