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ABSTRACT

Graph neural networks (GNNs) have shown great promise for predicting proper-
ties of crystalline solids. However, existing models struggle to generalize across
crystals of varying sizes, and there is a lack of high-fidelity ab initio training
data. Here, Wef-GNN addresses the problem of generalizability by introducing a
multi-head temporal attention mechanism in the graph update function and a crys-
talline graph representation scheme that is more size-agnostic compared to the
traditional primitive unit cell-based graph representation. Further, it was found
that a single Wef-GNN layer can be recycled for all graph convolution steps with-
out considerable loss in accuracy; this leads to deep receptive fields without ad-
ditional parameters. Wef-GNN outperforms all prior models in a standard band
gap prediction benchmark while having much fewer parameters. To address the
challenge of high quality ab initio training data, a high-fidelity dataset was curated
by performing over 10k high-accuracy Density Functional Theory (DFT) calcu-
lations. Wef-GNN was pre-trained on a standard large dataset of lower-accuracy
DFT calculations then fine-tuned with the high-accuracy DFT dataset. The result-
ing model matches experimental band-gap values much better than other GNN,
and even outperforms the underlying low-accuracy DFT calculations.

1 INTRODUCTION

In recent years, there has been an explosive demand of new materials for applications ranging from
computer chips and solar cells to batteries and more. Meeting this demand requires the discovery
of new materials using high throughput screening. At present, the leading tool for preforming high
throughput screening of materials is first principles density-functional theory (DFT) calculation. For
example, Yuan et al.|(2024) used DFT to screen 40, 000 crystals to isolate a good solar cell candidate.
Although effective, this approach faces several problems. For instance, DFT’s large computational
cost makes calculations slow and expensive, restricting exhaustive searches and leaving the vast
majority of chemical space unexplored. Another problem is DFT’s intrinsic error; Yuan et al.[(2024)
used the widely adopted Perdew-Burke-Ernzerhof (PBE) DFT functional. PBE has a band gap error
of ~0.6 eV (Jain et al.,|2011)). Band gap is a crucial property of for solar cells, where a value of 1.1 —
1.6 eV is typically required, thus a ~0.6 eV error risks the inadvertent rejection of many promising
materials. There exist more accurate DFT functionals, such as Heyd—Scuseria—Ernzerhof (HSE)
hybrid functional which has an error of ~0.37 eV, but these come at even larger computational
costs, making high throughput screening use HSE and other higher accuracy functionals not feasible
(Garza & Scuserial [2016). This paper aims to address the speed and band gap accuracy limitations
of DFT, with the goal of making a tool better suited for high throughput discovery of new solar cell.

Over the past decade, machine learning (ML) techniques have been perused to solve DFT’s lim-
itations in high throughput screening, and have been used for crystal property prediction, inverse
design of drug molecules, and more (Reiser et al.| 2022} [Coley et al., 2017). Early on, representing
molecules as SMILES (simplified molecular-input line-entry system) strings (Weininger, [1988)) en-
abled the adoption of machine translation networks such as sequence-to-sequence models (Liu et al.,
2017;|Schwaller et al.l 2018} Wang et al., 2023)) and transformers (Vaswani et al.l 2017) for predict-
ing the properties and chemical reactions of organic molecules (Schwaller et al.| 2019 [Tetko et al.,
2020; Irwin et al., 20225 Kassa et al., [2023)). However, there is a limitation in using one-dimensional
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SMILES strings represent three-dimensional molecules, and this limitation that becomes more ev-
ident in the case of crystalline solids, which have added complexities such as periodic boundary
conditions (PBCs) and disorders (Schiitt et al.l 2018} |[Klicpera et al., 2021} Schiitt et al., [2021])).
Graph Neural Networks (GNNs) such as Graph Convolutional Networks (GCNs) (Kipf & Welling,
2017) and Graph Attention Networks (GATs) (Velickovi€ et al., [2018)) overcome this limitation by
representing molecules and crystals as graphs, thereby better capturing the three-dimensional struc-
tural and relational information. This can be seen in the improved performance of graph based
models such as Wang et al.| (2023), Rasmussen et al.| (2023), and |Gilmer et al. (2017) in organic
molecule prediction tasks over SMILEs based models.

