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ABSTRACT

We address the problem of fair classification in settings where data is scarce and
unbalanced across demographic groups. Such low-data regimes are common in
domains like medical imaging and hate speech. Our proposed method mitigates
these biases by training efficient ensembles of fair classifiers on different data
partitions. Aggregating predictions across ensemble members, each trained to
satisfy fairness constraints, yields more consistent outcomes and stronger fairness-
accuracy trade-offs than existing methods across multiple challenging medical
imaging datasets, as well as on hate speech detection.
To support these findings, we provide theoretical guarantees: we prove when our
fair ensembles improve performance and how much data is needed to observe
these gains with statistical significance. These results extend the literature by
explaining why and under what conditions ensembles improve algorithmic fairness
in high-stakes applications.

1 INTRODUCTION

Deep learning performs exceptionally well when trained on large-scale datasets (Deng et al., 2009;
Gao et al., 2020; Hendrycks et al., 2020), but its performance deteriorates in small-data regimes.
This is especially problematic for marginalised groups, where labelled examples are both scarce
and demographically imbalanced (D’ignazio & Klein, 2023; Larrazabal et al., 2020). In medical
imaging, underrepresentation of minority groups leads to poor generalisation and higher uncertainty
(Ricci Lara et al., 2023; Mehta et al., 2024; Jiménez-Sánchez et al., 2025); in hate speech detection,
disparities in data availability across languages and demographics produce similar harms (Tonneau
et al., 2025). As a result, the very groups most at risk of harm are those for which deep learning
methods work least well.

Existing fairness interventions often fail in these low-data settings. Because data on disadvantaged
groups is needed both to learn effective representations and to estimate group-specific bias, most
methods underperform simple empirical risk minimisation (Zong et al., 2022).

Ensembles offer a natural way to address these challenges. By aggregating predictions across mem-
bers, ensembles make more efficient use of scarce examples while leveraging disagreement between
members for robustness (Theisen et al., 2023). This makes ensembles particularly attractive for
fairness in low-data regimes, but without theoretical foundations, improvements remain inconsistent
(Ko et al., 2023; Schweighofer et al., 2024).

We address this by introducing FAIRENSEMBLE: ensembles explicitly designed to enforce fairness
constraints at the member level and provably preserve them at the ensemble level. Our theoretical
results show when minimum rate and error-parity constraints are guaranteed to hold, and how much
validation data is required to observe these guarantees in practice. Empirically, we demonstrate that
FAIRENSEMBLE outperforms strong baselines in both medical imaging and hate speech detection—
domains where fairness is urgently needed but data for disadvantaged groups is limited.

We make three contributions:

1. Method: We introduce an efficient ensemble framework of fair classifiers tailored to fairness
in small deep learning datasets.
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Figure 1: FAIRENSEMBLE pipeline. Left (Training): Each member shares a backbone and predicts
the task label and protected attributes. Middle (Validation): We enforce a chosen fairness constraint
while maximising accuracy. Right (Inference): Members vote by majority. Choices of training and
validation partitions ensure that each datapoint trains some heads ensuring good generalisation. The
shared backbone makes the process efficient, while Majority Voting gives theoretical guarantees.

2. Theory: We prove that our fair ensembles are guaranteed to preserve fairness under both
error-parity and minimum rate constraints, and we derive how much data is required to
observe these guarantees in practice.

3. Results: Across four datasets in medical imaging and hate speech detection, our method
consistently outperforms existing baselines on fairness–accuracy trade-offs.

The article is organised as follows: section 2 presents related work in low-data fairness and fairness
in ensembles. section 3 describes both how we construct and train the ensemble (section 3.1) and the
formal guarantees for when it works (section 3.2). Finally, section 4 and section 5 provide empirical
support for the benefits of fair ensembles versus strong baselines on challenging datasets.

2 RELATED WORK

Fairness Challenges in Low-Data Domains Deep learning methods achieve near-human perfor-
mance on overall metrics (Liu et al., 2020), yet consistently underperform for marginalised groups in
medical imaging (Xu et al., 2024; Daneshjou et al., 2022; Seyyed-Kalantari et al., 2021) and hate
speech detection (Tonneau et al., 2025). A central source of bias is unbalanced datasets (Larrazabal
et al., 2020), where disadvantaged groups have too few examples to learn reliable representations,
leading to poor calibration and uncertain predictions (Ricci Lara et al., 2023; Mehta et al., 2024).

Defining fairness is equally challenging. Standard parity-based metrics such as equal opportunity
(Hardt et al., 2016) can be satisfied trivially by constant classifiers in imbalanced datasets and often
reduce performance for all groups, a phenomenon of “levelling down” with serious real-world
consequences (Zhang et al., 2022; Zietlow et al., 2022; Mittelstadt, 2019). In safety-critical domains
such as medicine, minimum rate constraints—which enforce a performance floor across groups—are
often more appropriate to ensure that classifiers serve all subpopulations (Wachter et al., 2021a). For
further works, see Appendix H.

Fairness in Ensembles: Prior work has observed that ensembles can sometimes improve fairness by
boosting performance on disadvantaged groups (Ko et al., 2023; Schweighofer et al., 2024; Claucich
et al., 2025). However, these studies are observational: improvements are not guaranteed, and in
some cases ensembles can even worsen disparities (Schweighofer et al., 2024). Our approach is
interventionist. Building on theoretical results for ensemble competence (Theisen et al., 2023), we
extend their proofs to fairness settings. This allows us to show formally why and when ensembles
improve fairness, rather unlike prior works which only demonstrated that they sometimes do.

