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Abstract001

Large Language Model (LLMs) can be used002
to write or modify documents, presenting a003
challenge for understanding the intent behind004
their use. For example, benign uses may in-005
volve using LLM on human-written document006
to improve its grammar or to translate it into an-007
other language. However, a document entirely008
produced by a LLM may be more likely used009
to spread misinformation than simple trans-010
lation (e.g., from use by malicious actors or011
simply by hallucinating). Prior works on Ma-012
chine Generated Text (MGT) detection task013
mostly focus on simply identifying a document014
has human or machine written, ignoring these015
more fine-grained uses. In this paper, we intro-016
duce a HiErarchical, length-RObust machine-017
influenced text detector (HERO), which learns018
to separate text samples of varying lengths from019
four primary types: human-written, machine-020
generated, machine polished, and machine-021
translated. HERO accomplishes this by com-022
bining predictions from length-specialist mod-023
els that have been trained with Subcategory024
Guidance. Specifically, for categories that are025
easily confused (e.g., the different source lan-026
guages), our Subcategory Guidance module en-027
courages separation of the fine-grained cate-028
gories, boosting performance. Extensive ex-029
periments across five LLMs and six domains030
demonstrate the benefits of our HERO ap-031
proach, where we outperform the state-of-the-032
art by 2.5-3 mAP on average.033

1 Introduction034

Fine-grained Machine Generated Text (FG-MGT)035

detection models aim to predict whether a docu-036

ment was human written, machine generated, or037

some combination thereof. Prior works have pri-038

marily focused on separating paraphrased or ma-039

chine polished text from human and/or completely040

machine generated text (Krishna et al., 2024; Li041

et al., 2024; Abassy et al., 2024), as these tend042

Figure 1: Illustration of how off-the-shelf machine gen-
erated text detectors (e.g., (Hans et al., 2024)) can iden-
tify many benign uses of language models like para-
phrasing/polishing human written text or translating
from another language, limiting their practical use.

to be benign uses of a language model. In con- 043

trast, machine generated text may hallucinate (Cao 044

et al., 2022; Parikh et al., 2020; Zhou et al., 2021; 045

Maynez et al., 2020; Shuster et al., 2021; Gou et al., 046

2023; Meng et al., 2022) and is more likely to con- 047

tain misinformation (Lin et al., 2022; Zellers et al., 048

2019), making them less trustworthy. However, 049

this approach ignores other benign use cases of 050

language models like machine translation, which 051

may also be flagged as machine generated by a 052

traditional MGT detector (shown in Fig. 1). 053

To address this issue, in this paper we introduce 054

HiErarchical, length-RObust machine-influenced 055

text detector (HERO), an approach for FG-MGT 056

that provides more fine-grained labels to better un- 057

derstand the authorship behind a document. Specif- 058

ically, as illustrated in Fig. 2, we expand the set 059

of possible authorship categories to not only in- 060

clude machine translated text, but also the source 061

language from which it is translated from. How- 062

ever, separating similar categories of machine- 063

influenced (i.e., translated or polished) text is chal- 064

lenging. For example, translating documents on the 065

same topic from different languages into English 066

should result in similar originally human-written 067
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OpenAI said on Tuesday that it had 
begun training a new flagship artificial 
intelligence model that would 
succeed the GPT-4 technology t…

OpenAI expects the upcoming model 
to offer significantly enhanced….
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Figure 2: Illustration of Fine-grained Machine Gener-
ated Text Detection (FG-MGT). The goal of FG-MGT
is to identify different types of generated text to provide
some insight into potential intent behind the use of a
language model. In this paper, we extend the study of
Abassy et al. (2024) to include machine translated text.

