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ABSTRACT
As a prevalent scientific data format with extensive applications,
the efficient compression of hyperspectral images (HSI) and en-
suring high-quality downstream tasks have garnered significant
attention. This paper introduces HINER, a novel approach for com-
pressing HSI using Neural Representation. HINER fully exploits
inter-spectral correlations by explicitly encoding of spectral wave-
lengths and achieves a compact representation of the input HSI
sample through joint optimization with a learnable decoder. By
additionally incorporating the Content Angle Mapper with the L1
loss, we can supervise the global and local information within each
spectral band, thereby enhancing the overall reconstruction quality.
For downstream classification on compressed HSI, we theoretically
demonstrate the task accuracy is not only related to the classifica-
tion loss but also to the reconstruction fidelity through a first-order
expansion of the accuracy degradation, and accordingly adapt the
reconstruction by introducing Adaptive Spectral Weighting. Ow-
ing to the inherent capability of HINER to implicitly reconstruct
spectral bands using input wavelengths, it can generate arbitrary
continuous spectra, even those absent in the original input. Con-
sequently, we propose utilizing Implicit Spectral Interpolation for
data augmentation during classification model training, thereby
improving overall task accuracy on compressed data. Experimental
results on various HSI datasets demonstrate the superior compres-
sion performance of our HINER compared to the existing learned
methods and also the traditional codecs. Our model is lightweight
and computationally efficient, which maintains high accuracy for
downstream classification task even on decoded HSIs at high com-
pression ratios.

CCS CONCEPTS
• Computing methodologies→ Image compression; Hyper-
spectral imaging; Image representations.

KEYWORDS
Hyperspectral image compression, implicit neural representation,
spectral embedding, classification on compressed HSI

1 INTRODUCTION
The hyperspectral image (HSI) uses tens of spectral bands across a
wide range of electromagnetic wavelengths at each pixel position
to capture the physical scene [1], by which it promises exceptional
capabilities for tasks like object detection, material inspection, and
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scene analysis for applications in agriculture [2], aerospace industry
[3], remote sensing [4], etc. However, compared with the three-
channel RGB image, orders of magnitude more spectral channels
in each HSI sample present practical challenges for storage and
transmission, largely impeding its use in various applications. As a
result, efficient lossy HSI compression is highly desired.

In addition to traditional rules-based HSI compression meth-
ods using transform [5] or linear prediction [6], over the past few
years, there has been a growing interest in leveraging deep learn-
ing techniques for HSI compression [7–11]. Through the powerful
modeling capabilities of neural networks, learned HSI compression
has demonstrated noticeable compression efficiency improvement.
As one of them, implicit neural representations (INRs) have gained
increasing popularity for representing natural signals with intricate
characteristics. The fundamental concept behind INR is to repre-
sent a signal as a tailored neural network, thus, the compression
of the input signal is translated into the compression of the neural
model itself. Such INR methods significantly diminish the requi-
site for extensive training data given the high cost of acquiring
large-volume HSIs [12], and also streamline the decoding process.
Zhang et al. [12] and Rezasoltani et al. [13, 14] have pioneered the
exploration of neural representation for HSI compression. Both of
them directly adopt the architecture of SIREN [15], which employs
a cascade of Multi-Layer Perceptions (MLP) with periodic activa-
tion functions, for pixel-by-pixel compression of the input HSIs.
However, such a pixel-wise approach is built upon the assumption
of spatial redundancy and represents HSIs through spatial position
embedding, which disregards the strong correlation across spec-
tral bands, leading to performance limitations. Even worse, signal
distortion induced by those lossy compression methods notably de-
teriorates the accuracy of the downstream task (e.g., classification),
which makes them extremely difficult to promote in applications.

A practical HSI compression solution pursues 1) high-efficiency
R-D performance and lightweight decoding complexity and 2) a
negligible accuracy drop using decoded HSI for the downstream
task. In principle, each HSI collects a sequence of "frames" (spectral
bands) at serial wavelengths, analogous to a video containing a
sequence of frames at serial timestamps, which, however, differ
fundamentally in inter-frame (spectral) correlations. Intuitively, the
frame difference in a video mainly owes to the temporal motion,
assuming consistent pixel intensity of objects across all timestamps.
In contrast, such a "frame" difference in an HSI is due to reflectance
variation at each pixel across spectral bands, typically assuming
stationary scenes without temporal motion (see Fig. 1 and Fig. 3).
Consequently, how to efficiently exploit correlations within and
across spectral bands is crucial for improving compression perfor-
mance and also benefiting downstream task on compressed HSI.