3 METHODS

Choice of fairness constraints. In this work, we focus on two fairness constraints: equal oppor-
tunity (the maximum difference in recall across groups; Hardt et al., 2016) and minimum recall
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(the recall of the worst-performing group; Mittelstadt et al., 2024). Both target false negatives,
which is appropriate when missing a positive case (e.g., a deadly disease) is far more costly than
overdiagnosis—a scenario that is especially relevant in medical imaging (Seyyed-Kalantari et al.,
2021). While we highlight these constraints, our methods and theory apply equally to other fairness
metrics (see section 3.2).

3.1 ENSEMBLE CONSTRUCTION AND TRAINING

We consider an ensemble composed of deep neural networks (DNNs) that share a pretrained convolu-
tional backbone (Figure 1). Each ensemble member is trained on a separate fold, stratified by both the
target label and group membership (T r et al., 2023). Training each member on different folds allows
us to fully utilise the dataset, in contrast to standard fairness methods that require held-out validation
data (Delaney et al., 2024; Buyl et al., 2023). Predictions are aggregated by majority voting, which
enforces the guarantees of Theisen et al. (2023) (see section 3.2).

Enforcing the fairness of ensemble members: Each ensemble member is a multi-headed classifier
that predicts both the task label (e.g., disease vs. no disease) and the protected attribute (i.e., group
membership; see Figure 1, left). The main prediction head is trained with standard cross-entropy loss,
while the auxiliary heads predict a one-hot encoding of the protected attribute using squared loss.
Following the multi-head surgery of OxonFair (Delaney et al., 2024), their outputs are combined by a
weighted sum. The weights are fitted on a held-out validation set to enforce fairness constraints while
still maximising accuracy.

This formulation allows for any fairness group fairness definition that can be expressed of per-group
confusion matrices. Because weights are selected using validation rather than training data, we can
enforce error-based criteria—such as equal opportunity or minimum recall—even when the base
model overfits during training.

To make fairness enforcement robust, we use a multi-split strategy: all non-test data is divided into a
different train/validation partition per member, and fairness constraints are enforced separately on
each. In practice, we optimize over accuracy together with an experiment-specific fairness constraint:
either minimum recall or equal opportunity.

Efficient ensembling of deep networks: The main computational bottleneck in deep CNNs is
the backbone. To avoid repeatedly running the same backbone for different ensemble members, we
concatenate all classifier heads on top of a shared backbone. During training, the loss is masked
so that only the relevant head is updated for each data point. When the backbone is pretrained and
frozen,1 this procedure is effectively equivalent to training each ensemble member independently,
while requiring only a single backbone pass. A related idea with backbone fine-tuning is described
by Chen & Shrivastava (2020). We use EfficientNetV2 (Tan & Le, 2021) pretrained on ImageNet
(Deng et al., 2009) as the backbone in all experiments.

This design yields substantial efficiency gains. Inference speed is essentially identical to a single
ERM model, while training is somewhat slower due to multiple heads, but still much faster than
training all members separately (which would be about M× slower for an M-member ensemble).
Appendix F provides empirical comparisons, and Appendix A gives implementation details. To
ensure robustness, each experiment is repeated over three train/test splits.

3.2 FORMAL GUARANTEES FOR FAIRNESS

We now ask: under what conditions can ensembles be expected to guarantee fairness improvements?
As mentioned in section 2, prior work on fairness in ensembles is observational, showing that
ensembles sometimes improve fairness (Claucich et al., 2025; Ko et al., 2023, e.g.,). In contrast, we
provide theoretical conditions under which fairness is improved, together with guidance on how these
guarantees can be implemented in practice.

Specifically, we address two questions:

1Freezing the backbone helps prevent overfitting on small datasets.
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1. Minimum rate constraints: How high must minimum rate constraints be set to ensure that
ensembles preserve fairness?

2. Sample sizes: How large must group sizes in the validation and evaluation sets be to observe
these guarantees empirically?

The core theory is based on the work of Theisen et al. (2023), who show that competent ensembles
never hurt performance. Inofrmally, an ensemble is competent if it is more likely to be confidently
right than confidently wrong. Formally, let the error rate of an ensemble ρ be:2

Wρ = Wρ(X,Y ) = Eh∼ρ[1(h(X) ̸= Y )]

and define the competence of ρ as:

Cρ = P (Wρ ∈ [t, 1/2))− P (Wρ ∈ [1/2, 1− t])

We say that the ensemble is competent if Cρ ≥ 0. This definition makes no distributional assumptions
and can be verified on a held-out evaluation set. Theisen et al. (2023) show that if competence holds
on a dataset (X,Y ), then majority voting improves performance relative to a single classifier, with
the improvement bounded by the disagreement between ensemble members.

To extend competence to fairness metrics, we evaluate competence on restricted subsets of the data.
Let G be the set of protected groups. For any group g ∈ G, write g+ for the positives (Y = 1, A = g)
and g− for the negatives (Y = 0, A = g). We then define the restricted ensemble error

W g+
ρ = Eh∼ρ,(X,Y )∼Dg,+

[1{h(X) ̸= Y } ]

and say the ensemble is restricted groupwise competent if

Cg+
ρ = P (W g+

ρ ∈ [t, 1/2))− P (W g+
ρ ∈ [1/2, 1− t]) ≥ 0 ∀g ∈ G (1)

Minimum recall corresponds to competence on g+, minimum sensitivity to competence on g−, and
overall accuracy to competence on the full dataset.

Based on this, we derive three main results:

1. Minimum rate constraints: If an ensemble is restricted groupwise competent, and every
member of the ensemble satisfies a minimum rate constraint, then the ensemble as a whole
also satisfies that minimum rate.

