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ABSTRACT

Large language models (LLMs) have demonstrated impressive few-shot in-context
learning (ICL) abilities. Still, we show that they are sometimes prone to a ‘copy-
ing bias’, where they copy answers from provided examples instead of learning
the underlying patterns. In this work, we propose a novel and simple method to
mitigate such copying bias. First, we create a synthetic task and use the Integrated
Gradients method to identify neurons that prioritize copying over generalization.
We demonstrate that pruning these neurons consistently improves performance
across a diverse set of ICL tasks. We also show that our method is applicable
across various LLM architectures, including Transformers and State-Space Mod-
els, without requiring modifications. In our analysis, we adopt a task-recognition
perspective on ICL and examine task vectors (Hendel et al., 2023) induced by the
model. We find that pruning enhances the quality of these vectors, suggesting that
the pruned neurons previously hindered effective task recognition.

1 INTRODUCTION

In-Context Learning (ICL) (Brown et al., 2020) has recently emerged as a powerful and simple al-
ternative to traditional training and fine-tuning. ICL involves presenting a Large Language Models
(LLM) with a “context” consisting of several example pairs, each containing an input and its cor-
responding correct output, followed by a test example for prediction. For instance, consider the
following prompt:

Dolphin → 2, Beautiful → 5, Octopus →

In this case, the model must leverage the contextual information from the given examples to identify
the underlying pattern of mapping words to vowel counts; based on this, it must then predict that the
correct answer for “Octopus” is “3”.

While ICL has shown considerable effectiveness, its use in few-shot scenarios faces significant chal-
lenges (Zhao et al., 2021; Razeghi et al., 2022). In these settings, the inherent scarcity of labeled
examples becomes a critical bottleneck, as ICL often requires a substantial number of in-context
examples to generalize effectively. Moreover, the performance of ICL is highly sensitive to various
aspects of the prompt and the presentation of the examples. Factors such as the specific wording
of the prompt (Wang et al., 2024), the order in which the examples are presented (Lu et al., 2021),
and their relevance to the target example can significantly influence the outcome. Consequently, in
domains where labeled data is limited, these challenges collectively hinder the reliable application
of ICL, emphasizing the need for strategies that can mitigate sensitivity and make the most of the
scarce examples available.

Recent research has primarily addressed these challenges by focusing on prompt formulation strate-
gies, including techniques for selecting optimal templates and examples (Zhou et al., 2023b; Hao
et al., 2022; Lu et al., 2022), as well as calibration methods (Han et al., 2023; Zhao et al., 2021).
However, existing work has not yet explored how errors in in-context learning (ICL) relate to the
internal processes of LLMs or how to correct them through targeted model modifications.

Our study takes a novel approach by investigating neural activation patterns related to a common
challenge in ICL: copying errors. Referring back to the vowel-counting example, a copying error
would occur if the model were to output “2” or “5” for Octopus, instead of the correct answer “3”.
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In these cases, the model appears to directly copy an answer from the provided examples rather than
generating the correct, novel response based on the induced underlying pattern.

In this work, we hypothesize that there is a small subset of neurons in language models that prioritize
copying behavior over task recognition. We posit that these mechanisms can be task-agnostic; that
is, the same neurons are responsible for this reasoning shortcut across a range of tasks. We further
hypothesize that deactivating these neurons will make the model less likely to follow shortcuts and
encourage it to focus on recognizing underlying regularities.

To identify these neurons, we employ the vowel-counting task and apply the attribution method,
Integrated Gradients (IG) (Sundararajan et al., 2017), to trace the copying errors to individual neu-
rons. We then select the top contributing neurons as “copying neurons.” The vowel-counting task
is particularly interesting, as it appears challenging for a range of models and elicits the copying
behavior in these models. We demonstrate that deactivating the neurons identified using this single
task improves results across a diverse range of ICL problems, making our method practical – since
the neurons do not need to be selected for each individual task – and confirming the existence of a
general mechanism prioritizing the shortcut over reasoning.

In summary, our contributions are fourfold: (1) We identify the copying bias in ICL and demonstrate
that LLMs, particularly smaller ones, suffer from a high percentage of these errors. (2) We intro-
duce a method to identify specific neurons responsible for triggering the copying behavior (copying
neurons). (3) We show that pruning these identified neurons leads to out-of-the-box improvement
across a wide range of ICL tasks. (4) We utilize the task vectors framework introduced by (Hendel
et al., 2023), quantifying a model’s ability to recognize and adapt to tasks during ICL. Using this
framework, we provide evidence that pruning the copying neurons enhances the quality of task vec-
tors, indicating improved task representation. This finding explains the observed performance gains
across various ICL tasks.

2 RELATED WORK

ICL, first introduced by (Brown et al., 2020), has attracted significant interest in recent years due to
its ability to enable large language models to perform complex downstream tasks without explicit
fine-tuning. By leveraging contextual information provided within the input prompts, these mod-
els can dynamically adapt their behavior and generate contextually relevant outputs across a wide
range of tasks. While it is commonly associated with Transformer architectures, ICL has also been
explored in other model architectures, such as State-Space Models and the RWKV model (Grazzi
et al., 2024b; Park et al., 2024). Leading to a wide line of works that seek to improve the effective-
ness of ICL mechanisms (Zhao et al., 2021; Wei et al., 2023; Chu et al., 2023; Zhou et al., 2023a;
Wei et al., 2024; Li et al., 2024), as well as studies that aim to explain the underlying processes and
dynamics of how models internalize and utilize context (Min et al., 2022; Liu et al., 2022; Xie et al.,
2022; Olsson et al., 2022; Von Oswald et al., 2023; Dai et al., 2022b).

Works proposing methods to improve ICL have mainly focused on prompt selection and prompt for-
mulation strategies, Zhou et al. (2023a) propose a different prompting strategy that breaks down a
complex problem into a series of simpler subproblems and then solves them in sequence. Zhang et al.
(2022b) reformulate the example selection for ICL as a sequential decision problem, and propose a
reinforcement learning algorithm for identifying generalizable policies to select demonstration ex-
amples. Sorensen et al. (2022) introduces a method for unsupervised selection of prompt templates
by maximizing the mutual information between the input and the corresponding model output. Lu
et al. (2022) show that the order in which the samples are provided can make a significant difference
and propose a method for finding the optimal permutation.

While the majority of approaches to improving ICL have focused on various methods of prompt
engineering, such as prompt selection and formulation strategies, our work takes a fundamentally
different approach. To the best of our knowledge, this is the first attempt to enhance ICL through
a neuron-level analysis, specifically by identifying and pruning neurons that contribute to copying
(which we define in Section 3.1) within large language models.

Neuron-Level analysis involves examining individual neurons within the model to determine their
specific roles. Relevant studies in this area have aimed to understand and categorize neurons into
groups based on their functional roles. For example, Voita et al. (2023) show that individual neu-
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rons in LLMs correspond to different groups such as dead neurons, positional neurons, and N-gram
neurons. Furthermore, Gurnee et al. (2024) discusses an additional group of categories including
entropy neurons, alphabet neurons, syntax neurons, and semantic neurons. Chen et al. (2024) iden-
tify safety neurons, which are responsible for safety behaviors. Neuron-level analysis was further
expanded to study multilingual LLMs. Tang et al. (2024) detect language-specific and language-
agnostic related neurons in multilingual language models. Neuron-Level analysis is typically per-
formed through activation analysis, where one examines the patterns of neuron activations across
various inputs (Voita et al., 2023; Gurnee et al., 2024; Stolfo et al., 2024). Attribution methods,
such as Integrated Gradients (Sundararajan et al., 2017), are also employed to quantify the contri-
bution of individual neurons to the model’s output, thus, allowing the discovery of different neuron
familiess (Dai et al., 2022a; Shi et al., 2024).

3 METHOD

This section presents our method for detecting and mitigating copying in ICL. First, in section 3.1
we revisit the ICL setting, formally define what are the copying errors, and introduce the Integrated
Gradients attribution method. In section 3.2 we elaborate on how we create a synthetic dataset that
will be used as a proxy for our proposed detection method, and in section 3.3 we present our method
for detecting and mitigating copying neurons.

3.1 PRELIMINARIES

In-Context Learning ICL enables a model f to adapt to downstream tasks without any parameter
updates. This is achieved by forming a prompt p that includes concatenated training examples. In
ICL, a prompt p is constructed by linking the task inputs with their corresponding labels as follows:

p = x1 : y1, x2 : y2, . . . xn : yn, xn+1 : (1)

Using this prompt, the model f predicts the most probable label y that completes the prefix p ac-
cording to the function f . In this framework, few-shot learning is characterized by the number of
examples in the prompt. Furthermore, we denote S = [y1, y2, . . . yn] as the set of the in-context
example answers for prompt p, then we say p is an |S| = n-shot in-context prompt.