To this end, we propose HINER, a novel spectral-wise neural
representation for HSI. The proposed HINER employs a positional
encoding followed by an MLP to embed the spectral wavelengths
of the input HSI sample explicitly. Such an explicit embedding
is capable of effectively characterizing and exploiting cross-band
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(a) 9-th frame (b) 10-th frame (c) diff. (motion)

(d) 17-th band (e) 18-th band (f) diff. (reflectance)

Figure 1: Exemplified differences of the video frames (up,
dog) and HSI bands (bottom, lion). Temporal motion leads
to the difference of video frames while the difference of HSI
bands owes to reflectance variation without motion.

correlation, which is then fed into a learnable neural decoder to
generate the corresponding decoded HSI. The pursuit of compres-
sion is achieved through collaboratively optimizing the encoder-
decoder pair to generate more compact representations of spectral
embedding and quantized decoder. Furthermore, we also propose
to combine the Content Angle Mapper (CAM) measuring angle
similarity between the reconstructed spectral band and its original
counterpart and pixel-wise L1 loss, which contribute to maintaining
global and local fidelity in signal reconstruction jointly.

Simultaneously, the impairment of downstream task perfor-
mance on lossy compressed HSIs is a practical challenge [7]. Intu-
itively, the lossy compression may disrupt both the structural in-
formation and spectral continuity inherent in HSIs, which, without
additional processing, will inevitably lead to accuracy degradation
when optimized for vision tasks such as classification. To address
this issue, we first employ a first-order Taylor expansion on the
task accuracy degradation caused by the lossy compression, theo-
retically establishing an intrinsic connection between task accuracy
and reconstruction fidelity. By introducing the Adaptive Spectral
Weighting (ASW) network on the reconstructed HSIs with both task
and reconstruction loss, the accuracy of downstream classification
is greatly improved. Furthermore, owing to our INR-based com-
pression approach, the monotonic mapping relationship between
wavelengths and spectral bands enables the generation of arbitrary
spectral bands, even those not present in the original HSI. Building
upon this capability, we propose Implicit Spectral Interpolation
(ISI) as a data augmentation technique for training classification
model on compressed HSIs, resulting in significant enhancement
in overall accuracy.

The main contributions of this paper are as follows:

(1) We propose HINER, a neural representation designed specif-
ically for HSI. By introducing explicit encoding of wave-
lengths and global CAM loss, HINER effectively exploits
spectral redundancy in HSI samples.

(2) We enhance the performance of downstream classification
on lossy HSIs from two perspectives: adjusting the recon-
struction to adapt to classification task through ASW, and
improving the generalization of classification model with
augmented data through ISI.

(3) Experimental results demonstrate the superior compression
efficiency and comparable computational complexity of our
proposed HINER compared to existing neural representation
methods. Furthermore, there is a notable improvement in
task accuracy when deploying classification on decoded HSIs
at high compression ratios.

2 RELATEDWORK
2.1 Implicit Neural Representation
Implicit Neural Representations (INRs) have gained widespread
interest for its remarkable capability in representing diverse multi-
media signals, including images [16, 17], videos [18–20], and neural
radiance fields [21, 22]. Among them, NeRV [18] proposed the first
frame-wise INR for video, which took frame indices as inputs to gen-
erate corresponding RGB frames through content-agnostic position
encoding and a learnable decoder. Compared to previous pixel-wise
INR methods (e.g., SIREN [15], Coin [23]), NeRV achieved better
reconstruction quality while ensuring faster decoding. However,
NeRV fully relied on the implicit learned decoder to characterize the
input content and completely ignored the video content dynamics
across frames. The subsequent HNeRV [24] proposed to explicitly
embed frame content instead of index, leading to better reconstruc-
tion and faster model convergence for video sequence. Some recent
works also attempted to capture temporal correlation by frame
difference [25], optical flows [19], etc. On the other hand, INR has
also attracted practitioners in HSI, including super resolution [26],
reconstruction [27], fusion [28, 29], and compression [12–14], show-
ing remarkable potential in practical applications.

2.2 HSI Compression
HSI compression [30–34] commonly employs transform coding [35]
to convert HSI in the pixel domain to a latent space (e.g., frequency
domain). Prominent transforms like Discrete Cosine Transform
(DCT) [36] and Wavelet [37] utilized linear transformations that
were generally comprised of a set of linear and orthogonal bases.
However, such a linear transformation with fixed bases might not
fully exploit the redundancy because the content of the underlying
image block was non-stationary and did not strictly adhere to the
Gaussian distribution assumption [38]. Chakrabart et al. [39] and
Guo et al. [11] have demonstrated that real-world HSIs exhibited
greater kurtosis and heavier tails than assumed Gaussian distribu-
tion, indicating a non-Gaussian nature of the HSI source. Therefore,
devising transform to better exploit non-stationary content distri-
bution is attracting intensive attention.