articles. As we will show, this is further exacer-068

bated when documents created by out-of-domain069

language models (those not available during train-070

ing) are seen during test time.071

A straightforward approach to solve our FG-072

MGT problem would be to use a coarse-to-fine073

approach (e.g., (Xu et al., 2023; Yuan et al., 2023;074

Amit et al., 2004)), where we train a model to pre-075

dict the general categories, and then refine them076

using specialized models. However, this approach077

has two drawbacks. First, it can increase inference078

time as both coarse and fine models must be used079

for each input document. Second, it introduces a080

tradeoff between coarse and fine model predictions081

that may be challenging to define for strong dis-082

tribution shifts at test time (e.g., documents from083

out-of-domain language models). Thus, as we will084

show, this type of naive adaption results in worst085

performance in practice. Instead, we introduce086

Subcategory Guidance modules, where we train a087

model using a shared backbone and expert classi-088

fiers to learn a representation that can better distin-089

guish between fine-grained categories. However,090

unlike traditional coarse-to-fine methods, we do not091

use these fine-grained modules at test time, avoid-092

ing the issues introduced by the naive approach.093

Another challenge faced in FG-MGT is the vari-094

ability of input text lengths, where smaller docu-095

ments prove more challenging to detect. While096

this challenge is shared with the traditional MGT097

task (Hans et al., 2024; Mitchell et al., 2023; Verma098

et al., 2024; Guo et al., 2023; Zhang et al., 2024;099

Gehrmann et al., 2019; Su et al., 2023; Tian and100

Cui, 2023), the introduction of fine-grained cate-101

gories amplifies the issue in our setting. Inspired102

by work in bias mitigation (Wang et al., 2020), 103

we train a set of expert classifiers, each special- 104

ized towards a specific text length. Following prior 105

work (Wang et al., 2020), we use all classifiers at 106

test time regardless of input document length. 107

Our contributions are summarized as follows: 108

• We introduce HERO, a robust FG-MGT detec- 109

tion model combines categories into a hierarchy 110

to focus the model to discriminate between fine- 111

grained categories, outperforming the state-of- 112

the-art by 2.5-3 mAP on average. 113

• We show Subcategory Guidance modules pro- 114

vide an effective approach for separating similar 115

categories without incurring test-time resource 116

costs suffered by related work. 117

• We conduct an in-depth analysis on FG-MGT 118

using HERO to identify potential manipulation 119

and misinformation in text content to ensure the 120

safe deployment of LLMs. 121

• We present the full data preprocessing pipeline 122

to prepare various manipulated texts, and we will 123

release all data to promote future work in FG- 124

MGT detection. 125

2 Related Work 126

Most prior work in detecting Machine Generated 127

Text (MGT) treat this task as a binary classifica- 128

tion problem (Solaiman et al., 2019; Guo et al., 129

2023; Tian et al., 2024; Mitchell et al., 2023; Hans 130

et al., 2024), i.e., detecting whether the input text 131

is human-written or machine-generated. These in- 132

clude Metric-based methods (Mitchell et al., 2023; 133

Su et al., 2023; Bao et al., 2024; Hans et al., 2024; 134

Miralles-González et al., 2025), which extract dis- 135

tinguishable features from the text using the target 136

language models. E.g., Solaiman et al. (2019) ap- 137

ply log probability, Gehrmann et al. (2019) use 138

the absolute rank of each token, and Verma et al. 139

(2024) searches over a language model’s feature 140

space. Many of these methods (e.g., (Mitchell et al., 141

2023; Su et al., 2023; Bao et al., 2024), rely on an 142

observation that small changes generated text typi- 143

cally lower its log probability under the language 144

model, a pattern not seen in human-written text. 145

Thus, these methods inject perturbations to the in- 146

put text. However, these models are only defined 147

for the binary classification, and it is unclear if 148

they can be extended to out setting as we need to 149

separate many types of machine influenced text. 150

Model-based detectors (Solaiman et al., 2019; 151

Guo et al., 2023; Bhattacharjee et al., 2023; Tian 152
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Figure 3: An illustration of HERO framework. Each
input is processed by a specialized expert detector based
on its token length. In addition to the standard cross-
entropy loss, we introduce generated subcategory guid-
ance to machine-generated and machine-humanized text,
while translated subcategory guidance is used for trans-
lated text. See Sec. 3 for discussion.

et al., 2024; Zhang et al., 2024) train classifiers153

on annotated corpora to directly classify input154

text, making them effective for detecting text gen-155

erated by black-box or unknown models. E.g.,156

Solaiman et al. (2019) finetuned the RoBERTa157

model (Liu et al., 2019) using outputs from the158

GPT series. Guo et al. (2023) developed a method159

to identify ChatGPT-generated text with the HC160

dataset (Guo et al., 2023). Tian et al. (2024)161

trained a detector on different scales of text, en-162

hancing the detector’s performance on shorter texts.163

Recently, some studies (Krishna et al., 2024; Li164

et al., 2024; Nguyen-Son et al., 2021) have rec-165

ognized the importance of detecting other cate-166

gories of MGT, including machine-paraphrased167

and machine-translated text. For example, Krishna168

et al. (2024) enhanced machine-paraphrased text169

detection using retrieval methods, and Li et al.170

(2024) identified paraphrased sentences through171

the content information in articles. Nguyen-Son172

et al. (2021) applied round-trip translation to detect173

Google-translated text. Macko et al. (2023); Mao174

et al. (2025) explored detecting generated text in175

non-English languages, but not machine translated176

text. Abassy et al. (2024) explored a fine-grained177

reason task similar to our ours, but did not consider178

the effect of machine translated text. The high sim-179

ilarity between the sub-categories can also reduce180

the generalization of such an approach to detect181

other types of manipulations.182

3 Expanding Fine-grained Machine183

Generated Text Detection184

Given an article xi ∈ X , fine-grained machine-185

generated text (FG-MGT) detection aims to sep-186

arate samples into a set of categories yi ∈ 187

{0, 1, . . . ,K} where yi = 0 corresponds to human- 188

written text, and yi = k where k ∈ {1, . . . ,K} 189

corresponds to one of K distinct categories of 190

machine-influenced text. Prior work on FG-MGT 191

explored up to four categories: human written, ma- 192

chine generated, humanized machine generated, 193

and paraphrased/polished human written text (Kr- 194

ishna et al., 2024; Li et al., 2024; Abassy et al., 195

2024). However, this ignores translated text, an- 196

other form of machine-influenced generation with 197

often benign use, but, as shown in Fig. 1, may be 198

detected as LLM generated. Thus, to provide ad- 199

ditional insight for users of FG-MGT models, we 200

add a new category based on the source language 201

a document was translated from. However, as we 202

will show, we find that separating these types of 203

similar generation types is challenging, especially 204

on out-of-domain generators used at test time. 205

To address our FG-MGT task, we introduce Hi- 206

Erarchical, length-RObust machine-influenced text 207

detector (HERO), which makes two improvements 208

to FG-MGT detectors we describe below. First, 209

Sec. 3.1.1 describes our Subcategory Guidance 210

modules, which help construct a feature representa- 211

tion that can more easily separate similar categories. 212

Second, Sec. 3.1.2 discusses our length-expert ap- 213

proach to improving support for varying document 214

lengths. Sec. 3.2 discusses our data generation pro- 215

cess that we use to train and evaluate our FG-MGT 216

detectors. 217

3.1 Our HERO Approach 218

As discussed earlier, our objective is to create a 219

FG-MGT model that is capable of identifying not 220

only whether a text is machine-generated but also 221

the specific type of the machine influence. While 222

our approach is designed to generalize across a 223

wide range of authorship types and languages, in 224

this paper we focus on predicting likelihoods over 225

eight categories for English articles: human writ- 226

ten, machine generated, paraphrased, humanized, 227

translated (Chinese), translated (Russian), trans- 228

lated (Spanish), and translated (French) as defined 229

at the beginning of Sec. 3. Our HERO model begins 230

by taking our input document x passes it through 231

a shared feature encoder g. To learn to identify 232

our categories above, we use cross entropy LCE , 233

whose classifier uses the input from g(x) and esti- 234

mates the likelihood that sample x was produced 235

by one of the FG-MGT categories. 236

A simple approach would be to simply change 237
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an MGT detector (e.g., (Hans et al., 2024; Mitchell238

