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Abstract

Large reasoning models (LRMs) are proficient at generating explicit, step-by-step
reasoning sequences before producing final answers. However, such detailed rea-
soning can introduce substantial computational overhead and latency, particularly
for simple problems. To address this overthinking problem, we explore how to
equip LRMs with adaptive thinking capabilities, enabling them to dynamically
decide whether to engage in explicit reasoning based on problem complexity. Build-
ing on R1-style distilled models, we observe that inserting a simple ellipsis ("...")
into the prompt can stochastically trigger either a thinking or no-thinking mode,
revealing a latent controllability in the reasoning behavior. Leveraging this property,
we propose AutoThink, a multi-stage reinforcement learning (RL) framework that
progressively optimizes reasoning policies via stage-wise reward shaping. Auto-
Think learns to invoke explicit reasoning only when necessary, while defaulting to
succinct responses for simpler tasks. Experiments on five mainstream mathematical
benchmarks demonstrate that AutoThink achieves favorable accuracy–efficiency
trade-offs compared to recent prompting and RL-based pruning methods. It can be
seamlessly integrated into any R1-style model, including both distilled and further
fine-tuned variants. Notably, AutoThink improves relative accuracy by 6.4% while
reducing token usage by 52% on DeepSeek-R1-Distill-Qwen-1.5B, establishing a
scalable and adaptive reasoning paradigm for LRMs.

Project Page: https://github.com/ScienceOne-AI/AutoThink.

1 Introduction

Recently, reasoning-focused Large Language Models (LLMs), also referred to as Large Reasoning
Models (LRMs) [41], have demonstrated remarkable progress in solving complex reasoning tasks.
Particularly, DeepSeek-R1 [9] uses only outcome-based feedback and incentivizes explicit reasoning
capabilities through reinforcement learning (RL) with verifiable rewards. DeepSeek-R1 and its
distilled models typically follow the <think> and <answer> format, where the <think> process
generates explicit, step-by-step reasoning sequences to support obtaining a final answer during the
<answer> phase. We refer to models that follow this Chain of Thought (CoT) [37] prompting scheme
as R1-style models. The explicit thinking process, which enables self-reflection, backtracking, and
validation, is widely regarded as essential for enhancing reasoning accuracy. Arising from this
understanding, a popular paradigm has emerged that improves solution quality by increasing thinking
token allocation during inference-time reasoning [17, 40]. However, this paradigm introduces a major
bottleneck: excessive thinking token generation leads to high computational cost and latency, raising
the overthinking phenomenon, where many reasoning steps are redundant or inefficient [29, 14].
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Figure 1: Overview of AutoThink Compared to Prior Reasoning Paradigms.

To mitigate overthinking, recent efforts have explored hybrid reasoning and concise reasoning
strategies. In the industry, Claude 3.7 Sonnet [2] introduces a controllable reasoning framework that
allows the model to switch between standard and extended reasoning modes. Similarly, Qwen3 [30]
proposes a thinking control scheme with a "thinking" mode (slow thinking) and a "non-thinking" mode
(fast thinking), and provides users with the flexibility to choose whether the model should engage in
reasoning or not. In the academic community, parallel research has focused on designing prompt-
guided efficient reasoning [42, 24] or training pruning-based models to achieve concise reasoning
[12, 6, 44]. While promising, these approaches either rely on manually predefined modes or uniformly
prune reasoning steps, which may degrade performance on harder instances. A fundamental question
then arises to address the overthinking issue:

Can LLMs learn to adaptively determine thinking fast or slow based on given problems?

To answer this question, we propose AutoThink, a multi-stage RL framework that enables R1-
style LLMs to learn adaptive reasoning behaviors. Unlike prior approaches reliant on hard-coded
prompting or external control signals, AutoThink formulates reasoning as a learned dual-mode policy
that determines both whether to engage the model’s "thinking" process and how to generate concise
reasoning. As illustrated in Figure 1, AutoThink fundamentally differs from manual hybrid prompting
and uniform pruning strategies by employing an ellipsis prompt and structured three-stage RL training
process that enables adaptive reasoning to emerge. In detail, an ellipsis prompt acts as a controllable
entry point for optional reasoning, triggering stochastic switching between thinking and no-thinking
modes in R1-style LLMs. Then, the proposed multi-stage RL framework shapes this behavior
progressively: Stage 1 stabilizes dual-mode coexistence, Stage 2 reinforces accurate reasoning to
enhance solution quality, and Stage 3 prunes redundancy via length-aware rewards. This progression
enables the model to allocate reasoning effort adaptively, achieving both accuracy and efficiency. The
main contributions are as follows:

• We identify the ellipsis prompt, a lightweight prompting scheme that activates a stochastic switch-
ing behavior in R1-style LLMs between thinking and no-thinking modes.

• We propose a multi-stage RL framework that trains R1-style LLMs to dynamically modulate their
reasoning behaviors according to problem complexity.

• Experiments on mathematical benchmarks show that AutoThink achieves accuracy–efficiency
trade-offs better than existing pruning and compression methods, without sacrificing performance.

2 An Ellipsis Unlocks Random Thinking in R1-Style Models

2.1 A Surprising Effect of Minimal Prompt Modification

Recent efforts on concise reasoning aim to eliminate unnecessary thought, either via prompting that
explicitly bypasses thinking [19], or RL-based training that penalizes long outputs [6]. While effective
at shortening responses, these methods enforce uniform brevity regardless of problem complexity.
Rather than compressing by default, we pose a subtler question:

Can a small change, perhaps a few tokens, lead R1-style models to decide whether to think?
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(a) Accuracy and token usage with standard and ellipsis prompts.
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Figure 2: Prompting strategies shape reasoning behavior and computational cost.

To investigate this question, we explore how a minimal modification to the prompt structure can
influence reasoning behaviors in R1-style models. The baseline prompt used typically includes
a <think>\n tag followed by a fixed, detailed reasoning trace. In contrast, our modified prompt
contains only a single ellipsis following the baseline tag. Specifically, the final prompt we provide
is: <think>\n...\n. This minimal form acts as an open-ended signal, leaving it entirely up to the
model to decide whether to engage in thinking, how much to elaborate, and when to stop.

Surprisingly, this tiny change leads to a distinct shift in behavior. Without any additional training,
the model often generates a closing </think> tag, sometimes immediately, skipping deep thinking
entirely, and other times after producing a full derivation. As shown in Figure 2a, evaluation on
Distill-R1-1.5B [9] and DeepScaleR [17] across five mathematical benchmarks shows that ellipsis
prompting leads to a modest drop in accuracy, accompanied by a substantial reduction in token usage.

Compared to the no-thinking prompt baseline [19], which suppresses reasoning at the cost of accuracy,
the ellipsis prompt triggers a stochastic switch in reasoning mode and provides a more balanced
trade-off by preserving reasoning when needed and reducing unnecessary computation.

2.2 Prompting Alone Does Not Enable Difficulty-Aware Thinking

The proposed ellipsis prompt seems to trigger selective reasoning: the model thinks on some inputs
but not others. While this behavior appears desirable, it raises a deeper question:

Does the prompt-forcing model choose to engage in deep thinking based on task difficulty?

Ideally, a well-calibrated model should reason more on complex problems and skip unnecessary
thinking on simpler ones. To assess this, we divide MATH500 problems into 8 difficulty levels
based on the average accuracy of Distill-R1 (standard prompt) over 16 rollouts, with higher accuracy
indicating lower difficulty. Figure 2b (top) shows the no-thinking rate across these levels. Contrary to
expectations, under the ellipsis prompt without additional training, no clear trend emerges—the flat
distribution suggests that thinking is unguided and unaffected by problem complexity.