Over the past few years, learning-based HSI compression meth-
ods [9, 10, 40] have witnessed rapid growth. Dua et al. [9] and
La et al. [10] firstly introduced Auto-Encoder (AE) for lossy HSI
compression. Subsequently, Variational Auto-Encoders (VAEs) in-
corporating variational Bayesian theory, turned to represent latent
features of input HSIs from a probabilistic perspective. Building
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Figure 2: The pipeline of our proposed HINER, the neural representation dedicated to compressing HSI, which also benefits
downstream classification task on compressed HSI samples.

upon the VAE architecture, Guo et al. [11] repurposed the hyper-
prior model [41] to compress HSI, where the student’s T distribu-
tion [42] was used to replace the original Gaussian distribution,
aligning more closely with the actual distribution of HSIs. Recently,
Guo et al. [7] further introduced contrastive learning to preserve
spectral attributes as much as possible for compression of HSI.

INR-based HSI compression. INRs provide a novel perspec-
tive on HSI compression by translating it into model compression.
For instance, aforementioned Zhang et al. [12] and Rezasoltani et
al. [13, 14] employed post-training quantization [43, 44] to com-
press models. However, even 16-bit quantization still resulted in
significant performance loss (sometimes exceeding 1dB), which
also indicated quite limited model capability of pixel-wise INRs
with fully MLP-based network architecture. Considering HSIs can
be treated as sequences akin to videos, well-established INRs for
video compression can also be applied in HSI compression (though
sub-optimal, as will be discussed in Sec. 3.1). Most video-based INRs
follow a three-step compression pipeline: 1) pruning [45] to reduce
model size; 2) quantization to reduce parameter bit-width; 3) en-
tropy coding to reduce parameter statistical redundancy. Through
these operations, the model is significantly compressed only with
slight performance decline, attributed to elaborate network archi-
tecture enhancing model capability. For example, our proposed
HINER subtly incorporates convolution, upsampling, GELU, etc.,
allowing the use of lower quantization bit-width (e.g., 8-bit) with a
negligible reconstruction loss.

2.3 HSI Classification
HSI classification, which assigns each spatial pixel to a specific
class based on its spectral characteristics, is the most vibrant field
of research in the hyperspectral community and has drawn wide-
spread attention [46]. Extracting more discriminative features is
recognized as a crucial procedure for HSI classification [47], which
achieves rapid advancements propelled by deep learning.

Many well-recognized networks have been widely and success-
fully applied in HSI classification task, including CNN [48–52],

AE [53], recurrent neural network (RNN) [54], graph convolu-
tional network (GCN) [55]. Recently, transformer-based classifi-
cation methods [56–58] show noticeable accuracy gains due to the
self-attention mechanism, which effectively weights neighborhood
information in dynamic input [59]. Hong et al. [56] developed a
novel model called SpectralFormer (SF), capable of extracting fea-
tures by aggregating multiple neighboring bands. Additionally, SF
implemented cross-layer skip connections to reduce information
loss during layer-wise propagation. Given that SF currently exhibits
leading performance, we employ it as our baseline classification
model for downstream task evaluation.

Classification on compressed HSI. Most current approaches
in HSI classification continue to rely on uncompressed data due to
the observed accuracy degradation induced by lossy compression.
Unlike RGB images which can be visually appreciated by humans,
compressed HSI will become completely useless if it cannot be
applied to downstream tasks. The idea of using compressed images
for classification dates back to the last century [60]. While some
studies have explored the impact of lossy compression on HSI
classification outcomes [61–65], primarily focusing on predicting
classification accuracy for a given compressed HSI, our emphasis is
on mitigating degradation for specific compressed samples without
uncompressed ground truth.

3 METHOD
In this section, we begin by defining the optimization objective
of neural representation for HSI (Sec.3.1). Subsequently, HINER,
a neural representation for HSI compression, is proposed by ex-
ploiting the correlations within and across spectral bands (Sec. 3.2).
Lastly, We theoretically analyze and address the issue of accuracy
degradation in classification task on compressed HSI. (Sec. 3.3). An
overview of our overall pipeline is illustrated in Fig. 2.

3.1 Preliminary
Let 𝑰 = {𝐼𝜆}

𝛽

𝜆=𝛼
∈ R𝐻×𝑊 ×𝐶 denote an input HSI with spatial

resolution of 𝐻 ×𝑊 and a total of 𝐶 spectral bands spanning the
wavelength range 𝜆 ∈ [𝛼, 𝛽]. The objective of neural representation
is to model a mapping function F from the embeddings 𝒆 to the HSI
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Figure 3: Pixel intensity distribution in fixed spatial position.