et al., 2023; Verma et al., 2024; Guo et al., 2023;239

Zhang et al., 2024; Gehrmann et al., 2019; Su et al.,240

2023; Tian and Cui, 2023)) to produce a multi-class241

outputs. However, we found these models strug-242

gle to distinguish between similar generation types,243

especially when evaluated on out-of-distribution244

language models. Thus, we introduce a Subcat-245

egory Guidance module, which we will discuss246

further in the next section.247

3.1.1 Fine-grained Text Classification via248

Subcategory Guidance249

One common strategy for learning to discriminate250

between fine-grained categories is to build a coarse-251

to-fine hierarchy (Xu et al., 2023; Yuan et al., 2023;252

Amit et al., 2004), where categories become more253

similar as you traverse down the hierarchy. How-254

ever, these methods are often deployed within a255

single domain, i.e., the distribution of the data see256

during training is similar to that seen at test time.257

This is due, in part, to the fact that these methods258

require careful tuning to balance the predictions259

of the hierarchy of classifiers being deployed. I.e.,260

they require careful calibration between the coarse261

and fine-grained classifiers to boost performance.262

In FG-MGT, this would put a significant limitation263

on our detectors, as it would effectively mean that264

we can only deploy them on text domains it has265

seen before and for language models that it has266

seen during training.267

Instead, we introduce a Subcategory Guidance268

module to help direct feature learning during train-269

ing, which is discarded at test time. We group270

together semantically similar categories that spe-271

cialize in separating samples in each group. Specif-272

ically, we create one module for each of the273

four translated categories as well as for machine-274

generated and humanized text. Although the ma-275

chine generated and humanized text are both en-276

tirely generated, the fact that a user decided to277

query a language model to make the text appear278

more human suggests they might be trying to ob-279

fuscate a detector, providing some potential intent280

information. Similarly, knowing the language a281

document was translated from can provide clues as282

to where a document first appeared. Our Subcat-283

egory Guidance models aim to help our detector284

better discriminate between these categories.285

Unlike the coarse-to-fine methods discussed ear-286

lier, these modules are discarded at test time. Thus,287

they do not affect computational resources at test288

time or require complicated calibration procedures 289

that do not generalize well to out-of-domain sam- 290

ples. Instead, they boost performance by guiding 291

the formation of the shared feature space produced 292

by the shared encoder g during training. Each Sub- 293

category Guidance module takes as input samples 294

that stem only from the categories of their type. 295

For example, the Translated Subcategory Guidance 296

only takes features from documents from the four 297

translated categories as input. Then it trains a classi- 298

fier using cross entropy to separate documents into 299

their fine-grained categories. During training, gra- 300

dients from these Subcategory Modules are passed 301

backwards into the shared encoder to help instruct 302

the model how to represent these categories, but all 303

predictions at test time are produced only using the 304

classifier trained using the class loss. 305

Our final objective consists of a tradeoff func- 306

tion balancing the task loss with our Subcategory 307

Modules, which we define as LGH and LTrans for 308

the generated/humanized and translated categories, 309

respectively. Formally, our total loss is: 310

LTotal = LCE + λ(LGH + LTrans), (1) 311

where λ is a tunable hyper-parameter. 312

3.1.2 Improving Support to Varying 313

Document Lengths 314

Prior work has shown that short documents, which 315

inherently have little information about author- 316

ship, are challenging to identify a machine gen- 317

erated (Zhang et al., 2024). Solaiman et al. (2019) 318

found they could improve a detector’s robustness to 319

varying document lengths by randomly cropping ar- 320

ticles during training. However, a detector for short 321

length article has to naturally be more sensitive to 322

distribution changes given the limited information 323

than it does for a longer article. Training a single 324

model to adjust for both the sensitivity as well as 325

make fine-grained distinctions is challenging. In- 326

stead, we leverage a set of experts, each of which 327

specializes in documents up to a set length. 328

Formally, given an input text x, we train a set 329

a set of M expert classifiers {f1, . . . , fM}, each 330

trained with a specific maximum token length and 331

associated parameters Wm. Each expert is trained 332

using Subcategory Guidance from Sec. 3.1.1. How- 333

ever, empirically we find that including some infor- 334

mation from documents of lengths other than the 335

ons targeted by an expert can help improve perfor- 336

mance (e.g., seeing some 256 token length docu- 337

ments can boost performance for a 512-length ex- 338
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pert). Thus, we introduced length cropping, where339