A decreasing no-thinking rate along the difficulty axis reflects a desirable reasoning pattern, in which
the model allocates effort based on task difficulty. However, this behavior does not emerge from
prompting alone. Even with diverse prompt designs (Appendix A.2), the model failed to exhibit
difficulty-aware reasoning. Yet prompt-only control suffers from a core limitation: without feedback,
the model lacks a mechanism to learn when the thinking process is needed.

To address this gap, we introduce a multi-stage RL framework that rewards appropriate reasoning
behavior and encourages alignment between effort and difficulty. As shown in Figure 2b (bottom),
the resulting distribution from our final trained model exhibits clear difficulty-aware reasoning.
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3 Guiding When to Think via Multi-Stage Reinforcement Learning

We propose AutoThink, a multi-stage RL framework with three training phases that induce difficulty-
aware reasoning through progressively refined reward designs. At all stages, we employ the GRPO
algorithm with a token-level policy gradient loss [25, 46]. The training objective is:

JGRPO(θ) =E(q,a)∼D, {oi}G
i=1∼πθold (·|q)

(1)[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip (ri,t(θ), 1− ε, 1 + ε) Âi,t

)]
Here, oi denotes the i-th sampled output for a given query q; G is the number of sampled outputs
per query; ri,t(θ) is the token-level importance weight, defined as the ratio between the new and
old token probabilities; and Âi,t represents the estimated token-level advantage. The overall loss
is normalized by the total number of tokens across all sampled trajectories. A visual overview of
the reward mechanisms across the three training stages is illustrated in Figure 1. In the following
subsections, we detail the reward design for each stage.

3.1 Stage 1: Preventing Mode Collapse by Batch Reward Balance

To promote efficient reasoning, higher rewards are assigned to correct answers without thinking, and
stronger penalties to incorrect ones. Define thinki ∈ {0, 1} as an indicator of whether the i-th output
involves thinking, and correcti ∈ {0, 1} as an indicator of whether it yields the correct answer. Based
on these variables, the naive reward assignment is:

rnaive
i =


+1, if thinki = 1 ∧ correcti = 1,

0, if thinki = 1 ∧ correcti = 0,

+2, if thinki = 0 ∧ correcti = 1,

−1, if thinki = 0 ∧ correcti = 0.

(2)

While this reward structure encourages difficulty-aware be-
havior, it causes instability during early training. The model
may collapse into a degenerate policy, either always think-
ing or always skipping, depending on which yields a higher
expected reward in the short term. This limits exploration
and hinders later optimization. To mitigate this, we introduce
batch-level reward balancing:

0.0 0.2 0.4 0.6 0.8 1.0
Think Proportion (z)

2

1

0

1

2

A
dj

us
te

d 
Re

wa
rd

Adj.Reward vs. Think Proportion (  = 0.5,  = 2.0)

Think + Correct
Think + Incorrect

No-Think + Correct
No-Think + Incorrect

Figure 3: Effect of z on radj
i .

Let z ∈ [0, 1] denote the proportion of thinking trajectories in a training batch, and 1 − z the
no-thinking proportion. A target balance ratio γ ∈ (0, 1) and penalty slope λ ≥ 0 control the strength
of adjustment. For thinking and no-thinking samples, we compute soft penalty factors:

δthink = min (1,max(0, (z − γ) · λ)) , (3)
δnothink = min (1,max(0, (1− z − γ) · λ)) . (4)

Each sample i is first assigned an original reward rnaive
i ∈ {+2,+1, 0,−1} based on its thinking flag

and correctness. The final adjusted reward is then:

radj
i =


(1− δthink) · rnaive

i , if thinki = 1 ∧ correcti = 1,

(1− δthink) · rnaive
i + δthink · (−1), if thinki = 1 ∧ correcti = 0,

(1− δnothink) · rnaive
i , if thinki = 0 ∧ correcti = 1,

(1− δnothink) · rnaive
i + δnothink · (−2), if thinki = 0 ∧ correcti = 0.

(5)

The adjusted reward radj
i introduces a soft, piecewise-linear modulation over the naive reward,

resembling a hinge-like transformation. Figure 3 illustrates this behavior under a typical setting with
γ = 0.5 and λ = 2.0. When thinking dominates (z > γ), the reward for thinking samples is softly
reduced, especially for incorrect answers. Conversely, when no-thinking is overrepresented (z ≪ γ),
no-thinking rewards are suppressed. In both cases, the model is gently pushed to restore balance by
favoring the less frequent behavior.
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3.2 Stage 2: Reinforcing Reliable Behavior within Dual Modes

After establishing behavioral stability across thinking and no-thinking modes, the second stage
focuses on improving task performance within each mode. Specifically, the objective is to enhance
reasoning quality when invoked, and to promote accurate responses in the absence of thinking.

To allow the model to refine its behavior without external constraints, we remove the batch-level
balancing used in the previous stage and allow free evolution of the reasoning policy. The reward is
set directly to the naive definition:

radj
i = rnaive

i . (6)

In this stage, we allocate a larger context budget during training, enabling longer responses when
needed. Owing to the regularization established in Stage 1, the proportion of thinking in Stage 2
remains balanced, fluctuating naturally rather than collapsing.

3.3 Stage 3: Pruning Unnecessary Reasoning Paths via Length-Aware Reward

While the relaxed setup in Stage 2 improves accuracy, it also leads to overly long responses. Building
on the stability established in prior stages, we now aim to improve reasoning efficiency.

Inspired by GRPO-LEAD[50], we introduce a length-aware
reward modulation, encouraging brevity in no-thinking mode
and rewarding elaboration only when warranted. Specifically,
the adjusted reward in this stage is defined as:

radj
i =

{
rnaive
i + (−1 + e−αyi) , if correcti = 1,

rnaive
i +

(
1− e−βyi

)
, if correcti = 0.

(7)

where yi =
Li−µq

σq
is the standardized length of response

i within its query group q. Here, Li denotes the response
length, while µq and σq are the group-specific mean and stan-
dard deviation of lengths, computed separately for correct
and incorrect sample groups. And α and β are hyperparame-
ters that control the sensitivity of the shaping term.
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The reward decays with length for correct responses and grows for incorrect ones, encouraging
concise success and thorough failure analysis, as an example illustrated in Figure 4. This final stage
allows the model to adaptively regulate its reasoning depth, producing succinct responses without
significantly compromising reliability.

4 Experiments

4.1 Setup

Datasets and Models We use the same training data as in DeepScaleR [17], comprising 40K
mathematically problems with varying difficulties. Following prior works [49, 33], the evaluation is
conducted on five standard math benchmarks: MATH, Minerva, Olympiad, AIME24, and AMC23.
We evaluate the applicability of AutoThink on three R1-style models with varying sizes and RL
post-training status: DeepSeek-R1-Distill-Qwen-1.5B/7B (abbreviated as Distill-R1-1.5B/7B), and
DeepScaleR-Preview-1.5B [17] (abbreviated as DeepScaleR), the state-of-the-art 1.5B reasoning
model obtained from Distill-R1-1.5B via context-extended RL at a training budget of up to $5,000.