In materials science, however, GNNs have seen slower adoption (Reiser et al., [2022). Pioneering
works like the Crystal Graph Convolutional Neural Network (CGCNN) (Xie & Grossman)[2018]) and
the MatErials Graph Network (MEGNet) (Chen et al.|, 2019) have demonstrated the ability of GNNs
in predicting formation energies, band gaps, and other properties of crystalline solids with near ab
initio accuracy, but at a fraction of the computational cost. For instance, |Gilmer et al.[|(2017) have
demonstrated Message Passing Neural Networks (MPNNs), can predict material properties up to
10,000 faster than traditional DFT calculations. However, despite these findings, the application
of GNNs in materials science has largely remained an intellectual exercise, with limited real-world
implementation. The first problem is the lack of generalizibility in GNNs, meaning GNNs strug-
gle to accurately predict the properties of materials with differing crystal sizes; a GNN trained on
small crystals will exhibit low accuracy in predicting the properties of larger crystals (Reiser et al.,
2022). The second challenge is low accuracy inherited from the PBE-level DFT dataset. Current ML
models in materials science are primarily trained on datasets of PBE-level DFT calculations, such
as Open Quantum Materials Dataset (Kirklin et al., 2015} [Saal et al., |2013)) and Materials Project
(Jain et al| [2013). Since PBE itself has a band gap calculation error of ~0.6 eV, models trained
on this dataset inherit PBE’s inaccuracy. While an HSE dataset would mitigate this problem, given
its improved accuracy (~0.37 eV band gap error), the high computational cost of HSE calculations
makes generating a sufficiently large dataset infeasible.

This paper attempts to address the challenges faced by GNNs in material science. First, Wef-GNN
is presented, an architecture that mitigates the generalizibility issue of GNNs by introducing a multi-
head temporal attention mechanism, GNN layer recycling, and a new graph representation scheme
for crystal structures. Next, a hybrid training approach is introduced, where a large dataset of PBE
calculations is used for pretraining and a smaller dataset of HSE06 (HSE with 25% mixing parame-
ter) calculations is used for fine tuning. It is shown that a model trained with this approach achieves
band gap accuracies that surpass that of DFT computed using the PBE functional.

2  WEF-GNN ARCHITECTURE

2.1 GRAPH REPRESENTATION OF CRYSTALS

A single unit cell of periodic crystal can be represented as a graph G = (V, E), where each node
i € V is assigned a feature vector x;. Initially, works such as|Xie & Grossman| (2018) used several
atomic descriptors, like atomic number, atomic mass, electronegativity, for x;. However, |Chen et al.
(2019) observed that comparable accuracy can be achieved using atomic number alone. Here, it is
found that using a combination of atomic number and fractional coordinates improves performance.
Incorporating fractional coordinates helps differentiate identical atoms by giving them distinct, in-
tensive, signatures based on their location in the unit cell, and leads to a more expressive model.
Thus, z; is constructed by embedding the atomic numbers using a learnable matrix and concatenat-
ing this with a Gaussian basis expansion of the fractional coordinates (Gaussian basis expansion acts
as a smooth analogue of one-hot encoding for continuous inputs).

Next, an edge between two nodes, ¢ and j, is represented using the feature vector e;; that stores
the interatomic distance between the nodes. Several rules have been proposed for determining if an
edge exists between two nodes, such as fixed cutoff radius, k-nearest neighbors, and Voronoi cells
(Ruff et al.| |2024). This work determines the existence of an edge using a cutoff radius, where nodes
7 and j are connected by the edge e;; if their separation distance is below the cutoff radius r.. Here,
the cutoff radius approach is preferred because of the strength of the interaction of a pair of atoms
is more dependent on their separation distance than the number of neighbors a given atoms has.
This can be easily observed from the interatomic potential of a set of atoms (Scott et al., |1991) or,
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Figure 1: Diamond-cubic silicon with a 0.235 nm nearest-neighbor separation. Atom x( has edges
with all atoms within a cutoff radius of r. < 0.30 nm.

more simply, the Lennard-Jones potential (Jones & Chapman, [1924)), where the force of attraction
between atoms has an inverse power relation with the separation distance.