𝑰 : F (𝒆) → 𝑰 using a neural network. This work suggests to process
HSI spectral-wisely. Given the spectral band 𝐼𝜆 with wavelength 𝜆, a
learnable decoderD(·) is employed for reconstruction by inputting
spectral embedding 𝑒𝜆 . Our goal is to minimize the distortion be-
tween the input 𝐼𝜆 and its reconstructed counterpart 𝐼𝜆 with the
restricted model parameter 𝜃 . As a result, the rate-distortion (R-D)
optimization objective can be formulated as:

argmin
𝛽∑︁

𝜆=𝛼

L(𝐼𝜆, 𝐼𝜆) = argmin
𝒆,D

𝛽∑︁
𝜆=𝛼

L (𝐼𝜆,D(𝑒𝜆)) ,

s. t. 𝜃 (𝒆) + 𝜃 (D) ⩽ 𝜃, (1)

where L represents the distortion loss. The bitrate 𝜃 (𝒆) used for
embeddings and the decoder parameter 𝜃 (D) collectively comprise
the overall bitrate consumption, subject to the constraint of 𝜃 .

As a comparative neural representation in video compression,
NeRV [18] completely relied on a learnable decoder for implicit rep-
resentation without any content embeddings. Since the embedding
is generated by fixed position encoding of temporal indices, the
only consumed bitrate is 𝜃 (D) without 𝜃 (𝒆). HNeRV [24] firstly
proposed the hybrid neural representation framework, which incor-
porated a learnable encoder to produce additional embeddings from
frame content. Through a small amount of bitrate consumption
by 𝜃 (𝒆), such explicit content embeddings greatly improved the
coding efficiency and model convergence.

Although explicit content embedding has demonstrated remark-
able performance in video compression, an accompanying issue
has arisen: can this success be replicated directly on HSI? As men-
tioned above, frame differences in a video primarily stem from
non-monotonic temporal motion, which makes monotonic frame
indices inadequate for capturing pixel correlations among neigh-
boring frames (see Fig. 3(a)). Therefore, capturing differentiated
content from each frame can yield better temporal embedding com-
pared to content-agnostic frame indices. Conversely, in HSI, such
"frame" differences originate from reflectance variation at each
object across spectral wavelengths, where we often assume station-
ary objects without temporal motion. As can be seen in Fig. 3(b),
there is a potential mapping relationship between wavelengths and
pixel intensities (each pixel in HSI corresponds to a specific object
class, such as tree, soil, etc.). Consequently, content embedding is
sub-optimal for representing HSI which requires fully leveraging
spectral correlation. To address this, we propose HINER, a neu-
ral representation fully exploiting spectral redundancy in Sec. 3.2.

Furthermore, we theoretically investigate and overcome the prob-
lem of performance degradation in downstream classification on
compressed HSIs built upon the characteristic of HINER in Sec. 3.3.

3.2 Neural Representation for HSI
Spectral Wavelength Embedding. To capture spectral correla-
tion, we take a straightforward yet highly effective approach by
explicitly embedding spectral wavelength 𝜆.

In the specific implementation, HINER explicitly encodes the
normalized 𝜆 ∼ 𝑈 (0, 1) using a learnable encoder E to generate
the spectral embeddings 𝒆 = {𝑒𝜆}

𝛽

𝜆=𝛼
, which is then forwarded

to the decoder D for the reconstruction of the HSI. According to
Eq. (1), the encoder does not consume bitrate and is only used to
produce the spectral embeddings that need to be further encoded.
However, considering that the training time of the entire neural
representation model is equivalent to the encoding time of the
HSI, it is crucial to design an efficient encoder with the following
two characteristics: 1) Maintaining a low level of computational
complexity; 2) Efficiently capturing spectral correlation.

Inspired by the practice of [21] in neural radiance fields, E is
built as a composition of two functions E = M ◦ P, by which

𝑒𝜆 = E(𝜆) = M (P(𝜆)) , (2)

where M stands for a tiny learnable MLP layer, and P denotes the
frequency Positional Encoding (PE) [21, 66] to map 𝜆 into a higher
dimensional space P : R→ R2𝑙 , i.e.,

P(𝜆)=
(
sin(𝑏0𝜋𝜆),cos(𝑏0𝜋𝜆), . . . ,sin(𝑏𝑙−1𝜋𝜆),cos(𝑏𝑙−1𝜋𝜆)

)
. (3)

The rationale behind not directly inputting 𝜆s into the MLP layer
without positional encoding is due to the well-known spectral
bias [16, 67] in MLP. This bias tends to prioritize learning low-
frequency components of the signal, potentially leading to the net-
work’s inability to adequately model high-frequency variation. [21,
66, 67]. This phenomenon is detailed in supplementary material.

By jointly optimizing the encoder and decoder, such a light-
weight encoder is sufficient for information extraction and facili-
tates faster model convergence in training, which is also known as
the encoding process for INR methods. The bitrate overhead of such
spectral embedding is negligible (see Sec. 4.4), but it dramatically
improves the performance of HINER by exploiting the inter-band
correlation for better coding efficiency.