Copying Bias Copying bias, as we define it, refers to the phenomenon where a language model
f returns an incorrect answer that is one of the labels S of the in-context samples provided in the
prompt. In other words, given a prompt p under the n-shot ICL settings, a prediction yn+1 is called
a copying prediction if (1) : yn+1 is a wrong prediction and (2) : yn+1 ∈ S.

We hypothesize that there exists a small number of neurons, which we call copying neurons, that
trigger the model to copy responses from the prompt examples S of the prompt p. The identification
of these neurons is, therefore, crucial for understanding how LLMs balance copying and generaliza-
tion, and for enhancing the reliability and interpretability of these models. We further hypothesize
that pruning these neurons by setting their weights to zero would encourage the model to reason
rather than solely rely on copying, thereby improving its ability to generalize under few-shot ICL.

Integrated Gradients (IG) Integrated Gradients (IG) is a popular technique in explainable
AI (Sundararajan et al., 2017) used to elucidate the relationship between a model’s predictions and
its input features. It applies to any differentiable model and is computationally efficient. IG works
by generating attributions based on integrating the gradients as the input varies between a baseline
and the final input of interest (the path):

IG(f, x̃, x, i) = (xi − x̃i)

∫ 1

α=0

∂f(x̂) · dα
∂f(x̂i)

∣∣∣∣∣
x̂=x̃+α(x−x̃)

, (2)

where f(·) denotes the prediction of the model, x is the input vector of interest that we want to
attribute, x̃ is the baseline input vector and i is an index denoting the indices of features of interest.
The baseline represents a reference point against which the input of interest is compared. More
specifically, the baseline is an input vector that is supposed to reflect a neutral, missing, or reference
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state. The idea behind using a baseline is to measure how the model’s output changes as we transition
from this baseline state to the actual input of interest. This change is quantified by integrating the
gradients along this path. In our experiments, we use the constant zero baseline as proposed in the
original paper of IG. This baseline is straightforward to implement and often provides meaningful
attributions. The integral is practically computed using the Riemann sum approximation:

IG(f, x̃, x, i) ≈ (xi − x̃i)

m

m∑
r=1

∂f(x̃+ r
m (x− x̃))

∂xi
, (3)

where m is the total number of Riemann steps.

3.2 PROXY ICL DATASET GENERATION

The Integrated Gradients (IG) method operates by backpropagating the probability of the prediction.
To effectively utilize IG within our framework, we require a set of in-context examples with ground-
truth labels. We avoid relying on access to target task data for neuron selection, as this would limit
the practicality of our approach. Instead, we utilize a synthetic proxy dataset to identify and prune
neurons on evaluation tasks. This approach also aligns with our research hypothesis that copying
neurons are largely task-agnostic. This synthetic dataset is employed within the Integrated Gradients
framework to identify copying neurons.

The specific task we choose is that of vowel counting since the mapping from a word to such struc-
tural attributes requires reasoning. LLMs can occasionally make errors on this and similar tasks,1
potentially outputting copying responses. The synthetic samples we utilize simply map an arbitrary
word to its corresponding vowel counts (e.g., apple: 2). To construct a diverse set of examples, we
extract words from a dictionary and calculate their respective vowel counts. In our implementation,
we used two examples per prompt to keep the problem tractable while still allowing us to study
copying behavior. To eliminate the possibility of label repetition, we ensured that each prompt’s
examples (S) contained distinct vowel counts, with the target word’s vowel count always differing
from those in S. We sampled words with vowel counts ranging from 1 to 8, providing sufficient
diversity while avoiding repetition within prompts. For dataset construction, we generated 400 ICL
prompts, each using a 2-shot format: 300 examples were used for computing neuron importance
scores, and 100 were reserved for validation to determine the optimal pruning configuration. The
test answers were carefully designed to never appear in the prompt responses, ensuring clear evalu-
ation of copying behavior.

3.3 COPYING NEURONS DETECTION

Denote V as the vocabulary space, p as the in-context prompt of interest containing n in-context
examples, and Sp = [y1, . . . yn] the set of labels of the different examples in the prompt p. In our
detection process, we are only interested in prompts p on which the model outputs a wrong prediction
y ∈ Sp (hence the copying) and denote ŷ /∈ Sp as the ground-truth answer. Let wl ∈ Rd1×d2 be the
weight matrix of the linear layer at block l on which our detection process operates. Furthermore,
we define the model output Pp(y|ŵl

j) as the probability of predicting a certain answer y ∈ V.

P(y|ŵl
j , p) = P(y|wl

j = ŵl
j , p), (4)

where w
(l)
j denotes the j-th intermediate neuron in the l-th layer of interest (Figure 1), ŵl

j is a
given constant that wl

j is assigned to. We define lu =
∑n

i P(y = yi ∈ Sp|wl
j = ŵl

j , p) as the
probability of predicting an answer which is provided in the prompt examples (in S), we also define
lv = P(y = ŷ /∈ Sp|wl

j = ŵl
j , p) as the probability of predicting the ground-truth answer ŷ. Lastly,

we define ∆L = lv − lu as the prediction shift.

Copying, by definition, occurs when the model’s prediction shifts from the true answer to one of the
responses provided in the prompt. Thus, copying neurons are those that drive ∆L.

By leveraging IG, we can attribute ∆L to individual components. This approach enables us to
identify specific neurons responsible for copying within the LLM.

1See, e.g., https://community.openai.com/t/incorrect-count-of-r-characters-in-the-word-strawberry/
829618.
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Figure 1: A high-level depiction of our proposed method of detecting copying neurons. First, in (a)
we feed ICL prompts from the synthetic dataset. In this phase, we are only interested in the prompts
where the model outputs a wrong response which also appears in the prompt examples. Second, in
(b) we use these prompts and calculate the sum of the probabilities over predicted responses that
appear in the prompt. This sum is used within the IG framework to attribute it to neurons in the
targeted layer.

To quantify the contribution of a neuron wl
j to the prediction shift (∆L), we gradually change w

(l)
j

from 0 (the baseline) to its original value ŵ
(l)
j computed by the model and integrate the gradients:

Attr(wl
j , p, Sp) = IG(wl

j) = (ŵl
j − 0)

∫ 1

α=0

∂|∆L|
∂wl

j

dα

=

n∑
i

ŵ
(l)
j

∫ 1

α=0

∂
∣∣P(yi|αŵl

j , p)− P(ŷ|αŵl
j , p)

∣∣
∂wl

j

dα, (5)

Attr(wl
j , p, Sp) = IG(wl

j) =
n∑
i

ŵl
j

m

m∑
r=1

∂
∣∣P(yi| rm ŵl

j , p)− P(ŷ| rm ŵl
j , p)

∣∣
∂wl

j

, (6)

where m = 20 is the number of approximation steps we use in our experiments, following (Sun-
dararajan et al., 2017).

Finally, we compute the final attribution scores for the neurons [wl
j ] by averaging Attr(wl

j) across
all samples in the synthetic dataset, resulting in a relevance score that quantifies the extent to which
a neuron contributes to copying.

R(wl
j) =

1

|D|

|D|∑
k=1

Attr(wl
j , pk, Spk

)−mink′ Attr(wl
j , pk′ , Spk′ )

maxk′ Attr(wl
j , pk′ , Spk′ )−mink′ Attr(wl

j , pk′ , Spk′ )
, (7)

where D is the synthetic dataset and pk is the k−th sample of the synthetic dataset.

To mitigate the copying bias, we propose to suppress the weights of the detected copying neurons
as follows:

wl
i =

{
0, R(wl

i) ≥ σ,

wl
i, R(wl

i) < σ.
(8)

where σ is the filtering threshold and is tuned using a validation dataset.
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Figure 2: Percentage of total errors and copying errors for both the pruned and un-pruned models,
results are shown for 3 ICL tasks across 3 different models: GPT2-Small, BLoom-560M, and OPT-
1.3B. The dark bar in each diagram represents the unpruned version while the lighter bar represents
the pruned version; the entire bar height represents the total error of the model and the shaded part
represents the copying error rate.

4 EXPERIMENTS

Our approach offers a generic method for detecting copying neurons, applicable to any language
model. To demonstrate the generalizability of our method across different models and tasks, we
conduct extensive experiments on a diverse set of LLMs. This includes the recent state-space mod-
els, such as Mamba (Gu & Dao, 2023) as well as a broad spectrum of transformer-based models,
including OPT (Zhang et al., 2022a), GPT2 (Radford et al., 2019), Bloom (Le Scao et al., 2023) and
LLaMA Touvron et al. (2023); Dubey et al. (2024).