2. Error parity: If an ensemble is restricted groupwise competent, and if every member of
the ensemble approximately satisfies an error parity measure (e.g., equal opportunity), then
the ensemble as a whole also approximately satisfies it. The achievable bounds depend on
disagreement- and error rates of the members.

3. Independent errors: If an ensemble is not restricted groupwise competent, but the errors
made by the ensemble are independent, enforcing a minimum recall rate of k ≥ 50% on
every member of the ensemble guarantees that the ensemble also has a minimum recall rate
of k.

Together, these results show how ensemble competence on restricted subsets provides guarantees
for both minimum rate constraints and error parity measures, covering a broad range of fairness
definitions.

3.2.1 RESTRICTED GROUPWISE COMPETENCE GUARANTEES

1. Minimum rates for competent ensembles: The proofs of Theisen et al. (2023) are dataset-
agnostic: if an ensemble is competent on any dataset, then ensembling on that dataset does not

2For definitions of all notation used see Table 5.
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decrease the average accuracy. Applying the definition of competence to the restricted subset g+,
accuracy on that subset corresponds exactly to recall.

The core theorem from Theisen et al. (2023) bounds the Error Improvement Rate (EIR)—the ensem-
ble’s relative improvement over a single classifier—by the Disagreement Error Ratio (DER). See
Appendix C for formal definitions. For binary classification, the bounds are given by Eq. 2 for an
arbitrary data distribution, D:

DERD ≥ EIRD ≥ max(DERD − 1, 0) (2)

Since there are no assumptions about the distribution of D, we can restrict it to g+. Since the EIR is
always non-negative, it follows that the minimum recall of a competent ensemble is at least as big as
its members.

2. Error parity from competence: Error-parity constraints such as approximate equal opportunity
(equality of recall across groups; Hardt et al., 2016) or approximate equality of accuracy (Zafar
et al., 2019) are harder to guarantee. The difficulty is that while ensembles can improve average
performance, unequal improvements across groups can increase disparities (see, e.g., Schweighofer
et al., 2024). Nonetheless, competence still yields limited but useful bounds.

We consider the L∞ form of approximate fairness: a classifier has k-approximate fairness with
respect to groups G if

k ≥ max
g∈G

Lg(h)−min
g∈G

Lg(h) (3)

where Lg is the average loss on group g, corresponding to 1 minus one of the measures we are
concerned with (typically recall).

The question then is, if every member of the ensemble exhibits k-approximate fairness, what fairness
bounds do we have for the ensemble? By applying Eq. 2 (see Appendix G.2 for derivation), we
obtain the following bound:

k∗ ≤ k +max
g∈G

Eh∼ρ[Lg(h)]DERg∗ −max(0,min
g∈G

Eh∼ρ[Lg(h)](DERg∗ − 1)) (4)

Both bounds are pessimistic. In practice, our approach works well for enforcing equal opportunity
(see 5). Still, two insights follow: First, the same bounds apply to any group-based error-parity
measure (not just equal opportunity). Second, because bound scales with Lg , the worst-case disparity
shrinks as group losses decrease. In practice, this means that enforcing sufficient minimum rate
constraints through our method can tighten the bounds.

3.2.2 GUARANTEES FOR MINIMUM RECALL

A key challenge is that while members of an ensemble are often competent on the full dataset, the
proportion of positively labelled data is small in many critical settings (such as medical imaging).
When restricting to the subset g+ (positives in group g), competence may thus fail to hold.

In such cases, we can restore competence by enforcing sufficiently high minimum recall rates. Recall
is simply accuracy restricted to positives, and raising this rate ensures that the conditions of Jury
Theorems apply. These results generalise the classic Condorcet Jury Theorem (du texte Condorcet,
1785), which shows that majority vote of independent voters who are each more likely to be right
than wrong (i.e., accuracy > 0.5) improves over the average voter, with the accuracy converging to
1 as the number of voters increases. Modern variants extend this to heterogeneous accuracies and
mildly correlated voters. (Berend & Paroush, 1998; Kanazawa, 1998; Pivato, 2017).

For completeness, we sketch the proof in the simple case of independent classifiers with mean recall
above 0.5. Let K be the number of positive predictions in an ensemble with N members for a given
data point x. We model each classifier prediction as Ki ∼ Bernoulli(pi), where pi = k + δ and
δ ≥ 0 reflects the enforced minimum recall margin. The mean recall is then

p̄ =
1

N

N∑
i=1

pi.
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Lemma 1 (Ensemble competence under minimum rate constraints). If N is odd and p̄ ≥ 0.5, then

P (K > N/2) ≥ P (K < N/2).

Proof. If p̄ = 0.5, then E[K] = N/2 and the distribution is symmetric. Since N is odd, P (K =
N/2) = 0 and hence P (K > N/2) = P (K < N/2) = 1/2.

For p̄ > 0.5, define

F (p1, . . . , pN ) = P

(
N∑
i=1

Ki > N/2

)
.

This function is monotone non-decreasing in each pi. If at least one pi > 0.5, then F strictly exceeds
1/2, implying

P (K > N/2) > 1/2 > P (K < N/2).

This shows that enforcing minimum recall above 0.5 guarantees ensemble competence on the positives.
More generally, by setting sufficiently high minimum rate constraints (see section 3.1), our ensembles
preserve fairness by construction–providing formal guarantees rather than the empirical observations
of Ko et al. (2023); Schweighofer et al. (2024).