with pcrop, documents of other lengths are included340

during training to improve the model’s robustness.341

Given a document at test time we can simply use342

the expert of the closest length. If a document is343

between experts, we use the larger one. However,344

some prior work in bias mitigation has shown that345

averaging experts even over settings they do not346

specialize in can boost performance (Wang et al.,347

2020). In effect, when compute is available, these348

experts can form a type of ensemble. Thus, in349

our experiments we evaluate these experts as an350

ensemble in addition to using them individually.351

3.2 Data Preparation: Article Generation352

To evaluate our FG-MGT task, we generate articles353

for a range of domains and language models to354

ensure they generalize across many settings.355

3.2.1 Source Datasets356

GoodNews provides URLs of New York Times357

articles from 2010 to 2018. After filtering out bro-358

ken links and non-English articles, we randomly359

selected 1,600 articles for training, with 400 ar-360

ticles for validation. The remaining datasets are361

used only for evaluation, ensuring that our models362

generalize to new domains.363

VisualNews has articles from four media sources:364

Guardian, BBC, USA Today, and Washington Post.365

We randomly selected 2,000 articles for evaluation.366

WikiText (Stephen et al., 2017) collected 600367

training, 60 validation, and 60 test articles from368

Wikipedia. We evaluate with the test set.369

3.2.2 Generation Process370

LLM-generated articles can either be directly pro-371

duced from basic prompts or be paraphrased or372

translated based on human-written content. To pre-373

pare such data with diverse manipulation types,374

we generate different MGT categories using article375

datasets. For the machine-generated category, we376

provide only the title as the prompt to LLMs, for377

example: “Write an article on the following title,378

ensuring that the article consists of approximately379

z sentences," where z represents the number of380

sentences in the original article. This ensures that381

articles of different categories are of similar length,382

preventing the detector from using length as a clas-383

sification feature.384

For machine-paraphrased and machine-385

translated articles, we input the entire386

human-written article with the prompt: "Para-387

phrase/Translate the following article: x." For 388

the machine-humanized articles, we input the 389

machine-generated text article along with the 390

prompt: “Rewrite this text to make it sound more 391

natural and human-written.” We provide a specific 392

example in the appendix. The language models 393

used include Llama-3 (Touvron et al., 2023), 394

Qwen-1.5 (Bai et al., 2023), StableLM-2 (Bella- 395

gente et al., 2024), ChatGLM-3 (Du et al., 2022), 396

and Qwen-2.5 (Yang et al., 2024). Llama-3 is 397

the in-domain generator used for fine-tuning the 398

detector, and StableLM-2, ChatGLM-3, Qwen-1.5, 399

and Qwen-2.5 are out-of-domain generators to 400

evaluate the model’s generalization ability. 401

To prevent the model from leaking information 402

about the article’s category (e.g., Llama-3 often 403

responds with "Here is the polished version:"), we 404

use the text starting from the second sentence as 405

input to the detector. 406

4 Experiments 407

Implementation Details. Our model uses a Dis- 408

tilBERT (Sanh et al., 2020) model as our baseline 409

encoder. During training of all baseline methods 410

(including our own), the maximum token length of 411

the input text is set to 512. We used the same maxi- 412

mum length to evaluate the model’s performance 413

during the test stage except where noted. For train- 414

ing, we used the Adam optimizer with a maximum 415

learning rate of 10−5. We fine-tuned the model 416

for three epochs with an early stopping strategy, 417

following Zhang et al. (2024); Verma et al. (2024) 418

to prevent overfitting. All models are trained using 419

GoodNews (Biten et al., 2019). Our experiments 420

were conducted on a single GPU (e.g., A40, L40S). 421

For a single dataset (e.g., GoodNews), data prepa- 422

ration takes approximately 60 hours, and training 423

takes around 1 hour. We will also release our code 424

upon acceptance to ensure reproducibility. 425

Metrics. We employ mean Average Precision 426

(mAP) to evaluate performance on articles sampled 427

from specific LLMs. The detector’s overall perfor- 428

mance is assessed by averaging mAP across various 429

LLMs (avg mAP). To illustrate the method’s effec- 430

tiveness on various fine-grained MGT categories, 431

we utilize confusion matrices in the appendix. 432

4.1 Baselines 433

OpenAI-D (Solaiman et al., 2019) is a detector 434

trained on outputs from GPT-2 (Radford et al., 435

2019) series. OpenAI provides two versions: 436
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In-domain LLMs Out-of-domain LLMs

Model Llama3 Qwen1.5 StableLM2 ChatGLM3 Qwen2.5 avg mAP
Scale -8B -7B -12B -6B -7B

mAP on VisualNews (Liu et al., 2021)

OpenAI-D (base) (2019) 89.78 68.64 89.63 67.26 69.08 76.88
OpenAI-D (large) (2019) 94.84 62.19 92.68 76.19 74.89 80.16
ChatGPT-D (2023) 69.23 62.13 73.80 64.19 60.13 65.90
LLM-DetectAIve (2024) 92.34 66.48 79.25 73.62 63.77 75.09
DistilBERT (2020) 96.84 69.07 91.15 76.43 73.41 81.38
HERO (ours) 97.32 84.79 73.23 82.79 84.38 84.50

mAP on WikiText (Stephen et al., 2017)

OpenAI-D (base) (2019) 80.77 71.06 66.49 59.13 85.02 72.50
OpenAI-D (large) (2019) 77.76 69.69 71.25 71.19 88.53 75.69
ChatGPT-D (2023) 71.26 71.31 64.24 64.83 72.72 68.87
LLM-DetectAIve (2024) 66.65 69.98 64.72 67.02 81.39 69.95
Distilbert (2020) 79.45 76.97 75.36 71.44 89.45 78.53
HERO (ours) 88.50 80.33 75.30 72.63 88.47 81.05

Table 1: Zero-shot Fine-grained MGT Detection on Visualnews and Wikitext. We report mean average precision
computed over all eight fine-grained categories. to provide a summary statistic, the last column averages performance
over the columns. We demonstrate that HERO boosts performance by 2.5-3 points over the state-of-the-art. See
Sec. 4.2 for detailed discussion.

RoBERTa-base and RoBERTa-large. With fine-437

tuning and early stopping, OpenAI-D can also be438

used to detect text generated by other LLMs.439

ChatGPT-D (Guo et al., 2023) is designed to iden-440

tify text produced by ChatGPT-3.5 (Ouyang et al.,441

2022). It is trained using the HC3 (Guo et al., 2023)442

dataset, which includes 40,000 questions along443

with both human-written and ChatGPT-generated444

answers, before finetuning on our task.445

LLM-DetectAIve (Abassy et al., 2024) distin-446

guishes between machine-generated, machine-447

paraphrased, and human-written text by fine-tuning448

RoBERTa (Liu et al., 2019) and DeBERTa (He449

et al., 2021) models. We apply the DeBERTa back-450

bone of LLM-DetectAIve in our experiments.451

DistilBERT (Sanh et al., 2020) is a distilled version452

of BERT (Devlin et al., 2019). Since the model453

is pre-trained using knowledge distillation, it is454

smaller and faster at inference time.455

4.2 Results456

Tab. 1 compares the performance of our HERO457

approach to prior work. Notably, our methods458

achieves a 2.5-3 average mAP gain over the state-459

of-the-art, including 9.5-11 point gain over LLM-460

DetectAIve (Abassy et al., 2024) whose task set-461

ting most closely matched our paper from those462

explored in prior work. Generally speaking, HERO 463

helps most on out-of-distribution samples. For 464

example, VisualNews more closely aligns to the 465

GoodNews dataset we trained on, but our relative 466

gains are higher on average on WikiText. 467

Tab. 2 reports performance on various input 468

document lengths using our FG-MGT detectors. 469

Across all token length settings, performance gen- 470

erally improves with longer token lengths with the 471

best results consistently observed at 500 and 512 472

tokens. Compared to DistilBERT (2020), both the 473

individual length specialist and HERO demonstrate 474

improved performance. The Length Specialist ap- 475

proach shows especially strong performance on 476

short lengths, with the single specialists outper- 477

forming the ensemble, validating that such docu- 478

ments require special care. 479

4.3 HERO Model Analysis 480

Tab. 3 provides a study of ablations of our model 481

to better understand the contribution of each com- 482

ponent. We see Subcategory Guidance provides a 483

2 point gain over the baseline DistilBERT (Sanh 484

et al., 2020) model. We also provide a comparison 485

to a naive coarse-to-fine approach that first tries 486

to predict if an input document is human written, 487

machine generated, paraphrased, or translated. If 488
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Llam Qwen StableL ChatGL Qwen avg
a3-8B 1.5-7B M2-12B M3-6B 2.5-7B mAP