Given the crystal structures are periodic repeats of the unit cell, lattice periodicity needs to be con-
sidered when determining a node’s neighbors. Therefore, PBCs are imposed by evaluating the
minimum image distance. To see why this is necessary, consider a unit cell of silicon (Si), where
each atom in the unit cell has a neighbor 0.235 nm away. Choosing . < 0.30nm gives exactly
four neighbors for each atom. This is true whether the atom resides within the unit cell interior
or on one of the corners (Figure [T); thus it is essential to reflect this periodicity in the distance
calculations. This is done by calculating separate interatomic distances after shifting along each
Cartesian axis by -1, 0, and 1 one at a time. Then the minimum from all these distance cal-
culations is used as the distance (d) between a pair of nodes, i.e., for a pair of nodes ¢ and j,
dij = min, ¢ {_101ys || L(f; — f; + 7) ||2 ,where L represents the lattice vectors and f the frac-
tional coordinates.

2.2 GNN ARCHITECTURE

Similar to other GNNs (Gilmer et al., 2017} |Chen et al.l 2019), Wef-GNN has three main parts:
AGGREGATION, UPDATE, and READOUT. Each layer of a GNN (each message-passing step), made
up of the AGGREGATION and UPDATE, receives the node and edge feature vectors x and ef; and

produces new feature vectors z:™!, and efj-“. During AGGREGATION, the node features of the

neighbors of node i, i.e., N/(4), get aggregated into a single feature vector z}. UPDATE then combines
x} with zf, yielding xﬁ“. After T' message passing steps, a permutation-invariant READOUT is used
to produce a final graph level embedding, G, for downstream tasks .

While Wef-GNN uses attention during AGGREGATION similar to [Velickovi€ et al| (2018), what
differentiates Wef-GNN is the introduction of a multi-head temporal attention mechanism during
UPDATE. The multi-head temporal attention mechanism lets each node attend to its own history,
{le yeee ,wifl}, where K is the look back window (how far back in its history the node looks).
We can now discuss the components of AGGREGATION in Wef-GNN in more detail. As explained
previously, at t = 0, x; is the concatenation of a learned embedding of the atomic number and a
Gaussian basis expansion of the fractional coordinates (centered between 0 and 1), while e;; is the
interatomic distance between ¢ and j expanded to a Gaussian basis (centered between 0 and r.).
During AGGREGATION, ! and e! ; first undergo weighed linear transformations to give z;" and e;7,
where 27" = 2! W, + b, and W, and b, are learned matrices; likewise, e = efj We + b.. Now,
let us define:
sij = egy || (" +27")

where || represents concatenation. Linearly transforming s;; yields s;; = sij Ws + bs. Next, we
add the spatial attention as follows:

mo__ PR PR s
Si; = Sij ~ Qij -
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Algorithm 1 Wef-GNN Training

Input: z/=°

Output: G

1: for i in {z'=0 | 2!=° € nodes} do

2 for j in {270 | 2= € nodes, '=° # i} do
3 dij =min;e(—1013e | L — £ +7) |12
4 if d7] < r. then

5: Add [4, j] to edges
6.
7

8

end if
end for
: end for
9: Lett =0.
10: while {¢t < T'} do
11: 7}, ef; = AGGREGATION([z}, ef ]
12: zi™! =UPDATE[z}, 2]
13: elf! =UPDATE[e};, €!,]
14: t=t+1
15: end while
16: G =READOUT[z]]
17: return G

where «;; and a; are attention coefficients given by:
exp(Ae - (2" || 27" || eff))

q
3 exp(de- (@ || | )

Qi =

where A, is a learned matrix, and ¢ is the number of neighbors of node i. Because the graphs
are represented using the coordinate format (COO), multiplying s;7 by «;; and «; ensures order
invariance. Therefore, for each neighbor j of ¢, sj} contains information about e;;, j, and the
relevance of j to ¢. Thus, we can gather the information about all the neighbors of node ¢ as follows:
q
h =3 s+
k=1