3. Minimum recall under Independent Errors: The lemma above shows that an ensemble is
competent whenever its members have a mean recall above 0.5. Under the additional assumption of
independent errors, this implies that enforcing a minimum recall rate k > 0.5 for each group and each
member is sufficient to guarantee that the ensemble also achieves recall of at least k. Our multi-split
enforcement strategy (Sec. 3.1) ensures exactly this: every classifier head is tuned on validation data
to meet the required minimum recall, so that majority voting preserves the guarantee at the ensemble
level.

3.2.3 MINIMUM VALIDATION AND EVALUATION SIZES

Under the assumption of independent errors, a minimum recall of k > 0.5 on the test set, guarentees
that the ensemble will also have a minimum recall of k. The challenge here is that recall constraints
are imposed on validation data, and as we are dealing with very low-data groups, sometimes with
< 100 positive cases, the constraints need not generalise to test data.

To ensure these constraints generalise to test data, we want to determine the minimum recall, Pmin,
required the on a validation set with m positives in the minority group such that with a probability
α, the recall on an evaluation set with n positives will be at least 50%. This will guarantee that
the minimum recall of the ensemble is greater than the average recall of each member. We assume
that validation and test sets are of known sizes, m and n respectively, and drawn from the same
distribution. By drawing on the literature for one-sided hypothesis tests on Bernoulli distributions,
we arrive at Eq. 5.

pmin = 0.5 + 1
2z1−α

√
1
m + 1

n . (5)

Where z1−α is the z-score for significance 1−α. The primary implication of Eq. 5 is that to maximise
the size of the training set, one should set m ≈ n – especially for small data. For derivations see
Appendix G.1. We find empirical support for our theoretical guarantees of fairness on positive
samples in Appendix E. Here, we show that as long as the minimum recall is enforced at a sufficiently
high threshold, we observe restricted groupwise competence on the test set.

4 EXPERIMENTAL SETUP

4.1 DATA AND PROTECTED ATTRIBUTES

We evaluate on three medical imaging datasets from MedFair (Zong et al., 2022) and FairMedFM
(Jin et al., 2024). Each task is a binary classification with image-only inputs (discarding any auxiliary

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Evaluation datasets. “Min. Positives” is the number of positive examples in the smallest
group (bold). These small counts stress-test low-data fairness.

Dataset Task # Min. Positives Protected Attributes
Medical Imaging
HAM10000 Skin cancer 94 Age (0-40, 40-60, 60+)
Fitzpatrick17k Dermatology 60 Skin type (I-IV, V, VI)
Harvard-FairVLMed Glaucoma 399 Race (Asian, White, Black)

Natural Language
Multilingual Twitter Polish hate speech 60 Gender (male, female)

features for fair comparison). We add a multilingual hate speech dataset for cross-modality validation
(Huang et al., 2020).

For Fitzpatrick17k, the common binary split (I–III vs. IV–VI) can mask harms to the darkest tone
(VI), which comprises only 0.4% of positives. We therefore separate V and VI, grouping I–IV to
preserve adequate support elsewhere.

Preprocessing and splits: Images are center cropped and resized to 224x224 (Deng et al., 2009)
with random augmentations during training. Dataset-specific validation/test sizes follow section 3.2.3
to guarantee 70% minimum observable recall. See Appendix A for full details.

Hate speech: We use the Multilingual Twitter Corpus (Huang et al., 2020) and Delaney et al.
(2024): On Polish,we enforce 5% equal opportunity on Polish data using perceived gender as the
protected attribute. This helps show the generality of our method.

4.2 EVALUATION METRICS

Medical classification is a non-zero-sum game where “levelling down”—reducing all groups’ perfor-
mance to achieve parity—can have fatal consequences (Mittelstadt et al., 2024). The crucial harm is
failing to diagnose ill people from disadvantaged groups, making minimum recall the appropriate
metric rather than disparity-based measures like equal opportunity. Moreover, with positive class
incidence below 10% for disadvantaged groups, a trivial all-negative classifier would achieve high
accuracy, and perfectly satisfy equal opportunity, while missing all sick patients.

We evaluate models on the Pareto frontier between minimum recall and accuracy (Delaney et al.,
2024). Our primary metric, FairAUC, summarizes this frontier by computing the best accuracy a
achievable at each minimum recall threshold t ∈ T :

FairAUC =
1

|T |
∑
t∈T

(
max

(a,r)∈M,r≥t
a

)
(6)

where M are model configurations and r is minimum recall. We evaluate over T ∈ [0.5, 1]—the
zone with theoretical guarantees (section 3.2). Confidence intervals are computed via 200 bootstrap
samples at 95% level. For baselines without explicit thresholding, we generate Pareto frontiers by
varying prediction thresholds on validation data. FairAUC is not defined for error-parity measures.

4.3 BASELINES AND ENSEMBLE SETTINGS

We compare against a set of established fairness methods to ensure a meaningful contribution. As a
reference Empirical Risk Minimisation (ERM) simply minimises training error without considering
fairness (Vapnik, 2000). We further include Domain-Independent Learning, which trains a separate
classifier for each protected class with a shared backbone, and Domain-Discriminative Learning,
which encodes protected attributes during training and removes them at inference (Wang et al., 2020).
Fairret introduces a regularisation term that accounts for the protected attribute and fairness criterion
(Buyl et al., 2023), while OxonFair tunes decision thresholds on validation data to enforce group-
level fairness (Delaney et al., 2024). Finally, we include an ERM Ensemble, which is equivalent to
our method without attribute predictors to enforce fairness.
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Figure 2: Fairness–accuracy AUC (FairAUC) relative to ERM. FAIRENSEMBLE achieves higher
FairAUC than all baselines on Fitzpatrick17k (left) and HAM10000 (right). Error bars show 95%
bootstrap CIs. Evaluation follows section 4.2 over minimum-recall thresholds in [0.5, 1].