(a) DistilBERT (2020)
L=32 70.21 60.12 43.69 57.73 63.72 59.09
L=50 73.48 64.49 46.77 61.77 66.73 62.65
L=128 80.13 69.12 52.51 69.10 73.45 68.86
L=256 82.95 69.88 52.78 71.13 76.51 70.65
L=500 97.81 76.17 73.53 84.21 80.19 82.38
L=512 97.89 76.96 73.56 84.49 80.02 82.58

(b) HERO (ours) - Single Length Specialist Only
L=32 76.74 68.78 48.64 60.46 67.05 64.33
L=50 81.75 73.12 52.80 65.12 71.07 68.77
L=128 89.23 79.81 78.04 73.09 58.64 75.76
L=256 92.06 82.72 82.38 77.23 60.82 79.04
L=500 96.98 77.63 72.74 81.26 80.13 81.75
L=512 97.05 77.85 80.21 81.42 72.81 81.87

(c) HERO (ours) - All Length Specialists
L=32 76.45 67.90 47.36 60.36 67.45 63.90
L=50 81.73 73.03 52.33 65.18 71.57 68.77
L=128 89.90 80.55 59.52 73.76 79.43 76.63
L=256 91.18 82.22 60.14 75.27 82.04 78.17
L=500 97.28 84.82 73.19 82.73 84.35 84.48
L=512 97.32 84.79 73.23 82.79 84.38 84.50

Table 2: Comparison of mAP scores on Visual-
News (Liu et al., 2021) across different input lengths for
DistilBERT (2020) and HERO. HERO consistently out-
performs DistilBERT across all lengths and generators.
For length-specialist models, we use the expert closest
in length, defaulting to the longer one when in between.

it is machine generated or translated, we use a sep-489

arate detector to separate it into the subcategories.490

Comparing the 2nd and 3rd row of Tab. 3, we see491

the naive approach underperforms our Subcategory492

Guidance approach by 16 points, highlighting the493

challenges of generalizing beyond the training do-494

main in our task. We also show that Length Crop-495

ping and our expert models from Sec. 3.1.2 both496

individually boost performance, but when we com-497

bine all components we see the best performance.498

Fig. 4 shows the effect of training on different499

combinations of languages. From left to right, we500

see an increasing number of languages being used,501

which we also see that training on one or two lan-502

guages generally performs worse on three or more.503

As we increase the number of languages beyond504

2 we start to see some saturation, where there are505

smaller differences between models, suggesting506

that a very large number of languages may not be507

Figure 4: Effect of multilingual training on average
mAP across different language combinations evaluated
on VisualNews (Liu et al., 2021). Models are evaluated
on all languages, with each language treated as a distinct
class. Models trained on multiple languages generally
outperform those trained on a single language, with the
highest average mAP observed when training on all four
languages.

necessary to able to recognize a document as origi- 508

nating from another language. 509

Fig. 5 ablates the number and size of experts 510

to train. We find that three experts generally pro- 511

vide enough coverage to perform well on a diverse 512

set of lengths. That said, the number of experts 513

likely would vary depending on the maximum in- 514

put sequence a model can support. However, very 515

long documents are easier to detect as machine 516

generated (see Tab. 2), so support for very long 517

sequences may not be necessary as a model may 518

be able to effectively detect a language model was 519

used on just part of a document. 520

Fig. 6 shows the effect of changing the loss 521

weight λ from Eq. 1. The same value of λ performs 522

best for both, reducing the number of hyperparam- 523

eters that need to be tuned for our model. 524

Is HERO still effective if subcategory informa- 525

tion is not required? Tab. 4 we evaluate a setting 526

where the goal is only to predict one of four cat- 527

egories: human written, machine generated, ma- 528

chine paraphrased, and translated (effectively elim- 529

inating the subcategories). We compare a Dis- 530

tilBERT trained to predict these four categories 531

with HERO, where we take the highest subcate- 532

gory score to represent our confidence in that cate- 533

gory. We see that HERO still obtains an almost 2 534

mAP gain on average, demonstrating the benefits 535

of leveraging subcategory information even if the 536

fine-grained category predictions are not necessary. 537
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In-domain LLMs Out-of-domain LLMs

Model Llama3 Qwen1.5 StableLM2 ChatGLM3 Qwen2.5 avg mAP
Scale -8B -7B -12B -6B -7B

DistilBERT (2020) 96.84 69.07 91.15 76.43 73.41 81.38
+Naive Coarse-to-Fine 80.89 64.68 66.46 65.80 58.95 67.36
+Subcategory Guidance 97.72 80.24 74.30 83.09 80.79 83.23
+Length Cropping (2019) 96.84 78.99 73.92 82.76 80.41 82.58
+Length Specialists 97.89 76.96 80.02 84.49 73.56 82.58

HERO (ours) 97.32 84.79 73.23 82.79 84.38 84.50

Table 3: Ablation Study on Visualnews (Liu et al., 2021). Each component contributes to model performance.
Additionally, our Subcategory Guidance outperforms alternatives like a Naive Coarse-to-Fine approach.