Baselines We benchmark our approach against two classes of baselines designed to promote
efficient reasoning. (1) Prompt-only baselines: we apply standard [9], no-thinking [19], and ellipsis
(ours) prompting strategies on the base models, following the description illustrated in Figure 2a. (2)
RL-trained baselines: including Concise-RL [6], ShorterBetter [44], and ThinkPrune [12], all of
which aim to shorten reasoning traces by RL, but do not explicitly account for adaptive reasoning
behavior. Among these methods, only ThinkPrune provides publicly available model checkpoints; we
evaluate its two representative variants, iter-2K and 4K. For Concise-RL and ShorterBetter, results
are reported as published in their respective papers. (3) Additionally, we include a set of open-source
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Table 1: (Main Results) Accuracy, Token Usage, and Efficiency Comparison Across Methods.
Method Accuracy (%) Token Usage E-F1(%)

MATH Minerva Olympiad AIME24 AMC23 AVG MATH Minerva Olympiad AIME24 AMC23 AVG AVG
Open-Source R1-Style Model: Train From DeepSeek-R1-Distill-Qwen-1.5B/7B or Even Larger

Open-RS3-1.5B 83.0 26.3 43.3 30.6 63.0 49.2 5578 7579 11626 16651 11052 10497 /
Still-3-1.5B 84.9 28.4 45.0 31.0 64.6 50.8 4208 6021 9470 13399 8788 8377 /
FastCuRL-1.5B 87.9 30.9 49.8 40.8 72.3 56.7 3829 5849 7077 10300 6699 6571 /
Light-R1-DS-7B 92.1 37.6 58.1 62.3 82.4 66.5 3774 5434 8362 12064 7317 7390 /
AReaL-boba-RL-7B 93.4 37.7 62.1 65.4 85.7 68.9 4947 8290 10096 12905 8432 8934 /
QwQ-32B 95.1 45.3 69.0 76.7 95.5 76.3 5547 8650 9445 13970 4222 8367 /

Base Model: DeepSeek-R1-Distill-Qwen-1.5B
Standard Prompt 83.1 26.0 43.7 27.5 62.5 48.6 5622 7688 11555 17322 10981 10633 /
No-Thinking Prompt 70.4 19.1 33.1 15.8 49.0 37.5 1256 628 2426 5793 2535 2528 /
Ellipsis Prompt 78.2 21.9 38.6 25.2 57.2 44.2 4194 4336 7752 13006 7980 7453 /
Concise-RL 81.0 / / 30.0 / / 1965 / / 6752 / / /
ShorterBetter / 27.6 38.4 20.0 56.6 / / 1147 1814 2703 1946 / /
ThinkPrune-iter-2k 82.6 28.1 43.6 26.7 64.9 49.2 1927 2126 3683 5806 3300 3368 9.9
ThinkPrune-4k 83.5 28.4 43.4 28.3 65.4 49.8 2723 3375 5504 8072 5040 4943 18.7
AutoThink-Stage1 79.4 21.4 40.5 27.7 59.0 45.6 3107 3867 7212 11673 6467 6465 0.0
AutoThink-Stage2 85.2 27.2 46.4 31.8 66.6 51.4 3702 5481 8030 12117 7415 7295 31.6
AutoThink-Stage3 84.0 28.1 44.8 34.6 67.0 51.7 2195 3212 5559 9514 5059 5108 39.6

Base Model: DeepScaleR-Preview-1.5B
Standard Prompt 87.6 30.7 50.0 42.3 72.8 56.7 3171 4948 5967 9326 5675 5817 /
No-Thinking Prompt 78.1 21.8 40.9 23.8 58.4 44.6 1285 1217 2461 4682 2372 2403 /
Ellipsis Prompt 85.9 28.9 48.1 42.1 72.0 55.4 2890 4748 5416 9408 5095 5511 /
ThinkPrune-iter-2k 86.3 30.7 48.3 38.7 72.2 55.4 1838 2414 3254 5328 3166 3200 0.0
ThinkPrune-4k 86.5 30.6 48.5 36.5 71.8 54.8 2221 3039 4061 6624 3868 3963 0.0
AutoThink-Stage1 82.1 27.0 45.6 33.5 66.0 50.8 2473 5372 7328 12716 5440 6666 0.0
AutoThink-Stage2 87.6 31.8 50.1 42.9 73.9 57.3 2762 4315 5521 8567 5222 5277 7.5
AutoThink-Stage3 85.1 30.5 49.0 41.9 71.9 55.7 1897 3834 5005 9033 4696 4893 0.0

Base Model: DeepSeek-R1-Distill-Qwen-7B
Standard Prompt 92.3 37.6 56.4 52.7 82.8 64.4 3928 5155 8815 13563 7613 7815 /
No-Thinking Prompt 78.2 22.1 40.2 22.7 53.7 43.4 722 486 1434 3269 1433 1496 /
Ellipsis Prompt 91.8 37.6 56.5 51.3 80.9 63.6 3752 4778 8643 13532 7616 7564 /
Concise-RL 90.3 / / 51.7 / / 2041 / / 6632 / / /
ShorterBetter / 44.1 50.7 53.3 75.9 / / 1341 3410 5288 2580 / /
AutoThink-Stage1 89.3 31.8 53.8 52.7 78.2 61.2 1763 1717 4798 8515 4397 4274 0.0
AutoThink-Stage2 92.2 38.5 56.2 57.1 83.7 65.5 2519 2980 5797 8676 4925 4979 7.2
AutoThink-Stage3 91.2 38.2 56.4 54.8 83.3 64.8 2146 2838 5498 8051 4645 4635 3.2

RL-finetuned models based on Distill-R1-1.5B/7B as reference, including Open-RS3-1.5B [5], Still-
3-1.5B [22], FastCuRL-1.5B [28], Light-R1-DS-7B [38], AReaL-boba-RL-7B [21], and QwQ-32B
[31]. These models are not explicitly optimized for concise reasoning and differ significantly
in both training objectives and computational budgets. We report their results for contextual
reference only, aiming to highlight differences in design philosophy rather than to draw direct
performance comparisons.

Training and Evaluation All experiments are implemented using the verl framework [27], with
most training hyperparameters retained at the default values. For all models, we set the batch size
and training context length to (128, 8K) in Stage 1, (64, 16K) in Stage 2, and (64, 24K) in Stage 3.
We save model checkpoints at empirically selected steps based on observed convergence throughout
the procedure: 220/440/130 for Distill-R1-1.5B, 110/240/60 for DeepScaleR, and 220/450/20 for
Distill-R1-7B across Stages. During evaluation, all models use a 32K context window. We sample 16
rollouts per instance with temperature 0.6 and report the average pass@1 accuracy. Reward shaping
hyperparameters are set to γ = 0.5, λ = 2.0 for Stage 1, and α = β = 0.05 for Stage 3.

4.2 Main Results

Table 1 reports average accuracy and token usage across five mathematical benchmarks. To jointly
evaluate reasoning accuracy and efficiency, we introduce the Efficiency-F1 score (E-F1), defined as:

E-F1 =

(
2 · ∆acc ·∆len

∆acc +∆len

)
if acc > accstd and len < lenstd; else 0

where the normalized accuracy gain and token reduction are given by:

∆acc =
acc − accstd

accstd − accno
, ∆len =

lenstd − len
lenstd − lenno
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Figure 5: Prompting strategies shape reasoning behavior and computational cost.

The subscripts std and no refer to the standard and no-thinking baselines. A non-zero E-F1 indicates
that the model improves upon the standard baseline in both accuracy and token usage, capturing the
extent to which pruning enhances conciseness without degrading performance.

Despite the strong performance of existing open-source models, their outputs are substantially longer,
even reaching twice the length of ours at the same model size, suggesting that their gains stem
from verbose reasoning but non-adaptive reasoning. Prompt-based baselines (no-thinking and
ellipsis) reduce length at the cost of accuracy. RL-based baselines also shorten outputs, but offer
limited improvements on Distill-R1 and in some cases even reduce accuracy on DeepScaleR.

