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Abstract. Based on the outstanding performance of 3D Gaussian splat-
ting, recent multi-view 3D modeling studies have expanded to 4D Gaus-
sians. By jointly learning the temporal axis with 3D Gaussians, it is
possible to reconstruct more realistic and immersive 4D scenes from
multi-view landscape images. However, obtaining multi-view images that
accurately reflect the overall motion in the wild is extremely challeng-
ing. In the dynamic scene video field, pseudo-3D representation meth-
ods combine with Layered Depth Images (LDIs), which allows elements
to render new scenes from different camera perspectives. LDIs, a sim-
plified 3D representation of separating a single image into depth-based
layers, have limitations in reconstructing complex scenes, and artifacts
can occur when continuous elements like fluids are separated into lay-
ers. This paper proposes representing a complete 3D space for dynamic
scene videos by modeling explicit representations, specifically 4D Gaus-
sians, from a single image. The framework is focused on optimizing 3D
Gaussians by generating multi-view images from a single image and cre-
ating 3D motion to optimize 4D Gaussians. A key aspect is consistent
3D motion estimation, which aligns common motion across multi-view
images to bring 3D space motion closer to actual motions. Our model
shows the ability to deliver realistic immersion in the wild landscape im-
ages through various experiments and metrics. Extensive experimental
results are https://cvsp-lab.github.io/3D_MRM_page/.
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1 Introduction

The recently introduced 3D Gaussian splatting [1] provides efficient and high-
quality real-time rendering by depicting scenes in three-dimensional space with
multiple 3D Gaussians through an explicit representation method. This study
has further extended to 4D Gaussians [2–9], incorporating a temporal dimension
into 3D Gaussians to depict the dynamic scene of 3D objects’ structure and
appearance over time. In these research, some researchers [3,5,10] concentrated
on modeling the variations in position, rotation, and scaling of each 3D Gaussian
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Fig. 1: The overview of our pipeline. Our framework optimizes 4D Gaussians to
represent a complete 3D space, including animation, from a single landscape image in
three stages.

over time, to achieve real-time dynamic scene rendering with more complex
motion and efficiency.

However, real-world data, as opposed to data collected in controlled envi-
ronments, is often not fully observed for reconstruction. This limitation poses
challenges in achieving high-quality 3D reconstruction using existing Gaussian-
based methods. Moreover, such data often fails to capture the complex motion
of an entire dynamic scene, which hinders the accurate learning of temporal
variations.

To address this issue, the field of creating realistic 3D videos by adding
parallax to a single image without the constraints of densely captured viewpoints
has been extensively studied. Among these approaches, single-image animation
techniques [11–18] have been developed to infuse dynamic visual effects into
static images, enabling fluid motion. Moreover, 3D photography [19–28] enables
the synthesis of textures and structures in occluded areas, which facilitates the
generation of parallax effects from a single image.

Recently, a field known as dynamic scene video [29, 30] has emerged, which
creates videos with natural animations from large camera motion through the in-
tegration of single image animation and 3D photography. These methods employ
Layered Depth Images (LDIs) [24–28,31], which are generated by segmenting a
single image into multiple layers based on depth, to represent a pseudo 3D space.
However, this approach has limitations in discretely separating most elements,
such as fluids, within a continuous landscape, and thus cannot fully represent
3D space. As a result, distortions can be observed, or the depth perception of
the space may be reduced when the camera moves. Therefore, the achievement
of complete 4D space virtualization through explicit representation, rather than
relying on LDIs, is essential.

In this paper, we introduce a method to represent a complete 3D space for
dynamic scene video by modeling 4D Gaussians from a single image. As illus-
trated in Fig. 1, the proposed framework involves of three step: (1) 3D Gaussians
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Optimization, (2) Consistent 3D Motion Estimation, and (3) 4D Gaussian op-
timization. Initially, to optimize the 3D Gaussians, multi-view RGB images are
generated from a single input image. At this stage, a 3D point cloud is created
by projecting the pixels of the 2D image into a 3D space based on the estimated
depth map. Next, we focus on optimizing 4D Gaussians by adjusting the regions
corresponding to the motion areas of the optimized 3D Gaussians. To accom-
plish this, we estimate multi-view motion maps and then optimize the 3D motion
within the 3D space. Finally, using the proposed 3D motion, we calculate the
changes in the Gaussians’ position, rotation, and scaling over time. This process
allows us to optimize 4D Gaussians that maintain consistency across multiple
views.