All baselines are trained with the same configuration as our ensembles. Minority groups are rebalanced
through upsampling, and we reimplement methods following Zong et al. (2022) and Delaney et al.
(2024). For Fairret, we perform a hyperparameter search over regularisation weights. To generate
comparable Pareto frontiers, we fit global prediction thresholds so that a minimum recall of k is
enforced on a held-out validation set, mirroring deployment where thresholds are tuned on available
data but applied to unseen test data (Kamiran et al., 2013). For hate speech, we compare directly
against baselines reported by Delaney et al. (2024).

Ensemble size: We use 21 members for all ensembles. Appendix D shows that FairAUC is stable
across different sizes from 3 to 21 within confidence intervals. We therefore default to the larger
size: it is consistent with our theory that majority voting benefits from more members, while our
shared-backbone design keeps inference time essentially unchanged (see Appendix F).

5 RESULTS

5.1 MEDICAL IMAGING

Table 2: Accuracy and fairness violations. Best value in bold.

Dataset Accuracy ↑ Fairness Violations ↓
FAIRENSEMBLE OxonFair FAIRENSEMBLE OxonFair

Fairvlmed 0.665 0.657 0.009 0.011
Fitzpatrick17K 0.642 0.623 0.057 0.048

Ham10000 0.707 0.679 0.067 0.082

FairVLMed: In Figure 3 (right), only our FAIRENSEMBLE method maintains fairness at strict
thresholds (EqualOpportunity < 4%). Most other methdos break down above 6%. Compared to
OxonFair, FairEnsemble keeps higher accuracy with lower fairness violations (Table 2). While
standard ensembles have slightly higher accuracy, our fair ensembles consistently reduce disparities
further (e.g., equal opportunity from 6% to < 5% with < 1pp accuracy loss).

Fitzpatrick17k: For Fitzpatrick17k, where there are only 60 positive samples from the darkest skin
type (VI), FAIRENSEMBLE clearly outperforms all baselines. Our best variant reaches FairAUC =
67.7%, compared to 57.0% for standard ensembles and 51.3% for ERM (Figure 2a. Across thresholds,
FAIRENSEMBLE is consistently Pareto-optimal (Figure 3, centre).
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Figure 3: Pareto frontiers across datasets. FAIRENSEMBLE (green) yields more stable fair-
ness–accuracy trade-offs than baselines (grey). Left/centre: minimum recall (HAM10000, Fitz-
patrick17k). Right: equal opportunity (FairVLMed). See section 4.2 for metric definition.

HAM10000: Table 2 shows FAIRENSEMBLE achieves both the highest accuracy and lowest fairness
violations on HAM10000. Its FairAUC = 71.1% significantly outperforms ERM (65.7%), standard
ensembles (69.7%), and OxonFair (67.9%). All other baselines perform worse than ERM.

5.2 NLP: HATE SPEECH DETECTION

Table 3: Comparison against baselines from Delaney et al. (2024)

Base CDA DP EO Dropout Rebalance OxonFair Ensemble FAIRENSEMBLE

Acc. (↑) 89.80 89.80 89.50 89.10 88.90 89.50 88.50 89.70 87.76
DEO (↓) 21.40 16.00 17.90 13.20 13.80 19.10 8.45 17.17 5.68

The results for hate speech detection are shown in Table 3. We compare against the baselines reported
by Delaney et al. (2024) on Polish data, where the task is to detect hate speech with perceived gender
as the protected attribute. The fairness constraint is equal opportunity, measured by the difference in
equal opportunity (DEO), with a target of DEO < 0.05.

Two main findings stand out. First, our FAIRENSEMBLE achieves the lowest disparity (DEO =
5.68%), comfortably satisfying the fairness constraint while incurring only a modest 1.5% drop in
accuracy compared to the strongest baselines. OxonFair, optimised on the same constraint, suffers
larger violations. Second, a standard Ensemble without fairness surgery slightly improves accuracy
over ERM, but fails to reduce disparity (DEO = 17.17%).

In short, we reliably enforce fairness in NLP tasks: it substantially improves fairness where ensembles
alone do not, demonstrating that our guarantees extend beyond medical imaging to text classification.

6 CONCLUSION

We have presented a novel framework for constructing efficient ensembles of fair classifiers that
address the challenge of enforcing fairness in low-data settings. Across three medical imaging
datasets and a multilingual hate speech dataset, our method consistently outperforms existing fairness
interventions on fairness-accuracy trade-offs. Unlike prior work on ensembles that observed occa-
sional fairness improvements, our approach guarantees that fairness is not degraded and shows that
ensembles are a practical tool for reusing scarce data to produce more reliable fairness estimates.

Our theoretical analysis explains why these improvements occur. We prove that enforcing minimum
rate constraints above 0.5 ensures ensemble competence for the worst-performing groups, derive
bounds for error-parity measures such as equal opportunity, and provide principled guidance on
the validation and test sizes needed for these guarantees to hold in practice. Together, these results
expand the understanding of both when and why ensembles improve fairness, offering a principled
and empirically validated method for building more equitable classifiers in high-stakes domains.
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A IMPLEMENTATION DETAILS

The code and instructions for reproducing the results can be found in an anonymised GitHub
repository3. Optimisation for all models is done using Adam (Kingma & Ba, 2015) with a learning
rate of 0.0001.

The test splits for the baseline methods (see section 4.3 were all with the same seed as the first
run of the ensembles. All experiments where run with deterministic seeds for reproducibility (see
repository).

