WEF-GNN: A GENERALIZABLE GRAPH NEURAL NETWORK FOR CRYSTALLINE MATERIAL PROPERTY PREDICTION

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

023

025

026

027

028029030

031

033

034

035

037

040

041

042

043

044

045

046 047

048

051

052

ABSTRACT

Graph neural networks (GNNs) have shown great promise for predicting properties of crystalline solids. However, existing models struggle to generalize across crystals of varying sizes, and there is a lack of high-fidelity ab initio training data. Here, Wef-GNN addresses the problem of generalizability by introducing a multi-head temporal attention mechanism in the graph update function and a crystalline graph representation scheme that is more size-agnostic compared to the traditional primitive unit cell-based graph representation. Further, it was found that a single Wef-GNN layer can be recycled for all graph convolution steps without considerable loss in accuracy; this leads to deep receptive fields without additional parameters. Wef-GNN outperforms all prior models in a standard band gap prediction benchmark while having much fewer parameters. To address the challenge of high quality ab initio training data, a high-fidelity dataset was curated by performing over 10k high-accuracy Density Functional Theory (DFT) calculations. Wef-GNN was pre-trained on a standard large dataset of lower-accuracy DFT calculations then fine-tuned with the high-accuracy DFT dataset. The resulting model matches experimental band-gap values much better than other GNNs, and even outperforms the underlying low-accuracy DFT calculations.

1 Introduction

In recent years, there has been an explosive demand of new materials for applications ranging from computer chips and solar cells to batteries and more. Meeting this demand requires the discovery of new materials using high throughput screening. At present, the leading tool for preforming high throughput screening of materials is first principles density-functional theory (DFT) calculation. For example, Yuan et al. (2024) used DFT to screen 40,000 crystals to isolate a good solar cell candidate. Although effective, this approach faces several problems. For instance, DFT's large computational cost makes calculations slow and expensive, restricting exhaustive searches and leaving the vast majority of chemical space unexplored. Another problem is DFT's intrinsic error; Yuan et al. (2024) used the widely adopted Perdew-Burke-Ernzerhof (PBE) DFT functional. PBE has a band gap error of $\sim 0.6 \, \mathrm{eV}$ (Jain et al., 2011). Band gap is a crucial property of for solar cells, where a value of 1.1 – 1.6 eV is typically required, thus a $\sim 0.6 \text{ eV}$ error risks the inadvertent rejection of many promising materials. There exist more accurate DFT functionals, such as Heyd-Scuseria-Ernzerhof (HSE) hybrid functional which has an error of ~ 0.37 eV, but these come at even larger computational costs, making high throughput screening use HSE and other higher accuracy functionals not feasible (Garza & Scuseria, 2016). This paper aims to address the speed and band gap accuracy limitations of DFT, with the goal of making a tool better suited for high throughput discovery of new solar cell.

Over the past decade, machine learning (ML) techniques have been perused to solve DFT's limitations in high throughput screening, and have been used for crystal property prediction, inverse design of drug molecules, and more (Reiser et al., 2022; Coley et al., 2017). Early on, representing molecules as SMILES (simplified molecular-input line-entry system) strings (Weininger, 1988) enabled the adoption of machine translation networks such as sequence-to-sequence models (Liu et al., 2017; Schwaller et al., 2018; Wang et al., 2023) and transformers (Vaswani et al., 2017) for predicting the properties and chemical reactions of organic molecules (Schwaller et al., 2019; Tetko et al., 2020; Irwin et al., 2022; Kassa et al., 2023). However, there is a limitation in using one-dimensional

SMILES strings represent three-dimensional molecules, and this limitation that becomes more evident in the case of crystalline solids, which have added complexities such as periodic boundary conditions (PBCs) and disorders (Schütt et al., 2018; Klicpera et al., 2021; Schütt et al., 2021). Graph Neural Networks (GNNs) such as Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017) and Graph Attention Networks (GATs) (Veličković et al., 2018) overcome this limitation by representing molecules and crystals as graphs, thereby better capturing the three-dimensional structural and relational information. This can be seen in the improved performance of graph based models such as Wang et al. (2023), Rasmussen et al. (2023), and Gilmer et al. (2017) in organic molecule prediction tasks over SMILEs based models.