In contrast, AutoThink exhibits a staged progression in both accuracy and efficiency. All three stages
are consistently trained with the ellipsis prompt as the base prompting strategy. Stage 1 primarily
aims to stabilize the activation of reasoning behavior and has minimal impact on performance. Stage 2
leads to accuracy improvements over the standard prompt across all model backbones, demonstrating
effective control over when to reason. Stage 3 introduces length-aware pruning, further reducing token
usage while minimizing potential performance degradation. On Distill-R1-1.5B, AutoThink-Stage3
achieves 51.7% accuracy with half the token usage of the standard prompt baseline. Remarkably,
even on the heavily optimized DeepScaleR, AutoThink-Stage2 further improves performance by 0.6
over the standard prompt while reducing token usage by an additional 10%. However, Stage 3 leads
to a slight accuracy drop, likely because DeepScaleR has already undergone extensive optimization.
This suggests that additional pruning may be unnecessary on fully optimized models.

4.3 Ablation Study

We conduct ablations on the reward design of our multi-stage RL framework on Distill-R1-1.5B to
assess the necessity of each stage. The performance gains achieved by Stage 2 and the pruning effect
of Stage 3 are already reflected in Table 1, in terms of accuracy and token usage. Here, we focus on
two key aspects: (1) the role of batch reward balance in Stage 1, and (2) whether skipping Stage 2
and proceeding directly from Stage 1 to Stage 3 yields comparable performance.

Batch Reward Balance Prevents Mode Collapse To assess the role of batch-level balancing in
Stage 1, we examine its impact on stabilizing dual-mode reasoning behavior. Specifically, we plot the
average thinking rate across training steps, as shown in Figure 5a. Under a naive reward, the model
rapidly collapses into a thinking mode. Conversely, applying the length-aware reward (with α = 0.05,
β = 0) in naive reward to encourage brevity leads the model to collapse into a degenerate no-thinking
mode. In contrast, the batch reward balance mechanism, by enforcing a target thinking ratio via
penalty slope λ, helps stabilize training and supports the coexistence of thinking and no-thinking
behaviors. We observe that response length rises and then falls during training, indicating
an increasing share of shorter, no-thinking responses. These observations imply that the model
implicitly performs reasoning pruning, akin to concise reasoning.

Pruning Without Reinforcement Limits Performance We investigate the necessity of Stage 2 by
applying Stage 3 directly after Stage 1, skipping the reinforcement phase. As shown in Figure 5b,
the complete training pipeline that includes Stage 2 prior to Stage 3 yields a notable boost in both
accuracy and response length, followed by effective pruning with minimal performance degradation.
In contrast, bypassing Stage 2 results in stagnant accuracy and an eventual increase in response length
after an initial decline. In contrast, skipping Stage 2 leads to stagnant accuracy and a rebound in
response length. With comparable response lengths, the variant achieves only 47.6% accuracy across
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five benchmarks, notably lower than the 51.7% from full training. These observations underscore the
importance of Stage 2 in establishing stable and discriminative reasoning behaviors that enable
reliable pruning in the subsequent stage.

4.4 In-Depth Behavioral and Efficiency Analysis

Lexical Patterns in Two Reasoning Modes We analyze linguistic differences between thinking
and no-thinking responses by quantifying the frequency of reasoning-related verbs (e.g., “Wait”, “Al-
ternatively”, “Check”) per 1,000 tokens, capturing how explicit reasoning is manifested in each mode.
Following [12], we categorize these keywords into three functional groups on the MATH500 bench-
mark: (1) Soliloquize & Thinking, reflecting internal deliberation and self-correction, characteristic
of R1-style reasoning; (2) Check & Confirm, indicating procedural verification; and (3) Summary &
Calculation, marking final deduction and computational closure. As illustrated in Figure 6, AutoThink
training substantially reduces soliloquy-like expressions, particularly under the no-thinking mode,
indicating a decline in explicit internal deliberation. In contrast, verification and computation-related
terms appear slightly more frequently in the no-thinking setting, suggesting a shift toward focused
conclusion and validation rather than step-by-step verbalization.

Correlation Between Task Difficulty and Reasoning Tendency We investigate the relationship
between the reasoning behavior and the inherent difficulty of the tasks. As shown in Figure 7, there
exists a positive correlation between the thinking rate and task difficulty. To further quantify this
relationship, we compute the average accuracy, thinking rate, and response length across all datasets.
Here, accuracy serves as a proxy for dataset difficulty. The results indicate that, on more challenging
datasets, models tend to invoke explicit reasoning more frequently and produce longer responses.
This demonstrates that stronger models do not rely on explicit reasoning as frequently, yet outperform
weaker models, highlighting an emergent ability to reason more selectively and efficiently.

Readability and Accuracy of Dual Reasoning Modes A common concern in reinforcement
fine-tuning is that reward-driven optimization may degrade the fluency or coherence of generated
reasoning traces. To assess whether AutoThink introduces such effects, we follow the evaluation
setup in [12] and compute the perplexity (PPL) over the <think> span traces using Distill-R1-1.5B.
For no-thinking variants, PPL is calculated over the segment following </think>. As shown in
Table 2, the think mode of AutoThink maintains PPL comparable to standard prompting, while the
no-think mode achieves the lowest PPL, reflecting more concise and fluent responses. Overall, all
variants remain within acceptable readability ranges. Meanwhile, we analyze accuracy and token
usage across reasoning modes. The results are also recorded in Table 2, no-thinking responses are
shorter and more accurate, suggesting effective handling of simpler problems. Thinking-mode
responses are longer with slightly lower accuracy, reflecting allocation to harder cases. These
results indicate that AutoThink adaptively adjusts reasoning depth based on task difficulty.

Evaluating AutoThink Under Standard and No-Thinking Prompts We analyze how the trained
model responds to the standard and forced-no-think prompts. The forced-no-think prompt is defined as
<think>\n...\n</think>\n\n, which builds upon the ellipsis prompt but enforces an immediate
termination of the thinking phase. The results of Distill-1.5B-AutoThink are presented in Table 3. As
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Figure 8: Distribution of Reasoning Behaviors Across Models and Reasoning Modes.

expected, the standard prompt induces longer reasoning traces and achieves higher accuracy, while
the forced no-think prompt reduces token usage at the cost of slight performance degradation. These
findings suggest that AutoThink has learned to internally compress its reasoning when appropriate,
while retaining the ability to conditionally invoke reasoning via prompting.

Table 2: PPL, Acc & Token Length.

Response PPL Acc (%) Token

Model: Distill-R1-1.5B
Standard Prompt 1.61 83.1 5622
No-Thinking Prompt 1.87 70.4 1256
AutoThink: Think Part 2.29 56.4 5090
AutoThink: No-Think Part 1.50 90.1 1592

Model: DeepScaleR-1.5B
Standard Prompt 2.19 83.1 5622
No-Thinking Prompt 1.85 70.4 1256
AutoThink: Think Part 2.43 63.9 5065
AutoThink: No-Think Part 1.84 89.2 1387

Table 3: AutoThink Performance on Three Prompts.

Prompt MATH Minerva Olympiad AIME24 AMC23 AVG

Accuracy (%)
Ellipsis 84.0 28.1 44.8 34.6 67.0 51.7
Standard 84.4 28.1 45.4 35.0 67.5 52.1
Forced No-Think 83.7 27.2 44.8 32.7 65.9 50.9

Token Usage
Ellipsis 2195 3212 5559 9514 5059 5108
Standard 2679 3534 5726 9862 5243 5408
Forced No-Think 2127 2877 5143 8668 4795 4722

Reasoning Behavior Profiling To gain a deeper understanding of how reasoning behaviors evolve,
we annotate the generated solutions from each model with high-level problem-solving phases using
GPT-4o. As illustrated in Figure 8, Distill-R1-1.5B distributes its reasoning effort across many
surface-level activities, such as “reformulating the problem” and “understanding the problem.” In
contrast, ThinkPrune slightly shifts focus toward answer-finalization routines, while still exhibiting
dispersed reasoning patterns. Notably, AutoThink in Think Mode allocates a larger proportion of steps
to core reasoning phases, including “computing or simplifying expressions” and “applying known
theorems,” suggesting a more targeted and efficient reasoning trajectory. Meanwhile, in No-Think
Mode, AutoThink maintains strong task comprehension and delivers concise outputs, dedicating most
steps to problem understanding and direct computation. These findings indicate that AutoThink not
only reduces redundant steps, but also adapts its reasoning structure based on the selected mode.

