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Abstract
Predictive models are often introduced to
decision-making tasks under the rationale that
they improve performance over an existing
decision-making policy. However, it is challeng-
ing to compare predictive performance against an
existing decision-making policy that is generally
under-specified and dependent on unobservable
factors. These sources of uncertainty are often ad-
dressed in practice by making strong assumptions
about the data-generating mechanism. In this
work, we propose a method to compare the pre-
dictive performance of decision policies under a
variety of modern identification approaches from
the causal inference and off-policy evaluation lit-
eratures (e.g., instrumental variable, marginal sen-
sitivity model, proximal variable). Key to our
method is the insight that there are regions of un-
certainty that we can safely ignore in the policy
comparison. We develop a practical approach for
finite-sample estimation of regret intervals under
no assumptions on the parametric form of the
status quo policy. We verify our framework theo-
retically and via synthetic data experiments. We
conclude with a real-world application using our
framework to support a pre-deployment evalua-
tion of a proposed modification to a healthcare
enrollment policy.

1. Introduction
Predictive models are often introduced under the rationale
that they improve performance over an existing decision-
making policy (Grove et al., 2000). For example, models
have been developed with the goal of improving the ac-
curacy of human decisions in domains such as healthcare,
criminal justice, and education (Baker & Hawn, 2021; Ram-
bachan et al., 2021). Given the high-stakes nature of these
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Figure 1. Illustration of uncertainty in comparing two policies in
a toy setting with X ∈ R2. Points are labelled by their outcome:
positive (+), negative (-) or unknown (?). Ovals denote the selection
region of a policy. Points that neither policy selects (denoted by
grey) are irrelevant to the comparison. Our method leverages this
to reduce policy comparison uncertainty.

domains, regulatory frameworks have called for organiza-
tions to provide explicit comparisons of predictive models
against the status quo they are intended to replace (Wyden;
Johnson & Zhang, 2022). For example, consider two com-
mon policy comparison settings of real-world significance.

Example 1.1 (Human vs algorithm decisions). Let the status
quo policy consist of human-only decisions (e.g., pre-trial
release decisions (Kleinberg et al., 2018), medical testing de-
cisions (Mullainathan & Obermeyer, 2019)) made using co-
variates and unobserved contextual information. We would
like to evaluate whether a model recommending actions by
thresholding risk predictions would constitute an improve-
ment over the current human-only policy (e.g., Rambachan
et al. (2021); Chouldechova et al. (2018)).

Example 1.2 (Human+algorithm vs algorithm decisions).
Let the status quo policy consist of humans making deci-
sions with the support of a predictive model, covariates,
and unobserved contextual information. We would like to
assess whether decisions made using the predictive model
alone would yield a performance improvement over the
human-algorithm combination (e.g., Cheng et al. (2022)).
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Both of these examples can be formalized as confounded
off-policy evaluation in the contextual bandits setting (Jung
et al., 2020; Swaminathan & Joachims, 2015; Tennenholtz
et al., 2021; Rambachan et al., 2022). Given observational
data collected under a confounded status quo policy, our
goal is to compare predictive performance against an al-
ternative policy which would assign different actions. A
common strategy for off-policy evaluation under confound-
ing involves partial identification of policy performance
within an uncertainty interval (Kallus & Zhou, 2021; Ram-
bachan et al., 2021; 2022; Pu & Zhang, 2021; Zhang et al.,
2021). Yet constructing informative performance intervals
is challenging because it often requires imposing untestable
assumptions on the structure and magnitude of unmeasured
confounders impacting the status quo policy.

In this work, we develop a novel partial identification
method which reduces uncertainty in policy performance
comparisons by isolating confounding-related uncertainty
in the disagreement region of the action space (Figure 1).
Our uncertainty cancellation approach yields tighter re-
gret intervals than existing frameworks designed for non-
comparative performance evaluations (Rambachan et al.,
2022; Namkoong et al., 2020), which account for redun-
dant uncertainty in the agreement region of the action space.
Our simple approach operates by (1) decomposing policy
performance measures into sets of identified and partially
identified comparison statistics, then (2) cancelling common
partially identified terms in the regret estimand.

We show that a diverse set of causal assumptions studied
in prior off-policy evaluation literature imply uncertainty
sets over partially identified comparison statistics. As a
result, while existing off-policy evaluation frameworks are
often tied to a fixed causal assumption (e.g., the marginal
sensitivity model (Tan, 2006)) that may be unjustified in
some contexts, ours is interoperable with a broad family of
modern identification strategies (e.g., Rosenbaum’s Γ model
(Namkoong et al., 2020; Zhang et al., 2021), instrumental
variable (Lakkaraju et al., 2017; Kleinberg et al., 2018),
proximal variable (Ghassami et al., 2023), or the marginal
sensitivity model (MSM) (Kallus & Zhou, 2021)).

We propose a flexible plug-in algorithm for finite sample es-
timation of regret bounds under no parametric assumptions
on the data-generating policy. While this procedure inherits
slow non-parametric convergence rates of regression func-
tions used to estimate bounds on comparison statistics, we
also show how to construct assumption-tailored doubly ro-
bust estimators which attain fast root-n convergence rates
under no parametric assumptions. We conduct synthetic
experiments verifying the coverage of our regret intervals.
We conclude by illustrating how our framework can be
used to support a pre-deployment evaluation of a proposed
modification to a healthcare enrollment policy (Obermeyer

et al., 2019). Our results demonstrate that, in some cases,
our improved regret interval supports more conclusive pre-
deployment assessments of decision policies than would be
possible via existing off-policy evaluation approaches.

We make the following main contributions:

• We formulate the problem of comparative predictive
performance evaluations for decision making policies
under unmeasured confounding (§ 3).

• We propose a novel partial identification technique
that yields informative bounds on predictive perfor-
mance differences by isolating comparison-relevant
uncertainty (§ 4). Our technique is interoperable with a
range of modern identification approaches from causal
inference and off-policy evaluation literature (§ 5).

• We develop flexible methods for finite sample estima-
tion of regret bounds under no parametric assumptions
on the confounded status quo policy (§ 6).

• We validate our framework theoretically and via syn-
thetic data experiments (§ 7). We demonstrate how our
framework can support a pre-deployment evaluation
of a proposed healthcare enrollment policy (§ 8). We
present all proofs in the Appendix.1

2. Related Work
Off-policy evaluation (OPE) is a widely studied problem
in reinforcement learning (Uehara et al., 2022; Jiang & Li,
2016; Precup, 2000; Namkoong et al., 2020; Kallus & Zhou,
2020), contextual bandits (Si et al., 2020; Tennenholtz et al.,
2021; Swaminathan & Joachims, 2015; Xu et al., 2021;
Dudık et al., 2014), and econometrics (Kitagawa & Tetenov,
2018; Huber, 2021) literature. We study the confounded
offline contextual bandits setting (Jung et al., 2020; Swami-
nathan & Joachims, 2015; Tennenholtz et al., 2021), in
which observational data is collected under a behavior pol-
icy π0(Xi, Ui) which acts on covariatesXi and unmeasured
confounders Ui.

Existing OPE frameworks typically estimate the value func-
tion V (π) = E[Y (π(X))] of a new policy π(Xi) via ob-
servational data (Kallus & Zhou, 2020; Namkoong et al.,
2020; Zhang et al., 2021; Uehara et al., 2022; Si et al.,
2020; Kallus & Zhou, 2020; Hatt et al., 2022; Ek et al.,
2023; Tennenholtz et al., 2021; Ishikawa & He, 2023).2 In
this work, we instead target predictive performance mea-
sures (e.g., Accuracy, TNR, PPV), which are often of in-
terest during policy evaluation of algorithmic risk assess-
ments. While OPE of predictive performance measures
introduces estimand-specific challenges (i.e., conditioning

1All code for experiments is publicly available here.
2Work in the confounded offline setting typically studies up-

dated policies that only observe covariates. When π(Xi) also
observes Ui regret intervals tend to be vacuous.
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on a partially-observed potential outcome), approaches de-
veloped for OPE of value functions are also applicable in the
algorithmic decision-making context (e.g., doubly robust
estimation, reweighting).3

In particular, Rambachan et al. (2022) develop a partial
identification framework for robust learning and evaluation
of algorithmic risk assessments under confounding. This
framework leverages doubly-robust approaches for OPE of
predictive performance measures. One natural strategy for
extending this framework to the policy comparison setting
involves computing bounds on V (π) and V (π0) indepen-
dently before computing the regret interval by taking a dif-
ference. However, we show that this approach yields an
overly conservative regret interval by introducing redundant
uncertainty in the agreement region of the policy action
space. We introduce an alternative δ-regret interval, which
we show yields more informative bounds than this baseline
approach. Moreover, we extend the Mean Outcome Sensitiv-
ity Model (MOSM) introduced by Rambachan et al. (2022)
to develop uncertainty sets around partially identified pol-
icy comparison statistics which are consistent with a range
of modern causal assumptions (e.g., instrumental variable,
MSM, Rosenbaum’s Γ sensitivity model).

Our work also builds upon prior literature studying pol-
icy learning and selection under confounding (Zhang et al.,
2021; Konyushova et al., 2021; Yang et al., 2022; Kuzborskij
et al., 2021; Zhang et al., 2021; Kallus & Zhou, 2021; 2018;
Hatt et al., 2022; Ek et al., 2023; Gao & Yin, 2023; Balachan-
dar et al., 2023). Zhang et al. (2021) develop a framework
for ranking individualized treatment policies under Rosen-
baum’s Γ sensitivity model. Namkoong et al. (2020) also
use Rosenbaum’s Γ sensitivity model to partially identify
V (π) in the sequential setting. Kallus & Zhou (2021; 2018)
develop an approach for learning minimax optimal decision-
policies under the MSM. In principle, confounding-robust
policy learning frameworks such as these can also be used
to recover δ-regret intervals against the confounded data-
generating policy (Hatt et al., 2022; Ek et al., 2023; Gao &
Yin, 2023). However, these techniques (1) target the mean
potential outcome rather than predictive performance mea-
sures, and (2) are tied to a fixed causal assumption which
may not be applicable in all contexts. In contrast, our frame-
work is interoperable with a range of assumptions (e.g.,
instrumental variable, MSM, proximal variable) studied in
prior OPE literature.

Finally, our work relates to literature studying compari-
son of human versus algorithmic decision-making policies.

3In the algorithmic decision-making context, the term selective
labels is often used to describe a setting in which a potential out-
come is only observed under one of the possible actions (Lakkaraju
et al., 2017; Wei, 2021; Coston et al., 2021; De-Arteaga et al.,
2018).