In materials science, however, GNNs have seen slower adoption (Reiser et al., 2022). Pioneering works like the Crystal Graph Convolutional Neural Network (CGCNN) (Xie & Grossman, 2018) and the MatErials Graph Network (MEGNet) (Chen et al., 2019) have demonstrated the ability of GNNs in predicting formation energies, band gaps, and other properties of crystalline solids with near ab initio accuracy, but at a fraction of the computational cost. For instance, Gilmer et al. (2017) have demonstrated Message Passing Neural Networks (MPNNs), can predict material properties up to 10,000× faster than traditional DFT calculations. However, despite these findings, the application of GNNs in materials science has largely remained an intellectual exercise, with limited real-world implementation. The first problem is the lack of generalizibility in GNNs, meaning GNNs struggle to accurately predict the properties of materials with differing crystal sizes; a GNN trained on small crystals will exhibit low accuracy in predicting the properties of larger crystals (Reiser et al., 2022). The second challenge is low accuracy inherited from the PBE-level DFT dataset. Current ML models in materials science are primarily trained on datasets of PBE-level DFT calculations, such as Open Quantum Materials Dataset (Kirklin et al., 2015; Saal et al., 2013) and Materials Project (Jain et al., 2013). Since PBE itself has a band gap calculation error of \sim 0.6 eV, models trained on this dataset inherit PBE's inaccuracy. While an HSE dataset would mitigate this problem, given its improved accuracy (\sim 0.37 eV band gap error), the high computational cost of HSE calculations makes generating a sufficiently large dataset infeasible.

This paper attempts to address the challenges faced by GNNs in material science. First, Wef-GNN is presented, an architecture that mitigates the generalizibility issue of GNNs by introducing a multihead temporal attention mechanism, GNN layer recycling, and a new graph representation scheme for crystal structures. Next, a hybrid training approach is introduced, where a large dataset of PBE calculations is used for pretraining and a smaller dataset of HSE06 (HSE with 25% mixing parameter) calculations is used for fine tuning. It is shown that a model trained with this approach achieves band gap accuracies that surpass that of DFT computed using the PBE functional.

2 Wef-GNN Architecture

2.1 Graph Representation of Crystals

A single unit cell of periodic crystal can be represented as a graph $\mathcal{G}=(V,E)$, where each node $i\in V$ is assigned a feature vector x_i . Initially, works such as Xie & Grossman (2018) used several atomic descriptors, like atomic number, atomic mass, electronegativity, for x_i . However, Chen et al. (2019) observed that comparable accuracy can be achieved using atomic number alone. Here, it is found that using a combination of atomic number and fractional coordinates improves performance. Incorporating fractional coordinates helps differentiate identical atoms by giving them distinct, intensive, signatures based on their location in the unit cell, and leads to a more expressive model. Thus, x_i is constructed by embedding the atomic numbers using a learnable matrix and concatenating this with a Gaussian basis expansion of the fractional coordinates (Gaussian basis expansion acts as a smooth analogue of one-hot encoding for continuous inputs).

Next, an edge between two nodes, i and j, is represented using the feature vector e_{ij} that stores the interatomic distance between the nodes. Several rules have been proposed for determining if an edge exists between two nodes, such as fixed cutoff radius, k-nearest neighbors, and Voronoi cells (Ruff et al., 2024). This work determines the existence of an edge using a cutoff radius, where nodes i and j are connected by the edge e_{ij} if their separation distance is below the cutoff radius r_c . Here, the cutoff radius approach is preferred because of the strength of the interaction of a pair of atoms is more dependent on their separation distance than the number of neighbors a given atoms has. This can be easily observed from the interatomic potential of a set of atoms (Scott et al., 1991) or,

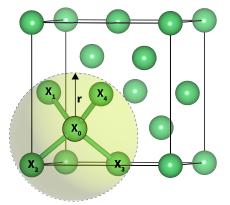


Figure 1: Diamond-cubic silicon with a 0.235 nm nearest-neighbor separation. Atom x_0 has edges with all atoms within a cutoff radius of $r_c < 0.30 \text{ nm}$.

more simply, the Lennard-Jones potential (Jones & Chapman, 1924), where the force of attraction between atoms has an inverse power relation with the separation distance.

Given the crystal structures are periodic repeats of the unit cell, lattice periodicity needs to be considered when determining a node's neighbors. Therefore, PBCs are imposed by evaluating the minimum image distance. To see why this is necessary, consider a unit cell of silicon (Si), where each atom in the unit cell has a neighbor 0.235 nm away. Choosing $r_c < 0.30\,\mathrm{nm}$ gives exactly four neighbors for each atom. This is true whether the atom resides within the unit cell interior or on one of the corners (Figure 1); thus it is essential to reflect this periodicity in the distance calculations. This is done by calculating separate interatomic distances after shifting along each Cartesian axis by -1, 0, and 1 one at a time. Then the minimum from all these distance calculations is used as the distance (d) between a pair of nodes, i.e., for a pair of nodes i and j, $d_{ij} = \min_{\tau \in \{-1,0,1\}^3} \| L(f_j - f_i + \tau) \|_2$, where L represents the lattice vectors and f the fractional coordinates.