Model Llama3 Qwen1.5 StableLM2 ChatGLM3 Qwen2.5 avg mAP
Scale -8B -7B -12B -6B -7B

DistilBERT (2020) 96.93 87.40 92.19 88.72 90.47 91.14
HERO (Ours) 97.53 90.99 94.85 88.82 92.47 92.93

Table 4: Comparison of mAP scores on VisualNews (Liu et al., 2021) across different input lengths for Distil-
BERT (2020) and HERO on four categories: human-written, machine-generated, machine paraphrased, and machine
translated texts.

Figure 5: Average mAP across different token-length
specialist models evaluated on VisualNews (Liu et al.,
2021). Models trained with a single token length achieve
moderate performance, while combining specialists
across multiple token lengths significantly improves de-
tection accuracy. The highest average mAP is observed
when using specialists for 128, 256, and 512 tokens.

5 Conclusion538

In this paper, we conduct an in-depth study of539

fine-grained MGT detection, aiming to further540

distinguish between machine translated and ma-541

chine paraphrased texts from MGT. We introduced542

HERO, a fine-grained machine-influenced text de-543

tection framework that goes beyond the classical544

binary classification approach. Our hierarchical545

structure, combined with length-specialist models,546

Figure 6: Effect of GH (Generate-Humanized) and
Trans loss weights for guided learning on average mAP
performance evaluated on VisualNews (Liu et al., 2021).
The model achieves the highest mAP when both the GH
and Trans loss weights are set to 0.01.

enables strong generalization across diverse LLMs 547

and varying input lengths, making it suitable for 548

real-world applications. Our extensive experiments 549

across multiple LLMs and different datasets show 550

that HERO consistently outperforms the state-of- 551

the-art by 2.5-3 mAP, and does especially well 552

in out of domain settings. Overall, HERO enables 553

more accurate detection of machine-influenced con- 554

tent, which is essential for future works in discern- 555

ing between benign and malicious uses of LLMs. 556
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6 Limitations557

In this paper, we have investigated the FG-MGT558

task and our proposed HERO shows improved per-559

formance over existing detectors. Despite the im-560

proved performance, our method still has several561

limitations.562

While our proposed method improves perfor-563

mance for zero-shot evaluations, our approach does564

not guarantee 100% accuracy on other LLMs and565

datasets. Therefore, we strongly discourage the use566

of our approach without proper human supervision567

(e.g., for plagiarism detection or similar formal568

applications). A more appropriate application of569

HERO is to introduce human-supervision for more570

reliable detection against LLM-generated misinfor-571

mation.572

We also notice the performance difference be-573

tween in-domain LLM and out-of-domain LLMs.574

As shown in Sec. 4.2, the performance of HERO on575

out-of-domain generators (StableLM-2, ChatGLM-576

3, Qwen-2.5, Qwen-1.5) is still lower than that on577

in-domain generators (Llama-3). Therefore, out-of-578

domain evaluations remain a challenge for future579

research.580
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Appendix823

A Additional Results824

Confusion matrix. To provide a more intuitive un-825

derstanding of HERO, we provide the visualization826

Figure 7: Confusion Matrix for In-domain Generator.
HERO performs well in most categories, especially on
the machine-translated articles.

for HERO’s performance across different FG-MGT 827

categories on Visualnews using confusion matrices 828

as shown in Fig. 7 and 8. The results show that 829

HERO can accurately distinguish translated text 830

from different source languages, even when evalu- 831

ated on out-of-domain LLMs. However, the model 832

continues to struggle with distinguishing between 833

generated and humanized content. This challenge 834

may stem from the fact that both types are produced 835

by LLMs using human written input, resulting in 836

similar surface-level characteristics. 837

B Round-trip Translation Strategy 838

To create translated versions of the same docu- 839

ments, we adopt the strategy of round-trip transla- 840

tion to generate translated data for FG-MGT task. 841

Fig. 9 provides a specific example: we first trans- 842

late the original article into target languages (Chi- 843

nese, Spanish, French, Russian), and then translate 844

these articles back into English, obtaining machine- 845

translated articles for detection. 846
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Figure 8: Confusion Matrix on Out-of-domain Generators. Our method can still accurately distinguish be-
tween human-written and machine-generated categories. Compared to in-domain evaluations, detecting machine-
humanized text becomes more challenging.
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Les Initiatives de Facebook et la Bataille pour le Contrôle des Interactions 
Sociales sur Internet

Les initiatives de Facebook et de ses concurrents préparent le terrain pour une 
bataille de contrôle des interactions sociales sur Internet.

« Il y aura certainement un combat en plusieurs tours ici », a déclaré 
Jeremiah Owyang, associé chez Altimeter Group, une firme de conseil en 
stratégie numérique.

Obstacles de Confidentialité

Les analystes estiment que le désir de Facebook d'étendre son influence sur le Web 
pourrait rencontrer des obstacles liés à la vie privée, car cela exigera que 
l'entreprise partage de plus en plus d'informations personnelles sur ses utilisateurs 
avec d'autres sites.

« Ils devront obtenir l'approbation de plus de consommateurs pour le 
partage de données », a déclaré Augie Ray, analyste chez Forrester 
Research.

Suivre l'Approche de Google

La stratégie de Facebook suit, dans une certaine mesure, l'approche adoptée par 
Google près d'une décennie plus tôt. Après s'être établi comme la principale 
destination des requêtes sur le Web, Google a commencé à diffuser sa barre de 
recherche et son système de publicité à travers le Web via des barres d'outils et des 
partenariats. Alors que Facebook devient une source de trafic de plus en plus 
importante pour d'autres sites Web, la rivalité entre les deux entreprises est 
inévitable.

French

The Battle for Control Over Social Interactions Across the Internet

The moves by Facebook and its rivals are setting up a battle for control over social 
interactions on the Internet.

"There is definitely a multiround fight that is going to be happening here," 
said Jeremiah Owyang, a partner at the Altimeter Group, a digital strategy 
consulting firm.

Privacy Concerns

Analysts note that Facebook’s desire to expand across the web might face privacy hurdles 
since it will involve sharing more personal information with other websites.

"They are going to have to secure more consumers' approval for 
data-sharing," said Augie Ray, an analyst at Forrester Research.