Kleinberg et al. (2018) develop a framework for comparing
human decisions and algorithmic predictions under selec-
tive labels and unobservables. The contraction technique
underpinning this approach compares the failure rate of
judicial decisions against a predictive model under an as-
sumption that judges have heterogeneous selection rates
(Lakkaraju et al., 2017). Later developments formalize this
approach into an instrumental variable framework (Chen
et al., 2023; Rambachan et al., 2021; 2022). Rambachan
et al. (2021) develop a framework for identifying system-
atic prediction mistakes in historical human decisions. This
framework enables utility-based comparisons of human ver-
sus algorithmic decision-making policies under varying sets
of econometric assumptions. Most recently, Ben-Michael
et al. (2024) devise an experimental framework for evalu-
ating human+algorithm hybrid workflows against the qual-
ity of decisions that a human or algorithm would make
alone. This framework supports post-deployment policy
comparisons following randomized assignment to a treat-
ment (algorithmic recommendation) or control (no algorith-
mic recommendation) condition. In contrast, our framework
is designed to support pre-deployment policy comparisons
given observational data collected under a status quo policy.

3. Preliminaries
Let π0 : X×U → A be a status quo decision-making policy
assigning binary actions given measured covariates X ∈ X
and unmeasured confounders U ∈ U . Let π : X → A
be a proposed policy that assigns binary actions only via
covariates.4 For example, in a medical testing context, π0
is an existing (e.g., physician based) testing policy, while π
is a proposed algorithmic policy. Let Dπ0 , Tπ be random
variables indicating actions selected under the status quo
and proposed policies, respectively.5 Let Y (1) ∈ Y be the
outcome of interest to the policy comparison. This is the
potential outcome which would be observed given a positive
decision (Dπ0 = 1) selected under the status quo policy
(Rubin, 2005). For example, Y (1) denotes the disease status
of a patient, or repayment if a lendee is granted a loan. Let
Y ∈ Y be the binary outcome observed in observational
data. In our selective labels setting (Lakkaraju et al., 2017),
Y is only observed when an instance received a positive
decision (Dπ0 = 1) under π0. We make the following
standard consistency assumption on Y (Rubin, 2005).

Assumption 3.1 (Consistency). Dπ0 = 1 =⇒ Y = Y (1).

For example, consistency would be violated if the testing
decision for one patient impacts the disease status of another
(Hudgens & Halloran, 2008). Additionally, we assume that

4Our framework is compatible with new policies which are
stochastic and deterministic. However we assume that π is known.

5We sometimes omit policy superscripts over random variables
to ease notation.
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each instance has some probability of both decisions under
the status quo policy.

Assumption 3.2 (Positivity). p(Dπ0 = a | X = x, U =
u) > 0, ∀a ∈ A, x ∈ X , u ∈ U .

3.1. Problem Formulation

Given the target distribution (X,U,Dπ0 , Tπ, Y (1), Y ) ∼
p∗(·), our goal is to evaluate the regret R∗(π, π0;m) =
m∗(π) − m∗(π0), where m∗ : A × Y → R+ is a pol-
icy performance measure computed with respect to Y (1).
We study the following performance measures, which are
analogously defined for the baseline policy.

Predictive performance: Let m∗
y(π) = p(Tπ = 1 |

Y (1) = y) be the positive (y = 1) and negative (y = 0)
class predictive performance.6 For example, a positive false
positive rate regret m∗

y=0(π) − m∗
y=0(π0) > 0 indicates

that the proposed policy recommends tests for healthy pa-
tients more frequently than the status quo. Similarly, let
m∗
a(π) = E[Y (1) = a | Tπ = a] be the positive (a = 1)

and negative (a = 0) predictive value of π.

Utility: Let ua,y ∈ R+ be the utility of outcome y under
action a. We let

m∗
u(π) = E

[∑
a,y

uay · I{Aπ = a, Y (1) = y}

]

be the expected utility of π.7 A positive utility regret
m∗
u(π) − m∗

u(π0) > 0 indicates that the updated policy
has an overall welfare benefit in comparison to the status
quo (Rambachan et al., 2021). For example, this measure
reflects settings in which turning away sick patients incurs
lower utility than testing healthy ones (u01 << u10) as well
as accuracy (u11 = u00 = 1, u10 = u01 = 0).

Because of the selective labels problem, the policy regret
is partially identified within the interval R∗(π, π0;m) ∈
[R(π, π0;m), R(π, π0;m)]. Our goal in this work is to re-
cover the most informative regret interval possible given ob-
servational data O = {(Xi, T

π
i , D

π0
i , Yi) : i = 1, ..., n} ∼

p(X,Dπ0 , Tπ, Y ) generated under the status-quo policy.

3.2. Partial Identification of Policy Performance

To tightly characterize policy performance differences, we
introduce notation that enables us to isolate confounding-
related uncertainty in performance measures. We de-

6While our definition of m∗
y(π) assumes that Tπ = 1 (i.e,

the TPR and FPR) the TNR (y = 0) and FNR (y = 1) can be
recovered by taking 1−R∗(π, π0;my).

7We model utilities of binary classification outcomes rather
than the vector-valued potential outcome Y (a) ∈ {0, 1}|A| stud-
ied in the standard off policy evaluation setup.

compose performance measures into a set of sufficient
v-statistics v = {vy(t, d) : ∀y, t, d}, where each term
vy(t, d) = p(Tπ = t,Dπ0 = d, Y (1) = y) is the joint
probability of policy actions and the potential outcome.

The subset v1 = {vy(t, 1) : ∀y, t} contains all v-statistics
known from observational data. By consistency (3.1), each
term in v1 is given by

p(T = t,D = 1, Y (1) = 1) = p(T = t,D = 1, Y = 1).

Similarly, v0 = {vy(t, 0) : ∀y, t} contains all partially iden-
tified v-statistics. Each term in v0 is bounded in the interval
vy(t, 0) ∈ [0, p(T = t,D = 0)] because the potential out-
come is unobserved when D = 0. More generally, we let
vy(t, 0) ∈ [vy(t, 0), vy(t, 0)] be bounds on partially iden-
tified v-statistics. We let v∗

0 be the true value of partially
identified terms under the target distribution and let

V(p) =

{
v0 :

∑
y

vy(t, 0) = p(T = t,D = 0), ∀t

}
be an uncertainty set of feasible values consistent with the
observed data distribution. We can bound policy perfor-
mance measures over this uncertainty set via

m(π0;V) = min
v0∈V(p)

m(v0,v1;π0),

m(π0;V) = max
v0∈V(p)

m(v0,v1;π0),

where m(v∗
0,v1;π0) is a v-statistic decomposition of

m∗(π0). In the following section, we show that this re-
duction to a set of common sufficient statistics enables un-
certainty cancellation when comparing across policies.

4. Regret Bound Identification
We now introduce our novel approach for comparing poli-
cies under confounding. Our approach yields informative
regret intervals by eliminating redundant uncertainty that
does not contribute to differential policy performance. We
first focus on asymptotic performance bounds, and provide
finite-sample analyses in Section 6.

A baseline approach for bounding regret involves partially
identifying the performance of each policy individually, and
then taking a difference across policy-specific bounds. We
refer to this as the baseline regret interval.
Definition 4.1 (Baseline regret interval). The baseline regret
interval over V(p) has lower and upper endpoints:

R(π, π0;m,V) = m(π;V)−m(π0;V),
R(π, π0;m,V) = m(π;V)−m(π0;V).

In contrast, our proposed approach directly bounds the dif-
ference in the oracle regret δm(v∗

0,v1) = m(v∗
0,v1;π) −

m(v∗
0,v1;π0).
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Definition 4.2 (δ-regret interval). The δ-regret interval over
V(p) has lower and upper endpoints:

Rδ(π, π0;m,V) = min
v0∈V(p)

δm(v0,v1),

Rδ(π, π0;m,V) = max
v0∈V(p)

δm(v0,v1).

The δ-regret interval yields tighter regret bounds by eliminat-
ing redundant uncertainty irrelevant to policy comparison.
For example, consider the accuracy regret decomposition

δu(v
∗
0,v1) =

∑
y

vy(y, 1− y)− vy(1− y, y).

Because v0(0, 0) ∈ v0 cancels when taking a difference
across polices, this term does not contribute uncertainty to
the δ-regret interval, as it would with the baseline inter-
val.8 We now provide a theoretical result characterizing
the improvement offered by the δ-interval more generally.
We let Iδ(m,V) = Rδ(π, π0;m,V)−Rδ(π, π0;m,V) and
I(m,V) = R(π, π0;m,V)−R(π, π0;m,V) be the length
of the δ-regret and baseline regret intervals, respectively.
Theorem 4.3 (Regret separation). Let ∆(m,V) =
I(m,V) − Iδ(m,V). Then the δ-regret interval offers the
following improvement over the baseline regret interval

∆(my,V) ≥
2α · vy(1, 1)

(γy)
2

, ∆(ma=1,V) = 0,

∆(mu,V) ≥ 2α · (u00 + u01),

∆(ma=0,V) ≥
2α

max{ψ0(π), ψ0(π0)}
,

where α = v0(0, 0) − v0(0, 0), ψ0(π) = p(Aπ = 0), and
γy =

∑
a

∑
a′ vy(a, a

′).

Observe that the improvement offered by the δ-regret inter-
val is proportional to the magnitude of uncertainty in the
cancellation term α = v0(0, 0) − v0(0, 0). Therefore, our
approach offers the largest benefit under a high degree of
uncertainty around partially identified v-statistics.

Because regret measures inherit a monotonic dependence
on v-statistics, we can compute closed form analytic
bounds by maximizing and minimizing regret measures
over uncertainty intervals around partially identified terms
[vy(t, 0), vy(t, 0)]. We provide δ-regret and baseline regret
intervals for policy performance measures in Appendix A.

5. Mapping Causal Assumptions to
Informative Regret Bounds

The regret interval we recover without imposing additional
causal assumptions on the data generating policy tends to

8We provide additional intuition for the benefits of our uncer-
tainty cancellation approach in Appendix E.
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uncertainty set Regret interval

A B C

Figure 2. Flow of assumptions in our framework. (A) Traditional
causal assumptions imply pointwise bounding functions on the
unobserved outcome (Appendix B); (B) Pointwise bounding func-
tions imply constrained uncertainty sets (Lemma 5.2); (C) Con-
strained uncertainty sets imply policy regret bounds (Section 4).

be uninformative. Therefore, we now introduce a pointwise
bounding functions assumption which we use to tighten
regret intervals by shrinking the uncertainty set around
partially-identified v-statistics. We show that this assump-
tion is implied by a range of causal assumptions studied
in prior OPE literature (e.g., MSM, Rosenbaum’s Γ, IV)
in Appendix B. Thus, our δ-regret interval yields tighter
uncertainty quantification than the baseline interval for any
causal assumption implying pointwise bounding functions
(Figure 2).

Assumption 5.1 (Pointwise bounding functions). Let τ , τ :
X → [0, 1] be a pair of bounding functions satisfying

τ(x) ≤ E[Y (1) | D = 0, X = x] ≤ τ(x), ∀x ∈ X.