2.2 GNN ARCHITECTURE

Similar to other GNNs (Gilmer et al., 2017; Chen et al., 2019), Wef-GNN has three main parts: AGGREGATION, UPDATE, and READOUT. Each layer of a GNN (each message-passing step), made up of the AGGREGATION and UPDATE, receives the node and edge feature vectors x_i^t and e_{ij}^t and produces new feature vectors x_i^{t+1} , and e_{ij}^{t+1} . During AGGREGATION, the node features of the neighbors of node i, i.e., $\mathcal{N}(i)$, get aggregated into a single feature vector x_i^* . UPDATE then combines x_i^* with x_i^t , yielding x_i^{t+1} . After T message passing steps, a permutation-invariant READOUT is used to produce a final graph level embedding, \mathcal{G} , for downstream tasks .

While Wef-GNN uses attention during AGGREGATION similar to Veličković et al. (2018), what differentiates Wef-GNN is the introduction of a multi-head temporal attention mechanism during UPDATE. The multi-head temporal attention mechanism lets each node attend to its own history, $\{x_i^K,\ldots,x_i^{t-1}\}$, where K is the look back window (how far back in its history the node looks). We can now discuss the components of AGGREGATION in Wef-GNN in more detail. As explained previously, at t=0, x_i is the concatenation of a learned embedding of the atomic number and a Gaussian basis expansion of the fractional coordinates (centered between 0 and 1), while e_{ij} is the interatomic distance between i and j expanded to a Gaussian basis (centered between 0 and r_c). During AGGREGATION, x_i^t and e_{ij}^t first undergo weighed linear transformations to give x_i^m and e_{ij}^m , where $x_i^m = x_i^t W_a + b_a$ and W_a and b_a are learned matrices; likewise, $e_{ij}^m = e_{ij}^t W_e + b_e$. Now, let us define:

$$s_{ij} = e_{ij}^m \parallel (x_i^m + x_j^m)$$

where \parallel represents concatenation. Linearly transforming s_{ij} yields $s_{ij}^* = s_{ij} W_s + b_s$. Next, we add the spatial attention as follows:

$$s_{ij}^m = s_{ij} \cdot \alpha_{ij} \cdot \alpha_{ji}$$

Algorithm 1 Wef-GNN Training

```
163
                    Input: \overline{x^{t=0}}
164
                    Output: G
165
                      1: for i in \{x^{t=0} \mid x^{t=0} \in nodes\} do
2: for j in \{x^{t=0} \mid x^{t=0} \in nodes, x^{t=0} \neq i\} do
3: d_{ij} = \min_{\tau \in \{-1,0,1\}^3} \| \operatorname{L}(\mathbf{f}_j - \mathbf{f}_i + \tau) \|_2
4: if d_{ij} < r_c then
166
167
169
                                                        Add [i, j] to edges
                      5:
170
                      6:
171
                      7:
                                       end for
                      8: end for
172
                      9: Let t = 0.
173
                     10: while \{t < T\} do
174
                                     \begin{aligned} x_i^*, e_{ij}^* &= \operatorname{AGGREGATION}[x_i^t, e_{ij}^t] \\ x_i^{t+1} &= \operatorname{UPDATE}[x_i^*, x_i^t] \\ e_{ij}^{t+1} &= \operatorname{UPDATE}[e_{ij}^*, e_{ij}^t] \\ t &= t+1 \end{aligned}
175
176
                     13:
177
                    14:
178
                    15: end while
179
                    16: G = READOUT[x_i^T]
                     17: return \mathcal{G}
181
```

where α_{ij} and α_{ji} are attention coefficients given by:

$$\alpha_{ij} = \frac{\exp(A_e \cdot (x_i^m \parallel x_j^m \parallel e_{ij}^m))}{\sum_{k=1}^{q} \exp(A_e \cdot (x_i^m \parallel x_k^m \parallel e_{ik}^m))}$$

where A_e is a learned matrix, and q is the number of neighbors of node i. Because the graphs are represented using the coordinate format (COO), multiplying s_{ij}^m by α_{ij} and α_{ji} ensures order invariance. Therefore, for each neighbor j of i, s_{ij}^m contains information about e_{ij} , j, and the relevance of j to i. Thus, we can gather the information about all the neighbors of node i as follows:

$$h_i = \sum_{k=1}^q s_{ik}^m + s_{ki}^m$$

$$x_i^* = \text{PReLU}[(x_i^m \parallel h_i)W_s]$$

where PReLU is a parametric rectified linear unit, serving as a nonlinear activation function. And similarly, $e_{ij}^* = \text{PReLU}[s_{ij}^m]$.