7 = PReLU[(al" | o)W,
where PReL.U is a parametric rectified linear unit, serving as a nonlinear activation function. And
similarly, ej; = PReLU[s]}].

t+1

Finally, UPDATE combines z} and ef; with the intermediate values x} and ej;, yielding ;" and

K2
efjl. Many UPDATE functions have been proposed in literature, such as Gated Recurrent Unit (Cho
et al.l 2014}, summations and other non-weighted techniques (Gilmer et al.,[2017)). In Wef-GNN; a
multi-head temporal attention is introduced and leads to better performance on crystalline material
benchmarks. Bahdanau (Bahdanau et al.,|2015) style cross attention (7¢emp) Was used to combine
the 27 and e;; with the history of the node and edge states:

I§+1 = Ytemp (query =z}, key =z}, value = {:172_17 ce :EZ_K})
where K is the look back window. A similar temporal attention is applied to obtain efjl. The rest of
the multi head attention mechanism follows (Vaswani et al., [2017) and uses concatenation for head
aggregation. Layer normalizations, residual connections, and dropouts are used, but omitted have
been here for brevity.

After T' message passing steps, the final node features are pooled by READOUT to obtain the graph-
level representation G. Although various READOUT functions such as Set2Set (Vinyals et al.,[2016),
transformer encoders and others (Gilmer et al., 2017) have been proposed, here, simply applying a
non-linearity followed by component-wise mean has been found to match their accuracy while being
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Figure 2: Changing the graph representation of Si from a primitive unit cell made up of 2 atoms to
a conventional unit cell with 8 atoms (left). Going from a primitive AglrF; unit cell with 36 atoms
to a conventional unit cell with 40 atoms (right).

much less computationally demanding. The full Wef-GNN framework is summarized in Algorithm

m

An surprising empirical finding the occurred during the development of Wef-GNN was that a single
Wef-GNN layer can be recycled, meaning the same learnable matrices W, b, and A can be reused
at every message passing step without sacrificing accuracy. This parameter sharing enlarges each
node’s receptive field while decreasing the model size.

3 ADDRESSING GENERALIZABILITY

One of the major challenges GNNs face has do to with generalizability. Stacking many GNN layers,
i.e., preforming too many message passing steps, causes node representations to become indistin-
guishable, resulting in a performance decline. The number of message passing steps that result in
such over-smoothing depends on the size of graph. Given that different materials can have very dif-
ferent unit cell sizes, this problem has hindered a single GNN from generalizing to different material
systems.

For example, consider the materials Si and AgIrF;. The primitive unit cell of Si has two atoms,
each having a degree of 1 when using r. < 0.3 nm; after only one message passing step, each
node has already incorporated information from all the nodes in the graph. Subsequent message
passing steps merely homogenize the features, reducing model performance. On the other hand, the
primitive unit cell of AglrF; contains 36 atoms, and using the same cutoff r. < 0.3 nm, we see
that the average node degree of the crystalline graph is 7.4. As a result, more than one message
passing step would be required for the nodes in AglrF7 to properly incorporate information of their
neighborhood. This disparity illustrates the generalizability challenge in applying GNNs across
crystals of widely varying size. Larger crystals require many more message-passing steps for high
accuracy predictions, while smaller graphs would suffer from this.

It is proposed here that using conventional unit cell representations in place of the commonly used
primitive unit cell representations would partially mitigate the size variance problem. Primitive
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Figure 3: Histogram of the number of atoms for the ~106,000 crystals in the Matbench
matbench_mp_gap dataset when graphs are built using primitive cell (left) and conventional cell
(right) representations. Using conventional cells decreases the interpercentile range while increasing
the median number of atoms from 16 to 21, reducing the prevalence of very small graphs that are
prone to over-smoothing.