Intuitively, this assumption requires that each individual
screened out under the status quo policy has risk which is
bounded by [τ(x), τ(x)]. Rambachan et al. (2022) show
that a variant of this assumption is implied by the IV frame-
work, the MSM, and Rosenbaum’s Γ sensitivity model.9

Next, we show that bounding functions can be used to con-
struct intervals on partially identified v-statistics.

Lemma 5.2 (Assumption mapping). Let τ , τ : X → [0, 1]
be a pair of bounding functions satisfying Assumption 5.1.
Then partially identified v-statistics are bounded by

E[τ(x) ·e0(x) ·πt(x)] ≤ v1(t, 0) ≤ E[τ(x) ·e0(x) ·πt(x)],

where ed(x) = p(D = d | X = x) and πt(x) = p(T = t |
X = x).

Lemma 5.2 provides a convenient approach for bounding v∗
0

because, given a pair of bounding functions, it only requires
knowledge of nominal (i.e., confounded) status quo policy
probabilities ed(x) and the new policy πt(x). Nominal
probabilities and bounding functions can be learned from
observational data, while πt(x) is known in advance by
model developers. Our goal is to tighten regret intervals

9Our pointwise bounding function assumption is also related to
the notion of “bounded outcomes” studied by Manski (1990) and
“natural outcomes” studied by Pearl (2009).
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Algorithm 1 Plug-in regret bound estimator
Input: Data O = {(Xi, D

π0
i , T

π
i , Yi)}ni=1 ∼ p, Folds K

for k = 1 to K do
Learn η̂k = (ê1,k, τ̂k) using O−k
Estimate H(v̂1,k(t, 0); τ̂) via e.q. (1) using Ok

Construct V̂k(p; τ̂)
Compute R̂δ,k(π, π0;m, V̂k), R̂δ,k(π, π0;m, V̂k)

end for
Set R̂δ(π, π0;m, V̂) = 1

K

∑
k R̂δ,k(π, π0;m, V̂k),

Set R̂δ(π, π0;m, V̂) = 1
K

∑
k R̂δ,k(π, π0;m, V̂k)

by using bounding functions to shrink the uncertainty set
around v∗

0 . Let H(v1(t, 0); τ) = [vy(t, 0), v1(t, 0)] be the
interval implied by Lemma 5.2 and let ρtd = p(T = t,D =
d). We define the constrained uncertainty set over v∗

0 as

V(p; τ) =

vy(t, 0) :
v1(0, 0) ∈ H(v1(0, 0); τ)

v0(0, 0) = ρ00 − v1(0, 0)

v1(1, 0) ∈ H(v1(1, 0); τ)

v0(1, 0) = ρ10 − v1(1, 0)

 .

We only use intervals H(v1(t, 0); τ) for this set definition
because an analogous bound is implied over v0(t, 0) by the
constraint requiring that

∑
y vy(t, 0) = ρt0. We quantify

the size of V(p; τ) via the Lebesgue measure, which is de-
fined as the cartesion product over partially identified inter-
vals λ(V(p; τ)) = |v1(1, 0)−v1(1, 0)||v1(0, 0)−v1(0, 0)|.
We now show that V(p; τ) is the smallest uncertainty set
one could construct based on the observational distribution
and a pair of bounding functions.

Theorem 5.3 (Minimality). V(p; τ) is the minimal uncer-
tainty set—that is, no strict subset of V(p; τ) is consistent
with p(X,D, T, Y ) and user-specified bounding functions.

6. Regret Bound Estimation
In this section, we construct finite sample estimates
of regret intervals using observational data O =
{(Xi, D

π0
i , T

π
i , Yi)}ni=1 ∼ p collected under the status quo

policy. We estimate bounds by applying closed-form ex-
pressions for the δ-regret interval over an estimate of the
uncertainty set V̂(p; τ̂). We can directly compute finite-
sample estimates v̂1 for identified v-statistics by taking a
sample average. As a result, the technical challenge under-
pinning regret bound estimation boils down to estimating the
intervals H(v̂y(t, 0); τ̂) = [v̂y(t, 0), v̂y(t, 0)] around v∗

0 .

6.1. Plug-in Estimator

A direct approach for bound estimation involves learning
η̂ = (ê, τ̂), then estimating H(v̂1(t, 0); τ̂) over a held-out

sample by invoking Lemma 5.2.1011 We assume that π(x)
is known by model developers and thus does not need to be
learned. We split the data into K disjoint folds, where we
denote Ok, O−k, as the sample inside and outside of fold k,
respectively. We then define the plug-in estimator over Ok

as

v̂ =
1

|Ok|
∑
xi∈Ok

π(xi) · ê(xi) · τ̂(xi) (1)

where η̂ is learned over fold O−k.12 We recover regret es-
timates at full data efficiency via a cross-fitting approach
outlined in Algorithm 1. The following result shows consis-
tency of v̂ and characterizes its convergence rate to the true
upper bound v, where we define ∥f∥2 :=

∫
(f(x))2dP (x)

to be the squared L2(O) norm of a function f .

Theorem 6.1. Let f(x) = e(x) · τ(x) and assume ||f̂ −
f || = op(1). Then the plug-in estimator satisfies

v̂−v = OP
(
∥e(x)− ê(x)∥+ ∥τ(x)− τ̂(x)∥

)
+OP

(
1√
n

)
.

Because policy performance measures are linear combina-
tions (m∗

u) or ratios (m∗
a, m∗

y) of v-statistics, this result also
characterizes the convergence rate of the estimated upper
and lower regret bounds. Observe that the convergence rate
of the plug-in estimator inherits the rate of the nuisance func-
tions. As a result, v̂ will tend to converge slowly when using
flexible machine learning methods to fit nuisance functions
under no parametric assumptions.

6.2. Doubly Robust Estimator

Therefore, we propose a doubly robust approach for estimat-
ing v̂ that corrects the bias in the plug-in estimator. Because
doubly robust estimators have an error term which is a prod-
uct of nuisance function errors, they attain fast convergence
rates, even when estimating nuisance functions at slow non-
parametric rates (Kennedy et al., 2023). For example, to
attain n−1/2 rates for the estimator, it is sufficient to esti-
mate nuisance functions at n−1/4, a rate achieved by many
non-parametric machine learning techniques. The form
of the doubly robust estimator depends on the pointwise
bounding functions implied by a causal assumption.

We provide the doubly robust estimator for the commonly
studied MSM. The MSM assumes there is some Λ ≥ 1

10In line with prior literature on CATE estimation (Kennedy,
2023), we call this a plug-in approach because it involves directly
substituting in empirical estimates for the nuisance functions.

11The term “nuisance function” refers to a learned function of
the data which differs from our target quantity of interest.

12We suppress dependence on y, t, d and present analysis of the
upper bound to ease notation. An analogous argument holds for v̂.
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Figure 5. Top: Coverage of accuracy regret interval estimates as a
function of total sample size. Bottom: 95% bootstrap confidence
intervals around upper and lower regret bounds over N = 25 trials.
Solid line indicates the oracle regret.

such that the odds ratio π0(X,U))/(1− π0(X,U)) · (1−
e(X))/e(X) lies within [Λ−1,Λ] (See B.3). We define the
doubly robust estimator over Ok as

v̂DR =
1

|Ok|
∑
xi∈Ok

ϕ(Oi; ê, π, µ̂1) (2)

where ϕ(O; e, π, µ1) = D · Y π(X) · Λ + (T − π(X)) ·
e(X) · µ1(X) · Λ and µ1(x) = E[Y (1) | D = 1, X = x].

Algorithm 1 can be leveraged for doubly-robust estimation
of policy regret bounds by substituting e.q. 2 for estimation
of H(v̂1,k(t, 0); τ̂). We show in Appendix C that this esti-
mator has second order error in nuisance estimation error.

7. Numerical Experiments
We now show numerical experiments comparing decision
policies under a known data-generating mechanism.

Regret interval characterization. We first characterize

the uncertainty reduction offered by the δ-regret interval.
We simulate a range of v-statistic decompositions by ran-
domly sampling v satisfying

∑
y,t,d vy(t, d) = 1 and

v0(t, d) + v1(t, d) = ρtd,∀t, d. This yields a collection
of decompositions corresponding to valid observational
distributions. We compute the analytic improvement in
bounds defined in Theorem 4.3 for each v and plot the re-
sults in Figure 3. We observe a monotone improvement
in bounds as a function of ∆(m,V), with no improvement
when ∆(m,V) = 0 and significant improvement when
∆(m,V) = 0 is large.

Synthetic data experiment. We next validate our frame-
work by simulating data consistent with two common as-
sumptions for off-policy evaluation: the MSM (B.3) and
IV (B.5). We draw v covariates Xi ∼ N (0, Iv), and u
confounders Ui ∼ N (0, Iu), and let Vi = (Xi, Ui). We
parameterize policy, outcome, and instrument probabil-
ity functions with coefficients Wπ0 ∈ Rv+u, Wπ ∈ Rv,
Wµ1 ∈ Rv+u, Wz ∈ Rv×z , respectively, with each drawn
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from a uniform distribution. We sample data from the prob-
ability functions

γ(Xi) := σ′(Xi ×Wz), π(Xi) := σ(Xi ×Wπ)

π0(Vi, Zi) := σ(Vi ×Wπ0
+ β0 · Zi)

µ1(Vi, Zi) := σ(Vi ×Wµ1
+ β1 · Zi)

µ0(Vi, Zi) :=

{
Λ∗ · µ1(Vi),Λ

∗ ∈ U(Λ−1,Λ) (MSM)
σ(Vi ×Wµ0

+ β1 · Zi) (IV)

µ(Vi, Zi) := µ1(Vi, Zi)π1(Vi, Zi) + µ0(Vi, Zi)π0(Vi, Zi)

where σ(x) = 1
1+e−x and σ′(x) is the softmax function. We

use Algorithm 1 with the plug-in estimator to learn estimates
estimates of the δ-regret interval. We compare against the
baseline regret interval by applying bounds provided in
Appendix A over the same V̂(p, τ̂) used to estimate the
δ-regret. See Appendix D for additional setup details.

Figure 4 provides a comparison of the δ-regret interval and
baseline regret interval across five policy performance mea-
sures. In line with our theoretical results, we obtain tighter
bounds from the δ-regret across all policy performance mea-
sures apart from the positive predictive value (PPV). We
show the oracle regret evaluated via Y (1) in black. In Figure
5, we plot coverage of the estimated δ-regret interval evalu-
ated against the true population value, denoted by dashed
lines. The bottom panel shows 95% bootstrap confidence in-
tervals around the true upper and lower δ-regret and baseline
regret intervals. These results show that estimates concen-
trate around the true regret interval as the number of samples
increases. We observe that the baseline interval yields bet-
ter coverage of the oracle regret in small sample settings
because it is more conservative and thus more tolerant to
bias around estimates of the asymptotic interval end points.
Appendix D contains additional experimental results stress-
testing coverage under causal assumption violations.