The most important part of our framework is optimization of 3D motion.
Our objective is to enable movement of the 3D Gaussians, which necessitates
motion within the 3D space. However, directly estimating motion in 3D space,
such as with 3D point clouds or 3D Gaussians, remains largely unexplored in
existing research and presents a significant challenge due to the lack of dedicated
datasets for this purpose.

As an alternative, we can leverage existing off-the-shelf 2D motion estimation
models [15]. Fortunately, motion estimation for 2D images has been extensively
studied, which make it relatively straightforward to obtain motion information
from multi-view images. Consequently, we can achieve 3D motion by lifting the
estimated 2D motion into the 3D space using a depth map.

However, when the estimated motion is applied to the 3D space, we observed
that motion consistency across the multi-view images is not preserved. This
inconsistency occurs because the motion is estimated independently for each
view. As a result, artifacts in the 4D Gaussians can arise from the movement of
the Gaussians using the current 3D motion, potentially leading to distortions in
the rendered dynamic scene video.

To resolve this issue, we introduce a 3D Motion Refinement Module
(3D-MRM). The purpose of this module is to optimize 3D motion to ensure
consistent motion across multi-view images. Specifically, this module initilizes
arbitrary 3D motion and then refines it by minimizing the L1 loss between the
projected 3D motion and the estimated 2D motion.

Our module also leverages 4D Gaussians to represent a fully 3D space with
animation. Gaussian splatting provides a differentiable volumetric model that
improves depth perception, enhances visual fidelity, and accelerates training
times. Additionally, representing the output as Gaussians in the 3D domain
provides greater versatility compared to the previous limitations of the 2D do-
main. These advantages enable our module to produce realistic and immersive
dynamic scene videos, ensuring high visual quality even in diverse, real-world
landscape images.

2 Method
In this section, we present a outline of our proposed framework, as illustrated
in Fig. 1. The framework comprises three primary stages: 1) Rendering multi-
view RGB images from a single image to optimize 3D Gaussians (Sec. 2.1). 2)



4 F. Author et al.

Estimating 3D motion to animate the 3D Gaussians. Due to inconsistencies in
3D space observed in the 2D motion maps estimated from the multi-view RGB
images, we introduce a 3D Motion Refinement Module (3D-MRM) aimed
at ensuring consistent 3D motion estimation. 3) Animating the 3D Gaussians
with the estimated 3D motion and optimizing the 4D Gaussians (Sec. 2.3).

2.1 Multi-view image Generation for 3D Gaussians Optimization
We use 3D Gaussians to represent a complete 3D space from a single landscape
image and optimize 4D Gaussians [2–9] by incorporating motion into the repre-
sented 3D space. To achieve this, we need to generate multi-view RGB images
from a single image to optimize the 3D Gaussians.

Point Cloud Generation To generate multi-view RGB images, it is necessary
to convert 2D image into 3D space and project it according to various camera
parameters. To achieve this, we first generate a point cloud from a single image.
Specifically, we use ZoeDepth [32] to estimate the depth map D ∈ RH×W×1 for
the input image I ∈ RH×W×3. Subsequently, we unproject from the input RGBD
image [I,D] into 3D space to generate the point cloud P:

P = (V, C) = ϕ2→3([I,D],K,P0), (1)

where the vertices V ∈ RN×3 and vertex colors C ∈ RN×3 represent the point
cloud of the input image. ϕ2→3(·) is the function to lift pixels from the RGBD
image to the point cloud, and K and P0 are the camera intrinsic matrix and the
extrinsic matrix of input image I.

Mulit-view Image Rendering Inspired by prior works [33], we project the
initial point cloud onto a 2D plane image Îi according to specific camera extrinsic
parameters Pi to render multi-view RGB images as follows:

Îi = ϕ3→2(P,K,Pi). (2)

Starting with the center camera view point P0, we continue the rendering process
until all the cameras have been traversed. Through this process, we obtain multi-
view RGB images Îi of the point cloud from different angles.