Data In all of our experiments, we follow Hendel et al. (2023) and Grazzi et al. (2024a) and
study 18 tasks in 3 different categories including algorithmic (to lowercase, to uppercase, list first,
list last, list max, list min, and next letter), linguistic (present to past, present to gerund, singular
to plural, antonyms, and past to perfect), and knowledge (landmark, currency, country to capital,
person to language, religion, and continent), the algorithmic tasks are generated automatically, for
the linguistic we use the GitHub Repositries23 and the knowledge data is taken from Meng et al.
(2022). Additionally, we also incorporate real-world datasets like sentiment classification, including
SST2, SST5, and subsets from the BIG-Bench Tasks (Suzgun et al., 2022). For more information
about the data, refer to Appendix A.

Implementation Details For each model, we use the synthetic validation dataset introduced in
Section 3.2 to identify the optimal block and the number of copying neurons to prune as follows.
IG, as defined in Equation 7, is applied across the layers of interest (summarized in Appendix. B)
in all of the blocks in the model. As described in Section. 3.3, this procedure quantifies which

2https://github.com/Drulac/English-Verbs-Conjugates
3https://github.com/sindresorhus/irregular-plurals
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Figure 3: Summary of the results over the synthetic ICL tasks, for more information on the tasks
and the exact numbers, refer to Appendix D.
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Figure 4: Results of Llama-2 and Llama-3 over SST2, SST5, and Object Counting task from BBH
benhmark

neurons contribute most significantly to the copying errors. Furthermore, we use the validation
set introduced in Section 3.2 in order to find the optimal pruning rate and the optimal block that
maximizes the validation accuracy over the proxy ICL validation set, we apply multiple pruning
rates ranging from 1% to 10%, in 1% increments (i.e., [1%, 2%, 3%, . . . , 10%]) over each layer in
all of the blocks in the model, and use the best validation accuracy performing configuration to use
for the unseen ICL tasks. This procedure allows us to determine the optimal block and the optimal
number of neurons to prune for maximizing the accuracy on the validation proxy ICL set. The layers
we choose to apply the detection and pruning procedures are summarized in Appendix B.

4.1 VALIDATING THE PREVALENCE OF COPYING ERRORS

To validate the significance of copying errors, we first conduct an error analysis for three represen-
tative ICL tasks (to lower, singular to plural, and present simple to gerund) across a range of large
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language models (GPT2-Small, Bloom-560M, and OPT-1.3B). In this analysis, we show the per-
centage of copying errors as defined in Section 3.1 out of the total number of errors. The results are
presented in Figure 2. In this figure, we present a comparative analysis of error rates across differ-
ent models and tasks. The dark bars show error rates for the baseline (unpruned) model, while the
light bars display results for the pruned model. Each bar is composed of two elements: an unfilled
portion representing the total error rate, depicted by the full height of the bar with a black outline,
and a filled portion below indicating the copying error rate, which is a subset of the total error rate.
Evidently, most of the errors in these few-shot ICL tasks stem from copying, these models tend
to replicate responses based on examples provided in the prompt, rather than generalizing to new
contexts. Additionally, our pruning method significantly reduces the number of copying errors thus
also reducing the total error rate. More analysis on Copying Error can be found in Appendix C.

4.2 TASKS EVALUATION

To demonstrate the generalizability of our approach across model architectures, we include a range
of models: (1) Transformer-based: OPT, GPT-2, BLOOM, LLaMA, and (2) Mamba state space
models of various sizes.

For each synthetic ICL task, we utilize the test sets introduced by Hendel et al. (2023). We report
the mean accuracy across these test sets for each model and task configuration over the different
shots (1, 2, 3, and 4) evaluated using various seeds. Figure. 3 presents a scatter plot comparing
the performance of our pruned model against the baseline (non-pruned) model. A diagonal line
representing equal performance is included for reference. Data points falling above this line indicate
instances where our pruned model achieves higher accuracy than the baseline, while points below the
line represent cases where the baseline model outperforms. As evident from the distribution of points
that is dominated by those above the diagonal, our pruned model consistently demonstrates superior
accuracy across a wide range of ICL tasks for different shot instances, underscoring the effectiveness
of our targeting neuron pruning strategy. We believe that the fact our technique rarely leads to a
performance drop – and when it does, the impact is only marginal – makes it particularly appealing
for practical applications. For the exact numbers, we refer the reader to Appendix D.Additionally,
we also test our method on multi-token output tasks, the analysis, and the results are presented in
Appendix E. While our pruning method demonstrates substantial improvements in ICL performance,
it is important to consider potential tradeoffs in other model capabilities. For a detailed evaluation
of these tradeoffs, including the impact on language modeling and knowledge-intensive reasoning
tasks, please refer to Appendix F.

In order to test our approach beyond this benchmark ICL tasks, we also test it on tasks that are based
on three datasets of collected data: SST-2, SST-5, and the object counting sub-task from the BBH
benchmark (Suzgun et al., 2022). In these cases, to allow a comparison with previous work, we use
Llama-2 (Touvron et al., 2023) and Llama-3 (Dubey et al., 2024). The same synthetic dataset of
vowel mapping is used for copying neurons detection.

We include two recent baselines. The first is Weighted In-Context Learning (WICL) by Yang et al.
(2023), which improves the performance of LLMs on downstream tasks by assigning and applying
optimal weights to demonstration examples during ICL. The second, Automatic Prompt Engineer
(APE) by Zhou et al. (2023b), automatically generates and selects optimal instructions for large
language models to improve their performance on various ICL tasks without relying on human-
crafted prompts.

The results for these three benchmarks are presented in Figure 4. Evidently, our method significantly
improves over the baseline LLM as well as over the two baselines. For a more comprehensive anal-
ysis on the effect of shot count beyond the few-shot regime, we conduct additional experiments with
up to 64 shots, reported in Appendix G. While our method’s improvements are most pronounced in
the few-shot setting, it continues to yield consistent benefits even with increased examples.

4.3 TASKS-VECTOR ANALYSIS

Next, we build upon the recent task-vectors framework of Hendel et al. (2023) to study the rela-
tionship between copying neurons pruning and the quality of the emerged task vectors in ICL. By
comparing the task vectors generated by pruned and unpruned models across various ICL scenarios,
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we seek to understand if our proposed targeted pruning can enhance a model’s ability to distill task-
relevant information from demonstrations, specifically under the few shots settings. Furthermore,
we follow the setup of Hendel et al. (2023) and report ICL accuracy using the standard ICL promot-
ing (denoted by ICL), the accuracy obtained by using the emerged Task-Vectors without pruning the
copying neurons (denoted as Task-Vectors) and the accuracy obtained by using task vectors obtained
from the model with the pruned copying neurons (denoted as Task-Vectors-Pruned).

In Figure. 5, we show the results of OPT-2.7B and Bloom-560M models over the “Singular Plural”
and “Country Capital” ICL tasks. As can be seen from the results, pruning the copying neurons
indeed yields better Task-Vectors for ICL. This suggests that our pruning strategy may be effec-
tively identifying and removing neurons that were interfering with the model’s ability to infer the
underlying task. For more results on additional models and tasks, refer to Appendix H .
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Figure 5: Task-Vectors accuracies over OPT-2.7B and Bloom-560M models tested on (1) Singular
Plural and (2) Country Capital ICL tasks. We show the Task-Vectors accuracies with and without
pruning the detected copying errors, as can be seen, pruning the copying errors improves the quality
of the extracted Task-Vectors across the different shots ∈ [1, 2, 3, 4] for the two models and ICL
tasks.

4.4 ABLATION STUDIES

We present multiple ablation studies to evaluate and understand the different components of our
proposed detection and pruning methods. These ablation studies were conducted with the OPT-
350M, GPT2-Small, and Bloom-560M models, over the Linguistic Antonyms, and Letter to Upper
ICL tasks.

Our first experiment focuses on using “Prediction Shift” within the IG framework. We aim to de-
termine whether applying IG to the prediction shift, as defined in Section 3.3, is essential for our
proposed method’s effectiveness. To this end, we compare our approach with an alternative where
IG is applied to the predicted probability (specifically, the maximum probability) instead. Results
are presented in Tab.1 (“Max IG” row) clearly shows that the prediction shift is essential for the
success of our proposed method.

We further check the effect of min-max normalizing the IG scores across the samples from the proxy
ICL task we use in the detection process. The results without this normalization are reported under
“w/o Norm”. As can be seen, normalizing the scores across the samples can significantly enhance
the detection process of the copying neurons.