8. Real-World Application: Comparing
Healthcare Enrollment Policies

We now illustrate how our framework can be used to com-
pare alternative healthcare enrollment policies. In medical
settings, providers routinely screen patients for diseases and
enroll high-risk individuals in preventative care programs.
However, it is challenging to assess the performance im-
provement of a proposed policy because outcomes are only
observed among patients enrolled under the existing policy
(Daysal et al., 2022). Confounding is a challenge in this
setting because physicians often make decisions using un-
observed information (Mullainathan & Obermeyer, 2022).

We leverage data released by Obermeyer et al. (2019) to con-
struct an enrollment policy comparison task. This dataset
contains ≈ 48, 000 records, where each entry consists of
a patient evaluated for enrollment in a high-risk care man-
agement program.13 We let π0 be the historical enrollment
policy consisting of physician decisions informed by an al-
gorithmic risk score and interactions with the patient. We
take π to be the algorithmic policy which makes decisions
by thresholding predictions of patient cost from the clini-
cal decision support tool. The goal in this task is to assess
whether the algorithm-only policy would improve upon the
status quo human+algorithm policy used to collect data. We
detail our setup in Appendix D.0.4.

Results. Because we do not have access to physician identi-
fiers which can be used as an instrument, we leverage the
MSM assumption for identification. We compare the base-
line and δ-regret intervals for the NPV in Figure 6. The
top row shows the population regret, while the bottom rows

13We use a synthetic version of the original dataset, which was
released by Obermeyer et al. (2019) to protect patient confiden-
tiality. This dataset preserves the means and covariances of the
original data.
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show a breakdown across subgroups.14 The δ-regret interval
excludes zero across all subpopulations apart from White
patients under 65. As a result, an analysis conducted via
the δ-regret interval supports an interpretation that the algo-
rithmic policy reduces the NPV in comparison to the status
quo human+algorithm policy.15 Because the baseline re-
gret interval contains zero among all patient populations
except those aged 65 and over, this bounding approach
supports weaker claims regarding the relative perfor-
mance of decision policies.

In Figure 7, we plot the δ-regret and baseline intervals as
a function of the ratio between false positive and false neg-
ative costs. The left hand region of this figure (≈ 10−1)
reflects a setting in which false negatives are ten times more
costly than false positives. This regime is realistic in our
healthcare enrollment scenario when turning a sick patient
away from the program incurs more harm than enrolling
a healthy patient. We observe the greatest improvement
from our approach in the high cost false negative setting
because the v0(0, 0) term which cancels under our approach
is heavily weighted in the expected cost calculation. Be-
cause the δ-regret interval excludes zero in this regime, this
supports an interpretation that the proposed policy has a
higher expected cost than the status quo.

9. Conclusion
In this work, we propose the first framework supporting
predictive performance comparisons of decision-making
policies under confounding. Our approach is intended to
support pre-deployment evaluations of proposed policies
under a flexible set of causal assumptions. Our approach
addresses sources of confounding-related uncertainty which
impact model evaluations and, where possible, reduces this
uncertainty via technically novel partially identification ap-
proaches. Our uncertainty cancellation approach may prove
useful for more tightly characterizing performance differ-
ences under other uncertainty sources, such as missing pro-
tected attributes (Kallus et al., 2022) and measurement error
(Fogliato et al., 2020).

Impact Statement
Our framework is designed to support pre-deployment eval-
uations of proposed decision policies. While our frame-
work is intended to faithfully represent confounding-related
sources of uncertainty impacting decision policy evalua-
tions, it does not speak to broader measurement challenges

14Intervals include 95% confidence intervals estimated around
regret bound endpoints. We omit these from the plot for readability.

15Given the narrow scope of our analyses and limitations of
synthetic data, our findings are not intended to be a conclusive
assessment of the policies evaluated by Obermeyer et al. (2019).

(Guerdan et al., 2023) and ethical questions underpinning
the introduction of an algorithmic system (Coston et al.,
2023; Rittel & Webber, 1973). Given the high-stakes con-
texts in which some policies are deployed (e.g., lending,
healthcare, education), our framework should be applied
carefully as part of a multifaceted impact assessment.
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A. Asymptotic Regret Bounds
In this appendix, we derive δ-regret and baseline regret intervals for policy performance measures. We prove Theorem 4.3 in
§ A.0.5.

A.0.1. δ-REGRET BOUNDS ON UTILITY REGRET.

Lemma A.1 (δu-regret bounds). Let m∗
u(π) be the expected utility of π given utility values uay ≥ 0. Let a′ = 1 − a,

λay = uay − ua′y , and ỹ = I{λ11 > λ10}. Then

δu(v0,v1) =
∑
ay

λay · vy(a, a′)

and for all uncertainty sets V(p; τ), the upper δu-regret bound is given by

Rδ(π, π0;mu,V) = δu(v0,v1), where v0 ∈ argmax
vỹ(1,0)

V(p; τ).

Proof.

m∗
u(π) = E

[∑
t,y

uty · I{Tπ = t, Y (1) = y}

]
=

∑
t,y

uty · E[I{T = t, Y (1) = y}]

=
∑
t,y

uty · p(T = t, Y (1) = y)

=
∑
t,y

uty · (vy(t, 0) + vy(t, 1)).

By the same argument, m∗
u(π0) =

∑
d,y udy · (vy(0, d) + vy(1, d)). Let λay = uay − ua′y and ỹ = I{λ11 > λ10}.

Therefore

δu(v
∗
0,v1) = m∗

u(π)−m∗
u(π0)

=
∑
t,y

uty · (vy(t, 0) + vy(t, 1))−
∑
d,y

udy · (vy(0, d) + vy(1, d))

=
∑
a,y

(uay − ua′y) · vy(a, a′)

=
∑
a,y

λay · vy(a, a′)

Recall that ρtd = v1(t, 0) + v0(t, 0) by the constraint on p(·). Therefore, the regret is bounded within the interval

R∗(π, π0;my) ≤

{∑
y λ0y · vy(0, 1) + λ11 · v1(1, 0) + λ10 · v0(1, 0) λ11 > λ10∑
y λ0y · vy(0, 1) + λ11 · v1(1, 0) + λ10 · v0(1, 0) λ11 ≤ λ10

=
∑
y

λ0y · vy(0, 1) + λ1ỹ · vỹ(1, 0) + λ1,1−ỹ · v1−ỹ(1, 0), where ỹ = I{λ11 > λ10}

The lower regret bound is symmetric.
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A.0.2. δ-REGRET BOUNDS ON POSITIVE AND NEGATIVE CLASS PERFORMANCE

Lemma A.2 (δy regret bounds). Suppose that p(Y (1) = y) > 0. Then Rδ(π, π0;my,V) = δy(v0,v1), where

δy(v0,v1) =
vy(1, 0)− vy(0, 1)

vy(0, 0) + vy(1, 0) + vy(0, 1) + vy(1, 1)
,

v0 =


arg min

vy(0,0)
max
vy(1,0)

V(p; τ), vy(1, 0)− vy(0, 1) ≥ 0

arg max
vy(0,0)

max
vy(1,0)

V(p; τ), vy(1, 0)− vy(0, 1) < 0

Next, we derive δ-regret bounds on my .

Proof.

δ(v∗
0,v1) = m∗

y(π)−m∗
y(π0)

= p(Tπ = 1 | Y (1) = y)− p(Dπ0 = 1 | Y (1) = y)

=
p(T = 1, Y (1) = y)

p(Y (1) = y)
− p(D = 1, Y (1) = y)

p(Y (1) = y)

=
vy(1, 0) + vy(1, 1)

p(Y (1) = y)
− vy(0, 1) + vy(1, 1)

p(Y (1) = y)

=
vy(1, 0)− vy(0, 1)

vy(0, 0) + vy(1, 0) + vy(0, 1) + vy(1, 1)

Therefore,

R∗(π, π0;my) <=


vy(1, 0)− vy(0, 1)

vy(0, 0) + vy(1, 0) + vy(0, 1) + vy(1, 1)
, vy(1, 0)− vy(0, 1) > 0

vy(1, 0)− vy(0, 1)

vy(0, 0) + vy(1, 0) + vy(0, 1) + vy(1, 1)
, vy(1, 0)− vy(01) <= 0

The lower regret bound is symmetric.

Remark A.3. The result above implies bounds on the FPR (y = 0) and TPR (y = 1) regret. Taking
[−Rδ(π, π0;v,my),−Rδ(π, π0;v,my)] recovers bounds on the TNR (y = 0) and FNR (y = 1) regret.
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A.0.3. δ-REGRET BOUNDS ON POSITIVE AND NEGATIVE PREDICTIVE VALUE

Lemma A.4. Let ma(π) = p(Y (1) = a | Aπ = a) be the positive (a = 1) or negative (a = 0) predictive value of π. Let
ρtd = p(T = t,D = d), σ(a) = (1− 2a)(ρ10 − ρ01) and ψa(π) = p(Aπ = a) and assume that (D,T ) ∼ p∗(·) satisfies
p(D = a) · p(T = a) > 0. Then

δa(v0,v1) =
σ(a) · va(a, a) + ψa(π0) · va(a, a′)− ψa(π) · va(a′, a)

ψa(π) · ψa(π0)
.

Additionally, for all constrained uncertainty sets V(p; τ), the upper δa-regret bound is given by

Rδ(π, π0;ma=0,V) = δa=0(v0,v1), where v0 =


arg max

vy(0,0)
min
vy(1,0)

V(p; τ), σ(0) ≥ 0

arg min
vy(0,0)

min
vy(1,0)

V(p; τ), σ(0) < 0
,

Rδ(π, π0;ma=1,V) = δa=1(v0,v1), where v0 ∈ argmax
v1(1,0)

V(p; τ).

We now prove δ-regret bounds for ma.

Proof. Let a′ = 1− a. Then ∀a ∈ {0, 1} we have that

δ(v∗
0, v1) = m∗

a(π)−m∗
a(π0)

= p(Y (1) = a | Tπ = a)− p(Y (1) = a | Dπ0 = a)

=
p(T = a, Y (1) = a)

p(T = a)
− p(D = a, Y (1) = a)

p(D = a)

=
va(a, a

′) + va(a, a)

ρaa + ρaa′
− va(a, a) + va(a

′, a)

ρaa + ρa′a

=
(ρa′a − ρaa′) · va(a, a) + ψa(π0) · va(a, a′)− ψa(π) · va(a′, a)

ψ0(π) · ψ0(π0)

When a = 1, we have that

R∗(π, π0;ma=1) ≤
(ρ01 − ρ10) · v1(1, 1) + ψ1(π0) · v1(1, 0)− ψ1(π) · v1(0, 1)

ψ1(π) · ψ1(π0)

When a = 0, we have two cases.