3Link: anonymous.4open.science/r/guaranteed-fair-ensemble-82B1
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To choose the sizes of the validation and test sets, we use the theory described in section 3.2.3. Ap-
plying a minimum observable recall of 70%, we get the below sizes. These were applied consistently
across all methods.

• Fitzpatrick17K: |Dvalid| = 33%, |Dtest| = 25%

• HAM10000: |Dvalid| = 20%, |Dtest| = 20%

• FairVLMed: |Dvalid| = 10%, |Dtest| = 10%

For fairret, we do evaluate over a set of regularisation parameters ranging, which include [0.5, 0.75,
1.0, 1.25, 1.5]. While Buyl et al. (2023) technically doesn’t require a validation set, it makes use
a hyperparameter to govern the fairness/accuracy trade-off. This hyperparameter can not be set a
priori, and must be tuned for every dataset, requiring the use of validation data. We do no additional
parameter search for Domain Discriminative, ERM, or Domain Independent.

All training was done on a single H100. For the final results of the paper, we ran analysis on 3 datasets
for 3 iterations. Using Weights & Biases (Biewald, 2020), we can see that each run took 1̃1 minutes.
In addition, the baseline experiments add an extra 20 runs. In total this results in approximately 14.5
hours of compute to reproduce the complete results. Note, that the experiments could easily have
been run on cheaper hardware since the EfficientNetV2 models only have 43M parameters.

While the above details the compute used to produce the results from the paper, further experiments
were made prior to this. Particularly, we experimented with a less efficient ensemble structure
requiring a separate run for each ensemble member. This required significantly more compute time.

B DATA ACCESS AND INFORMATION

We provide links for accessing the data in Table 4. Note, that while all data is openly available for
academic research, some of it requires approval by the providers.

For detailed summary statistics for HAM10000 and Fitzpatrick17k, we refer to the supplemental
material in MedFair (Zong et al., 2022). For FairVLMed, we refer to the FairCLIP paper (Luo et al.,
2024) as well as the GitHub page. For further details, see the original publications.

Table 4: Dataset access information

Dataset Access URL Reference
Fitzpatrick17k https://github.com/

mattgroh/fitzpatrick17k
(Groh et al., 2021)

HAM10000 https://dataverse.
harvard.edu/dataset.
xhtml?persistentId=doi:
10.7910/DVN/DBW86T

(Tschandl et al.,
2018)

FairVLMed https://github.com/
Harvard-Ophthalmology-AI-Lab/
FairCLIP

(Luo et al., 2024)

C THEORETICAL FORMALISMS

Table 5 defines all notation used in the main paper.

As mentioned in the main paper, Theisen et al. (2023) bound the improvements of an ensemble (i.e.,
the Ensemble Improvement Ratio (EIR)) by the Disagreement-Error Ratio (DER) of the ensemble,
i.e., the ratio of the average pairwise disagreement rate to the average error of ensemble members.

For completeness, we repeat their major results below. Note that while Theisen et al. (2023) considers
a fixed distribution D = (X,Y ), which they frequently drop from their notation, we preserve it as we
will want to vary D.
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Table 5: Summary of notation used in section 3.2.

Symbol Definition

D Data distribution over (X,Y )
X Input features
Y ∈ {0, 1} Binary label (1 = positive, 0 = negative)
A ∈ G Protected attribute; G is the set of groups
g ∈ G A particular protected group
Dg,+, Dg,− Conditional distributions D|(A = g, Y = 1) and D|(A = g, Y = 0)
g+, g− Shorthand for positives (A = g, Y = 1) and negatives (A = g, Y = 0)

h Individual classifier (ensemble member)
h′ Another (distinct) ensemble member
ρ Distribution over ensemble members (uniform in practice)
hMV Majority-vote classifier induced by ρ
N Ensemble size (number of members)

LD(h) Error rate (0–1 loss) of h on D
Lg(h) Groupwise loss on group g (e.g., 1− recall or 1− accuracy)
DD(h, h′) Disagreement rate between h and h′ on D
Wρ(X,Y ) Ensemble error rate on D: Eh∼ρ[1{h(X) ̸= Y }]
W g+

ρ Ensemble error rate on positives in group g (i.e., on Dg,+)
W g−

ρ Ensemble error rate on negatives in group g (i.e., on Dg,−)

t ∈ [0, 1/2] Margin parameter in competence definitions
Cρ Competence on D: P (Wρ∈ [t, 1/2))− P (Wρ∈ [1/2, 1− t])
Cg+

ρ Restricted groupwise competence on g+ (analogously Cg−
ρ for g−)

EIRD Error Improvement Rate: Eh∼ρ[LD(h)]−LD(hMV)

Eh∼ρ[LD(h)]

DERD Disagreement–Error Ratio:
Eh,h′∼ρ[DD(h,h′)]

Eh∼ρ[LD(h)]

g∗ Index for the distribution on which DER/EIR are computed (e.g., g+, g−, or full)
k Minimum rate constraint (e.g., minimum recall/sensitivity)
k∗ Upper bound on ensemble fairness gap under error-parity bounds

K Number of positive predictions among N members for a datapoint
Ki Bernoulli indicator of the i-th member’s positive prediction
pi Success prob. of Ki; pi = k + δ under enforced minimum rate
p̄ Mean recall across members: p̄ = 1