Additionally, we explore a baseline case where we randomly prune the same percentage of neurons
as in the best-performing version of our method. This experiment, labeled as “Random” in Tab.1,
shows a degradation in ICL accuracy for some shot settings, underscoring the importance of our
targeted pruning strategy. To further evaluate the generality of our copying neuron detection method,
we conducted experiments using various proxy ICL tasks beyond vowel counting. The detailed
analysis and results can be found in Appendix I. Further analysis of our method’s effectiveness
across different experimental settings, including combinations with task descriptions, comparisons
with fine-tuning approaches, and evaluations on balanced datasets, can be found in Appendix J
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Linguistic Antonyms

1 0.20 0.29 0.18 0.22 0.20 0.06 0.19 0.17 0.15 0.08 0.57 0.61 0.55 0.59 0.57
2 0.32 0.38 0.30 0.34 0.30 0.10 0.29 0.29 0.21 0.12 0.68 0.68 0.68 0.68 0.67
3 0.33 0.37 0.33 0.34 0.30 0.11 0.27 0.25 0.23 0.11 0.71 0.71 0.70 0.70 0.70
4 0.29 0.33 0.27 0.31 0.27 0.11 0.25 0.25 0.22 0.13 0.73 0.77 0.73 0.77 0.75

Letter to Uppercase

1 0.24 0.51 0.30 0.37 0.23 0.24 0.53 0.37 0.45 0.34 0.76 0.81 0.77 0.78 0.76
2 0.72 0.87 0.72 0.81 0.72 0.96 0.96 0.95 0.96 0.96 0.92 0.96 0.91 0.95 0.90
3 0.85 0.94 0.85 0.90 0.84 1.00 1.00 0.98 0.99 1.00 0.96 0.98 0.96 0.96 0.96
4 0.92 0.97 0.91 0.94 0.92 1.00 1.00 0.99 1.00 1.00 0.96 0.98 0.95 0.95 0.95

Table 1: Ablation studies for the different components in our method over OPT-350M, GPT2-Small,
and Bloom-560M models applied on the Linguistic Antonyms, and Letter to Upper ICL tasks

5 CONCLUSIONS AND DISCUSSION

We presented a novel method to mitigate copying bias in few-shot In-Context Learning by pruning
neurons that are linked to this behavior according to the integrated gradients interoperability method.
Our approach consistently improved performance across a variety of ICL tasks and model architec-
tures. These findings highlight the potential of targeted neuron pruning as an effective strategy for
optimizing the capabilities of large language models.

The “out-of-the-box” improvements provided by our method, without the need for task-specific data
or fine-tuning, have significant practical implications for deploying more reliable few-shot learning
systems. Our approach allows for the enhancement of LLM performance across a wide range of
tasks using only a simple, synthetic dataset for neuron identification. Moreover, the consistent im-
provements observed across different model architectures suggest that this method could be broadly
applicable, potentially becoming a standard post-processing step in LLM deployment pipelines.

The success of our pruning method in improving performance across various tasks indicates that
“copying neurons” may be acting as a form of shortcut, inhibiting the model’s ability to engage
in more sophisticated reasoning processes. This observation aligns with recent work on shortcut
learning in neural networks (Yom Din et al., 2024; Belrose et al., 2023) and suggests that in-context
learning quality could potentially be improved by carefully modulating the influence of different
neuron groups or pathways.

Our results suggest that by pruning copying neurons, we enhance the model’s ability to distill task-
relevant information from demonstrations, leading to more effective task vectors. This raises in-
teresting questions about the relationship between neuron-level representations and the higher-level
task embeddings captured by task vectors. Specifically, it may be useful to consider the representa-
tion in a way that disentangles multiple activation pathways.
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Vulić (eds.), Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on
Knowledge Extraction and Integration for Deep Learning Architectures, pp. 100–114, Dublin,
Ireland and Online, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.deelio-1.10. URL https://aclanthology.org/2022.deelio-1.10.

11

https://aclanthology.org/2022.acl-long.581
https://aclanthology.org/2022.acl-long.581
https://openreview.net/forum?id=Iia0cnjMh2
https://openreview.net/forum?id=Iia0cnjMh2
https://openreview.net/forum?id=2Y5kBPtU0o
https://openreview.net/forum?id=2Y5kBPtU0o
https://aclanthology.org/2022.deelio-1.10


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786, 2021.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 8086–8098. Association for Computational Linguistics, May 2022. doi: 10.18653/
v1/2022.acl-long.556. URL https://aclanthology.org/2022.acl-long.556.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work?,
2022. URL https://arxiv.org/abs/2202.12837.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study on
in-context learning tasks. arXiv preprint arXiv:2402.04248, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining term
frequencies on few-shot reasoning. arXiv preprint arXiv:2202.07206, 2022.

Dan Shi, Renren Jin, Tianhao Shen, Weilong Dong, Xinwei Wu, and Deyi Xiong. Ircan: Mitigating
knowledge conflicts in llm generation via identifying and reweighting context-aware neurons.
arXiv preprint arXiv:2406.18406, 2024.

Taylor Sorensen, Joshua Robinson, Christopher Michael Rytting, Alexander Glenn Shaw, Kyle Jef-
frey Rogers, Alexia Pauline Delorey, Mahmoud Khalil, Nancy Fulda, and David Wingate. An
information-theoretic approach to prompt engineering without ground truth labels. arXiv preprint
arXiv:2203.11364, 2022.

Alessandro Stolfo, Ben Wu, Wes Gurnee, Yonatan Belinkov, Xingyi Song, Mrinmaya Sachan,
and Neel Nanda. Confidence regulation neurons in language models. arXiv preprint
arXiv:2406.16254, 2024.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Tianyi Tang, Wenyang Luo, Haoyang Huang, Dongdong Zhang, Xiaolei Wang, Xin Zhao, Furu Wei,
and Ji-Rong Wen. Language-specific neurons: The key to multilingual capabilities in large lan-
guage models. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 5701–5715. Association for Computational Linguistics,
August 2024. URL https://aclanthology.org/2024.acl-long.309.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Elena Voita, Javier Ferrando, and Christoforos Nalmpantis. Neurons in large language models:
Dead, n-gram, positional. arXiv preprint arXiv:2309.04827, 2023.

12

https://aclanthology.org/2022.acl-long.556
https://arxiv.org/abs/2202.12837
https://aclanthology.org/2024.acl-long.309


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Lingpeng Kong,
Qi Liu, Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators. In Proceed-
ings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 9440–9450, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. URL https://aclanthology.org/2024.acl-long.511.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, 2024. ISBN 9781713871088.

Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen, Yifeng
Lu, Denny Zhou, Tengyu Ma, and Quoc Le. Symbol tuning improves in-context learning in lan-
guage models. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 968–979, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.61. URL https://aclanthology.org/2023.
emnlp-main.61.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=RdJVFCHjUMI.

Zhe Yang, Damai Dai, Peiyi Wang, and Zhifang Sui. Not all demonstration examples are equally
beneficial: Reweighting demonstration examples for in-context learning. In Findings of the As-
sociation for Computational Linguistics: EMNLP 2023, Singapore, December 2023. Association
for Computational Linguistics.

Alexander Yom Din, Taelin Karidi, Leshem Choshen, and Mor Geva. Jump to conclusions: Short-
cutting transformers with linear transformations. In Proceedings of the 2024 Joint Interna-
tional Conference on Computational Linguistics, Language Resources and Evaluation (LREC-
COLING 2024), pp. 9615–9625, Torino, Italia, May 2024. ELRA and ICCL. URL https:
//aclanthology.org/2024.lrec-main.840.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022a.

Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
9134–9148, Abu Dhabi, United Arab Emirates, December 2022b. Association for Computational
Linguistics. URL https://aclanthology.org/2022.emnlp-main.622.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International conference on machine learning, pp.
12697–12706. PMLR, 2021.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting
enables complex reasoning in large language models. In The Eleventh International Confer-
ence on Learning Representations, 2023a. URL https://openreview.net/forum?id=
WZH7099tgfM.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh Interna-
tional Conference on Learning Representations, 2023b. URL https://openreview.net/
forum?id=92gvk82DE-.

13

https://aclanthology.org/2024.acl-long.511
https://aclanthology.org/2023.emnlp-main.61
https://aclanthology.org/2023.emnlp-main.61
https://openreview.net/forum?id=RdJVFCHjUMI
https://aclanthology.org/2024.lrec-main.840
https://aclanthology.org/2024.lrec-main.840
https://aclanthology.org/2022.emnlp-main.622
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A TASKS DATASETS

In all of our experiments, we follow Hendel et al. (2023) and Grazzi et al. (2024a) and study 18 tasks
in 4 different categories including algorithmic, translation, linguistic, and knowledge, the algorith-
mic tasks are generated automatically, for the linguistic we use the GitHub Repositories45 and the
knowledge data is taken from Meng et al. (2022). More details on the datasets are shown in Table A.