R∗(π, π0;ma=0) ≤


(ρ10 − ρ01) · v0(0, 0) + ψ0(π0) · v0(0, 1)− ψ0(π) · v0(1, 0)

ψ0(π) · ψ0(π0)
, ρ10 > ρ01

(ρ10 − ρ01) · v0(0, 0) + ψ0(π0) · v0(0, 1)− ψ0(π) · v0(1, 0)
ψ0(π) · ψ0(π0)

, ρ10 ≤ ρ01

The lower regret bound is symmetric.
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A.0.4. BASELINE REGRET BOUNDS

We now provide baseline regret bounds for policy performance measures.

Proposition A.5 (Baseline bounds on mu). Let mu(π) be the expected utility of π. Then the baseline upper bound on regret
is given by

R(π, π0;mu,V) =
∑
y

u0y · (vy(0, 0) + vy(0, 1)− vy(0, 0)− vy(1, 0)) + u1y · (vy(1, 0)− vy(0, 1)),

where the lower bound R(π, π0;mu,V) is symmetric.

Proof. By the same argument provided in the proof of Theorem A.1, we have that

m∗
u(π) =

∑
t,y

uty · (vy(t, 0) + vy(t, 1)), m∗
u(π0) =

∑
d,y

udy · (vy(0, d) + vy(1, d))

This implies

mu(π;V) =
∑
y

u0y · (vy(0, 0) + vy(0, 1)) + u1y · (vy(1, 0) + vy(1, 1))

mu(π0;V) =
∑
y

u0y · (vy(0, 0) + vy(1, 0)) + u1y · (vy(0, 1) + vy(1, 1))

Simplifying yields the result

R(π, π0;mu,V) = mu(π;V)−mu(π0;V)

=
∑
y

u0y · (vy(0, 0) + vy(0, 1)− vy(0, 0)− vy(1, 0)) + u1y · (vy(1, 0)− vy(0, 1))

Proposition A.6 (Baseline bounds on my). Let m∗
y(π) = p(Aπ = 1 | Y (1) = y) be the positive (y = 1) or negative

(y = 0) class predictive performance of π. Then the baseline upper regret bound on my is given by

R(π, π0;my,V) =
(

vy(1, 0) + vy(1, 1)

vy(0, 0) + vy(0, 1) + vy(1, 0) + vy(1, 1)

)
−

(
vy(0, 1) + vy(1, 1)

vy(0, 0) + vy(0, 1) + vy(1, 0) + vy(1, 1)

)
where the lower bound R(π, π0;my,V) is symmetric.

Proof. We have that

m∗
y(π) = p(Tπ = 1 | Y (1) = y) =

p(Tπ = 1, Y (1) = y)

p(Y (1) = y)
=

vy(1, 0) + vy(1, 1)

vy(0, 0) + vy(0, 1) + vy(1, 0) + vy(1, 1)

And similarly,

m∗
y(π0) = p(Dπ0 = 1 | Y (1) = y) =

p(Dπ0 = 1, Y (1) = y)

p(Y (1) = y)
=

vy(0, 1) + vy(1, 1)

vy(0, 0) + vy(0, 1) + vy(1, 0) + vy(1, 1)

Applying the definition of baseline regret yields the result:

R(π, π0;v,my) = my(π;v)−my(π0;v)

=

(
vy(1, 0) + vy(1, 1)

vy(0, 0) + vy(0, 1) + vy(1, 0) + vy(1, 1)

)
−
(

vy(0, 1) + vy(1, 1)

vy(0, 0) + vy(0, 1) + vy(1, 0) + vy(1, 1)

)
The lower bound follows from applying the same decomposition with R(π, π0;v,my) = my(π;v)−my(π0;v).
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Proposition A.7 (Baseline bounds on ma). Let m∗
a(π) = p(Y (1) = a | Aπ = a) be the positive (y = 1) or negative

(y = 0) predictive value of π. Let ψa(π) = p(Aπ = a). Then the baseline regret is upper bounded by

R(π, π0;ma=1,V) =
v1(1, 0) + v1(1, 1)

ψ1(π)
− v1(0, 1) + v1(1, 1)

ψ1(π0)

R(π, π0;ma=0,V) =
v0(0, 0) + v0(0, 1)

ψ0(π)
− v0(0, 0) + v0(1, 0)

ψ0(π0)

where the lower bounds R(π, π0;ma=0,V), R(π, π0;ma=1,V) are symmetric.

Proof. We begin by showing R(π, π0;ma=1,V).

m∗
a=1(π) = p(Y (1) = 1 | T = 1) =

p(Y (1) = 1, T = 1)

p(T = 1)
=
v1(1, 0) + v1(1, 1)

ψ1(π)

m∗
a=1(π0) = p(Y (1) = 1 | D = 1) =

p(Y (1) = 1, D = 1)

p(D = 1)
=
v1(0, 1) + v1(1, 1)

ψ1(π0)

R(π, π0;ma=1,V) = ma=1(π;V)−ma=1(π0;V)

=
v1(1, 0) + v1(1, 1)

ψ1(π)
− v1(0, 1) + v1(1, 1)

ψ1(π0)

The lower bound R(π, π0;ma=1,V) is symmetric. Similarly, for the upper bound on the negative predictive value
R(π, π0;ma=0,V),

m∗
a=0(π) = p(Y (1) = 0 | T = 0) =

p(Y (1) = 0, T = 0)

p(T = 0)
=
v0(0, 0) + v0(0, 1)

ψ0(π)

m∗
a=0(π0) = p(Y (1) = 0 | D = 0) =

p(Y (1) = 0, D = 0)

p(D = 0)
=
v0(0, 0) + v0(1, 0)

ψ0(π0)

R(π, π0;ma=0,V) = ma=0(π;V)−ma=0(π0;V)

=
v0(0, 0) + v0(0, 1)

ψ0(π)
− v0(0, 0) + v0(1, 0)

ψ0(π0)

The lower bound R(π, π0;ma=0,V) is symmetric.
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A.0.5. PROOF OF THEOREM 4.3

Proof. We will bound ∆(m,V) = R(π, π0;m,V)− Rδ(π, π0;m,V). The result over the full interval follows by taking
∆(m,V) = 2 ·∆(m,V) because R(π, π0;m,V) − Rδ(π, π0;m,V) = Rδ(π, π0;m,V) − R(π, π0;m,V). We begin for
showing the result for the positive and negative class predictive performance.

Case 1: v10 > v01.

∆(my,V) = R(π, π0;my,V)−Rδ(π, π0;my,V)

=

(
v11 + v10

v00 + v10 + v01 + v11
− v11 + v01
v00 + v10 + v01 + v11

)
− v10 − v01
v00 + v10 + v01 + v11

=
(v11 + v01) · (v00 − v00)

(v00 + v10 + v01 + v11) · (v00 + v10 + v01 + v11)

≥ α · v11
(v00 + v10 + v01 + v11) · (v00 + v10 + v01 + v11)

=
α · v11
(γ)2

Case 2: v10 ≤ v01.

∆(my,V) = R(π, π0;my,V)−Rδ(π, π0;my,V)

=

(
v11 + v10

v00 + v10 + v01 + v11
− v11 + v01
v00 + v10 + v01 + v11

)
− v10 − v01
v00 + v10 + v01 + v11

=
(v11 + v10) · (v00 − v00)

(v00 + v10 + v01 + v11) · (v00 + v10 + v01 + v11)

≥ α · v11
(γ)2

Next we will bound ∆(ma=0,V). Case 1: ρ10 − ρ11 > 0. Note that ψ0(π) = ρ01 + ρ00 and ψ0(π0) = ρ10 + ρ00. We have
that

∆(ma=0,V) = R(π, π0;ma=0,V)−Rδ(π, π0;ma=0,V)

=

(
v0(0, 0) + v0(0, 1)

ρ01 + ρ00
− v0(0, 0) + v0(1, 0)

ρ10 + ρ00

)
− (ρ10 − ρ01) · v0(0, 0) + (ρ10 + ρ00) · v0(0, 1)− (ρ01 + ρ00) · v0(1, 0)

(ρ01 + ρ00) · (ρ01 + ρ00)

=
(v0(0, 0)− v0(0, 0))

(ρ01 + ρ00)

=
α

ψ0(π)
.

The third equality follows from finding a common denominator and simplifying. Case 2: ρ10 − ρ11 ≤ 0. Following the
same argument, we have that ∆(ma=0,V) = α

ψ0(π0)
. Thus

∆(ma=0,V) ≥ min{ α

ψ0(π)
,

α

ψ0(π0)
} =

α

max{ψ0(π), ψ0(π0)}
.

Next we will bound ∆(mu,V). Let λay = uay − ua′y .

Case 1: λ11 > λ10.

∆(mu,V) = R(π, π0;mu,V)−Rδ(π, π0;mu,V)
= (u00 + u01)(v0(0, 0)− v0(0, 0)) + (u00 + u11)(v0(1, 0)− v0(1, 0))
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Case 2: λ11 ≤ λ10.

∆(mu,V) = R(π, π0;mu,V)−Rδ(π, π0;mu,V)
= (u00 + u01)(v0(0, 0)− v0(0, 0)) + (u10 + u01)(v0(1, 0)− v0(1, 0))

Combining cases yields the result:

∆(mu,V) ≤ (u00 + u01) · (v0(0, 0)− v0(0, 0))

The result that ∆(ma=1,V) = R(π, π0;ma=1,V)−Rδ(π, π0;ma=1,V) = 0 follows directly from plugging in definitions
of baseline upper regret bound and δ regret bound and simplifying.
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B. Assumption Mapping Extensions and Proofs
In this appendix, we discuss additional causal assumptions which imply uncertainty sets over partially-identified v-statistics.
Rosenbaum’s Γ-sensitivity model (Rosenbaum, 2005), the proximal identification framework (Ghassami et al., 2023),
and Manski-style no assumptions bounds (Manski & Pepper, 2000) imply bounding functions τ(·), which can be used to
construct V(p; τ) by invoking Lemma 5.2.

B.1. Rosenbaum’s Γ-Sensitivity Model

Rosenbaum’s Γ-sensitivity analysis model bounds the influence of unobserved confounders on the odds of being treated
versus untreated (Rosenbaum, 1987). Namkoong et al. (2020) leverage a sequential adaptation of this model to partially
identify the value function of a new policy π given confounded off-policy data, while Zhang et al. (2020) leverage this
model to rank individualized treatment rules under confounding.

Assumption B.1 (Γ-sensitivity). For some Γ ≥ 1, (D,T,X,U, Y (1)) ∼ p∗(·) satisfies

Γ−1 ≤ P (D = 1 | X,U = u)

P (D = 0 | X,U = u)

P (D = 0 | X,U = ũ)

P (D = 1 | X,U = ũ)
≤ Γ (3)

for all u, ũ ∈ U and X ∈ X with probability one.

Lemma B.2 (Rambachan et al. (2022)). Suppose that (D,T,X,U, Y (1)) ∼ p∗(·) satisfies Assumption B.1 for some Γ ≥ 1.
Then

Γ−1 · µ1(x) ≤ µ0(x) ≤ Γ · µ1(x), ∀x ∈ X.