Optimization with 3D Gaussian Splatting Representing the initial point
cloud as a volumetric representation requires 3D Gaussians optimization. To
achieve this, we initialize each Gaussian by aligning its center with the corre-
sponding coordinate in the point cloud. Using the previously rendered multi-view
RGB images, we learn a set of 3D Gaussian with all attributes to minimize the
photometric loss Lrgb. The photometric loss Lrgb is L1 combined with a D-SSIM.
This process can be expressed as follows::

Lrgb = (1− λ)L1 + λLD-SSIM, (3)

where λ is used to adjust the loss function in the optimization process. To im-
prove the shape of the Gaussian model, continuous optimization is performed
using the rendered multi-view RGB images.
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2.2 Consistent 3D Motions Estimation

To animate still 3D Gaussians, we need to estimate the corresponding motion
field. However, direct 3D motion generation from a point cloud or 3D Gaussians
is very challenging. Fortunately, various research has been conducted in the field
of single-image animation [11–18] which enable the estimation of 2D motion from
a single image. Therefore, we propose a novel approach that leverages existing
off-the-shelf animation models to estimate 2D motion from multi-view images.
Subsequently, we unproject this 2D motion into the 3D domain to estimate 3D
motion.

Multi-view 2D Motion Estimation To estimate motion maps from multi-
view images at a subsequent time point, we adopt existing methods such as those
by Holynski et al. [15], which estimate the motion of fluids like water and clouds
from a single image. We employ an Eulerian flow M to simulate the motion field
which indicates the movement of each pixel value, defining its velocity within
the image, as follows:

Ft→t+1 = M(·), (4)

where Ft→t+1 represents the motion change from time t to time t + 1, and the
Eulerian flow indicates that the amount of motion change between frames moves
at a constant speed and direction over time. We estimate multi-view motion maps
from generated multi-view images using Holynski et al. [15]. This process can be
formulated as follows:

Fi = M(Îi), (5)

where Îi represents a multi-view image. Therefore, Fi denotes the 2D maps of
motion vectors derived from the multi-view image Îi.

However, since the multi-view motion maps Fi are estimated independently
for each multi-view image, there may be a phenomenon known as Motion Am-
biguity . This discrepancy arises when the motion values at identical positions
in 3D space do not align upon unprojection. Consequently, to guarantee uni-
form 3D motion estimation, we introduce a novel module called the 3D Motion
Refinement Module (3D-MRM).

3D Motion Refinement Module As illustrated in Fig. 2, we use the point
cloud P, located at coordinates (x, y, z) as the starting point. Then, we define
the coordinate difference between (x′, y′, z′) and (x, y, z) as the 3D motion, F3D.
This represents the movement, or motion, of the coordinate points in 3D space.
Afterwards, we project the 3D motion information through camera parameters K
and Pi into 2D image space, rendering it as (ui, vi) in the 2D space. Subsequently,
the L1 loss is computed between this projected motion (ui, vi) and the motion
map Fi derived from the 2D motion estimation model. Using the multi-view 2D
motion Fi as the ground truth, we compute the loss in 2D space and optimize the
3D coordinate (x′, y′, z′) accordingly. This process can be formulated as follows:

min
x′,y′,z′

N∑
i=0

∥Fi − ϕ3→2(F3D;K,Pi)∥1 , (6)
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where
F3D = (x′, y′, z′)− (x, y, z), (7)

N represents the total number of multi-view images generated along the cam-
era trajectory. To minimize (6), we updated F3D through Stochastic Gradient
Descent, ultimately obtaining consistent 3D motion in space.

Fig. 2: 3D Motion Refinement Module. To maintain consistency of motion across
multi-views, 3D motion is defined from the point cloud and projected into 2D images
using camera parameters. The L1 loss between the projected motion and the estimated
motion map as the ground truth is computed, minimizing the sum of losses for multi-
view to optimize the 3D motion.

2.3 4D Gaussians Optimization

Recent studies have extended the application of 3D Gaussian models to 4D
Gaussians, which allows for the representation of 3D structures and their changes
over time [2–9]. Inspired by prior work [10], we focused on simply modeling the
changes in position, rotation, and scaling of each 3D Gaussian over time through
HexPlane and tiny Multi-Layer Perceptron (MLP).