Category Reference Task Example

Algorithmic

T1 To Lowercase A → a
T2 To Uppercase a → A
T3 List First q,b,e,s → q
T4 List Last q,b,e,s → s
T5 List Max 2,1,5 → 5
T6 List Min 2,1,5 → 1
T7 Next Letter a,b,c → d

Linguistic

T8 Present to past go → went
T9 Present to gerund go → going
T10 Singular to plural cat → cats
T11 Antonyms happy → sad
T12 Past to Perfect catch → caught

Knowledge

T13 Landmark Maybach → Germany
T14 Currency Azerbaijan → Manat
T15 Country to Capital France → Paris
T16 Person to Language Macron → French
T17 Religion Muhammad → Islam
T18 Continent Swanson Mountains → Antarctica

Beyond synthetic ICL tasks, we use sentiment classification datasets like SST2, and SST5, in SST2
the task is to classify text sentences into one of the two sentiments (negative or positive), while
in SST5 the task is to classify text sentences into one of five sentiments (very positive, positive,
neutral, negative, very negative). Additionally, we also incorporate the object-counting task from
the BBH benchmark (Suzgun et al., 2022), where the task is to find out the total number of objects
given in a context sentence, a sample illustration from the dataset is as follows:

“I have a car, and a toaster. How many objects do I have? → 2”

4https://github.com/Drulac/English-Verbs-Conjugates
5https://github.com/sindresorhus/irregular-plurals
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B TARGET LAYERS

This section outlines the exact layers targeted by our detection and pruning techniques. We con-
centrate on specific linear layers within each model block, with GPT2 being an exception where
we focus on a CNN layer. Our approach encompasses both transformer-based and Mamba-based
architectural designs. For a detailed breakdown of the exact layers our method operates on across
various model families, refer to Table 2. The hyperparameters used in the pruning process including
target layer and the percentage of neurons to prune are summarized in Table 3.

Table 2: A summary of the specific layers on which we apply our detection and pruning method for
different model families

Family Layer type

OPT fc1 linear
GPT2 mlp.c fc cnn
Bloom mlp.dense h to 4h linear
Llama mlp.gate proj linear
Mamba mixer.in proj linear

Table 3: A summary of the meta-optimization procedure
Family Pruned Layer Percentage

OPT 125M 5 5%
OPT 350M 0 5%
OPT 1.3B 14 7%
OPT 2.7B 19 3%
GPT2-Small 0 5%
GPT2-Medium 6 7%
Bloom 560M 11 8%
Bloom 1.1B 0 5%
Mamba 130M 0 8%
Mamba 370M 0 6%

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C ADDITIONAL ERROR ANALYSIS RESULTS

We believe copying errors dominate because it’s a “safer” failure mode for the model - repeating
a previously seen answer rather than generating a potentially incorrect novel response. This aligns
with the training objective of minimizing unlikely outputs. For the vowel-counting task, copying
errors occur at a similar rate to other tasks, suggesting that copying behavior is a general phe-
nomenon rather than task-specific. This consistency between in-distribution and out-of-distribution
tasks supports our hypothesis that we’re identifying fundamental copying mechanisms in the model
architecture rather than task-specific patterns.

Table 4 reports the ratio of copying errors to total errors (Copying Error Rate / Total Error Rate) over
the vowel counting task for a single run, demonstrating the prevalence of copying behavior across
model scales and architectures. To validate our method’s effectiveness in mitigating copying errors,

Table 4: Ratio of copying errors to total errors on the vowel counting task.
Model 1 Shot 2 Shot 3 Shot 4 Shot

GPT2-Small 0.936 0.566 0.669 0.733
GPT2-Medium 0.853 0.430 0.711 0.812
Bloom 560M 0.751 0.390 0.580 0.686
Bloom 1.1B 0.987 0.680 0.777 0.906
OPT 125M 0.802 0.657 0.689 0.680
OPT 350M 0.227 0.775 0.812 0.872
OPT 1.3B 0.951 0.378 0.682 0.800
OPT 2.7B 0.942 0.439 0.621 0.712
Llama3 8B 0.835 0.500 0.691 0.792

we analyze the percentage of copying errors among total errors on the BBH ICL task before and
after applying our pruning method. Table 5 shows that our approach substantially reduces copying
errors even in larger models like Llama3 8B, with reductions of up to 60% in some settings.

Table 5: Percentage of copying errors in total errors on the BBH ICL task.
Model 1 Shot 2 Shot 3 Shot 4 Shot

Llama3 8B ICL 10% 16% 19% 24%
Llama3 8B ICL + Ours 4% 10% 12% 15%

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D MORE RESULTS

This section presents the full results of the ICL tasks. We compare the performance of various
models across 18 ICL tasks. Each entry in the result tables contains two values: the left value
represents the performance of the unpruned model, while the right value shows the performance
achieved using our proposed method. Results are averaged across 5 different seeds.

Table 6: Results over the GPT2 model family. The left number is the base model and the right
number is with our pruning approach. Results are averaged across 5 different runs.

Task GPT2-Small GPT2-Medium
1-shot 2-shot 3-shot 4-shot 1-shot 2-shot 3-shot 4-shot

T1 .35|.50 .94|.98 .98|1.0 .99|1.0 .36|.72 .91|.98 .98|1.0 .99|1.0
T2 .24|.53 .96|.96 1.0|1.0 1.0|1.0 .61|.78 .99|1.0 .99|1.0 1.0|1.0
T3 .42|.42 .62|.67 .63|.68 .62|.65 .73|.87 .82|.87 .86|.90 .87|.92
T4 .42|.62 .67|.67 .68|.68 .68|.68 .66|.62 .78|.75 .82|.82 .83|.80
T5 .57|.61 .53|.59 .52|.57 .52|.57 .54|.54 .51|.53 .52|.54 .54|.56
T6 .30|.30 .34|.38 .38|.44 .40|.45 .35|.39 .37|.42 .41|.49 .44|.52
T7 .02|.15 .17|.55 .34|.64 .46|.68 .40|.54 .38|.54 .32|.44 .35|.45
T8 .10|.17 .25|.38 .26|.38 .28|.40 .16|.21 .28|.38 .32|.45 .36|54
T9 .10|.30 .29|.49 .35|.52 .43|.57 .23|.30 .47|.55 .55|.64 .63|.72
T10 .27|.30 .35|.39 .36|.40 .37|.42 .34|.38 .45|.48 .54|.54 .59|.59
T11 .06|.19 .10|.29 .11|.27 .11|.25 .49|.52 .62|.65 .67|.67 .67|.67
T12 .19|.26 .33|.44 .38|46 .40|.49 .26|.31 .33|.42 .36|.47 .38|48
T13 .18|.18 .16|.16 .18|.18 .20|.20 .17|.17 .24|.24 .26|.26 .26|.27
T14 .28|.30 .38|.40 .40|.43 .42|.44 .31|.31 .41|.41 .45|.47 .47|.47
T15 .11|.11 .22|.22 .24|.24 .25|.25 .19|.22 .30|.30 .32|.32 .36|.35
T16 .26|.30 .35|.35 .33|.33 .33|.33 .41|.45 .47|.47 .47|.45 .49|.48
T17 .49|.54 .64|.68 .66|.70 .67|.71 .41|.45 .55|.57 .49|.55 .51|.58
T18 .52|.54 .48|.53 .61|.63 .70|.72 .54|.54 .55|.55 .59|.60 .62|.64

Table 7: Results over the BLOOM models family. The left number is the base model and the right
number is with our pruning approach. Results are averaged across 5 different runs.

Task Bloom-560M Bloom-1.1B
1-shot 2-shot 3-shot 4-shot 1-shot 2-shot 3-shot 4-shot

T1 .34|.57 .86|.92 .98|1.0 .99|1.0 .21|.25 .66|.70 .85|.90 .93|.95
T2 .76|.81 .92|.96 .96|.98 .96|.98 .65|.69 .99|.99 1.0|1.0 1.0|1.0
T3 .37|.46 .71|.77 .83|.87 .87|.90 .43|.48 .83|.85 .92|.93 .93|.95
T4 .43|.54 .62|.71 .68|.78 .72|.83 .52|.56 .75|.75 .77|.77 .83|.80
T5 .51|.54 .51|.51 .56|.56 .57|.57 .58|.60 .62|.62 .60|.63 .60|.60
T6 .22|.27 .33|.36 .38|.42 .40|.42 .24|.24 .28|.28 .33|.33 .34|.34
T7 .15|.19 .24|.28 .28|.28 .33|.32 .21|.32 .41|.60 .44|.65 .51|.73
T8 .36|.47 .44|.58 .49|.62 .58|.67 .48|.57 .65|.72 .74|.76 .81|.83
T9 .35|.42 .45|.56 .56|.64 .57|.66 .53|.58 .73|.76 .81|.85 .84|.84
T10 .30|.36 .42|.49 .41|.48 .45|.52 .40|.44 .52|.55 .56|.60 .62|.66
T11 .42|.47 .56|.61 .60|.64 .65|.65 .57|.61 .68|.68 .71|.71 .73|.77
T12 .39|.46 .38|.50 .45|.54 .42|.51 .40|.47 .48|.56 .62|.68 .68|74
T13 .16|.18 .22|.22 .21|.21 .23|.25 .29|.31 .40|.40 .41|.41 .42|.42
T14 .26|.28 .39|.41 .45|.48 .41|.43 .36|.36 .48|.48 .44|.46 .47|.47
T15 .18|.22 .26|.29 .29|.33 .29|.31 .28|.32 .37|.42 .40|.45 .42|.42
T16 .24|.26 .36|.39 .32|.34 .30|.30 .52|.52 .58|.58 .57|.61 .57|.62
T17 .49|.52 .45|.44 .57|.55 .63|.61 .57|.60 .63|.67 .66|.66 .70|.70
T18 .59|.59 .55|.55 .64|.62 .66|.63 .49|.51 .53|.55 .64|.64 .65|.67
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Table 8: Results over the OPT models family, the left number is the base model and the right number
is with our pruning approach, results are averaged across 5 different runs