This result follows from Proposition 8.2 of Rambachan et al. (2022), which shows that Rosenbaum’s Γ-sensitivity model
implies a marginal sensitivity model in binary outcome settings. Because Rosenbaum’s Γ sensitivity model does not imply
sharp bounds under the MSM, an uncertainty set constructed using τ(x) = Γ−1 ·µ1(x), τ(x) = Γ ·µ1(x) does not guarantee
we recover the tightest regret interval attainable under Assumption B.1.

B.2. Marginal Sensitivity Model

The marginal sensitivity model (MSM) restricts the extent to which unobserved confounders impact the odds of treatment
under the status quo policy (Tan, 2006). In particular, this model holds that a confounder U ∈ Rk exists such that decisions
would be conditionally randomized if we controlled for both X and U . As pointed out by Robins (2002), it suffices to assign
U = Y (1).

Assumption B.3 (Marginal Sensitivity Model). For some Λ ≥ 1, (X,D, Y (1)) ∼ p∗(·) satisfies

Λ−1 ≤ p(D = 1 | X,Y (1))

p(D = 0 | X,Y (1))
· p(D = 1 | X)

p(D = 0 | X)
≤ Λ (4)

As in the IV setting, Assumption B.3 implies bounds on the unobserved regression µ0(x), which in turn can be used to
construct τ(·).
Lemma B.4 (Rambachan et al. (2022)). Suppose Assumptions 3.1 and 3.2 hold and that the MSM (B.3) is satisfied for some
Λ ≥ 1. Then

Λ−1 · µ1(x) ≤ µ0(x) ≤ Λ · µ1(x), ∀x ∈ X.

Lemma B.4 follows from Bayes’ rule, and is a direct consequence of Proposition 8.1 in (Rambachan et al., 2022). Moreover,
because Rosenbaum’s Γ model implies bounds under the MSM (Rambachan et al., 2022), we can similarly construct
bounding functions under this model by taking τ(x) = Γ−1 · µ1(x), τ(x) = Γ · µ1(x).

20



Predictive Performance Comparison of Decision Policies Under Confounding

Z X

U

D Y

(a) A DAG containing an
instrumental variable Z.
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(b) A DAG containing a
treatment confounding proxy
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(c) A DAG containing a
treatment confounding proxy
Z and outcome confounding

proxy W .

Figure 8. Three sets of structural assumptions on p∗(·) which imply bounding functions τ(·).

B.3. Instrumental Variable

Instrumental variables can be used for identification when the status quo policy was influenced by a random source of
selection rate heterogeneity (Lakkaraju et al., 2017; Chen et al., 2023; Rambachan et al., 2021; Kleinberg et al., 2018). For
example, in medical testing contexts, an instrument is available when patients are randomly assigned to physicians with
heterogeneous testing rates (Abaluck et al., 2016).

Assumption B.5 (Instrumental Variable). Let Z be a finite-valued instrument satisfying

1. Relevance: Z ⊥̸⊥ D | X
2. IV independence: Z ⊥⊥ U
3. Exclusion restriction: Z ⊥⊥ Y | D,X,U

In the following Lemma, we show that Assumption B.5 implies sharp bounds on the unobserved outcome regression.

Lemma B.6 (Rambachan et al. (2022; 2021)). Suppose Assumptions 3.1, 3.2, and B.5 hold. Let µ(x) = E[Y (1) | X = x]
and µd(x) = E[Y (1) | D = d,X = x] be outcome regressions and let ed(x) = p(D = d | X = x) be the propensity
function. Then ∀x ∈ X , µ0(x) is bounded by

µ(x)− µ1(x) · e1(x)
e0(x)

≤ µ0(x) ≤
µ(x)− µ1(x) · e1(x)

e0(x)
,

where µ(x) = maxz̃∈Z {µ1(x, z̃) · e1(x, z̃)}, µ̄(x) = minz̃∈Z {e0(x, z̃) + µ1(x, z̃) · e1(x, z̃)}.

Proof. By iterated expectations, µ(x) = µ1(x) · e1(x) + µ0(x) · e0(x). Therefore

µ1(x) · e1(x) ≤ µ(x) ≤ e0(x) + µ1(x) · e1(x) (5)
µ1(x, z) · e1(x, z) ≤ µ(x) ≤ e0(x, z) + µ1(x, z) · e1(x, z) (6)

max
z̃∈Z

{µ1(x, z̃) · e1(x, z̃)} ≤ µ(x) ≤ min
z̃∈Z

{e0(x, z̃) + µ1(x, z̃) · e1(x, z̃)} (7)

where (5) implies sharp bounds on µ0(x) (Manski & Pepper (2000)) and (6) follows from Assumption B.5. Solving for
µ0(x) yields

µ
0
(x) =

µ(x)− µ1(x) · e1(x)
e0(x)

, µ0(x) =
µ(x)− µ1(x) · e1(x)

e0(x)

with µ(x), µ(x) defined as in (7). Note that both terms are defined because e0(x) > 0,∀x ∈ X by Assumption 3.2.
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B.4. Proximal Variable

The proximal causal inference framework relaxes the IV unconfoundedness condition imposed by the IV framework
(Tchetgen et al., 2020). Ghassami et al. (2023) extend this framework to support partial-identification of the average
treatment effect. We show that this framework also implies point-wise bounding functions on the unobserved outcome
regression. We discuss two versions of this framework – the treatment confounded proxy (Fig 8.b) and treatment/outcome
confounded proxy (Fig 8.c) – which are most realistic in our setting.

Assumption B.7. (Treatment confounding proxy) Let Z be a treatment confounding proxy variable such that
(Z, Y,D,X,U) ∼ p∗(·) satisfies Z ⊥⊥ Y | D,X,U .

Assumption B.7 is identical to the exclusion restriction in the IV setting, but allows for a relaxation of IV independence.
Therefore, this condition can be reasonable in settings where IV independence is violated (e.g., confounded assignment of
instances to decision-makers).

Assumption B.8 (Treatment confounding bridge). There exists a non-negative bridge function m such that almost surely

E[m(Z,D,X) | D,X,U ] =
p(U | 1−D,X)

p(U | D,X)
.

Note that this condition only stipulates that m exists and does not require its point identification.

Lemma B.9. (Ghassami et al. (2023)) Let Assumptions 3.2, B.7 and B.8 hold. Let µd(x, z) = E[Y (1) | D = d, Z =
z,X = x]. Then ∀x ∈ X

min
z̃∈Z

{µ1(x, z̃)} ≤ µ0(x) ≤ max
z̃∈Z

{µ1(x, z̃)} (8)

Assumption B.10. (Treatment and outcome confounding proxy) Let Z be a treatment confounding proxy and W be an
outcome confounding proxy such that (Z,W, Y,D,X,U) ∼ p∗(·) satisfies Z ⊥⊥W | D,X,U .

Assumption B.10 enables a relaxation of the IV unconfoundedness condition. This assumption also obviates the exclusion
restriction required by the IV (B.5) and treatment confounding proxy (B.7) assumptions. Therefore, Assumption B.10
applies given a confounded treatment assignment variable (e.g., the identity of a decision-maker Z) and a temporally-lagged
outcome variable W . Temporally-lagged outcomes are ubiquitous in multi-step decision-making processes, where the final
outcome of interest is often preceded by a series of intermediary decisions.

Assumption B.11. (Outcome confounding bridge) There exists a non-negative bridge function h such that almost surely
E[Y | D,X,U ] = E[h(W,D,X) | D,X,U ]

Intuitively, this assumption requires that W is sufficiently informative of confounders such that there exists a function of
W which recovers the potential outcome mean as a function of U (Miao et al., 2018; Ghassami et al., 2023). Similarly to
Assumption B.8, this condition does not require identification of h.

Lemma B.12 (Ghassami et al. (2023)). Let Assumptions 3.2, B.8, B.10, and B.11 hold. Let µ1(x) = E[Y (1) | D = 1, X =
x], η1(w) = p(W = w | D = 1, X = x), η1(z) = p(Z = z | D = 1, X = x), η1(w, z) = p(W = w,Z = z | D =
1, X = x). Then

µ1(x) ·min
w,z

η1(w, z)

η1(w) · η1(z)
≤ µ0(x) ≤ µ1(x) ·max

w,z

η1(w, z)

η1(w) · η1(z)
, ∀x ∈ X.

B.5. Manski Style No-Assumptions Bounds

Manski-style no assumptions bounds on partially identified policy comparison terms (Manski, 1989; Manski & Pepper,
2000) follow by setting τ(x) = 0, τ(x) = 1. Invoking Lemma 5.2 yields H(vy(t, 0); τ) = [0, p(D = 0, T = 1)], which is
the same interval recovered by the unconstrained uncertainty set V(p; τ).
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B.6. Assumption Mapping Proofs

B.6.1. PROOF OF LEMMA 5.2.

Proof. For the upper bound τ(x) we have that ∀x ∈ X

E[Y (1) | D = 0, X = x] ≤ τ(x)

E[Y (1) | D = 0, T = t,X = x] ≤ τ(x) (9)
E[Y (1) | D = 0, T = t,X = x] · p(D = 0, T = t,X = x) ≤ p(D = 0, T = t,X = x) · τ(x)

where (9) holds because T ⊥⊥ {D,Y (1)} | X . Simplifying the right hand side yields

E[Y (1) | D = 0, T = t,X = x] · p(D = 0, T = t,X = x)

≤ p(D = 0 | T = t,X = x) · p(T = t | X = x) · p(X = x) · τ(x)
≤ p(D = 0 | X = x) · p(T = t | X = x) · p(X = x) · τ(x)

The result follows from marginalizing over X

v1(t, 0) ≤
∑
x

e0(x) · πt(x) · τ(x) · p(X = x)

= E[τ(x) · e0(x) · πt(x)]

The upper bound is sharp because equality holds when τ(x) = E[Y (1) | D = 0, X = x] ∀x ∈ X . The lower bound on
vt(t, 0) follows by the same argument.

B.6.2. PROOF OF THEOREM 5.3.

Importantly, Theorem 5.3 does not imply that V(p; τ) guarantees the tightest regret interval attainable from a specific causal
assumption. In some cases, it may be possible to contract regret intervals further by exploiting additional information
provided by a causal assumption. We discuss an example involving Rosenbaum’s Γ model above. Nevertheless, the
flexibility of our assumption mapping approach is important for the real-world applicability of our framework.