N

∑N
i=1 pi

δ ≥ 0 Margin by which enforced minimum rate exceeds k on validation

m,n # positives in validation/test for the minority group (for power analysis)
α Significance level in the one-sided test
z1−α (1− α)-quantile of the standard normal distribution
pmin Minimum observed validation recall to ensure test-time recall > 0.5:

pmin = 0.5 + 1
2
z1−α

√
1
m

+ 1
n

Their results are as follows:

The ensemble improvement rate is defined as:

EIRD =
Eh∼ρ[LD(h)]− LD(hMV)

Eh∼ρ[LD(h)]
. (7)

and the Disagreement-Error Ratio as:

DERD =
Eh,h′∼ρ[DD(h, h

′)]

Eh∼ρ[LD(h)]
. (8)

Where LD(h) is the error rate for classifier, h, on data distribution, D, hMV is the majority vote
classifier, Eh∼ρ indicates the expected value over all ensemble members, and DD(h, h

′) is the
disagreement rate between classifiers, h and h′.
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Figure 4: Relationship between Ensemble Size (X-axis) and FairAUC (Y-axis) across two datasets.
No significant relationship is observed.

Specifically, the authors provide upper and lower bounds on the EIR. Crucially, this rests on an
assumption of competence, which informally states that ensembles should always be at least as good
as the average member. More formally, Theisen et al. (2023) state:

Assumption 1 (Competence). Let Wρ,D ≡ Wρ(X,Y ) = Eh∼ρ,D[1(h(X) ̸= Y )]. The ensemble ρ
is competent if for every 0 ≤ t ≤ 1/2,

P(Wρ,D ∈ [t, 1/2)) ≥ P(Wρ,D ∈ [1/2, 1− t]). (9)

This assumption can be interpreted as formalising the statement that a majority voting ensemble is
more likely to be confidently right than confidently wrong.

Based on this assumption, Theisen et al. (2023) prove the following theorem:

Theorem 1. Competent ensembles never hurt performance, i.e., EIR ≥ 0.

This assumption is only required to rule out pathological cases. For most real-world examples, this
will be trivially satisfied. In the case of binary classification, the bounds on EIR can be simplified to
Eq. 2 from the main text.

D ABLATION: ENSEMBLE SIZES

In this section, we ask: “How does ensemble size affect performance?” We examine how FairAUC
varies with ensemble size on the test set, and whether validation performance predicts test perfor-
mance.

Our design makes this straightforward: because ensemble members are trained independently,
we can form smaller ensembles by subsampling members. We construct ensembles of size m ∈
{3, 5, . . . ,M} with M = 21, and compute FairAUC on both validation and test sets for HAM10000
(Tschandl et al., 2018) and Fitzpatrick17k (Groh et al., 2021) across all train/test partitions.

Figure 4 shows no consistent trend: confidence intervals are wide, and performance does not vary
systematically with ensemble size. An alternative heuristic is to use validation FairAUC to select
ensemble size, but as Figure 5 shows, the relationship between validation and test performance is too
noisy to be useful. This is expected, as our method already leverages all non-test data to fit fairness
weights.

Lacking a strong empirical heuristic, we adopt the largest ensemble (M = 21), which best aligns with
our theoretical results: larger ensembles provide stronger guarantees under Jury-theorem arguments
(see section 3.2.2).
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Figure 5: Relationship between FairAUC on validation (X-axis) and test set (Y-axis) across ensemble
sizes. The relationship is too noisy to guide model selection.

Figure 6: Empirical validation of competence proofs. We show that enforcing minimum recall,
k > 0.5+δ, leads to competent ensembles (see section 3.2). δ depends on the data size (section 3.2.3)
and 0.5 comes from our proof in section 3.2.2.
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Table 6: Single-image inference

Latency (ms) ↓
Method CPU CUDA

ERM 112.22 ± 13.58 5.42 ± 0.31
Ensemble 107.15 ± 12.41 5.83 ± 0.38

E EMPIRICAL VALIDATION OF COMPETENCE

We empirically validate our proofs from section 3.2.3 and section 3.2.2. Specifically, we want to
show that enforcing recall at k > 0.5 + δ leads to competent ensembles if δ is matches the size of the
datasets. This would help validate both theoretical extensions of Theisen et al. (2023).

To conduct this analysis, we set threshold = k + δ = 0.7 (as described in Appendix A). We then run
the competence calculations from Theisen et al. (2023) for different k above and below the threshold.
The resulting figure is Figure 6.

F BENCHMARKING EFFICIENCY

A big advantage of our FAIRENSEMBLE method is that it is efficient for training and inference
because it utilises a shared backbone. In this section, we provide evidence for these claims.

The results for inference can be seen in Table 6. Here, we see comparable inference speeds for ERM
and ensemble across both CPU and GPU. The GPU runs are done on an NVIDIA H100 80GB GPU.
The runs are with a batch size of 1, averaged over 100 runs, with a warm-up size of 10. There are no
significant differences between the methods.

The results for training can be seen in Table 7 based on Weights & Biases data (Biewald, 2020). Here,
we see a larger difference; ensembles take approximately 3x longer to train compared to ERM. This
may be because we are in essence training 84 times more classifiers (21 members with four heads
each). Still, because of the small size of the datasets, the training times are manageable.

It is worth noting that substantial optimisation is available for training. Because the backbone is
frozen, the entire evaluation set (validation sets + test set) can be pre-computed. This would drastically
speed up the training. However, these optimisations were not done in the interest of time.

Table 7: Average training runtime (in minutes)

Training Method Avg. Runtime (min) Std. Dev. (min)

Ensemble 31.79 5.13
ERM 8.51 2.28

G DERIVATIONS

G.1 MINIMUM VALIDATION AND EVALUATION SIZES

Statistical Framework We can frame the problem of ensuring minimum recall as a one-sided
hypothesis test:

H0 : pval = ptest = k vs. HA : pval > k. (10)

Where pval is our threshold of interest. Because both the test set and validation sets are small, they
both introduce sampling variability. Thus, we will explicitly account for the size of both.