Finally, UPDATE combines x_i^t and e_{ij}^t with the intermediate values x_i^* and e_{ij}^* , yielding x_i^{t+1} and e_{ij}^{t+1} . Many UPDATE functions have been proposed in literature, such as Gated Recurrent Unit (Cho et al., 2014), summations and other non-weighted techniques (Gilmer et al., 2017). In Wef-GNN, a multi-head temporal attention is introduced and leads to better performance on crystalline material benchmarks. Bahdanau (Bahdanau et al., 2015) style cross attention (γ_{temp}) was used to combine the x_i^* and e_{ij}^* with the history of the node and edge states:

$$x_i^{t+1} = \gamma_{\text{temp}} \left(\text{query} = x_i^*, \text{ key} = x_i^*, \text{ value} = \left\{ x_i^{t-1}, \dots, x_i^{t-K} \right\} \right)$$

where K is the look back window. A similar temporal attention is applied to obtain e_{ij}^{t+1} . The rest of the multi head attention mechanism follows (Vaswani et al., 2017) and uses concatenation for head aggregation. Layer normalizations, residual connections, and dropouts are used, but omitted have been here for brevity.

After T message passing steps, the final node features are pooled by READOUT to obtain the graph-level representation \mathcal{G} . Although various READOUT functions such as Set2Set (Vinyals et al., 2016), transformer encoders and others (Gilmer et al., 2017) have been proposed, here, simply applying a non-linearity followed by component-wise mean has been found to match their accuracy while being

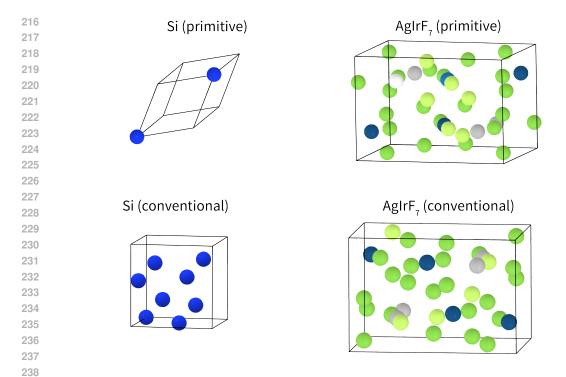


Figure 2: Changing the graph representation of Si from a primitive unit cell made up of 2 atoms to a conventional unit cell with 8 atoms (left). Going from a primitive AgIrF₇ unit cell with 36 atoms to a conventional unit cell with 40 atoms (right).

much less computationally demanding. The full Wef-GNN framework is summarized in Algorithm 1.

An surprising empirical finding the occurred during the development of Wef-GNN was that a single Wef-GNN layer can be recycled, meaning the same learnable matrices W, b, and A can be reused at every message passing step without sacrificing accuracy. This parameter sharing enlarges each node's receptive field while decreasing the model size.

3 Addressing Generalizability

One of the major challenges GNNs face has do to with generalizability. Stacking many GNN layers, i.e., preforming too many message passing steps, causes node representations to become indistinguishable, resulting in a performance decline. The number of message passing steps that result in such over-smoothing depends on the size of graph. Given that different materials can have very different unit cell sizes, this problem has hindered a single GNN from generalizing to different material systems.

For example, consider the materials Si and AgIrF₇. The primitive unit cell of Si has two atoms, each having a degree of 1 when using $r_c < 0.3~\rm nm$; after only one message passing step, each node has already incorporated information from all the nodes in the graph. Subsequent message passing steps merely homogenize the features, reducing model performance. On the other hand, the primitive unit cell of AgIrF₇ contains 36 atoms, and using the same cutoff $r_c < 0.3~\rm nm$, we see that the average node degree of the crystalline graph is 7.4. As a result, more than one message passing step would be required for the nodes in AgIrF₇ to properly incorporate information of their neighborhood. This disparity illustrates the generalizability challenge in applying GNNs across crystals of widely varying size. Larger crystals require many more message-passing steps for high accuracy predictions, while smaller graphs would suffer from this.