Proof. V(p; τ) is minimal if (1) it is consistent with p(X,D, T, Y ) and τ , τ and (2) no consistent set V∗(p; τ) exists such
that λ(V∗(p; τ)) < λ(V(p; τ)). The first condition holds if ∀v0 ∈ V(p; τ),

v1(0, 0) ∈ [E[τ(x) · e0(x) · π0(x)],E[τ(x) · e0(x) · π0(x)]]
v1(1, 0) ∈ [E[τ(x) · e0(x) · π1(x)],E[τ(x) · e0(x) · π1(x)]]

and v0(t, d) + v1(t, d) = ρtd, ∀t, d. This follows by definition of V(p; τ). Additionally,∑
d,t

p(D = d, T = t) = 1 =⇒
∑
d,t

v0(d, t) + v1(d, t) = 1 =⇒
∑
d,t,y

vy(d, t) = 1

where the first equality follows by the law of total probability and the first implication follows by the constraint. Thus

∑
d,y

vy(t, d) = p(T = t),
∑
t,y

vy(t, d) = p(D = d), p(Y = y) =
∑
t,y

vy(t, 1) ≤
∑
d,t,d

vy(t, d) ≤ 1.

Therefore, the constraint v0(t, d) + v1(t, d) = 1 ∀t, d implies that v0 is consistent with other marginals of p(X,D, T, Y ).
We will show (2) by contradiction. The Lebesgue measure over a cartesian product of intervals is given by λ(V) =∏
y,t |vy(t, 0)− vy(t, 0)|. Let V∗(p; f) ∈ [0, 1]4 be an arbitrary set satisfying λ(V) > λ(V∗). By a property of Lebesgue

measures it follows that A ⊇ B =⇒ λ(A) ≤ λ(B). Thus

λ(V) > λ(V∗) =⇒ V ̸⊆ V∗

=⇒ ∃ v0 ∈ V s.t. v0 ̸∈ V∗

=⇒ ∃ t ∈ {0, 1} s.t. v1(t, 0) > v∗1(t, 0) or v∗1(t, 0) > v1(t, 0).
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Define s(x) = p(x) · e0(x) · πt(x). Then

v1(t, 0) > v∗1(t, 0) =⇒
∑
x

s(x) · τ(x) >
∑
x

s(x) · τ∗(x)

=⇒
∑
x

s(x) · τ(x)−
∑
x

s(x) · τ∗(x) > 0

=⇒
∑
x

s(x)(τ(x)− τ∗(x)) > 0

=⇒ ∃ x ∈ X s.t. τ∗(x) < τ(x)

=⇒ ∃ x ∈ X s.t. τ∗(x) ≤ E[Y (1) | D = 0, X = x] ≤ τ(x)

However, the final implication violates the condition imposed by the bounding function. An analogous violation occurs for
the lower bound v∗1(t, 0) > v1(t, 0), proving the contradiction.
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C. Theoretical Estimation Results
C.0.1. PROOF OF THEOREM 6.1

Proof. Let Pn(f) denote sample averages 1
n

∑n
i=1 f(Oi) on a separate fold of the data from that used to estimate f̂ . We

can decompose the error term into

v̂ − v = (Pn − P ) f︸ ︷︷ ︸
Z∗

+(Pn − P ) (f̂ − f)︸ ︷︷ ︸
T1

+P (f̂ − f)︸ ︷︷ ︸
T2

.

Z∗ = Op(1/
√
n) by the central limit theorem. T1 = op(1/

√
n) by consistency of f̂ in the L2 norm and sample splitting

(Kennedy et al., 2020). Finally, we have for T2 that

P (f̂ − f) = P (ê(X) · τ̂(X)− e(X) · τ(X))

= P (ê(X) · τ̂(X) + ê(X) · τ(X)− ê(X) · τ(X)− e(X) · τ(X))

= P (ê(X)(τ̂(X)− τ(X)) + τ(X) · (ê(X)− e(X)))

= P (ê(X)(τ̂(X)− τ(X))) + P (τ(X) · (ê(X)− e(X)))

≤ ||ê(x)− e(x)||+ ||τ̂(x)− τ(x)||

where the first equality follows by adding and subtracting ê(X) · τ(X) and the final inequality follows by Cauchy-Schwarz.
The overall convergence rate follows by combining terms.

C.1. Rate of doubly robust estimator

Theorem C.1. The doubly-robust estimator satisfies

ˆ̄vDR − v̄ = OP

(
∥e(x)− ê(x)∥ ∥µ1(x)− µ̂1(x)∥

)
+ (Pn − P )ϕ(O; η) + op(

1√
n
)

when
∥∥∥ϕ− ϕ̂

∥∥∥ = op(1).

This theorem demonstrates that the error of our estimator is a product of nuisance function errors. This enables us to achieve
faster rate of convergence even when estimating the nuisance function at slow rates. For example, to obtain n−1/2 rates
for our estimator, it is sufficient to estimate the nuisance functions at n−1/4, allowing us to use flexible machine learning
methods to nonparametrically estimate the nuisance functions under smoothness or sparsity assumptions. The theorem’s
condition that ϕ converges in probability in the L2(P ) norm is mild and can be satisfied by using flexible regression methods.

Proof. Let η indicate the nuisance functions (e, π, µ1) and let η̂ indicate (ê, π, µ̂1).

Pn(ϕ(O; η̂))− v̄ =

A︷ ︸︸ ︷
P (ϕ(O; η̂)− v̄)+

B︷ ︸︸ ︷
(Pn − P )(ϕ(O; η̂)− ϕ(O; η)+

C︷ ︸︸ ︷
(P − Pn)(−ϕ(O; η))

For term A, we have that

P (ϕ(O; η̂)− v̄) =

∫
µ̄(x)

(
e(x)− ē(x)

)(
π̄(x)− π(x)

)
+ ē(x)

(
π(x)− π̄(x)

)(
µ̄(x)− µ(x)

)
+
(
µ(x)− µ̄(x)

)(
e(x)− ē(x)

)(
π̄(x)− π(x)

)
)dP

= OP

(
∥e(x)− ê(x)∥ ∥µ(x)− µ̂(x)∥

)
where the second line applies Cauchy-Schwarz.
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For term B, since Pn is the empirical measure on an independent sample from P̂ , we can apply Lemma 2 of Kennedy et al.
(2020) with our assumption that

∥∥∥ϕ− ϕ̂
∥∥∥ = oP (1):

(Pn − P )(ϕ(O; η̂)− ϕ(O; η) = OP

(∥ϕ(O; η̂)− ϕ(O; η)∥√
n

)
= oP (

1√
n
)

Combining yields the result.
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D. Experiment Setup Details and Further Results
D.0.1. SYNTHETIC SETUP DETAILS

We sample data from the probability functions

γ(Xi) := σ′(Xi ×Wz), π(Xi) := σ(Xi ×Wπ)

π0(Vi, Zi) := σ(Vi ×Wπ0 + β0 · Zi)
µ1(Vi, Zi) := σ(Vi ×Wµ1 + β1 · Zi)

µ0(Vi, Zi) :=

{
Λ∗ · µ1(Vi),Λ

∗ ∈ U(Λ−1,Λ) (MSM)
σ(Vi ×Wµ0 + β1 · Zi) (IV)

µ(Vi, Zi) := µ1(Vi, Zi)π1(Vi, Zi) + µ0(Vi, Zi)π0(Vi, Zi)

where σ(x) = 1
1+e−x and σ′(x) is the softmax function. We then sample Zi ∼ Multinomial(γ(Xi)), Dπ0

i ∼
Bern(π0(Vi, Zi)), Tπi ∼ Bern(π(Xi)), and outcomes

Yi(1) ∼

{
Bern(µ1(Vi, Zi)), Dπ0

i = 1

Bern(µ0(Vi, Zi)), Dπ0
i = 0

. (10)

Experimental Trials. We randomly sample coefficient vectors Wz , Wπ0
, Wµ1

and Wµ0
parameterizing π0 and π in each of

the experiments reported in Section 7. As a result, the oracle regret between the status quo and updated policy varies across
experimental trials depending on the sigmoidal outcome probabilities induced by our randomly sampled coefficient vectors.
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Figure 9. Top row (MSM): we fix Λ = 1.4 and vary Λ∗. The area shown in grey indicates the values of Λ∗ for which the MSM assumption
is satisfied. Middle row (IV): we vary β0 controlling the relevance of Z on the status quo decision-making policy. Bottom row (IV): we
vary β1 controlling the magnitude of the exclusion restriction violation. Shaded error region shows a 95% bootstrap CI over 20 trials.

D.0.2. ASSUMPTION ROBUSTNESS EXPERIMENTS

We now leverage the same synthetic setup outlined in Section 7 to stress-test the coverage of our regret intervals to
assumption violations. Observe that the IV unconfoundedness condition is satisfied because γ(Xi) does not depend on Ui,
the relevance condition is satisfied when β0 > 0, and the exclusion restriction is satisfied when β1 = 0. We test robustness
to violation of the IV relevance and exclusion assumptions by varying β0, β1, respectively. We test robustness to violation
of the MSM by selecting values for Λ∗ /∈ [Λ−1,Λ].

In Figure 9, we provide bounds for policy performance measures as we introduce violations to the MSM and IV assumptions.
The top row shows regions in which the MSM assumption Λ = 1.4 is satisfied. The R̂δ interval yields valid coverage when
Λ∗ ∈ [Λ−1,Λ], but breaks when the assumption is violated. Observe that the relevance condition (middle row) controls the
tightness of the regret interval, but does not introduce coverage violations. As a result, more heterogeneity across finite
values of the instrument yields tighter uncertainty quantification, but does not impact coverage. This is inline with prior
empirical evaluations conducted under the IV framework (Lakkaraju et al., 2017; Kleinberg et al., 2018). The bottom row
shows that violation of the exclusion violation does introduce coverage violations as β1 increases. Across settings, observe
the the baseline and delta regret intervals overlap for the PPV, which is inline with the results of our theoretical analysis.
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Figure 10. Design sensitivity analysis. Our δ-regret interval certifies a policy performance difference up to a larger magnitude of
unmeasured confounding Λ0 for the TPR and FPR measures.

D.0.3. DESIGN SENSITIVITY ANALYSIS

One common measure of robustness to confounding is the design sensitivity, or the value of the sensitivity parameter at
which the analysis exceeds a key threshold of interest (Rosenbaum, 1987; 2005; Namkoong et al., 2020). In our setting, we
are most interested in the degree of unmeasured confounding permissible before the regret interval crosses zero. We conduct
a design sensitivity analysis under the MSM by varying Λ and measuring the value at which the δ-regret and baseline
intervals include zero. We denote these thresholds as Λ0

Rδ
and Λ0

R, respectively. We leverage the same synthetic setup
reported above and fit η̂ via parametric logistic regression models to improve computation time. Figure 10 indicates that the
improvement in our δ interval enables certifying a policy difference up to a larger magnitude of unmeasured confounding
than would be possible via the baseline approach. For example, the δ-interval certifies a TPR performance difference up to
Λ = 2.3, a significant improvement over Λ = 1.4 yielded by the baseline interval.