OPT-125M OPT-350M
Task 1 Shot 2 Shot 3 Shot 4 Shot 1 Shot 2 Shot 3 Shot 4 Shot
T1 .01|.18 .37|.59 .21|.35 .21|.31 .02|.15 .23|.55 .52|.81 .72|.90
T2 .02|.17 .27|.49 .25|.28 .21|.24 .24|.51 .72|.87 .85|.94 .92|.97
T3 .19|.34 .30|.38 .32|.38 .32|.39 .21|.29 .55|.64 .62|.64 .61|.60
T4 .18|.37 .30|.40 .30|.40 .29|.39 .55|.55 .36|.34 .33|.30 .27|.27
T5 .32|.39 .33|.33 .30|.29 .30|.30 .49|.51 .46|.46 .46|.46 .47|.49
T6 .25|.35 .31|.35 .30|.34 .33|.35 .30|.29 .41|.39 .40|.38 .44|.41
T7 .01|.07 .03|.12 .03|.09 .04|.08 .03|.05 .15|.30 .15|.28 .19|.31
T8 .01|.01 .03|.05 .04|.07 .04|.06 .05|.07 .12|.15 .17|.21 .19|.30
T9 .01|.06 .11|.16 .14|.18 .15|.21 .07|.07 .19|.22 .23|.25 .23|.28
T10 .10|.19 .22|.25 .28|.30 .29|.32 .28|.33 .35|.37 .39|.41 .38|.40
T11 .05|.10 .11|.15 .15|.17 .16|.18 .20|.29 .32|.38 .33|.37 .29|.33
T12 .02|.09 .12|.16 .16|.16 .16|.16 .16|.19 .24|.26 .27|.29 .26|.28
T13 .08|.12 .07|.12 .10|.15 .11.16 .14|.16 .24|.27 .32|.34 .32|.32
T14 .09|.25 .26|.34 .31|.33 .31|.34 .33|.37 .48|.50 .42|.44 .51|.54
T15 .04|.09 .13|.16 .15|.18 .15|.17 .11|.13 .20|.20 .24|.25 .25|.26
T16 .19|.24 .26|.30 .25|.28 .24|.26 .29|.28 .42|.41 .45|.44 .46|.45
T17 .54|.54 .54|.57 .53|.55 .62|.62 .51|.50 .64|.64 .67|.67 .72|.72
T18 .56|.56 .65|.63 .65|.65 .69|.69 .51|.53 .47|.50 .56|.58 .60|.67

OPT-1.3B OPT-2.7B
Task 1 Shot 2 Shot 3 Shot 4 Shot 1 Shot 2 Shot 3 Shot 4 Shot
T1 .01|.13 .24|.83 .76|.98 .94|1.0 .09|.13 .89|.98 .99|1.0 1.0|1.0
T2 .02|.14 .73|.82 .92|.97 .97|.99 .04|.12 .72|.93 .86|.98 .91|1.0
T3 .78|.93 .91|.91 .92|.92 .89|.88 .84|.90 .93|.95 .97|1.0 .98|1.0
T4 .37|.56 .62|.74 .59|.71 .68|.74 .47|.57 .64|.76 .77|.80 .74|.76
T5 .67|.70 .61|.64 .65|.67 .62|.68 .56|.56 .49|.49 .54|.54 .55|.55
T6 .29|.31 .43|.45 .51|.53 .54|.59 .35|.37 .47|.47 .51|.52 .54|.54
T7 .28|.34 .52|.65 .53|.60 .56|.56 .14|.23 .44|.50 .50|.58 .44|.49
T8 .11|.16 .29|.45 .42|.60 .57|.70 .20|.32 .49|.65 .61|.73 .68|.75
T9 .12|.14 .27|.45 .49|.63 .59|.71 .28|.39 .68|.75 .80|.83 .82|.85
T10 .34|.36 .36|.41 .42|.45 .45|.49 .35|.40 .46|.50 .52|.56 .59|.62
T11 .60|.62 .70|.71 .74|.74 .75|.75 .64|.64 .75|.77 .76|.78 .78|.78
T12 .27|.30 .30|.37 .38|.43 .41|.49 .28|.33 .40|.47 .42|.44 .47|.52
T13 .32|.38 .38|.42 .46|.48 .45|.49 .42|.46 .50|.52 .55|.57 .61|.61
T14 .41|.41 .48|.48 .51|.51 .51|.51 .43|.43 .53|.55 .49|.50 .52|.52
T15 .24|.26 .38|.40 .42|.44 .44|.47 .25|.30 .40|.45 .50|.54 .53|.57
T16 .56|.56 .65|.65 .65|.65 .68|.68 .70|.70 .74|.74 .72|.72 .74|.74
T17 .55|.60 .67|.68 .73|.73 .77|.77 .54|.59 .62|.64 .72|.72 .72|.72
T18 .55|.55 .61|.61 .65|.65 .71|.71 .48|.50 .59|.59 .69|.69 .73|.73
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Table 9: Results over the Mamba models family. The left number is the base model and the right
number is with our pruning approach. Results are averaged across 5 different runs.

Task Mamba-130M Mamba-370M
1-shot 2-shot 3-shot 4-shot 1-shot 2-shot 3-shot 4-shot

T1 .77|.97 1.0|1.0 1.0|1.0 1.0|1.0 .95|.99 1.0|1.0 1.0|1.0 1.0|1.0
T2 .09|.73 .95|1.0 1.0|1.0 1.0|1.0 .55|.83 .88|.92 1.0|1.0 1.0|1.0
T3 .39|.72 .82|.95 .89|1.0 .92|1.0 .75|.79 .98|.99 .99|1.0 1.0|1.0
T4 .73|.73 .86|.88 .92|.92 .93|.93 .49|.53 .80|.80 .86|.86 0.91|.93
T5 .47|.50 .49|.53 .53|.55 .53|.56 .53|.56 .51|.53 .62|.64 .60|.62
T6 .32|.35 .46|.48 .47|.50 .47|.52 .34|.38 .41|.43 .51|.53 .54|.55
T7 .14|.14 .70|.70 .73|.73 .81|.83 .60|.69 .87|.89 .88|.90 .85|.85
T8 .08|.20 .36|.48 .42|.54 .51|.57 .38|45 .56|.59 .63|.63 .70|.70
T9 .11|.25 .36|.50 .50|.55 .60|.65 .55|.59 .74|.77 .82|.85 .86|.88
T10 .25|.25 .30|.30 .39|.42 .48|.50 .34|.41 .46|.52 .56|.58 .68|.70
T11 .20|.20 .29|.29 .35|.35 .30|.30 .45|.51 .61|.64 .70|.73 .66|.69
T12 .19|.22 .36|.43 .47|.52 .59|.62 .32|.40 .35|.42 .45|.49 .49|.52
T13 .16|.20 .26|.26 .28|.30 .36|.36 .37|.41 .52|.55 .54|.57 .53|.55
T14 .28|.33 .33|.36 .36|.40 .40|.42 .35|.35 .41|.41 .46|.48 .46|.48
T15 .08|.10 .14|.14 .19|.19 .20|.20 .31|.36 .45|.49 .54|.54 .56|.56
T16 .39|.44 .50|.50 .60|.60 .63|.63 .62|.66 .68|.72 .70|.73 .72|.75
T17 .52|.55 .65|.67 .61|.65 .64|.70 .51|.57 .58|.61 .58|.61 .58|.60
T18 .48|.50 .48|.50 .56|.56 .51|.53 .53|.56 .51|.55 .59|.59 .60|.60
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E MULTI TOKEN OUTPUTS

To validate our method’s effectiveness on multi-token outputs, we evaluate performance on two
tasks: country-currency pairs (e.g., ”Benin” → ”CFA Franc (XOF)”) and national parks (e.g., ”Bad-
lands National Park” → ”South Dakota”). Despite using single-token vowel counting as our proxy
task, we observe consistent improvements across both tasks for Bloom 560M and GPT2-Small mod-
els in all shot settings Table 10 and Table 11 (results are averaged across 5 different seeds, with the
left number showing baseline performance and the right number showing our method’s results. ).
While our method could be extended to explicitly handle multi-token outputs by aggregating pre-
diction shifts across the sequence, our results suggest this is unnecessary as the current approach
already generalizes effectively to multi-token scenarios.