Generality Beyond Mathematical Reasoning To investigate whether AutoThink generalizes
beyond mathematical reasoning, we additionally evaluate our models on three non-mathematical
benchmarks: (i) GPQA for scientific multi-hop reasoning, (ii) MMLU for general multi-task language
understanding, and (iii) Live-Code-Bench for code generation (20250727 release).

As shown in Table 4, AutoThink retains
competitive accuracy while reducing to-
ken usage, indicating that adaptive rea-
soning behaviors extend beyond math
tasks. Stage 2 even surpasses the base-
line in accuracy while halving response
length, highlighting the transferability of
our approach to diverse domains.

Table 4: Performance of AutoThink on non-math bench-
marks. Each cell shows Accuracy (%) / Avg. Length.

GPQA MMLU Live-Code-Bench Avg

Distill-1.5B 35.1 / 10026 49.5 / 2727 25.2 / 13372 36.6 / 8708
AutoThink-Stage1 31.5 / 8889 47.7 / 1190 23.8 / 5653 34.3 / 5244
AutoThink-Stage2 37.1 / 8617 48.8 / 1743 24.2 / 9647 36.7 / 6669
AutoThink-Stage3 35.7 / 5659 48.8 / 1300 24.9 / 9054 36.5 / 5337

Additional Analysis. We further conduct additional analyses on more base models, hyperparame-
ters, training cost, and case studies. Details are presented in Appendix B due to space limitations.
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5 Related Works

RL-based Post-Training for LLMs. Reinforcement fine-tuning (RFT) has been widely adopted to
improve the reasoning ability of LLMs [32, 13, 9, 11, 7, 34, 35]. Recent work on RL for LLMs has
focused on improving the efficiency and effectiveness of large-scale RL training. Key techniques
decoupling the clipping mechanism and introducing dynamic group sampling [46], mitigating value
bias over long sequences [48, 47], difficulty-aware advantage reweighting [50], model ensembling
[8] and designing minimal-form credit assignment strategies for rewards [4]. In addition, RFT has
been shown to explicitly promote self-verification and self-correction behaviors [26, 18], while also
supporting optimization of test-time compute [23]. Multi-stage, context-length-extended RL further
amplifies the long-chain reasoning ability of R1-style models [17, 28]. In our work, RL is applied
to train R1-style models to adaptively control their reasoning behavior, enabling selective thinking
guided by multi-stage reward shaping.

Mitigating Overthinking for LLMs. While RFT improves performance, it may induce over-
thinking, causing models to generate overly verbose reasoning with limited benefit [29, 14]. [3]
address overthinking in R1-style models by using self-generated short CoT as positive signals in
DPO, encouraging concise reasoning. [51] mitigate overthinking by training models to terminate with
“I don’t know” on unsolvable problems. Recent studies have shown that inserting pseudo-thinking
cues into R1-style prompts [19], or manually controlling reasoning based on problem difficulty
[10, 39, 15], can suppress the model’s thinking behavior, but resulting in reduced performance. Other
studies approach the problem from different perspectives: supervised fine-tuning (SFT) with short
CoT responses [45, 20], incorporate response length–aware rewards in RFT [1, 44, 12, 6, 16], or
leverage smaller models guide larger ones toward faster reasoning [15, 36]. Furthermore, [43] designs
an early-exit mechanism during the reasoning phase to prevent excessive thinking along an incorrect
chain of thought. Inspired by these findings, we first design a minimal prompt that elicits random
thinking behavior, then apply multi-stage RL to guide the model to think adaptively based on task
difficulty, without using external signals or teacher models.

6 Conclusion & Limitations

This work explores how R1-style LLMs can learn to reason adaptively. We propose AutoThink, a
minimal prompting strategy paired with a multi-stage RL framework that enables task-aware thinking.
Through stage-wise reward shaping, the model stabilizes reasoning patterns, reinforces effective
behaviors, and prunes unnecessary steps. Experiments show that AutoThink achieves favorable
accuracy–efficiency trade-offs, outperforming prompting and RL baselines without compromising
performance, offering a scalable and controllable approach to efficient reasoning in LLMs.

While AutoThink demonstrates promising adaptive reasoning capabilities, several limitations remain:

(1) Reward Hacking: The model may bypass the separation between thinking and answering by
embedding reasoning after the </think> tag. As shown in Figure 6, reasoning-related tokens still
appear in no-thinking mode, suggesting incomplete behavioral separation.

(2) Uncontrolled Reasoning Budget: AutoThink adaptively decides when to think, but cannot control
overall response length. Future work could explore budget-aware CoT generation, as seen in recent
systems like Qwen3 [30].

(3) Unfiltered Training Data: We directly use the DeepScaleR dataset without filtering by task
difficulty. Though simple data selection has shown utility, our focus lies in training design. Integrating
curriculum-based filtering may further improve performance.
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Appendix
A Additional Definition and Prompts

A.1 Definition of No-Thinking

In R1-style models (e.g., DeepSeek-R1), Thinking refers to generating explicit, step-by-step reasoning
traces enclosed within <think> · · · </think>, enabling reflection and backtracking. By contrast,
we define the No-Thinking mode [19] as immediately closing the <think> tag without producing
any substantive reasoning, e.g., <think> </think> before moving to the final answer. This phe-
nomenon, also referred to as Non-Thinking in the Qwen3 Technical Report [30], often emerges under
our ellipsis prompt, which stochastically toggles the model between reasoning and shortcut modes
and thus serves as a lightweight control signal for studying adaptive reasoning behaviors.

A.2 Additional Prompt Variants

Beyond the prompt variants introduced in Section 2, we further explore an alternative strategy that
explicitly encourages the model to self-select its reasoning behavior. Specifically, we augment the
original CoT with Think By Difficulty (TBD) prompt with an additional clause, followed by ellipsis
prompt to preserve the optional-thinking behavior. As is shown below, where the red text highlights
the added clause:

Let’s think step by step and output the final answer within \boxed{}. Please decide
whether to continue thinking based on the difficulty of the question.

Despite appending the TBD prompt to explicitly encourage adaptive thinking, we observe no mean-
ingful emergence of selective thinking behavior. As shown in Figure 9 and Table 5, we plot the
no-thinking rate across difficulty levels (on MATH500) and report accuracy and token usage across
five benchmarks. Interestingly, the addition of the TBD prompt leads to a slight drop in both accuracy
and token consumption. This result suggests that prompting alone without any reinforcement signal
is insufficient to reliably induce adaptive thinking behavior in Distill-R1 models.
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Figure 9: No-Thinking Rate.

Prompt MATH Minerva Olympiad AIME24 AMC23 AVG

Accuracy (%)
Ellipsis Prompt 78.2 21.9 38.6 25.2 57.2 44.2
+ TBD Prompt 78.0 21.3 37.1 22.5 55.4 42.9

Token Usage
Ellipsis Prompt 4194 4336 7752 13006 7980 7453
+ TBD Prompt 3893 3122 6490 11754 8796 6811

Table 5: Comparison Between Ellipsis and TBD Prompts.