D.0.4. REAL-WORLD DATA EXPERIMENTS

Setup Details. Each record of the synthetic dataset provided by (Obermeyer et al., 2019) contains patient demographics,
health information measured in the prior year, and outcome variables measured in the following year. Only ≈ 1% of patients
were enrolled in the care management program under the status quo policy. This low selection rate yields vacuous regret
intervals without strong assumptions on confounding. Therefore, for this illustration, we construct a status quo policy with
an ≈ 18% selection rate (N = 2452) by including all 452 records marked as enrolled in the program and randomly sampling
2000 unenrolled records. We fit the cost prediction model and nuisance functions using patient demographic variables,
comorbidities, and prescription information measured in the preceding year. We use a linear regression to predict patient cost,
and threshold predictions at the 55th percentile. This cutoff matches the threshold for physician enrollment recommendations
of the deployed risk assessment (Obermeyer et al., 2019). We use 40% of the subsampled data to fit the cost prediction
model and the remaining 60% as an observational sample for the policy comparison task. Because we do not have access to
physician identifiers which can be used as an instrument, we leverage the MSM assumption for identification. We use a
logistic regression classifier to fit nuisance functions. We use Algorithm 1 to estimate [R̂δ(π, π0;m, V̂), R̂δ(π, π0;m, V̂)]
under the MSM with with Λ = 1.2. We report results over N = 20 trials with K = 2 folds.
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(delta interval)
(baseline interval)

Figure 11. Two sources of uncertainty impacting policy regret bounds. (1) Confounding-related uncertainty impacts the width of the
partially-identified regret interval (dotted lines). Our δ-regret interval yields tighter partially-identified regret intervals than the baseline
(Theorem 4.3). (2) Finite sample error impacts estimation of upper- and- lower interval end points, as shown by solid confidence intervals.
Estimators for the δ-regret interval and baseline interval have similar variance (see 95% CI of each interval reported in Figure 5).

E. Characterizing Benefits of Uncertainty Cancellation for Off-Policy Evaluation
In this Appendix, we provide additional discussion of our uncertainty cancellation approach. We begin by discussing the
differential impact of confounding-related uncertainty and finite sample uncertainty on policy comparisons (§ E.1). Our
δ-regret interval targets confounding-related uncertainty (Figure 11). We then provide more intuition for our uncertainty
cancellation approach (§ E.2) and conclude by discussion further policy evaluation contexts which may benefit from our
framework (§ E.3).

E.1. Sources of uncertainty impacting policy comparisons

Confounding-related uncertainty: Let µ(x) = E[Y (1) | X = x] be the target outcome regression function. We can
understand the impact of confounding related uncertainty on off-policy evaluation via the target regression decomposition

µ(x) = E[Y (1) | Dπ0 = 1, X = x]︸ ︷︷ ︸
Identified from observational data

·p(Dπ0 = 1 | X = x) + E[Y (1) | Dπ0 = 0, X = x]︸ ︷︷ ︸
∈[0,1],Unidentified from observational data

·p(Dπ0 = 0 | X = x).

Now suppose we are in the asymptotic setting with no finite sample uncertainty. Thus we know ed(x) = p(Dπ0 = d | X =
x) and the observed outcome regression

µ1(x) := E[Y (1) | Dπ0 = 1, X = x] = E[Y | Dπ0 = 1, X = x]

from observational data.16 However, because Dπ0 ⊥̸⊥ Y (1) | X due to confounding, the unobserved outcome regression
µ0(x) := E[Y (1) | Dπ0 = 0, X = x] is bounded within the worst-case interval 0 ≤ µ0(x) ≤ 1, ∀x ∈ X.

As we show in Figure 12, bounds around the target regression µ(x) = e1(x) · µ1(x) + (1− e1(x)) · µ0(x) widen as e1(x)
decreases. This is because decreasing the propensity score increases the weighting of the unidentified term µ0(x) in the
regression decomposition. Therefore, the tightness of bounds around µ(x) depend on (1) the propensity function ed(x) and
(2) the tightness of bounds around µ0(x). The bounds around partially-identified v-statistics which we use to construct
regret intervals inherits the same dependence on these terms (Lemma 5.2). As a result, asymptotic regret intervals are
wider when the status quo policy has a lower selection rate, regardless of the amount of data available for estimation.

Finite-sample uncertainty: Finite sample uncertainty also impacts our ability to estimate regret interval endpoints. When
less data is available, confidence intervals around upper and lower regret intervals will tend to be wider. As a result, although
both the baseline and δ intervals have valid asymptotic coverage for the true regret (Appendix A), coverage can be violated
under bias in estimates of the regret interval end points. Figure 5 shows confidence intervals around regret interval end-points
as a function of dataset size. Our doubly-robust estimation approach improves data-efficiency of our regret estimator under
no parametric assumptions on π0(x, u). We show that our DR estimator attains fast

√
n-rates in Appendix C.

16The second equality follows by Assumption 3.2
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Figure 12. Bounds around µ(x) := E[Y (1) | X = x] widen as the propensity score (i.e., the selection rate under the status quo policy)
e1(x) decreases. Recall that µ(x) = e1(x) · µ1(x) + e0(x) · µ0(x). We fix µ1(x) = .4, let µ0(x) ∈ [0, 1], and let e1(x) vary from 0 to
1. Bounds around the target regression increase as the weighting on the unobserved regression µ0(x) increases.

Synthetic data example. We illustrate the relationship between confounding related uncertainty and finite sample error
via a synthetic data experiment following a similar setup as the one outlined in Appendix D. We construct subgroups by
defining two protected attributes with two levels each. The first correlates with X1, while the second correlates with X2.
This yields four intersectional subgroups G1-G4 with varying sizes (ω) and selection rates under the status quo policy (γ).

Figure 13 compares the δ-regret interval and the baseline interval via worst case (WC) and instrumental variable (IV) partial
identification strategies. We see that groups with lower selection rates under the status quo policy (e.g., G1, G2) have wider
asymptotic bounds than those with higher selection rates (e.g., G3, G4). This indicates that the key driver of uncertainty at
the asymptotic level is confounding. We can also examine statistical uncertainty in subgroup regret estimates by inspecting
the size of confidence intervals. We observe that smaller subgroups (e.g., G1, G3) have larger variance in regret estimates
than larger subgroups (e.g., G2, G4, full population).17 Importantly, we observe that a small subgroup with a large selection
rate (e.g., B5, γ = .65, ω = .08) has tighter bounds than a larger subgroup with a lower selection rate (e.g., Population,
γ = 0.5, ω = 1.0). In line with our discussion above, this indicates that subgroup selection rates under π0 are a key driver
of uncertainty in asymptotic regret intervals.

Figure 13. Top row indicates full population bounds, while lower rows show regret over subgroups of varying selection rates (γ) and sizes
(ω). Horizontal bars indicate asymptotic regret bounds under confounding. We show statistical uncertainty over N = 10 runs by plotting
95% confidence intervals centered at each upper and lower asymptotic bound.

17We can isolate subgroup size (ω) as the source of this uncertainty because we fix selection rates across subgroups such that
G1(γ)=G2(γ), G3(γ)=G4(γ).
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Agreement region

Figure 14. Uncertainty in the agreement region of the policy comparison (denoted via red question marks) cancels in comparative policy
performance analyses.

E.2. Building intuition for uncertainty cancellation

The intuition for our approach is that we can safely ignore redundant uncertainty in the agreement region of the policy
comparison (Figure 14). We see this concretely via the accuracy regret decomposition

R∗(π, π0;mu) = m∗
u(π)−m∗

u(π0)

= p(Tπ = Y (1))− p(Dπ0 = Y (1))

= (v1(1, 1) + v1(1, 0) + v0(0, 1) + v0(0, 0))− (v1(1, 1) + v1(0, 1) + v0(1, 0) + v0(0, 0))

= v1(1, 0) + v0(0, 1)− v1(0, 1)− v0(1, 0).

Observe that the agreement terms v1(1, 1) and v0(0, 0) cancel when we take the difference across policies. The agreement
region (π0 = 1, π = 1) at the center of the Venn Diagram does not add uncertainty in our context because Y (1) is observed
when π0 = 1. Therefore, cancellation of v1(1, 1) does not improve regret bounds. However, the agreement region in the
complement space (π0 = 0, π = 0) does contribute to uncertainty because Y (1) is unobserved when π0 = 0. Therefore
cancellation of v0(0, 0) is the main driver of the performance improvement. Theorem 4.3 formalizes this notion by showing
that the improvement in the tightness of the δ-regret interval is proportional to the amount of uncertainty in the v0(0, 0) term
– i.e., α = v0(0, 0)− v0(0, 0).

We next turn to the positive predictive value regret for an example where uncertainty cancellation does not improve bounds

R∗(π, π0;ma=1) = m∗
a=1(π)−m∗

a=1(π0)

= p(Y (1) = 1 | Tπ = 1)− p(Y (1) = 1 | Dπ0 = 1)

=
p(T = 1, Y (1) = 1)

p(T = 1)
− p(D = 1, Y (1) = 1)

p(D = 1)

=
v1(1, 0) + v1(1, 1)

ρ11 + ρ10
− v1(1, 1) + v1(0, 1)

ρ11 + ρ01

where ρtd = p(T = t,D = d). Because only v1(1, 1) cancels in this decomposition, we observe no improvement from the
δ-regret interval for this performance measure.

More generally, we will observe a performance improvement from the δ-regret interval in any off-policy evaluation context
where there is uncertainty arising from the agreement region of the policy comparison. Importantly, this insight holds for
any causal assumption (e.g., Rosenbaum’s Γ, MSM, IV, Proximal) which can be expressed as pointwise bounding
functions, which we detail in Appendix B.
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E.3. Other potential applications of uncertainty cancellation

While our work is concerned with policy evaluation under unmeasured confounding, other sources of uncertainty can also
complicate policy comparisons. Our δ-regret interval may support partial identification under these uncertainty sources.18

Measurement Error and Noisy Labels. In many cases, labels available for model evaluation are observed under
measurement error or label noise (Scott et al., 2013; Xia et al., 2019; Angluin & Laird, 1988; Guerdan et al., 2023). A
common setup in this setting is to model the difference between the true outcome Y ∗ ∈ {0, 1} and its proxy Y ∈ {0, 1} via
the false negative rate β = p(Y = 0 | Y ∗ = 1) and false positive rate α = p(Y = 1 | Y ∗ = 0). However, when conducting
comparative performance analyses, it may be possible to disregard measurement error in the agreement regions of the policy
action space. This may tighten partial identification bounds studied in prior work (Fogliato et al., 2020).

Missing Protected Attributes. Protected attributes are sometimes unavailable for fairness assessments due to data collection
or regulatory constraints (Kallus et al., 2022; Coston et al., 2019). However, we may wish to compare fairness statistics
of alternative policies under missing protected attributes. If a partial identification approach is used to bound fairness
characteristics under missing protected attributes (Kallus et al., 2022), it may be possible to tighten bounds by studying
fairness differences over the disagreement region of the policy space.

18We offer these examples as illustrative of our technique and acknowledge further technical development would be required to develop
these approaches in practice.
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