Content Angle Mapper. In general, INR models are typically
optimized using L-p loss function [14, 24, 68]. However, the pixel-
wise L-p loss lacks the ability to supervise global content similar-
ity within spectral band. To address this limitation, some recent
works [18, 69] introduce the Structure Similarity Index Measure
(SSIM) loss by considering the correlations in luminance, contrast,
and structure of the images, which may not apply to single spectral
band. Drawing inspiration from the spectral angle mapper used for
pixel correlation analysis [70, 71], we introduce the Content Angle
Mapper (CAM) to calculate the angle between the original spectral
band vector ®𝐼𝜆 and its reconstructed counterpart ®̂𝐼𝜆 . Minimizing
CAM enables us to spatially exploit global content correlation in
each spectral band. Additionally, L1 loss is also incorporated for
pixel-wise supervision, which is proved to be more appropriate
for scenes characterized by complex textures with high-frequency
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information [25, 72]. Consequently, the optimization objective for
training HINER can be formulated as:
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, (4)

where the vector ®𝐼𝜆 ∈ R𝑚×1 denotes the flattened spectral band 𝐼𝜆 ,
𝑚 = 𝐻 ×𝑊 is determined by spatial resolution, and 𝛾 is introduced
to make a trade-off between these two losses.

Compression. To further reduce the actual bitrate consumption
of our HINER, we follow HNeRV and employ the same quantization
and entropy coding methods for model compression. In model
quantization, the floating-point vector 𝝁 𝑓 𝑙𝑜𝑎𝑡 (e.g., weight or bias
in a convolutional layer) is quantized using:

𝝁𝑖𝑛𝑡 = 𝑐𝑙𝑖𝑝

(
⌊
𝝁 𝑓 𝑙𝑜𝑎𝑡 −min(𝝁)

𝑠𝝁
⌉, 0, 2𝑏 − 1

)
,

where 𝑠𝝁 =
max(𝝁) −min(𝝁)

2𝑏 − 1
, (5)

⌊·⌉ rounds the input to the nearest integer. 𝑏 denotes the quan-
tization bit-width, and 𝑠𝝁 is the linear scaling factor. We utilize
the Huffman [73] coding as the lossless entropy coding method to
further compress model parameters after quantization.

3.3 Classification on Compressed HSI
HSI classification refers to assigning a predefined label to each indi-
vidual pixel [74], which is similar to the semantic segmentation task
for the RGB image. The degradation in classification performance
on compressed HSIs is related to the intrinsic characteristics of
HSI, where pixel intensity corresponds to the spectral reflectance
of objects across multiple spectral bands [7]. As depicted in Fig. 3,
two categories with similar spectral reflectance (e.g., class 1 and
class 4) may become indistinguishable after lossy compression. We
enhance the performance of classification on lossy HSIs from two
perspectives: 1) adjusting the compressed reconstruction to adapt to
classification task; 2) improving the generalization of classification
model with augmented data.

Adaptive SpectralWeighting (ASW).We first conduct theoret-
ical analysis on the classification loss L𝐶 . Having the classification
model parameterized by 𝜽 , the original uncompressed HSI 𝑰 , as
well as the reconstructed HSI 𝑰 , we employ additive noise [75, 76]
to model the compression loss, i.e., 𝑰 = 𝑰 + 𝒖 (𝑰 ). Consequently,
the task performance degradation induced by compression can be
defined as:

E
[
L𝐶 (𝜽 , 𝑰 ) − L𝐶 (𝜽 , 𝑰 )

]
. (6)

Here, L𝐶 (𝜽 , 𝑰 ) and L𝐶 (𝜽 , 𝑰 ) stand for classification losses on un-
compressed and compressed HSI respectively. With the first-order
expansion on Eq. (6), we will derive:

L𝐶 (𝜽 , 𝑰 ) − L𝐶 (𝜽 , 𝑰 ) ≈ ∇𝑰L𝐶 (𝜽 , 𝑰 )𝑇 · 𝒖 (𝑰 ), (7)

where the degradation is approximated as the first-order error
for task loss L𝐶 . An intuitive solution is to optimize the input
𝑰 based on the gradient ∇𝑰L𝐶 (𝜽 , 𝑰 )𝑇 while ensuring 𝑰 close to
𝑰 , characterized by | |𝑰 − 𝑰 | | = | |𝒖 (𝑰 ) | | < 𝜖 . However, directly

0.4
0.2

0.0
0.2

0.4
0.4

0.2
0.0

0.2
0.4

0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75

1.0

1.5

2.0

2.5

(a) Trained using reconstructed HSI

0.4
0.2

0.0
0.2

0.4
0.4

0.2
0.0

0.2
0.4

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

(b) Trained w/ ISI (flatter)

Figure 4: Loss landscape [78] of trained classification model.

optimizing 𝑰 can be challenging to converge due to its high spatial
and spectral resolution. Thus, we introduce a tiny learnable module
named Adaptive Spectral Weighting (ASW) to adjust 𝑰 , as shown
in Fig. 2. With ASW, the optimization of 𝑰 is converted into the
optimization of network parameters, which can be easily solved by
gradient descent:

𝜃𝐴𝑆𝑊 = argminL𝐶 + 𝛽 · L𝑅, (8)

where optimizing L𝐶 aims to make the gradient ∇L𝐶 → 0 and
optimizing L𝑅 aims to constrain 𝒖.