B Extended Experimental Results

B.1 Additional Results on Skywork-OR1-Math-7B

To further assess the generality of our method, we apply the AutoThink framework to Skywork-OR1-
Math-7B3, a state-of-the-art 7B model that achieves strong performance on mathematical reasoning
tasks. Pretrained and fine-tuned with rule-based reinforcement learning on math and code tasks,
this model represents one of the strongest 7B-scale math solvers. As shown in Table 6, the Ellipsis
Prompt has limited effect on this highly optimized model, inducing only a marginal proportion of
no-thinking responses, indicating reduced prompt sensitivity due to its deterministic reasoning policy.

Despite the limited prompt sensitivity, Stage 1 training with batch-level contrastive signals effectively
captures and amplifies the model’s latent no-thinking behavior, enabling more balanced reasoning

3https://huggingface.co/Skywork/Skywork-OR1-Math-7B
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Table 6: Accuracy and Token Usage Comparison on Skywork-OR1-Math-7B.

Method Accuracy (%) Token Usage
MATH Minerva Olympiad AIME24 AMC23 AVG MATH Minerva Olympiad AIME24 AMC23 AVG

Base Model: Skywork-OR1-Math-7B
Standard Prompt 94.0 41.2 62.1 67.1 88.3 70.5 4669 7402 10102 14242 8849 9053
No-Thinking Prompt 85.5 26.1 48.1 45.6 68.2 54.7 1033 775 2982 6416 2402 2722
Ellipsis Prompt 94.0 41.8 61.8 69.1 88.0 70.9 4542 7399 10093 13813 8819 8933
AutoThink-Stage1 92.9 36.9 59.3 65.4 86.6 68.2 1894 2177 4616 7068 4074 3966
AutoThink-Stage2 94.0 40.0 62.3 63.1 88.9 69.7 2298 3247 5437 8091 4521 4719
AutoThink-Stage3 93.1 38.8 61.1 62.7 88.2 68.8 1768 2287 4622 7372 3820 3974

Figure 10: Training Curves of Skywork-OR1-Math-7B on Stage1.

patterns to emerge. Subsequent Stages 2 and 3 progressively refine this behavior. The full AutoThink
framework is applied sequentially over three stages, trained for 600, 500, and 30 steps, respectively.
Notably, the final stage achieves a nearly 60% reduction in reasoning tokens (from 9053
to 3974), while preserving task accuracy with less than a 2% degradation compared to the
standard prompting baseline. These lightweight training phases are sufficient to induce substantial
improvements in efficiency, even on strong pretrained models like Skywork-OR1-Math-7B.

We further visualize the training dynamics of Stage 1 in Figure 10, including the proportion of thinking
responses, as well as the response length and accuracy stratified by thinking versus no-thinking
behaviors. At early stages, almost all responses involve explicit reasoning. However, batch-wise
balancing gradually promotes the emergence of no-thinking behavior. A clear modality shift
occurs between steps 100 and 200, marked by a sharp increase in no-thinking responses, which
directly contributes to the reduction in average response length. To explicitly encourage a balanced
distribution between thinking and no-thinking responses throughout training, we set the target balance
ratio γ = 0.5 in each of the three stages. Interestingly, while the accuracy of thinking responses
slightly decreases during this phase, the overall accuracy continues to improve. This divergence
suggests that the model is learning to skip unnecessary reasoning on simpler problems, thereby
increasing both efficiency and decision quality through adaptive control over its reasoning mode.

B.2 Additional Prompt Evaluation on Qwen3

We further extend our study to the Qwen3-8B [30] model by applying the proposed ellipsis prompting
and adaptive training strategy. Table 7 reports accuracy and average token length across benchmarks.
The results show that ellipsis prompting encourages a non-negligible amount of no-thinking behavior;
however, this tendency does not align perfectly with task difficulty (e.g., AIME problems are
significantly harder than MATH500, yet elicit a lower thinking rate). Together with observations
on Skywork-OR1-Math-7B (where ellipsis prompting induced only ∼0.5% no-thinking behavior),
these findings suggest that the AutoThink strategy can also induce autonomous reasoning behavior in
Qwen3, with ∼13% occurrence of no-thinking responses under ellipsis prompting.
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Table 7: Results of Qwen3-8B with different prompts. Each cell shows Accuracy (%) / Avg. Length.
Qwen3-8B MATH500 Minerva Olympiad AIME24 AMC23 Avg
Standard Prompt 97.0 / 5351 53.3 / 7010 73.5 / 11342 86.7 / 14690 88.1 / 10343 79.7 / 9747
Ellipsis Prompt 96.4 / 5109 49.5 / 5315 70.9 / 9891 68.3 / 13349 88.9 / 9858 74.8 / 8704
No-Thinking Prompt 84.1 / 1104 41.2 / 639 50.8 / 2860 26.3 / 6518 60.1 / 2913 52.5 / 2807
Ellipsis Prompt: Thinking Rate 96.9% 67.5% 89.0% 87.5% 96.2% 87.4%

B.3 Hyperparameter Sensitivity

The three-stage framework is intentionally designed to be modular and interpretable, with each stage
serving a distinct and simple role: (i) Stage 1 introduces a batch-wise reward balance to prevent
mode collapse between thinking and no-thinking behaviors; (ii) Stage 2 focuses purely on reinforcing
accuracy within each mode without additional reward shaping; (iii) Stage 3 adds length-aware shaping
to encourage brevity for correct responses and elaboration for incorrect ones.

Among these stages, only Stage 1 and Stage 3 involve reward shaping beyond naive correctness.
Even in these cases, the formulations remain straightforward and principled. Specifically, Stage 1
balances the modal ratio using a linear penalty controlled by hyperparameters γ and λ, which are set
to simple default values rather than finely tuned. As illustrated in Figure 3, the resulting reward curve
naturally exhibits a symmetric form. Stage 3 reuses shaping terms (α, β) inspired by GRPO-LEAD,
again without introducing any ad hoc modifications.

To further examine the robustness of these choices, we conduct sensitivity analyses of γ, λ, and α
during training, with results summarized below.

Stage 1 Parameters (γ, λ). In Stage 1, we balance the modal ratio between thinking and no-
thinking behaviors using a linear penalty controlled by γ and λ. These hyperparameters were not
carefully tuned but set to commonly used values. To illustrate their effect, Table 8 reports the average
thinking rate at steps 100 and 200 during training. Increasing γ encourages more thinking trajectories,
while larger λ enforces stricter adherence to the target balance.

Table 8: Thinking rate (%) at checkpoints under different values of γ and λ.
γ=0.5, λ=2 γ=0.2, λ=2 γ=0.8, λ=2 γ=0.5, λ=1 γ=0.5, λ=4

Thinking-Rate@step100 62.4 57.8 99.9 71.4 51.7
Thinking-Rate@step200 54.2 51.4 100.0 61.2 48.3

Stage 3 Parameters (α, β). In Stage 3, the shaping terms (α, β) control the rate of reward
decay/growth with respect to response length. Table 9 shows response length at checkpoints under
different α values with β fixed at 0.05. Larger α accelerates length decay for correct responses, while
smaller α relaxes the penalty.