To predict the deformation of 3D Gaussians specifically, we introduce a
Spatial-Temporal Structure Encoder. This enables the effective modeling of 3D
Gaussian features using a multi-resolution HexPlane and a tiny MLP. Subse-
quently, through a multi-head Gaussian deformation decoder, we calculate the
deformation of position, rotation, and scaling (∆x, ∆r, ∆s), representing each
as follows:

(x′, r′, s′) = (x+∆x, r+∆r, s+∆s), (8)

where x, r, s are initial position, rotation, and scale, respectively.
The deformations are designed to prevent distortion in the estimated 4D

Gaussians. Therefore, we jointly train the first frame’s multi-view images Îi
obtained earlier and the 2D animation results of the input image to estimate
the remaining deformations. For this purpose, we draw inspiration from prior
research [17, 18] and utilize a video generation model to obtain the animation.
In particular, they utilize the Eulerian flow field, which represents changes in
motion over time moving at a constant speed and direction, to create realistic
animated looping videos for fluids, as demonstrated by Holynski et al. [15].
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Fig. 3: Qualitative Results. (a) 3D Cinemagraphy [29], (b) Make-It-4D [30], and (c)
proposed method.

3 Experiments

3.1 Experimental Setup

Baseline Model To evaluate the effectiveness of our approach in dynamic scene
videos, we compared it with two state-of-the-art models: 3D-Cinemagraphy [29]
and Make-It-4D [30]. Both models utilizes LDIs for 3D representation and jointly
produce animations to apply the parallax effect in realistic dynamic scene video.

Unlike previous studies that limit output to 2D images, our model generates
3D Gaussian forms, which are projected to 2D based on camera trajectories for
result comparison.

Implementation Details During multi-view image generation, we employ
ZoeDepth [32] for depth estimation. To estimate flow from a single image we
utilize Holynski et al. [15] and the pretrained single image animation model
from SLR-SFS [17]. Our 3D motion optimization module is trained for about
200 iterations with a batch size 105 using the SGD Optimizer. We set the initial
learning rate at 0.5 and then decaying exponentially. We conduct all experiments
on a single NVIDIA GeForce RTX 3090 GPU.

3.2 Quantitative Results

Following [29], we evaluated our method and the baselines using the valida-
tion set from Holynski et al. [15]. For evaluation, we rendered the ground truth
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Table 1: Quantitative Results. We compared our method’s metrics against SOTA
methods and applied mask to assess the animated area.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ M.PSNR ↑ M.SSIM ↑ M.LPIPS ↓

3D Cinemagraphy [29] 17.30 0.83 0.17 23.99 0.95 0.05
Make-it-4D [30] 16.98 0.81 0.20 23.75 0.95 0.05

Ours 19.21 0.85 0.16 24.93 0.96 0.04

videos from novel viewpoints using 4 different camera trajectories from 3D-
Cinemagraphy [29]. In Table 1, demonstrates that our method outperforms other
baselines across all metrics in view generation, which indicates that the gener-
ated views are high-fidelity and closely resemble the ground truth. Additionally,
masked metrics results indicate that the animation quality in motion areas of
the rendered 4D Gaussian videos was realistic and high-fidelity.

3.3 Qualitative Results

We demonstrate the superiority and high generalizability of 3D-MRM across
numerous experiments. We strongly encourage readers to view the video
results on the project page at https://cvsp-lab.github.io/3D_MRM_
page/.

In Fig. 3, we show qualitative comparison results of our method against
other baseline models, utilizing single image from real-world environments. The
process of separating the input image into LDIs in 3D-Cinemagraphy [29] and
Make-It-4D [30] yields artifacts in animated regions and fails to deliver natural
motion, which reduces realism and visual quality.

Furthermore, due to inadequate separation between layers, objects may ap-
pear fragmented or display ghosting effects, where they seem to leave residual
afterimages. In contrast, our proposed model accurately represents a complete
3D space with animations, resulting in fewer visual artifacts and enhanced ren-
dering quality from multiple camera perspectives.

4 Conclusion
Our method efficiently obtains consistent 3D motion from multiple views by
using a 2D motion estimation model without directly generating motion within
the 3D space. The optimized 4D Gaussians serve as an explicit representation
method, allowing users to utilize the output in the 3D domain in various ways.
Additionally, our method applies well to various images, including landscape
images with many objects and complex depth variations.

Our method generates consistent 3D motion from the estimated 2D motion
information. However, when the 2D motion itself is unnatural, the 4D Gaussian
reconstructs unnatural motion, e.g. certain regions are incorrectly recognized as
static. As we are the first to generate dynamic scene videos using the volumetric
representation of Gaussian splatting, we focused on generating 3D motion based
on independently estimated 2D motion. Estimating complex motion in 2D will
be left for future work.

https://cvsp-lab.github.io/3D_MRM_page/
https://cvsp-lab.github.io/3D_MRM_page/
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