unit cell representations have often been preferred as they keep graph sizes small. However, this
comes at the cost of increasing the size disparity between the smallest and largest crystals. In the
Si and AglrF; example, switching to conventional unit cell representations, increases the size of Si
from 2 atoms to 8 atoms, a 4x increase, while it only increases the size of AglrF; from 36 atoms
to 40 atoms, a 1.1x increase (Figure [2). Accordingly, more message passing steps would lead to
less over smoothing in Si, permitting a shared message passing depth. The trade-off is a modest
increase in computational cost due to larger graphs, but the benefit is markedly improved gener-
alizability. Consider Matbench’s (Dunn et al.} 2020) matbench_mp_gap dataset which consists
/106,000 crystals from Materials Project (Jain et al.,2013). Switching the crystal representation in
matbench_mp_gap from primitive cell to conventional cell increases the median number of atoms
from 16 (primitive) to 21 (conventional), while decreasing the interpercentile range (P1-P99) from
54 (primitive) to 53 (conventional). This implies that the number of graphs having too few nodes
and get over-smoothed is lower, while larger graphs are still being adequately processed (Figure 3).

4 PERFORMANCE

The initial goal of Wef-GNN is to provide a new tool for high throughput screening of solar mate-
rials. Accordingly, this section evaluates the performance of Wef-GNN against existing ML models
on band gap prediction tasks and the next section provides an extension to the training of Wef-GNN
to help it surpass the accuracy of the widely used PBE level DFT calculations. Wef-GNN, was
benchmarked on Matbench’s matbench_mp_gap dataset, which is commonly used to assess ML
models for materials science. textttmatbench_mp_gap consists of ~106,000 PBE level band-gap cal-
culations. A Wef-GNN model was built using hidden layer dimensions of 128, 3 message passing
steps, 2 attention heads in the multi head temporal attention, an atomic number embedding dimen-
sion of 16, and 32, and 512 Gaussian kernels for the fractional coordinate and interatomic distance
Gaussian basis expansion. After seven hours of training on Google V4-8 Tensor Processing Unit
(TPU) running TensorFlow 2.14.0, the model had a mean absolute error (MAE) of 0.117 eV using
the Matbench cross-validation split (MAE is the most informative metric for assessing a model’s
ability to predict energy based crystal properties). This result places Wef-GNN at the top of the
Matbench band gap prediction leaderboard. Notably, the technique of reusing weights for different
message passing steps enables Wef-GNN (recycled) to achieve such low errors with only ~420,000
parameters, compared to the > 1 million parameters of the next 5 models on the Matbench band
gap prediction leaderboard (Table T)).

Let us now assess how well Wef-GNN generalizes to crystals of different sizes. A Wef-GNN model
was trained on dataset of mostly small crystals, ones with < 16 atoms per unit cell. This model
achieved a MAE of 0.098 eV on a test set of small crystals. Then model was then evaluated on a
test set of crystals having between 32 and 64 atoms per unit cell, where it had a MAE of 0.110 eV,
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Table 1: Matbench leaderboard for matbench_mp_gap. Only the top 5 models are shown here.

Algorithm MAE (meV) Std (meV)
Wef-GNN 117.1 2.5
Wef-GNN (Recycled) 117.3 2.3
coGN 155.9 1.7
DeeperGATGNN 169.4 4.7
coGNN 169.7 3.5
ALIGNN 186.1 3.0
MegNet (kgenn v2.1.0) 193.4 8.7
Dummy 1327 6.0

only a 12 meV increase. This shows Wef-GNN has good generalizability for crystals of varying
sizes.

5 HYBRID TRAINING

The performance of Wef-GNN on the Matbench band gap prediction task is impressive; however,
Matbench’s underlying dataset from Materials Project is computed using the PBE level DFT cal-
culations. Given PBE itself has a band gap error of ~0.6 eV compared to experimental values, no
supervised model trained solely on a PBE dataset can outperform this inherent ceiling (Jain et al.,
2011). The low band gap accuracy of PBE level DFT calculations is the second limiting factor in
high throughput discovery of new solar materials, and also presents the second hurdle GNNs are
facing for crystallite material property prediction: lack of a high accuracy training dataset.