Table 9: Response length under different α values (β = 0.05).
α = 0.05 α = 0 α = 0.1

Response-Length@step100 4734 6174 3623
Response-Length@step200 4120 6322 2894

Discussion. These results confirm that the shaping functions behave as intended: γ/λ modulate the
balance between modes in Stage 1, and α/β regulate the brevity of responses in Stage 3. Importantly,
the overall training trends remain consistent with the main results, demonstrating the robustness of
AutoThink without extensive hyperparameter tuning. Thus, while the overall pipeline appears multi-
stage, each stage was deliberately designed with minimal tuning and clear interpretability. Looking
ahead, it may be possible to unify these stages through a more holistic reward formulation,
enabling the model to learn adaptive reasoning behavior within a single-stage process. We leave this
as a promising direction for future work.
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B.4 Training Cost Comparison

We compare the training cost of AutoThink with two baseline methods, normalizing all runs to a
unified batch size of 128. The results are shown in Table 10, AutoThink adopts a 3-stage schedule
with increasing context lengths and a total of 500 steps, comparable to that of 540 in ThinkPrune.
In contrast, ShorterBetter trains in a single stage.
While prior methods reduce context length to achieve
compression, AutoThink expands it but prunes
through shorter response length in Stage 3, resulting
in comparable training cost. On H100 clusters with 4
nodes, training the all stages can be completed within
one day for 1.5B models, and 2.5 days for 7B.

Table 10: Training Cost of Distill-R1-1.5B.

Method Steps (Batch Size=128) Context Length

AutoThink ≈ 220 + 220 + 60 = 500 8K / 16K / 24K
ThinkPrune ≈ 80 + 180 + 180 = 540 4K / 3K / 2K
ShorterBetter ≈ 300 6K

Table 11 provide estimated GPU-hour costs
for all methods using Distill-R1-1.5B as the
base model, AutoThink operates within the
same order of compute as concise baselines
such as ThinkPrune and ShorterBetter, yet
achieves notably stronger performance. In
contrast, DeepScaleR, which primarily aims
to maximize performance, requires more than
3× higher compute due to its longer context
length and increased RL iterations.

Table 11: Estimated GPU-hour cost of training
Distill-R1-1.5B with different methods on H100.

Method GPU Hours Avg ACC / Length

ThinkPrune-iter-2K ∼400 49.2 / 3368
ShorterBetter ∼200 44.7 / 1915
Distill-1.5B-AutoThink ∼700 51.7 / 5108
DeepScaleR ∼2200 56.7 / 5817
DeepScaleR-1.5B-AutoThink ∼250 57.3 / 5277

C Addressing Potential Challenges

While AutoThink demonstrates robust improvements, several open challenges remain in the area of
reasoning control. We outline possible directions for addressing these limitations below:

Token-Budget Control. Token-budget constraints have been partially explored in prior works [1,
44], where budget-aware reward functions penalize excessively long completions. Such formulations
can be readily integrated with AutoThink in a plug-and-play manner to enforce global compute
budgets and further improve efficiency.

Dataset Noise. The presence of noise in large-scale reasoning datasets can hinder training efficiency.
Prior studies [28] suggest that curriculum learning or filtering samples by correctness or difficulty
can improve learning quality. These strategies are orthogonal to our reward design and could be
combined with AutoThink to further enhance robustness.

Reward Hacking. A common issue is reward hacking, where the model continues reasoning after
the </think> tag. This can be mitigated by explicitly penalizing reasoning-related patterns outside
the <think> span, or by rewarding clean separation between thought and final answer. Both strategies
can be incorporated into future iterations of our reward function.

Overall, we view these solutions as complementary and composable with our framework. Future
work will explore tighter integration of these mechanisms to provide a more comprehensive solution
to reasoning control.

D Case Study

Figure 11,12,13 presents some examples comparing four prompting strategies. For easy problems,
AutoThink produces correct answers without explicit reasoning, reflecting effective fast thinking.
For medium problems, it may activate both reasoning modes, with thinking and no-thinking re-
sponses potentially coexisting. For hard problems, the model engages in deeper, slower reasoning,
demonstrating iterative understanding and self-verification before arriving at the correct solution.
These observations demonstrate how AutoThink adapts its reasoning to problem difficulty, balancing
efficiency and reliability through dynamic control of reasoning depth.
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Question: What is the result when the greatest common factor of 6432 and 132 is increased by 11?

[Attempt to Solve, 456 tokens] Alright, so let's apply 
that to 6432 and 132. First ... 6432 mod 132 ... 132 mod 
96 ... 96 mod 36 ... 36 mod 24 ... Therefore, the GCF of 
6432 and 132 is 12.

[Reassess the Whole Solution, 1146 tokens] Wait, hold 
on a second ... GCF = 12 ... Therefore, the result is 23. 
Wait, hold on  ... gives 23. But just to be absolutely 
thorough ... So, the final answer is 23.

[Finalize and Present the Answer, 294 tokens] To find 
the result ... Therefore, the result is 23.

[Understand the Problem, 229 tokens] Okay, so I have 
this math problem here: ... by using the Euclidean 
algorithm ... The last non-zero remainder is the GCF.

Standard Prompt, 2125 tokens

[Present the Answer, 12 tokens] Final Answer: 23.

[Solve the Problem by CoT, 184 tokens] To find ... 
1. Find the GCF of 6432 and 132 ... GCF=...=12 
2. Increase the GCF by 11: ... 12+11=23.

No-Thinking Prompt, 196 tokens

[Understand the Problem, 97 tokens] Okay, so I need to 
find ... I can use the Euclidean algorithm ... 

AutoThink: No-Thinking Mode, 455 tokens

[Solve the Problem by CoT, 345 tokens] Starting with 
6432 and 132 ... 6432 mod 132 ... 132 mod 96 ... 96 mod 
36 ... 36 mod 24 ... So, the GCF of 6432 and 132 is 12 ... 
12 + 11 = 23.

[Present the Answer, 13 tokens] The final result is 23.

Figure 11: Easy Case: AutoThink solves the problem via no-thinking mode with few tokens.

Question: Let 𝑧𝑧 = 2 + 2 − 3 + 3 2 𝑖𝑖, and let 𝑐𝑐 = 2 − 3𝑖𝑖.  Let 𝑤𝑤 be the result when 𝑧𝑧 is rotated around 𝑐𝑐 by 𝜋𝜋/4
counter-clockwise. Find 𝑤𝑤.

[Attempt to Solve, 1200 tokens] First, I think I need to 
translate 𝑧𝑧 so that 𝑐𝑐 is at the origin ... Okay, next step is 
to rotate ... Now, combine all these ... Thus, 𝑤𝑤 = 6 − 5𝑖𝑖.

[Reassess the Whole Solution, 1969 tokens] Wait, hold 
on ... 6 − 5𝑖𝑖. But wait ... 6 − 5𝑖𝑖. But just to make sure ... 
6 − 5𝑖𝑖. So, yes ... 6 − 5𝑖𝑖. But just to make sure ... 6 − 5𝑖𝑖. 
Therefore, all my computations seem consistent.

[Finalize and Present the Answer, 542 tokens] Given 
𝑐𝑐 = 2 − 3𝑖𝑖 ... Thus, the final result is: 6 − 5𝑖𝑖.

[Understand the Problem, 186 tokens] Alright, so I 
have this problem ... Let me try to recall the exact steps.

Standard Prompt, 3897 tokens

[Present the Answer, 19 tokens] Final Answer: 3 − 2𝑖𝑖.

[Solve the Problem by CoT, 289 tokens] To find ... 
1. Translate the complex plane ... 𝑧𝑧′ = ⋯ = 2 + 0𝑖𝑖. 
2. Rotate 𝑧𝑧 by 𝜋𝜋/4 ... 𝑤𝑤′ = ⋯ = 1 + 𝑖𝑖.
3. Translate back ... 𝑤𝑤 = ⋯ = 3 − 2𝑖𝑖.

No-Thinking Prompt,308 tokens

[Understand the Problem, 284 tokens] Okay, so I need 
to ... So, the steps are: 1. 2. 3. ... Let me write that out in 
equations.

AutoThink: Thinking Mode, 2841 tokens

[Attempt to Solve, 793 tokens] First, ... Now, I need to 
rotate ... Wait, hold on ... Now, we need to translate 
back ... So, 𝑤𝑤 = −2𝑖𝑖. 