Table 10: Results on National Parks task
Model 1 Shot 2 Shot 3 Shot 4 Shot

Bloom 560M 0.03|0.12 0.06|0.15 0.075|0.19 0.07|0.20
GPT2-Small 0.04|0.09 0.09|0.14 0.10|0.12 0.10|0.14

Table 11: Results on Country-Currency task
Model 1 Shot 2 Shot 3 Shot 4 Shot

Bloom 560M 0.06|0.10 0.12|0.15 0.12|0.17 0.11|0.15
GPT2-Small 0.06|0.10 0.08|0.12 0.09|0.12 0.09|0.13
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F TRADEOFFS

F.1 MMLU AND PERPLEXITY

While our pruning method significantly improves ICL performance, it is crucial to understand po-
tential tradeoffs in other capabilities of the model. To assess this, we evaluated the pruned models
on two fundamental downstream tasks: (1) base language modeling capability through perplexity
on WikiText, and (2) knowledge-intensive reasoning through the MMLU benchmark (Hendrycks
et al., 2020). As shown in Table 12, pruning the copying neurons results in a minimal degradation in
perplexity across all model sizes and architectures, with the relative increase ranging from 0.008%
(OPT-2.7B) to 12.25% (Llama3-8B). Most models show less than 2% degradation, suggesting that
our targeted neuron pruning primarily affects copying circuits while largely preserving general lan-
guage modeling capabilities. For knowledge-intensive reasoning, Table 13 shows that performance
on MMLU’s diverse categories (humanities, social sciences, STEM, and other) remains stable or
even improves in certain cases. For instance, GPT2-Small shows improved performance in social
sciences (+2.11%) and STEM (+0.37%), while Bloom-1.1B demonstrates gains across humanities
(+0.20%), STEM (+0.16%), and other categories (+0.25%). Notably, larger models like Llama3-8B
maintain their strong performance across all categories after pruning, with negligible changes in ac-
curacy (within ±0.3%). The minimal impact on both perplexity and MMLU performance, combined
with the substantial improvements in ICL performance demonstrated, indicates a favorable tradeoff.

Table 12: Perplexity on WikiText test (lower is better)
Model Without Pruning With Pruning
GPT-Small 25.188 25.548
GPT-Medium 18.473 18.590
Bloom 560M 21.328 21.397
Bloom 1.1B 16.836 16.883
OPT 125M 26.119 26.432
OPT 350M 20.888 20.940
OPT 1.3B 13.889 13.904
OPT 2.7B 11.757 11.758
Llama2 7B 6.542 6.549
Llama3 8B 5.184 5.819

Table 13: MMLU Test Performance (accuracy)
Model Humanities Social Sciences STEM Other

GPT2-Small 0.2421 0.2171 0.2131 0.2382
GPT2-Small + Ours 0.2421 0.2382 0.2168 0.2128

GPT2-Medium 0.2290 0.2427 0.2350 0.2128
GPT2-Medium + Ours 0.2427 0.2379 0.2294 0.2144

Bloom-560M 0.2294 0.2419 0.2391 0.2138
Bloom-560M + Ours 0.2421 0.2398 0.2164 0.2141

Bloom-1.1B 0.2482 0.2626 0.2252 0.2347
Bloom-1.1B + Ours 0.2502 0.2620 0.2268 0.2372

OPT-2.7B 0.2670 0.2398 0.2470 0.2688
OPT-2.7B + Ours 0.2648 0.2427 0.2457 0.2677

Llama2-7B 0.4329 0.5484 0.5297 0.3606
Llama2-7B + Ours 0.4327 0.5491 0.5297 0.3603

Llama3-8B 0.5501 0.7078 0.7322 0.5373
Llama3-8B + Ours 0.5486 0.7048 0.7329 0.5375
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F.2 NEEDLE IN A HAYSTACK

To verify our pruning method preserves essential model capabilities, we evaluated performance on
the needle-in-haystack benchmark6 over Llama2 7B model. This benchmark tests a model’s ability
to locate and extract specific information from long contexts. In our experiments, we used PaulGra-
hamEssays as the context ‘high-stack’ and embedded the sentence “The best thing to do in San
Francisco is eat a sandwich and sit in Dolores Park on a sunny day” as the ‘needle’. Our experi-
ments in Figure 6 show slight differences in performance between pruned and unpruned versions
of the tested model across varying context lengths. The high consistency across context and depth
length demonstrates that while our pruning effectively mitigates copying bias in ICL settings, it
does not compromise any model’s fundamental ability to process and recall information from long
contexts.
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Figure 6: Needle in A Haystack evaluation over Llama2 7B model. The upper plot shows the results
for the unpruned model while the lower plot shows the results for the pruned model.

6https://github.com/gkamradt/LLMTest_NeedleInAHaystack
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F.3 EVALUATION ON ALPACAEVAL2

We tested our approach on AlpacaEval27. Due to computational constraints, we evaluated on half of
the test set. For reference, the original Llama2’s performance on the full test set achieves 5.4% LC
win rate and 5.0% win rate. Results are shown in Table 14. On our half-set evaluation, the unpruned
Llama2 achieves 4.84% LC win rate and 2.69% win rate, while our pruned version improves to
5.26% LC win rate and 3.21% win rate. This (along with results on MMLU) suggests that our
pruning method preserves the model’s ability to handle both general language tasks.

Table 14: Performance comparison on AlpacaEval2 (half test set)
Model LC Win Rate Win Rate
Unpruned Llama2 (half test set) 4.84% 2.69%
Pruned Llama2 (half test set) 5.26% 3.21%

To strengthen our evaluation and provide additional validation of capability preservation, we con-
ducted pairwise comparisons between the pruned and unpruned models. In this setup, we used the
unpruned model’s outputs as the reference point while still employing GPT-4 Turbo as the evaluator.
The pruned model achieved a win rate of 51.49% in these comparisons, indicating essential parity
with the unpruned model.

These results, particularly the near-50% win rate in pairwise comparisons, provide strong evidence
that our pruning method successfully preserves model capabilities. While the standard evaluation
shows a slight improvement, the key finding is the consistent performance between pruned and
unpruned versions, as demonstrated across both evaluation approaches.

7https://github.com/tatsu-lab/alpaca_eval
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F.4 EVALUATION ON RULER BENCHMARK

To provide a more rigorous evaluation of our pruning method’s impact on retrieval capabili-
ties, we adopted the RULER benchmark Hsieh et al. (2024), which offers a comprehensive as-
sessment framework beyond simple needle-in-haystack scenarios. We focused our evaluation
on tasks specifically designed to test retrieval and copying abilities, including single and multi-
key/value retrieval tasks (niiah single 1-3, niah multikey 1-3, niah multivalue,
and niah multiquery).

We evaluated both the unpruned and pruned versions of LLaMA-3.1-Instruct Dubey et al. (2024)
across different context lengths ranging from 4K to 128K tokens. Table 15 presents these results.

Table 15: Performance comparison between unpruned and pruned models on RULER benchmark
tasks focused on retrieval capabilities.

Model Length 4K 8K 16K 32K 64K 128K AVG
Unpruned 128K 99.9% 99.9% 99.8% 99.6% 98.7% 92.6% 98.4%

Pruned 128K 99.9% 99.9% 99.7% 99.4% 98.4% 92.1% 98.2%

The results demonstrate that our pruning method maintains the model’s retrieval capabilities across
all context lengths. The pruned model achieves performance nearly identical to the unpruned ver-
sion, with only a marginal difference of 0.2 percentage points in the average score (98.2% vs 98.4%).
This minimal performance gap is particularly encouraging, as it suggests that our pruning approach
effectively mitigates copy-bias while preserving the model’s essential ability to accurately retrieve
and reproduce information from the input context.
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G BEYOND THE FEW-SHOT SETTINGS

To better understand the relationship between shot count and copying behavior, we conducted an
expanded experiment examining performance beyond the few-shot setting. Figure 7 presents results
averaged across all linguistic tasks over multiple seeds, with shot counts ranging from 1 to 64. Our
findings demonstrate that the proposed pruning method yields consistent improvements across all
shot counts, validating its effectiveness beyond the few-shot regime. However, we observe that the
performance gap between pruned and unpruned models gradually narrows as the number of shots
increases, with the most substantial improvements occurring in the 1-20 shot range for Bloom-
560M. This pattern aligns with the intuition that as models receive more examples, they become
better equipped to learn the underlying patterns rather than relying on copying behaviors. These
results suggest that while copying bias naturally diminishes with increased examples, our pruning
approach remains beneficial by promoting better pattern recognition over copying strategies.
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Figure 7: Many-Shots results for Bloom-560M and OPT-350M, results are averaged across all of
the linguistic tasks
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H TASK VECTORS

We provide additional results for the task-vectors experiment, we include two additional models
(GPT2-Small and Bloom1.1B) over the Algorithmic Next Letter task and Linguistics Antonyms. .
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Figure 8: Additional quantitative results for the task-vectors experiment
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I ADDITIONAL PROXY TASK ANALYSIS

I.1 PROXY DATASET ABLATION

To investigate the generality of our copying neuron detection approach, we conducted experiments
using different proxy ICL tasks beyond vowel counting. We explored tasks from both linguistic
(e.g., antonyms T11) and knowledge (e.g., person-language mapping T16) domains. Our results
demonstrate that neurons identified using any of these alternative proxy tasks led to improvements
across our evaluations.