The hypothesis-testing framework has a few assumptions. First, it assumes that the validation and
test sets are independently drawn from the same distribution (an assumption we explicitly follow; see

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

section 4.1). Second, it assumes that each positive instance is an independent Bernoulli trial that is
either a true positive or a false negative. Finally, it assumes an approximately normal distribution.
The normality assumption is met by the Large Counts Condition, which heuristically states that
min(mk,m(1− k), nk, n(1− k)) ≥ 10, which in our case simplifies to min(m2 ,

n
2 ) ≥ 10. We thus

need roughly 20 positive instances of any group in both test and validation as a minimum.

Deriving minimums Under H0, the standard error of the difference between the minimum recall
proportions in the validation and test set is:

SE0 =

√
k(1− k)

(
1
m + 1

n

)
.

The one-sided z statistic fixing ptest = k is

z =
pval − k

SE0
.

Requiring a significance level of α (i.e., z ≥ z1−α) yields the minimal observable validation recall:

pmin = k + z1−α

√
k(1− k)

(
1
m + 1

n

)
.

For k = 0.5, this simplifies to the result in Eq. 5.

G.2 DERIVATION OF EQUAL OPPORTUNITY BOUNDS

We derive the fairness bounds for ensembles under approximate equal opportunity (or accuracy)
constraints.

Starting from the definition of k′-approximate fairness for the ensemble, we have

k′ = max
g∈G

Eh∼ρ[Lg(h)](1− EIRg∗)−min
g∈G

Eh∼ρ[Lg(h)](1− EIRg∗) (11)

≤ max
g∈G

Eh∼ρ[Lg(h)]−min
g∈G

Eh∼ρ[Lg(h)](1− EIRg∗) (12)

≤ k −min
g∈G

Eh∼ρ[Lg(h)] · (−EIR)g∗ (13)

≤ k +max
g∈G

Eh∼ρ[Lg(h)]DERg∗ (14)

where g∗ is an appropriate distribution (e.g., positives, negatives or all points) constrained to a
particular group g. By substituting in the lower bound from Theorem 2 instead of 0, we obtain the
slightly tighter bound of Equation 4.

H DETAILED RELATED WORK

Fairness in Medical Imaging Deep learning-based computer vision methods have become highly
popular for medical imaging applications (Cai et al., 2020), yet despite achieving near-human
performance on top-level metrics (Liu et al., 2020), they consistently underperform for marginalised
groups (Xu et al., 2024; Koçak et al., 2024). These biases persist across different domains and
modalities from dermatology (Daneshjou et al., 2022) to chest X-rays (Seyyed-Kalantari et al., 2021)
and retinal imaging (Coyner et al., 2023). For instance, there is pervasive bias in skin condition
classification (Oguguo et al., 2023; Daneshjou et al., 2022; Groh et al., 2021), likely due to both bias
in data collection (Drukker et al., 2023) and treatment procedures (Obermeyer et al., 2019).

The sources of unfairness arise from different stages in the development process (Drukker et al.,
2023). One persistent issue is unbalanced datasets (Larrazabal et al., 2020). Unbalanced datasets can
lead to insufficient support for disadvantaged groups, which can lead to worse representations and
more uncertain results (Ricci Lara et al., 2023; Mehta et al., 2024).

A successful approach to mitigating fairness is to do extensive hyperparameter and architecture search
(Dutt et al., 2023; Dooley et al., 2022). By jointly optimising for fairness and performance, these
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methods can reduce the generalisation gap and outperform other methods. However, because of their
computational cost, we do not compare against these in this work. However, our method can be built
on top of the backbones found by the architecture search.

Defining fairness in the context of medical imaging is another challenge. While traditional fairness
metrics, like equal opportunity (Hardt et al., 2016), are concerned with minimising disparities
between groups, this might not be appropriate in a medical context. For instance, Zhang et al.
(Zhang et al., 2022) find that methods which optimise this notion of group performance reduces
the performance of all groups. This phenomenon of ‘levelling down’ (Zietlow et al., 2022) can
have fatal consequences for patients and not meet the legal standards of fairness (Mittelstadt et al.,
2024). Instead, researchers should strive to enforce minimum rate constraints, i.e., the performance
of the worst-performing groups, which can help reduce persistent problems of underdiagnosis and
undertreatment of disadvantaged groups (Seyyed-Kalantari et al., 2021).

Fairness in Hate Speech A key issue in hate speech detection is multilingual disparities (Tonneau
et al., 2025). Hate speech detection models and datasets are predominantly build for an American
English context (Tonneau et al., 2024). Blindly trusting that detection models scale across languages
and contexts can lead to catastrophe such as with the anti-muslim violence in Myanmar (Deejay et al.,
2024).

Since low-resource languages, by definition, lack data, existing fairness methods fall short for the
same reasons as in other domains. Existing methods either work on large(r) datasets (Gupta et al.,
2025) or lack a joint evaluation of fairness and performance (e.g., Bauer et al., 2025). Through our
analysis, we demonstrate that ensembles can enhance fairness—even in low-data scenarios.

In terms of appropriate fairness metrics, there is a more direct trade-off between false positives (which
hurt the falsely accused offenders) and false negatives (which hurt the victims). Which to prioritise
depends on the specific context of the application. Still, similar risks of ‘levelling down’ are present
(Mittelstadt et al., 2024).
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