[Reassess the Whole Solution, 1275 tokens] Wait, that 
seems straightforward ... So, 𝑧𝑧′′ = 4 − 2𝑖𝑖. Wait, that 
contradicts ... 𝑤𝑤 = 6 − 5𝑖𝑖. Wait, that's different from ... 
Wait, so the final answer is 6 − 5𝑖𝑖 ... So, to recap: ... 
Therefore, the final answer is 6 − 5𝑖𝑖.

[Finalize and Present the Answer, 489 tokens] Given 
𝑐𝑐 = 2 − 3𝑖𝑖 ... Thus, the complex number 𝑤𝑤 is: 6 − 5𝑖𝑖.

[Understand the Problem, 145 tokens] Okay, so I need 
to find the point 𝑤𝑤 ... First, let's write down the given 
points: ... 

AutoThink: No-Thinking Mode, 1013 tokens

[Solve the Problem by CoT, 836 tokens] To rotate ... I 
can use the rotation formula ... So, 𝑒𝑒𝑖𝑖𝑖𝑖 = ⋯ = 2

2
+ 𝑖𝑖 2

2
. 

Let me compute 𝑧𝑧 − 𝑐𝑐 first ... Now, multiply this by ... 
Let me compute this multiplication: ... Now, add back ... 
𝑤𝑤 = ⋯ = 6 − 5𝑖𝑖.

[Present the Answer, 32 tokens] Therefore, the result 𝑤𝑤
is 6 − 5𝑖𝑖.

Figure 12: Medium Case: AutoThink exhibits both thinking and no-thinking modes on the problem.
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Question: In quadrilateral ABCD, angle BAD and angle CDA are trisected as shown. What is the degree measure of 
angle AFD?

[Present the Answer, 16 tokens] Final Answer: 20°.

[Solve the Problem by CoT, 344 tokens] To determine 
the measure of angle AFD ... 
1. Identify the Triangles: ...
2. Sum of Angles: ... so angle ABD is 140°
3. Determine Angle AFD : ... However, this result 
exceeds the possible measure ... Reassessing, ... Totaling 
20°

No-Thinking Prompt, 360 tokens

[Attempt to Solve, 662 tokens] Wait, but we need to 
find angle AFD ... Wait, actually, ... But maybe we can 
use the Law of Sines or Law of Cosines ... we need to 
know the coordinates or the lengths.

[Explore Other Approaches, 10672 tokens] So, let's 
compute angle BAD first ... Wait ... Wait ... maybe we 
can use Ceva's Theorem ... Wait, maybe better to 
consider triangle AFD ... Wait, angle FAD is angle 
between AF and AD ... but I don't know angle FDB. ... 
something ... Wait, in triangle ABD ... Hmm, not sure ... 
perhaps I can instead consider that angle AFD is 30°. But 
let me think again ... Wait, perhaps using vectors ... Wait, 
but since angle BAD is 3x ... Wait, not sure. ... Wait ... 
But how does this help us? ... so I will go with 30°...

[Finalize and Present the Answer, 448 tokens] In 
quadrilateral ABCD ... Thus, the degree measure of angle 
AFD is 30.

[Understand the Problem, 1575 tokens] Alright, so I 
have this geometry problem here with quadrilateral 
ABCD ... So, it‘s a trapezoid? Wait ... Or maybe ... From 
the Asymptote code ... Wait, BC is  ... Wait, the 
Asymptote code ... Wait, but angles at B and C ... But I 
don’t know if that‘s directly helpful.

Standard Prompt, 13357 tokens

[Understand the Problem, 589 tokens] Okay, so I have 
this geometry problem here about quadrilateral ABCD... 
So, AFD is the angle at point F between points A and D. 

AutoThink: Thinking Mode, 7718 tokens

[Attempt to Solve, 1515 tokens] To find angle AFD, 
maybe I can ... Wait, but the Asymptote code is just for 
drawing ... So, angle BAD is 110 degrees ... Wait, maybe 
I'm complicating it ... Given that, let me calculate the 
coordinates ... So, theta ≈ 80.8 degrees.

[Present the Answer, 542 tokens] To solve the 
problem ... the degree measure of angle AFD is 80.

[Explore Other Approaches, 5072 tokens] Hmm, so 
angle AFD is approximately 81 degrees ... But let me 
check my calculations again ... Alternatively, maybe I 
made a mistake ... Let me compute it more accurately ... 
maybe it's 80 degrees ... Wait, maybe I can consider the 
entire quadrilateral and the angles ... But wait, in the 
Asymptote code ... So, perhaps angle AFD is 80 degrees 
or 81 degrees. Wait, ... I think it's 81 degrees ... I think 
80 degrees is the answer ... So, the answer is 80. 

Figure 13: Hard Case: AutoThink solves the problem via thinking mode with repeated verification.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction, regarding ellipsis prompts, adaptive
reasoning via multi-stage RL, and improved accuracy–efficiency and trade-offs, which are
consistent with the paper’s contributions, analyses, and experimental results (Sections 1, 3,
4).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in the last Section. Including Reward Hacking,
Uncontrolled Reasoning Budget, and Unfiltered Training Data.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include formal theoretical results or proofs; the contribution
is algorithmic and empirical.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper details training configurations, hyperparameters, model checkpoints,
and evaluation settings in Section 4.1 to support reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All experiments are conducted on publicly available datasets. Our code and
training framework will be released with the submission, ensuring full reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Sections 4.1 and 4.2 provide full details on datasets, models, training schedules,
batch sizes, context lengths, and evaluation protocol.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: While average results over 16 rollouts are reported, statistical significance
metrics (e.g., variance or error bars) are not explicitly presented due to computational cost.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute budget for training is specified in Appendix B. Model types and
context lengths are discussed, though detailed hardware specs are omitted.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work adheres to the NeurIPS Code of Ethics. It uses publicly available
datasets and does not involve human subjects or privacy-sensitive data.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper implicitly discusses positive impact through inference efficiency
and controllability. While not a dedicated section, broader implications are noted in the
conclusion and limitation.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No new high-risk models or datasets are released at this stage; the work is a
proof-of-concept for reasoning control in existing models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper uses existing open models (e.g., DeepSeek-R1, DeepScaleR) and
datasets under proper citation (Section 4.1 and References), though licenses are not explicitly
listed.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: No new datasets or models are released in the current submission due to
anonymity. Upon acceptance, we plan to release well-documented model checkpoints.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The work does not involve any crowdsourcing or human subject experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not involve human participants.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs are the core of our study, and their use is described throughout the paper
(e.g., Distill-R1, DeepScaleR). Our method modifies their reasoning policy via reinforcement
learning.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	An Ellipsis Unlocks Random Thinking in R1-Style Models
	A Surprising Effect of Minimal Prompt Modification
	Prompting Alone Does Not Enable Difficulty-Aware Thinking

	Guiding When to Think via Multi-Stage Reinforcement Learning
	Stage 1: Preventing Mode Collapse by Batch Reward Balance
	Stage 2: Reinforcing Reliable Behavior within Dual Modes
	Stage 3: Pruning Unnecessary Reasoning Paths via Length-Aware Reward

	Experiments
	Setup
	Main Results
	Ablation Study
	In-Depth Behavioral and Efficiency Analysis

	Related Works
	Conclusion & Limitations
	Additional Definition and Prompts
	Definition of No-Thinking
	Additional Prompt Variants

	Extended Experimental Results
	Additional Results on Skywork-OR1-Math-7B
	Additional Prompt Evaluation on Qwen3
	Hyperparameter Sensitivity
	Training Cost Comparison

	Addressing Potential Challenges
	Case Study