ASW first spectral-wisely re-weights the reconstructed HSI by
multiplying learned factors, followed by an MLP comprising 1x1
conv for cross-spectral information aggregation. The rationale be-
hind ASW lies in the varying importance of spectral bands for
reconstruction and downstream classification [77]. Thus, ASW fa-
cilitates the translation from perception-oriented reconstruction to
classification-oriented reconstruction. More details can be found in
the supplementary material.

Implicit Spectral Interpolation (ISI). HINER establishes a
monotonic continuous mapping from spetral wavelengths to spec-
tral bands. This enables HINER to reconstruct corresponding spec-
tral bands for arbitrary wavelengths, even if these wavelengths
or bands do not exist in the original discrete HSI sample (in some
literatures, this function is also refered to as HSI reconstruction [79]
or spectral super-resolution [80]). Leveraging this continuous map-
ping, we can easily construct an augmented sample setS containing
multiple randomly sampled HSI by adding random variables to the
input wavelengths of HINER

S =
∑︁

HINER (𝜆 +𝑈 (−𝜂, 𝜂)) , (9)

where𝑈 (−𝜂, 𝜂) represent a uniform distribution that adds random
variables to 𝜆. Training the classification model with the augmented
data set S significantly enhances performance on compressed HSI.
It’s important to note that we do not introduce ground truth HSI
during training, thus improving the practical applicability of ISI.
The rationale behind ISI lies in the fact that data augmentation can
enhance the classification model’s generalization on compressed
HSI data [76, 81–83], thereby leading to improved accuracy. One
intuitive manifestation of generalization is the flatness of the loss
landscape [78]. A flatter loss landscape, indicative of better general-
ization, exhibits relatively small loss changes under parameter per-
turbations, whereas a sharp loss landscape indicates otherwise. As
depicted in Fig. 4, the classification model trained with ISI exhibits
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Figure 5: R-D performance comparisons across HSI datasets.
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Figure 6: Visualization comparisons of NeRV, HNeRV and our HINER on Pavia University dataset. The residual between the
reconstruction and the ground truth (GT) is accompanied by each reconstructed result.

a flatter loss landscape, in which Fig. 4(a) can also be considered
a special case of 𝜂 = 0. We provide detailed explanation in the
supplementary material.

3.4 Discussion
So far, we have developed a neural representation framework,
HINER, with a series of optimizations tailored for HSI, aligning
better with its intrinsic characteristics and also aiding in main-
taining performance of downstream tasks on compressed recon-
struction. Unlike content-agnostic NeRV [18] or content-embedded
HNeRV [24], we attempt to explicitly exploit cross-spectral correla-
tions through wavelength embedding and fully supervise local and
global reconstruction fidelity within a specific band by combining
L1 and CAM loss. Our HINER also differs significantly from the
previous pixel-wise compression methods [12, 14] which neglect
spectral redundancies. We also thoroughly consider the degrada-
tion of downstream classification task caused by lossy compression.
By using ASW for reweighting the compressed reconstruction and
ISI for data augmentation in training classification model, we ef-
fectively address the issue of loss in task accuracy, which was not
mentioned in previous works [12, 14].

4 EXPERIMENTS
4.1 Setup
Datasets. We conduct the evaluation on four popular HSI datasets
with varying resolutions: 1) The Indian Pines dataset with size of
145 × 145 × 200; 2) The Pavia University dataset with size of 610 ×
340× 103; 3) The Pavia Centre dataset with size of 1096× 715× 102;
4) The CHILD [84] dataset with size of 960 × 1056 × 145.

Metrics. For compression performance comparison, Peak Signal-
to-Noise Ratio (PSNR) is used to measure the reconstruction quality,
and bits per pixel per band (bpppb) reports the consumption of
compressed bitrate. The classification performance on compressed
HSI is evaluated using Overall Accuracy (OA), Average Accuracy
(AA), and Kappa Coefficient (𝜅).

Baselines. For compression performance comparison, we select
the frame-wise neural representation methods, namely NeRV [18]
and HNeRV [24], as well as the pixel-wise methods specifically
designed for HSI compression, FHNeRF [12] and Rezasoltani [14].
JPEG2000 [85] and VVC [86] are exemplified to represent traditional
image and video codecs. For JPEG2000, we employ OpenJPEG to
independently compress each spectral band. For VVC, we utilize the
reference software VTM 16.0 and conduct compression experiments
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Figure 7: Encoding & decoding complexity comparisons.

with both intra and inter (i.e., Random Access) profiles. The intra
profile compresses each spectral band separately while the inter
profile processes HSIs in spectral order as the coding of videos. For
downstream classification, we use SpectralFormer (SF) [56] as the
baseline, known for its leading performance.