Following Google’s Footsteps

Facebook's strategy mirrors an approach taken by Google nearly a decade ago. After 
establishing itself as the top Internet search engine, Google syndicated its search box and 
advertising system across the web through toolbars and partnerships. Now, as Facebook 
becomes a major source of web traffic, its rivalry with Google is intensifying.

Facebook's Upcoming Products

Facebook declined to comment on its upcoming announcements, but people familiar with its 
plans mention several new products and technologies:

● Universal "Like" Button: A new "Like" button that web publishers can embed on their 
pages. Unlike the existing "Share" button, which provides fleeting links, the "Like" 
button will allow Facebook to store user preferences and share this data with web 
publishers. For example, a magazine website might display articles liked by a user's 
friends, while a site like Yelp could show reviews from friends instead of strangers.

● New Toolbar: Facebook is also developing a toolbar that web publishers can place at 
the bottom of their pages. This will build on Facebook Connect, making it easier for 
people to use their Facebook identities to log in to various sites. Though still under 
development, the toolbar aims to encourage more user engagement.

Competition with Meebo

Facebook’s new toolbar may collide with the efforts of Meebo, a company whose toolbar 
allows users to log in using identities from various social services. The Meebo toolbar 
enables users to chat with friends and share content directly from a website.

● New Alliance: Meebo and its partners, including Microsoft and Yahoo, plan to 
introduce standards allowing users to log in with identities from various networks.

"We'll know which networks and which buttons to put in front of you," said 
Seth Sternberg, CEO of Meebo. The alliance plans to hand over the technology 
to a nonprofit for further development.

The Future of Digital Identity

Chris Messina, an open web advocate at Google, pointed out that while Twitter and 
Facebook currently lead the social web space, the future of digital identity is still uncertain.

"It is far too soon to write the last chapter in digital identity," Messina 
remarked.

La Batalla por el Control de las Interacciones Sociales en la Red

Las movidas de Facebook y sus competidores crean un escenario de batalla por el control de las interacciones sociales en la red.

"Definitivamente habrá una pelea multironda que va a suceder aquí," dijo Jeremiah Owyang, socio de Altimeter Group, una 
empresa de consultoría estratégica en estrategias digitales.

Desafíos de Privacidad

Los analistas afirman que la ambición de Facebook de extender sus tentáculos por la red podría enfrentar obstáculos de privacidad, ya que 
requeriría compartir más información personal de sus usuarios con otros sitios web.

"Tendrán que proteger más el consentimiento de los usuarios para la transmisión de datos," afirmó Augie Ray, analista de 
Forrester Research.

Siguiendo el Enfoque de Google

El enfoque de Facebook es similar al que Google adoptó hace casi una década. Después de establecerse como el centro de búsqueda en la 
red, Google expandió su buscador y sistema publicitario a través de extensiones y alianzas. Dado que Facebook se ha convertido en una fuente 
cada vez más importante de tráfico para otros sitios web, la rivalidad entre Facebook y Google se intensificará.

Los Nuevos Productos de Facebook

Facebook se negó a comentar sobre sus próximos anuncios, pero fuentes cercanas a la empresa indicaron que se presentarán varios productos 
y tecnologías para profundizar su presencia en la red:

● Botón Universal "Me gusta": Un nuevo botón que los autores de sitios web podrán instalar en sus páginas. Similar a los populares 
botones "Compartir", el botón "Me gusta" permitirá ofrecer experiencias sociales más fáciles y permitirá que los amigos disfruten de 
esos sitios juntos.

● Registro de Preferencias: A diferencia de los botones "Compartir", que publican enlaces temporales en las pestañas de Facebook de 
los amigos, el botón "Me gusta" permitirá a Facebook mantener un registro de los elementos que un usuario ha vinculado. Esto 
proporcionará a la empresa datos adicionales sobre las preferencias de las personas.

Facebook planea compartir estos datos con los autores de sitios web, ayudando a proporcionar contenido más personalizado y relevante para 
los usuarios.

The Battle for Control Over Social Interactions Across the 
Internet

The moves by Facebook and its rivals are setting up a battle for 
control over social interactions on the Internet.

"There is definitely a multiround fight that is going to be 
happening here," said Jeremiah Owyang, a partner at the 
Altimeter Group, a digital strategy consulting firm.

Privacy Concerns

Analysts note that Facebook’s desire to expand across the web 
might face privacy hurdles since it will involve sharing more 
personal information with other websites.

"They are going to have to secure more consumers' 
approval for data-sharing," said Augie Ray, an analyst at 
Forrester Research.

Following Google’s Footsteps

Facebook's strategy mirrors an approach taken by Google nearly a 
decade ago. After establishing itself as the top Internet search 
engine, Google syndicated its search box and advertising system 
across the web through toolbars and partnerships. Now, as 
Facebook becomes a major source of web traffic, its rivalry with 
Google is intensifying.

……

Original 
Article

Facebook及其竞争对手的举措：社交互动领域的争夺战

Facebook及其竞争对手的举措预示着一场互联网社交互动领域的争夺战。

“这里肯定将有一场多轮较量。” —— Altimeter Group 数字战略咨询公

司合伙人 Jeremiah Owyang

隐私问题的挑战

分析师指出，Facebook扩展网络影响力的战略可能会遇到隐私障碍，因为这需要

公司与第三方网站共享越来越多的用户个人信息。

“他们必须获得更多用户的同意才能进行数据共享。” —— Forrester 
Research 分析师 Augie Ray

Facebook的战略：遵循Google的脚步

Facebook的做法在某种程度上遵循了Google近10年前的策略。作为互联网搜索引

擎巨头，Google在确立了自己在互联网搜索中的地位后，通过工具栏和合作伙伴关

系将搜索框和广告系统推广到整个网络。如今，随着Facebook成为其他网站的重

要流量来源，Facebook和Google之间的竞争关系必将日益激烈。

Chinese

The Battle for Dominance in Internet Social Interaction

Facebook and its competitors are signaling a battle for dominance in the 
realm of internet social interaction. Jeremiah Owyang, a partner at digital 
strategy consulting firm Altimeter Group, predicts a multi-round showdown in 
this space.