It is proposed here that using conventional unit cell representations in place of the commonly used primitive unit cell representations would partially mitigate the size variance problem. Primitive

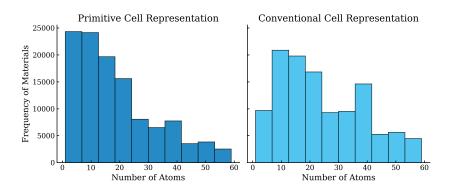


Figure 3: Histogram of the number of atoms for the $\approx 106,000$ crystals in the Matbench matbench_mp_gap dataset when graphs are built using primitive cell (left) and conventional cell (right) representations. Using conventional cells decreases the interpercentile range while increasing the median number of atoms from 16 to 21, reducing the prevalence of very small graphs that are prone to over-smoothing.

unit cell representations have often been preferred as they keep graph sizes small. However, this comes at the cost of increasing the size disparity between the smallest and largest crystals. In the Si and AgIrF₇ example, switching to conventional unit cell representations, increases the size of Si from 2 atoms to 8 atoms, a 4x increase, while it only increases the size of AgIrF₇ from 36 atoms to 40 atoms, a 1.1x increase (Figure 2). Accordingly, more message passing steps would lead to less over smoothing in Si, permitting a shared message passing depth. The trade-off is a modest increase in computational cost due to larger graphs, but the benefit is markedly improved generalizability. Consider Matbench's (Dunn et al., 2020) matbench_mp_gap dataset which consists ≈106,000 crystals from Materials Project (Jain et al., 2013). Switching the crystal representation in matbench_mp_gap from primitive cell to conventional cell increases the median number of atoms from 16 (primitive) to 21 (conventional), while decreasing the interpercentile range (P1-P99) from 54 (primitive) to 53 (conventional). This implies that the number of graphs having too few nodes and get over-smoothed is lower, while larger graphs are still being adequately processed (Figure 3).

4 Performance

The initial goal of Wef-GNN is to provide a new tool for high throughput screening of solar materials. Accordingly, this section evaluates the performance of Wef-GNN against existing ML models on band gap prediction tasks and the next section provides an extension to the training of Wef-GNN to help it surpass the accuracy of the widely used PBE level DFT calculations. Wef-GNN, was benchmarked on Matbench's matbench_mp_gap dataset, which is commonly used to assess ML models for materials science. textttmatbench_mp_gap consists of ≈106,000 PBE level band-gap calculations. A Wef-GNN model was built using hidden layer dimensions of 128, 3 message passing steps, 2 attention heads in the multi head temporal attention, an atomic number embedding dimension of 16, and 32, and 512 Gaussian kernels for the fractional coordinate and interatomic distance Gaussian basis expansion. After seven hours of training on Google V4-8 Tensor Processing Unit (TPU) running TensorFlow 2.14.0, the model had a mean absolute error (MAE) of 0.117 eV using the Matbench cross-validation split (MAE is the most informative metric for assessing a model's ability to predict energy based crystal properties). This result places Wef-GNN at the top of the Matbench band gap prediction leaderboard. Notably, the technique of reusing weights for different message passing steps enables Wef-GNN (recycled) to achieve such low errors with only ≈420,000 parameters, compared to the > 1 million parameters of the next 5 models on the Matbench band gap prediction leaderboard (Table 1).

Let us now assess how well Wef-GNN generalizes to crystals of different sizes. A Wef-GNN model was trained on dataset of mostly small crystals, ones with ≤ 16 atoms per unit cell. This model achieved a MAE of $0.098~\rm eV$ on a test set of small crystals. Then model was then evaluated on a test set of crystals having between 32 and 64 atoms per unit cell, where it had a MAE of $0.110~\rm eV$,

Table 1: Matbench leaderboard for matbench_mp_gap. Only the top 5 models are shown here.

3	2	6
3	2	7
3	2	8

Algorithm	MAE (meV)	Std (meV)
Wef-GNN	117.1	2.5
Wef-GNN (Recycled)	117.3	2.3
coGN	155.9	1.7
DeeperGATGNN	169.4	4.7
coGNN	169.7	3.5
ALIGNN	186.1	3.0
MegNet (kgcnn v2.1.0)	193.4	8.7
Dummy	1327	6.0

only a $12~\mathrm{meV}$ increase. This shows Wef-GNN has good generalizability for crystals of varying sizes.