Implementation. We faithfully reproduce the compared meth-
ods following their default settings on the HSI dataset. For the
training of HINER, we adopt the Adam optimizer [87] with a batch
size of 1. The initial learning rate is 0.001 with a cosine descent
strategy. Stride sizes used for upsampling in the decoder are config-
ured at (5, 3, 2, 2) for Indian Pines, (5, 4, 3, 2) for Pavia University, (5,
4, 3, 2, 2) for Pavia Centre, and (5, 4, 4, 2, 2) for CHILD, respectively.
Unless specified otherwise, all experiments are conducted using
PyTorch with an Nvidia RTX 3090 for totally 300 epochs. For classi-
fication, the learning rate is 0.0005 with 0.005 weight decay. Epochs
for Indain Pines and Pavia University are 300 and 480, respectively.

4.2 HSI Compression
Performance. We present the R-D curves in Fig. 5 across various
datasets. The proposed HINER clearly outperforms other neural
representation methods. Leveraging efficient spectral wavelength
embeddings, HINER not only significantly surpasses the content-
agnostic method (i.e., NeRV), but also proves better than the con-
tent embedding method (i.e., HNeRV) in the HSI dataset. Compared
with pixel-wise FHNeRF and Rezasoltani, such a band-wise rep-
resentation of HINER exhibits superior rate-distortion advantage.
Furthermore, our method is far better than the earlier image codec
JPEG2000 across all datasets and superior to the VVC intra coding
in Pavia University and Pavia Centre, in which our HINER is even
comparable with the VVC inter coding. However, there is still a per-
formance gap between learning-based methods and the VVC inter
coding in Indian Pines and CHILD. One possible reason is that these
two datasets capture simple scenarios with few texture information,
which is easy for motion prediction in VVC thus greatly improving
the coding efficiency. Fig. 6 visualizes the reconstruction results of
neural representation methods on Pavia University. Notably, our
method exhibits a much closer reconstruction to the original data.

Complexity. We also report the encoding and decoding time of
our HINER, as well as HNeRV, FNeRF, Rezasoltani, and VVC inter
profile in Fig. 7. Our model presents faster encoding and decoding
compared to VVC, e.g., up to 10 × /6× encoding/decoding time
reduction. The encoding of ours is also faster than HNeRV due to
the lightweight spectral encoder. When compared with FHNeRF
and Rezasoltani, spectral-wise HINER exhibits faster encoding, and
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Figure 8: Regression capacity comparisons.

the gap further increases with model size. Although the inclusion of
the upsampling and GELU [88] operation slows down our decoding
than fully MLP-based FHNeRF and Rezasoltani, HINER achieves a
PSNR improvement of more than 5 dB while still maintaining over
400 band-per-second decoding speed at Pavia University.

Regression. To evaluate the efficiency of HINER, we conduct
comparisons regarding regression capacity in Fig. 8. As shown,
those methods incorporating additional information embeddings,
i.e., HNeRV and ours, lead to better reconstruction quality and
faster model convergence speed than others. Moreover, our method
shows the best performance, indicating the effectiveness of spec-
tral embedding for HSI representation. An interesting observation
is that Rezasoltani and FHNeRF exhibit rapid saturation in earlier
training, probably due to pure MLP architecture limits the model ca-
pacity, and such pixel-wise representation is inadequate to capture
cross-spectral redundancies.

4.3 Classification on Compressed HSI
When lossy compressed HSIs are widely used for storage and trans-
mission due to their lower space-time resource occupation, down-
stream servers will not access the original ground truth data. Thus,
related services, such as classification, have to rely solely on the
compressed HSI. However, as shown in Table 1, lossy compression
results in a significant degradation when optimized for classifica-
tion (SF♣ vs. SF), primarily due to the spectral information that
determines the class of objects has been compromised. Our pro-
posed ASW and ISI, effectively alleviate degradation and maintain
considerable accuracy even under high compression ratios, e.g., up
to ×109, approaching the levels trained with ground truth. Notably,
our approach even surpasses the performance of SF trained with
ground truth data in the IndianPine. One potential explanation for
this phenomenon is that our theoretical framework aids in mitigat-
ing data bias [89, 90] between the training and testing sets to some
extent, when 𝒖 (𝑰 ) in Eq. 7 is interpreted as a measure of data bias.
This is an interesting topic for further study in the future.

4.4 Ablation Study
SpectralWavelength Embedding.Asmentioned above, by explic-
itly encoding the spectral wavelength 𝜆s, the spectral correlation is
embedded to assist the decoder reconstruction. One deduction is
that when we randomly reorder the spectral bands, i.e., shuffling
the original mapping from wavelengths to corresponding bands,
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Table 1: Quantitative performance of classification. ♣ rep-
resents the results trained with compressed HSI without
ground truth. CR denotes compression ratio. The best re-
sults are highlighted in bold.