Privacy Concerns

Analysts caution that Facebook's expansion into broader network influence 
might be hindered by privacy concerns, as it would require sharing an 
increasing amount of user information with third-party websites.

"They need more user consent to share data," says Augie Ray, an 
analyst at Forrester Research.

Following Google's Playbook

Facebook’s approach is reminiscent of Google's strategy from a decade ago. 
Google solidified its position as the primary search destination and then 
expanded its influence by integrating its search box and advertising system 
across the web. As Facebook becomes a significant traffic source for other 
sites, the rivalry between these two internet giants is poised to intensify.

……

The Battle for Social Interaction Control on the Internet

Facebook and its competitors are gearing up for a battle to control social 
interaction on the internet.

"Definitely there will be a round fight that's going to happen 
here," said Jeremiah Owyang, a partner at Altimeter Group, a strategic 
digital consulting firm.

Privacy Concerns

Analysts argue that Facebook's ambition to expand its reach on the internet 
may face privacy obstacles. Extending its influence would require the 
company to share more personal information with other websites.

"They will have to protect more the user consent for data 
transmission," said Augie Ray, an analyst at Forrester Research.

Following Google’s Footsteps

Facebook’s strategy mirrors Google’s approach from nearly a decade ago. 
Google first established itself as the internet's primary search engine and then 
extended its reach by expanding its search and advertising systems through 
extensions and alliances. As Facebook becomes a major traffic source for 
other websites, rivalry between Facebook and Google is inevitable.

Translation 
from Chinese

Translation 
from Spanish

La Batalla por el Control de las Interacciones Sociales en la Red

Las movidas de Facebook y sus competidores están creando un escenario de 
batalla por el control de las interacciones sociales en internet.

"Definitivamente habrá una pelea multironda que va a suceder 
aquí," dijo Jeremiah Owyang, socio de Altimeter Group, una empresa 
de consultoría estratégica en estrategias digitales.

Desafíos de Privacidad

Los analistas señalan que la ambición de Facebook de expandir su influencia 
en la red podría enfrentar obstáculos relacionados con la privacidad, ya 
que requeriría compartir cantidades cada vez mayores de información personal 
de sus usuarios con otros sitios web.

"Tendrán que proteger más el consentimiento de los usuarios 
para la transmisión de datos," afirmó Augie Ray, analista de 
Forrester Research.

Siguiendo el Camino de Google

El enfoque de Facebook es similar al de Google hace casi una década. 
Después de establecerse como el centro de búsqueda en la red, Google 
comenzó a expandir su buscador y sistema publicitario a través de extensiones 
y alianzas. Ahora que Facebook se ha convertido en una fuente cada vez más 
importante de tráfico para otros sitios web, la rivalidad entre Facebook y 
Google es inevitable.

Spanish

Facebook's Initiatives and the Battle for Control of Social Interactions on 
the Internet

Facebook's initiatives, along with those of its competitors, are setting the 
stage for a battle over control of social interactions on the Internet.

"There will certainly be a multi-round fight here," said Jeremiah 
Owyang, a partner at Altimeter Group, a digital strategy consulting firm.

Privacy Hurdles

Analysts believe that Facebook's ambition to expand its influence across the 
Web could face privacy hurdles, as it will require the company to share 
increasing amounts of personal information about its users with other sites.

"They will need to secure more consumers' approval for data 
sharing," said Augie Ray, an analyst at Forrester Research.

Following Google's Approach

To some extent, Facebook's strategy mirrors Google's approach from nearly a 
decade earlier. After establishing itself as the primary destination for web 
searches, Google began syndicating its search bar and advertising system 
across the Web through toolbars and partnerships. Now, as Facebook 
becomes an increasingly important source of traffic for other websites, rivalry 
between the two companies seems inevitable. Translation 

from French

Битва за контроль над социальными взаимодействиями в Интернете

Действия Facebook и его конкурентов готовят почву для битвы за контроль 
над социальными взаимодействиями в Интернете.

«Здесь определенно будет много раундов борьбы», — сказал 
Джереми Оуян, партнер компании Altimeter Group, консалтинговой 
фирмы в области цифровой стратегии.

Проблемы конфиденциальности

Аналитики отмечают, что стремление Facebook к расширению в Интернете 
может столкнуться с проблемами конфиденциальности, так как это 
потребует обмена все большими объемами личной информации с другими 
сайтами.

«Им придется получить согласие большего числа потребителей 
на обмен данными», — сказал Огаст Рэй, аналитик компании 
Forrester Research.

Следуя примеру Google

Стратегия Facebook во многом напоминает подход, который Google 
использовал почти десять лет назад. Укрепив свои позиции как ведущий 
поисковый движок, Google начал распространять свою поисковую строку и 
рекламную систему через панели инструментов и партнерские программы. 
Теперь, когда Facebook становится важным источником трафика для сайтов, 
его соперничество с Google усиливается.

The Battle for Control Over Social Interactions on the Internet

The actions of Facebook and its competitors are setting the stage for a battle 
over control of social interactions on the Internet.

“There will definitely be multiple rounds of this fight,” said 
Jeremiah Owyang, a partner at Altimeter Group, a digital strategy 
consulting firm.

Privacy Concerns

Analysts note that Facebook's expansion across the Internet could encounter 
privacy issues, as it would involve sharing increasing amounts of personal 
information with other websites.

“They are going to have to secure more consumers' approval for 
data sharing,” said Augie Ray, an analyst at Forrester Research.

Following Google’s Lead

Facebook's strategy mirrors the approach that Google took nearly a decade 
ago. After becoming the leading search engine, Google expanded by 
syndicating its search box and advertising system through toolbars and 
partnerships. Now, as Facebook emerges as an important source of traffic for 
websites, its rivalry with Google is intensifying.

Russian
Translation 

from Russian

Figure 9: Round-trip Strategy for Generating Translated Articles.This strategy allows us to automatically
produce translated articles from existing datasets, eliminating the need for additional data collection. See Sec. B for
discussion.
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