As discussed in Section [I] the Hybrid functional HSE06 offers greater accuracy over PBE, with a
band gap error of ~0.37 eV (Komsa & Pasquarellol 2011). While a dataset of HSE06 calculations
would help models better understand the underlying physical phenomenon and make better band
gap predictions, HSEO6 calculations are much more computationally demanding. For instance, per-
forming an HSEOG6 calculation of an 8 atom unit cell requires approximately 4 hours on an NVIDIA
A100 GPU. Therefore, recalculating the 154, 000 materials in the Materials Project using HSEOQ6 is
not feasible. To mitigate this problem, it is proposed here that recalculating a small subset of the PBE
calculations using HSEQ06, and using these to fine tune a model pretrained with the 154, 000 PBE
calculations would enable GNNSs to learn the relationship between the two functionals and utilize
the high accuracy of HSEQ6 and the size of the PBE dataset for more accurate band gap predictions
across a wide chemical space.

Accordingly, here, a new dataset was curated where 10, 522 materials from the PBE dataset were
recalculated using HSE06 (DFT calculation details are presented in the Supporting Information).
Next, a control model, Model A, was pre-trained on the full (154, 000) PBE band gap data from the
Materials Project, and it achieved a testing MAE of 0.120 eV for a PBE ground truth. However,
when tested on a dataset of >4, 000 experimentally measured band gaps curated by Zhuo et al.
(2018)), Model A’s MAE was 0.66 eV. This result is in line with PBE’s known deviation from
experimental values of ~0.6 eV, confirming that the model simply inherits the PBE’s limitations.

Model A was then fine-tuned on the newly curated HSEO6 dataset, yielding Model B. When tested
on the dataset of >4, 000 experimentally measured band gaps, Model B had a MAE of 0.40 eV, a
39% improvement over Model A, and even more impressively, a 33% improvement over standard
PBE-level DFT calculations. Given its higher band gap prediction accuracy compared to PBE level
DFT along with its much faster prediction speed, Model B is well suited for use in high throughput
screening of optimal band gap materials. The band gap accuracy gain in Model B was achieved with
only 7% of the training data recomputed at using HSE06, demonstrating that full recalculation of the
entire dataset using HSEQG6 is unnecessary. This suggests that a model pre-trained using a dataset of
lower accuracy functionals can be fine-tuned using a high accuracy functional dataset, and achieve
accuracies close to the high accuracy calculations. This is a step forward in addressing the high
accuracy data scarcity problem that has long plagued GNNs and other ML models in materials
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science. Future work can focus on using DFT functional even more accurate than HSEO6 to curate
a small finetuning dataset.

6 CONCLUSION

In this work, Wef-GNN was introduced as size agnostic GNN for crystalline material property pre-
diction. Wef-GNN introduces a multi head temporal attention mechanism in the UPDATE func-
tion and the ability to recycle a single set of learnable weights and biases for all message pass-
ing steps. The typical approach of using primitive cell representations was forwent for conven-
tional cell representations to mitigate graph size variance and help with generalization. Taken to-
gether, these approaches enabled Wef-GNN to achieve a 0.117 eV MAE on the benchmark on the
matbench_mp_gap dataset, toping the leaderboard. Recycling the weights and biases enabled the
model to have a size of only 420 k parameters much lower than the >1 million the next five models
onmatbench_mp_gap report. Furthermore, to get past the accuracy limit imposed by PBE training
data typically used in crystal material property prediction, a hybrid training approach was proposed,
where a high accuracy HSEQ6 dataset was curated and used to fine tune models pre-trained on large,
low fidelity, PBE dataset. This approach reduced the experimental band gap error from 0.66 eV
when using just PBE data to 0.40 eV after fine tuning using HSEO6 calculations. Interestingly, the
fine tuned model outperforms the PBE level DFT calculations in band gap accuracy when comparing
to an experimental ground truth.

7 REPRODUCIBILITY STATEMENT

The TensorFlow source code of Wef-GNN is made available as part of the supplementary materials.
The newly curated HSEQ6 dataset is made available as part of the supplementary materials, along
with details of the DFT Vienna Ab initio Simulation Package settings used for the calculations.
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