Datasets Methods CR OA (%) AA (%) 𝜅

IndianP
SF ×1 81.76 87.81 0.7919

SF ♣
×28

79.15 84.27 0.7633
Ours ♣ 87.03 90.99 0.8519

PaviaU

SF ×1 91.07 90.20 0.8805

SF ♣
×109

86.29 87.89 0.8203
Ours ♣ 88.93 88.96 0.8529

the permutation of spectra would be disturbed, thereby affecting
the reconstruction results of HINER. The case 1 in Table 2 confirms
this deduction, in which our performance suffers from the shuf-
fle operation compared to the default configuration. However, as
a comparison, HNeRV is immune from the band shuffle without
any performance loss, indicating that content embeddings fail to
capture the inter-band correlation.

In addition, we also examine the effectiveness of the explicit
encoder by case 2 in Table 2. We solely remove the encoder E so
that the input HSI is fully represented by the decoder with the fixed
position encoding as in NeRV. As observed, such a pattern greatly
decreases the coding efficiency, which illustrates the effectiveness
of our explicit encoder in learning spectral wavelength embeddings
for the decoder.

Table 2: Ablations on spectral wavelength embedding.

w/o shuffle w/ E Indian PaviaU

HNeRV
case 1 % ! 44.33 43.66
default ! ! 44.33 43.66

HINER
case 1 % ! 45.50 46.52
case 2 ! % 45.55 46.67
default ! ! 46.03 47.17

Embedding Size. As mentioned in Sec. 3.1, the consumed bi-
trate of wavelength embeddings 𝜃 (𝒆) and the decoder parameter
𝜃 (D) comprise the overall compressed bitrate. Given a certain rate
constraint, it is necessary to make a trade-off between 𝜃 (𝒆) and
𝜃 (D) for optimal compression efficiency. In Table 3, we evaluate
the impact of embedding size on the reconstruction quality under
a fixed total size of 0.5MB with 150 training epochs. We use size
of ℎ𝑒𝑖𝑔ℎ𝑡 ×𝑤𝑖𝑑𝑡ℎ × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 to denote a certain band embedding,
thereby changing 𝜃 (𝒆). It is suggested that the embedding size of
6 × 3 × 16 with only 5% bitrate consumption is the optimal choice.

Content AngleMapper. Table 4 presents a quantitative compar-
ison under different loss functions. Introducing global supervision
with CAM besides pixel-wise L1 loss yields improved HSI recon-
struction quality. Furthermore, our proposed CAM demonstrates

Table 3: Ablations on embedding size.

Embedding Size Embedding + Decoder PSNR

12 × 6 × 16 0.12 + 0.37 MB 42.16 dB
6 × 3 × 32 0.06 + 0.43 MB 42.58 dB
6 × 3 × 16 0.03 + 0.47 MB 43.03 dB
6 × 3 × 8 0.02 + 0.48 MB 42.82 dB
4 × 2 × 16 0.02 + 0.48 MB 42.6 dB

superior performance compared to the commonly used SSIM, indi-
cating that CAM is more suitable for HSI reconstruction.

Table 4: Ablation on the loss function.

0.5M 1M 2M

L1 43.78 44.66 45.97
L1+SSIM 43.75 44.82 46.26
L1+CAM 44.14 45.55 47.85

Classification. Table 5 illustrates the gradual transformation
from using the original SF to our proposed method dedicated for
compressed HSI. By adjusting the compressed reconstruction to
adapt to classification task through ASW, and improving the gen-
eralization of classification model with augmented compressed
HSI samples through ISI, we can achieve considerable accuracy
improvement under high compression ratio.

Table 5: Ablation on proposed classification.

ASW ISI OA (%) AA (%) 𝜅

case 1 (SF) % % 79.15 84.27 0.7633
case 2 ! % 84.75 89.88 0.8268

case 3 (Ours) ! ! 87.03 90.99 0.8519

5 CONCLUSION
In this paper, we propose HINER, a novel neural representation
for HSI. By explicitly embedding spectral wavelengths and intro-
ducing global CAM supervision, HINER effectively exploits cor-
relation within and across spectral bands in HSI. Simultaneously,
we thoroughly consider the degradation of downstream classifica-
tion task induced by lossy compression. Through using ASW for
classification-oriented reconstruction and ISI for data augmenta-
tion in training classification model, we effectively mitigate the
task degradation. Experimental results demonstrate notable im-
provements in compression efficiency, model convergence, and
classification accuracy compared to previous explorations. How-
ever, there is still plenty of room to improve our methodology. For
instance, it falls short of the latest VVC in certain datasets, and still
requires a few labels to supervise the classification model. These
encourage us to pursue a more compact representation of HSIs and
explore strategies involving soft label supervision in future work.
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