5 HYBRID TRAINING

The performance of Wef-GNN on the Matbench band gap prediction task is impressive; however, Matbench's underlying dataset from Materials Project is computed using the PBE level DFT calculations. Given PBE itself has a band gap error of $\sim \! 0.6$ eV compared to experimental values, no supervised model trained solely on a PBE dataset can outperform this inherent ceiling (Jain et al., 2011). The low band gap accuracy of PBE level DFT calculations is the second limiting factor in high throughput discovery of new solar materials, and also presents the second hurdle GNNs are facing for crystallite material property prediction: lack of a high accuracy training dataset.

As discussed in Section 1, the Hybrid functional HSE06 offers greater accuracy over PBE, with a band gap error of $\sim\!\!0.37~{\rm eV}$ (Komsa & Pasquarello, 2011). While a dataset of HSE06 calculations would help models better understand the underlying physical phenomenon and make better band gap predictions, HSE06 calculations are much more computationally demanding. For instance, performing an HSE06 calculation of an 8 atom unit cell requires approximately 4 hours on an NVIDIA A100 GPU. Therefore, recalculating the 154,000 materials in the Materials Project using HSE06 is not feasible. To mitigate this problem, it is proposed here that recalculating a small subset of the PBE calculations using HSE06, and using these to fine tune a model pretrained with the $154,000~{\rm PBE}$ calculations would enable GNNs to learn the relationship between the two functionals and utilize the high accuracy of HSE06 and the size of the PBE dataset for more accurate band gap predictions across a wide chemical space.

Accordingly, here, a new dataset was curated where 10,522 materials from the PBE dataset were recalculated using HSE06 (DFT calculation details are presented in the Supporting Information). Next, a control model, $Model\ A$, was pre-trained on the full (154,000) PBE band gap data from the Materials Project, and it achieved a testing MAE of $0.120\ eV$ for a PBE ground truth. However, when tested on a dataset of >4,000 experimentally measured band gaps curated by Zhuo et al. (2018), $Model\ A$'s MAE was $0.66\ eV$. This result is in line with PBE's known deviation from experimental values of $\approx 0.6\ eV$, confirming that the model simply inherits the PBE's limitations.

Model A was then fine-tuned on the newly curated HSE06 dataset, yielding Model B. When tested on the dataset of >4,000 experimentally measured band gaps, Model B had a MAE of $0.40~{\rm eV}$, a 39% improvement over Model A, and even more impressively, a 33% improvement over standard PBE-level DFT calculations. Given its higher band gap prediction accuracy compared to PBE level DFT along with its much faster prediction speed, Model B is well suited for use in high throughput screening of optimal band gap materials. The band gap accuracy gain in Model B was achieved with only 7% of the training data recomputed at using HSE06, demonstrating that full recalculation of the entire dataset using HSE06 is unnecessary. This suggests that a model pre-trained using a dataset of lower accuracy functionals can be fine-tuned using a high accuracy functional dataset, and achieve accuracy close to the high accuracy calculations. This is a step forward in addressing the high accuracy data scarcity problem that has long plagued GNNs and other ML models in materials

science. Future work can focus on using DFT functional even more accurate than HSE06 to curate a small finetuning dataset.

6 CONCLUSION

In this work, Wef-GNN was introduced as size agnostic GNN for crystalline material property prediction. Wef-GNN introduces a multi head temporal attention mechanism in the UPDATE function and the ability to recycle a single set of learnable weights and biases for all message passing steps. The typical approach of using primitive cell representations was forwent for conventional cell representations to mitigate graph size variance and help with generalization. Taken together, these approaches enabled Wef-GNN to achieve a 0.117 eV MAE on the benchmark on the matbench_mp_gap dataset, toping the leaderboard. Recycling the weights and biases enabled the model to have a size of only 420 k parameters much lower than the >1 million the next five models on matbench_mp_gap report. Furthermore, to get past the accuracy limit imposed by PBE training data typically used in crystal material property prediction, a hybrid training approach was proposed, where a high accuracy HSE06 dataset was curated and used to fine tune models pre-trained on large, low fidelity, PBE dataset. This approach reduced the experimental band gap error from 0.66 eV when using just PBE data to 0.40 eV after fine tuning using HSE06 calculations. Interestingly, the fine tuned model outperforms the PBE level DFT calculations in band gap accuracy when comparing to an experimental ground truth.

7 REPRODUCIBILITY STATEMENT

The TensorFlow source code of Wef-GNN is made available as part of the supplementary materials. The newly curated HSE06 dataset is made available as part of the supplementary materials, along with details of the DFT Vienna Ab initio Simulation Package settings used for the calculations.