Through these experiments, we identified three key criteria for an effective proxy task:

1. Clear, deterministic rules that require pattern recognition rather than memorization
2. Ability to elicit copying behavior from the model
3. Sufficiently constrained output space to reliably detect copying errors

While vowel counting meets these criteria particularly well and enables straightforward synthetic
data generation, our results show it is not uniquely special - other structured tasks with similar
properties can serve as effective proxies for copying neuron detection.

We evaluate the performance using different proxy tasks for neuron detection, with results averaged
across several linguistic tasks (present simple to gerund, present to past simple, present to past
perfect, and singular to plural). Tables 16 and 17 show the results using linguistic antonyms and
knowledge person-language mapping as proxy tasks, respectively.

Table 16: Results using linguistic antonyms as proxy task. Each cell shows baseline | pruned accu-
racy.

Model 1 Shot 2 Shot 3 Shot 4 Shot

GPT2 Small 0.15|0.21 0.31|0.35 0.31|0.37 0.36|0.42
GPT2 Medium 0.24|0.30 0.39|0.47 0.43|0.52 0.50|0.58
Bloom 560M 0.33|0.37 0.40|0.48 0.48|0.53 0.51|0.58
OPT 1.3B 0.20|0.23 0.30|0.32 0.40|0.42 0.49|0.51

Table 17: Results using knowledge person-language as a proxy task. Each cell shows baseline |
pruned accuracy.

Model 1 Shot 2 Shot 3 Shot 4 Shot

GPT2 Small 0.15|0.17 0.31|0.34 0.31|0.37 0.36|0.43
GPT2 Medium 0.24|0.27 0.39|0.43 0.43|0.48 0.50|0.55
Bloom 560M 0.33|0.38 0.40|0.49 0.48|0.56 0.51|0.61
OPT 1.3B 0.20|0.22 0.30|0.35 0.40|0.47 0.49|0.53

The consistent improvements across different proxy tasks and model architectures suggest that our
method successfully identifies copying neurons regardless of the specific task used for detection,
provided it meets our identified criteria.
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J FURTHER ANALYSIS AND ABLATION STUDIES

J.1 ROLE OF TASK DESCRIPTIONS

First, we investigate how explicit task descriptions interact with our copying neuron pruning method.
Task descriptions provide explicit instructions about the required transformation (e.g., ”Convert
verbs from present to gerund form”). We compare three configurations: (1) standard ICL with-
out task descriptions, (2) ICL with task descriptions, and (3) our pruning method, both with and
without task descriptions.

Results show that while task descriptions improve baseline performance, our pruning method
achieves substantially better results across all settings. Moreover, combining task descriptions with
pruning (TD+Pruning) yields the best performance across all models and shot settings, suggesting
these approaches are complementary in addressing different aspects of the copying bias problem.

Table 18 shows results averaged across linguistic tasks (present simple to gerund, present simple to
past simple, present simple to past perfect, singular to plural) over 5 different seeds.

Table 18: Impact of Task Descriptions (TD) and Pruning across different model sizes
Model 1 Shot 2 Shot 3 Shot 4 Shot

GPT2-Small+ICL 0.16 0.31 0.32 0.37
GPT2-Small+ICL+TD 0.19 0.35 0.37 0.41
GPT2-Small+ICL+Pruning 0.25 0.44 0.44 0.47
GPT2-Small+ICL+TD+Pruning 0.27 0.45 0.46 0.50
Bloom-560M+ICL 0.35 0.42 0.48 0.50
Bloom-560M+ICL+TD 0.37 0.46 0.43 0.55
Bloom-560M+ICL+Pruning 0.42 0.53 0.59 0.59
Bloom-560M+ICL+TD+Pruning 0.44 0.53 0.61 0.60
Llama3-8B+ICL 0.68 0.85 0.88 0.89
Llama3-8B+ICL+TD 0.70 0.88 0.89 0.90
Llama3-8B+ICL+Pruning 0.73 0.89 0.90 0.90
Llama3-8B+ICL+TD+Pruning 0.73 0.90 0.90 0.90

J.2 COMPARISON WITH ALTERNATIVE TRAINING METHODS

To better understand the effectiveness of our pruning approach, we compare it with traditional fine-
tuning on the vowel mapping task. We conduct a comprehensive hyperparameter sweep for the
fine-tuning baseline, exploring learning rates [1e-5, 1e-4, 1e-3], batch sizes [4, 8, 16], and epochs
[1, 3, 5], selecting the best configuration using the validation set.

Table 19 presents results averaged across all linguistic tasks for 5 different seeds, comparing baseline
performance with both fine-tuning and our pruning approach.

J.3 BALANCED DEMONSTRATION ANALYSIS

To investigate whether our method addresses fundamental copying mechanisms rather than dataset
biases, we evaluate performance on SST2 using balanced demonstrations with equal representation
of positive and negative examples. Results in Table 20 demonstrate that the improvements from
our pruning method persist even in this controlled setting. These experiments demonstrate several
key points about our pruning method: (1) it provides complementary benefits when combined with
task descriptions, (2) it outperforms traditional fine-tuning approaches while requiring no gradient
updates, and (3) it addresses fundamental copying mechanisms rather than surface-level dataset
biases. The consistent improvements across different settings and model sizes suggest that our
approach successfully targets a core aspect of model behavior.
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Table 19: Comparison of pruning with traditional fine-tuning approaches
Model 1 Shot 2 Shot 3 Shot 4 Shot

Bloom-560M Baseline 0.35 0.42 0.48 0.50
Bloom-560M Finetuned 0.34 0.41 0.45 0.50
Bloom-560M Ours 0.42 0.53 0.59 0.59
GPT2-Small Baseline 0.16 0.31 0.32 0.37
GPT2-Small Finetuned 0.14 0.31 0.32 0.35
GPT2-Small Ours 0.25 0.44 0.44 0.47
OPT-1.3B Baseline 0.21 0.30 0.42 0.50
OPT-1.3B Finetuned 0.20 0.30 0.42 0.50
OPT-1.3B Ours 0.24 0.42 0.52 0.59

Table 20: Performance on SST2 with balanced demonstrations
Model 2 Shot 4 Shot 6 Shot

Llama2-7B ICL 0.873 0.920 0.923
Llama2-7B ICL Balanced 0.881 0.920 0.924
Llama2-7B ICL Ours 0.898 0.922 0.926

J.4 IMPACT OF MODEL PRE-TRAINING OBJECTIVES

To understand how different pre-training objectives affect copying bias, we analyze the effectiveness
of our pruning method on both base and instruction-tuned variants of the same model architecture.
We compare OPT-1.3B base model with its instruction-tuned counterpart8.

Table 21 shows results averaged across linguistic tasks (present simple to gerund, present simple to
past simple, present simple to past perfect, singular to plural, and antonyms) over 5 different seeds.
For each model and shot setting, we report both baseline and pruned performance.

Table 21: Performance comparison between base and instruction-tuned models
Model 1 Shot 2 Shot 3 Shot 4 Shot

OPT-1.3B Base 0.28|0.32 0.38|0.48 0.49|0.57 0.55|0.62
OPT-1.3B Instruct 0.27|0.32 0.39|0.46 0.51|0.57 0.55|0.64

Results demonstrate that our pruning method yields consistent improvements regardless of the
model’s pre-training objective. Both base and instruction-tuned variants show similar relative gains
across different shot settings, suggesting that copying bias and the effectiveness of our mitiga-
tion strategy are inherent to the model architecture rather than being specific to particular training
regimes.

8We use the publicly available OPT-IML-1.3B model from https://huggingface.co/facebook/
opt-iml-1.3b
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