REFERENCES

- Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. In *3rd International Conference on Learning Representations*, *ICLR 2015 Conference Track Proceedings*, 2015.
- Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong. Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals. *Chemistry of Materials*, 31 (9):3564–3572, 5 2019. ISSN 0897-4756. doi: 10.1021/acs.chemmater.9b01294.
- Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing*, pp. 1724–1734. Association for Computational Linguistics, Doha, 10 2014. doi: 10.3115/v1/D14-1179.
- Connor W. Coley, Regina Barzilay, Tommi S. Jaakkola, William H. Green, and Klavs F. Jensen. Prediction of Organic Reaction Outcomes Using Machine Learning. *ACS Central Science*, 3(5), 2017. ISSN 23747951. doi: 10.1021/acscentsci.7b00064.
- Alexander Dunn, Qi Wang, Alex Ganose, Daniel Dopp, and Anubhav Jain. Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm. *npj Computational Materials*, 6(1):138, 9 2020. ISSN 2057-3960. doi: 10.1038/s41524-020-00406-3.
- Alejandro J. Garza and Gustavo E. Scuseria. Predicting Band Gaps with Hybrid Density Functionals. *The Journal of Physical Chemistry Letters*, 7(20):4165–4170, 10 2016. ISSN 1948-7185. doi: 10.1021/acs.jpclett.6b01807.
- Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural message passing for quantum chemistry. In *34th International Conference on Machine Learning, ICML 2017*, volume 3, 2017.

- Ross Irwin, Spyridon Dimitriadis, Jiazhen He, and Esben Jannik Bjerrum. Chemformer: A pretrained transformer for computational chemistry. *Machine Learning: Science and Technology*, 3 (1), 2022. ISSN 26322153. doi: 10.1088/2632-2153/ac3ffb.
- Anubhav Jain, Geoffroy Hautier, Charles J. Moore, Shyue Ping Ong, Christopher C. Fischer, Tim Mueller, Kristin A. Persson, and Gerbrand Ceder. A high-throughput infrastructure for density functional theory calculations. *Computational Materials Science*, 50(8):2295–2310, 6 2011. ISSN 09270256. doi: 10.1016/j.commatsci.2011.02.023.
 - Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. *APL Materials*, 1(1), 7 2013. ISSN 2166-532X. doi: 10.1063/1.4812323.
 - J. E. Jones and Sydney Chapman. On the determination of molecular fields. —II. From the equation of state of a gas. *Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character*, 106(738), 1924. ISSN 0950-1207. doi: 10.1098/rspa. 1924.0082. URL https://doi.org/10.1098/rspa.1924.0082.
 - Gideon Kassa, Jifeng Liu, Timothy William Hartman, Saurabh Dhiman, Venkataramana Gadhamshetty, and Etienne Gnimpieba. Artificial Intelligence Based Organic Synthesis Planning for Material and Bio-Interface Discovery. In *ACS Symposium Series*, volume 1434. American Chemical Society, 2023. doi: 10.1021/bk-2023-1434.ch006.
 - Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In 5th International Conference on Learning Representations, ICLR 2017 Conference Track Proceedings, 2017.
 - Scott Kirklin, James E. Saal, Bryce Meredig, Alex Thompson, Jeff W. Doak, Muratahan Aykol, Stephan Rühl, and Chris Wolverton. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies. *npj Computational Materials*, 1, 2015. ISSN 20573960. doi: 10.1038/npjcompumats.2015.10.
 - Johannes Klicpera, Chandan Yeshwanth, and Stephan Günnemann. Directional Message Passing on Molecular Graphs via Synthetic Coordinates. In *Advances in Neural Information Processing Systems*, volume 19, 2021.
 - Hannu-Pekka Komsa and Alfredo Pasquarello. Assessing the accuracy of hybrid functionals in the determination of defect levels: Application to the As antisite in GaAs. *Physical Review B*, 84(7): 075207, 8 2011. ISSN 1098-0121. doi: 10.1103/PhysRevB.84.075207.
 - Bowen Liu, Bharath Ramsundar, Prasad Kawthekar, Jade Shi, Joseph Gomes, Quang Luu Nguyen, Stephen Ho, Jack Sloane, Paul Wender, and Vijay Pande. Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models. *ACS Central Science*, 3(10), 2017. ISSN 23747951. doi: 10.1021/acscentsci.7b00303.
 - Maria H. Rasmussen, Diana S. Christensen, and Jan H. Jensen. Do machines dream of atoms? Crippen's logP as a quantitative molecular benchmark for explainable AI heatmaps. *SciPost Chemistry*, 2(1), 2023. doi: 10.21468/scipostchem.2.1.002.
 - Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, and Pascal Friederich. Graph neural networks for materials science and chemistry. *Communications Materials*, 3(1):93, 11 2022. ISSN 2662-4443. doi: 10.1038/s43246-022-00315-6.
 - Robin Ruff, Patrick Reiser, Jan Stühmer, and Pascal Friederich. Connectivity optimized nested line graph networks for crystal structures. *Digital Discovery*, 3(3), 2024. ISSN 2635098X. doi: 10.1039/d4dd00018h.
 - James E. Saal, Scott Kirklin, Muratahan Aykol, Bryce Meredig, and C. Wolverton. Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD). *JOM*, 65(11), 2013. ISSN 10474838. doi: 10.1007/s11837-013-0755-4.

- K. T. Schütt, H. E. Sauceda, P. J. Kindermans, A. Tkatchenko, and K. R. Müller. SchNet A deep learning architecture for molecules and materials. *Journal of Chemical Physics*, 148(24), 2018. ISSN 00219606. doi: 10.1063/1.5019779.
 - Kristof T. Schütt, Oliver T. Unke, and Michael Gastegger. Equivariant Message Passing for the Prediction of Tensorial Properties and Molecular Spectra. In *Proceedings of Machine Learning Research*, volume 139, 2021.
 - Philippe Schwaller, Théophile Gaudin, Dávid Lányi, Costas Bekas, and Teodoro Laino. "Found in Translation": predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models. *Chemical Science*, 9(28), 2018. ISSN 20416539. doi: 10.1039/c8sc02339e.
 - Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A. Hunter, Costas Bekas, and Alpha A. Lee. Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction. *ACS Central Science*, 5(9), 2019. ISSN 23747951. doi: 10.1021/acscentsci. 9b00576.
 - R. Scott, M. P. Allen, and D. J. Tildesley. Computer Simulation of Liquids. *Mathematics of Computation*, 57(195), 1991. ISSN 00255718. doi: 10.2307/2938686.
 - Igor V. Tetko, Pavel Karpov, Ruud Van Deursen, and Guillaume Godin. State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis. *Nature Communications*, 11 (1), 2020. ISSN 20411723. doi: 10.1038/s41467-020-19266-y.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems*, volume 2017-December, 2017.
 - Petar Veličković, Arantxa Casanova, Pietro Liò, Guillem Cucurull, Adriana Romero, and Yoshua Bengio. Graph attention networks. In 6th International Conference on Learning Representations, ICLR 2018 Conference Track Proceedings, 2018. doi: 10.1007/978-3-031-01587-8{_}7.
 - Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets. In 4th International Conference on Learning Representations, ICLR 2016 Conference Track Proceedings, 2016.
 - Yu Wang, Chao Pang, Yuzhe Wang, Junru Jin, Jingjie Zhang, Xiangxiang Zeng, Ran Su, Quan Zou, and Leyi Wei. Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks. *Nature Communications*, 14(1):6155, 10 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-41698-5.
 - David Weininger. SMILES, a Chemical Language and Information System: 1: Introduction to Methodology and Encoding Rules. *Journal of Chemical Information and Computer Sciences*, 28 (1), 1988. ISSN 00952338. doi: 10.1021/ci00057a005.
 - Tian Xie and Jeffrey C. Grossman. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. *Physical Review Letters*, 120(14), 2018. ISSN 10797114. doi: 10.1103/PhysRevLett.120.145301.
 - Zhenkun Yuan, Diana Dahliah, Muhammad Rubaiat Hasan, Gideon Kassa, Andrew Pike, Shaham Quadir, Romain Claes, Cierra Chandler, Yihuang Xiong, Victoria Kyveryga, Philip Yox, Gian-Marco Rignanese, Ismaila Dabo, Andriy Zakutayev, David P. Fenning, Obadiah G. Reid, Sage Bauers, Jifeng Liu, Kirill Kovnir, and Geoffroy Hautier. Discovery of the Zintl-phosphide BaCd2P2 as a long carrier lifetime and stable solar absorber. *Joule*, 8(5):1412–1429, 5 2024. ISSN 25424351. doi: 10.1016/j.joule.2024.02.017.
 - Ya Zhuo, Aria Mansouri Tehrani, and Jakoah Brgoch. Predicting the Band Gaps of Inorganic Solids by Machine Learning. *The Journal of Physical Chemistry Letters*, 9(7):1668–1673, 4 2018. ISSN 1948-7185. doi: 10.1021/acs.jpclett.8b00124.