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ABSTRACT

Inverse reinforcement learning (IRL) aims to infer an agent’s preferences (repre-
sented as a reward function R) from their behaviour (represented as a policy π). To
do this, we need a behavioural model of how π relates to R. In the current litera-
ture, the most common behavioural models are optimality, Boltzmann-rationality,
and causal entropy maximisation. However, the true relationship between a hu-
man’s preferences and their behaviour is much more complex than any of these
behavioural models. This means that the behavioural models are misspecified,
which raises the concern that they may lead to systematic errors if applied to real
data. In this paper, we analyse how sensitive the IRL problem is to misspecifica-
tion of the behavioural model. Specifically, we provide necessary and sufficient
conditions that completely characterise how the observed data may differ from the
assumed behavioural model without incurring an error above a given threshold. In
addition to this, we also characterise the conditions under which a behavioural
model is robust to small perturbations of the observed policy, and we analyse how
robust many behavioural models are to misspecification of their parameter values
(such as e.g. the discount rate). Our analysis suggests that the IRL problem is
highly sensitive to misspecification, in the sense that very mild misspecification
can lead to very large errors in the inferred reward function.

1 INTRODUCTION

Inverse reinforcement learning (IRL) is a subfield of machine learning that aims to develop tech-
niques for inferring an agent’s preferences based on their actions in a sequential decision-making
problem (Ng & Russell, 2000). There are many motivations for IRL. One motivation is to use it as
a tool for imitation learning, where the objective is to replicate the behaviour of an expert in some
task (e.g. Hussein et al., 2017). In this context, it is not essential that the inferred preferences reflect
the actual intentions of the expert, as long as they improve the imitation learning process. Another
motivation for IRL is to use it as a tool for preference elicitation, where the objective is to under-
stand an agent’s goals or desires (e.g. Hadfield-Menell et al., 2016). In this context, it is of central
importance that the inferred preferences reflect the actual preferences of the observed agent. In this
paper, we are primarily concerned with this second motivation.

An IRL algorithm must make assumptions about how the preferences of the observed agent relate to
its behaviour. Specifically, in IRL, preferences are typically modelled as a reward function R, and
behaviour is typically modelled as a policy π. An IRL algorithm must therefore have a behavioural
model that describes how π is computed from R; by inverting this model, R can then be deduced
based on π. In the current literature, the most common behavioural models are optimality, Boltzmann
rationality, or causal entropy maximisation. These behavioural models essentially assume that the
observed agent behaves in a way that is (noisily) optimal according to its preferences.

One of the central difficulties in IRL is that the true relationship between a person’s preferences and
their actions in general is incredibly complex. This means that it typically is very difficult to specify
a behavioural model that is perfectly accurate. For example, optimality, Boltzmann-rationality, and
causal entropy maximisation are all very simple models that clearly do not capture all the nuances

1



Published as a conference paper at ICLR 2024

of human behaviour.1 This means that these behavioural models are misspecified, which raises the
concern that they might systematically lead to flawed inferences if applied to real data.

In this paper, we study how robust IRL is to misspecification of the behavioural model. If an IRL
algorithm that assumes a particular behavioural model is shown data from an agent whose behaviour
violates the assumptions behind this model, then will the inferred reward function still be close to the
true reward function? We will analyse this question mathematically, and provide several quantitative
answers. In particular, we provide necessary and sufficient conditions that completely characterise
what types of misspecification a wide class of behavioural models will tolerate. In addition to
this, we also study two specific types of misspecification in more detail (namely, perturbation of
the observed policy, and misspecification of the parameters in the behavioural model) and provide
additional results that describe how they affect the quality of the inferred reward. Our analysis is
highly general – it applies to the three behavioural models that are most common in the current IRL
literature, but is also directly applicable to a much wider class of models.

The motivation behind this paper is to contribute towards a theoretically principled understanding
of when IRL methods are applicable to the problem of preference elicitation. Human behaviour is
very complex, and while we can create behavioural models that are more accurate, it will never be
realistically possible to create a behavioural model that is totally free from misspecification. It is
therefore crucial to have an understanding of how robust the IRL problem is to misspecification,
and whether a small amount of misspecification leads to a proportionally small error in the inferred
reward function. Our work aims to further our understanding of these question.

1.1 RELATED WORK

There are two previous papers that analyse how robust the IRL problem is to misspecified be-
havioural models; Hong et al. (2022) and Skalse & Abate (2023). Our work is more complete
than these earlier works in several important respects. To start with, our problem setup is both more
realistic, and more general. In particular, in order to quantify how robust IRL is to misspecification,
we first need a way to formalise what it means for two reward functions to be “close”. Skalse &
Abate (2023) formalise this in terms of equivalence relations, under which two reward functions
are either equivalent or not. As such, their analysis is somewhat blunt, and is unable to distinguish
between small errors and large errors in the inferred reward. Hong et al. (2022) instead use the
ℓ2-distance between the reward functions. However, this choice is also problematic, because two
reward functions can be very dissimilar even though they have a small ℓ2-distance, and vice versa
(cf. Section 2.2). By contrast, our analysis is carried out in terms of specially selected metrics on the
space of all reward functions, which are backed by strong theoretical guarantees. Moreover, Hong
et al. (2022) assume that there is a unique reward function that maximises fit to the training data,
but this is violated in most real-world cases (Ng & Russell, 2000; Dvijotham & Todorov, 2010; Cao
et al., 2021; Kim et al., 2021; Skalse et al., 2022; Schlaginhaufen & Kamgarpour, 2023). In addition
to this, many of their results also assume “strong log-concavity”, which is a rather opaque condi-
tion that is left mostly unexamined. Indeed, Hong et al. (2022) explicitly do not answer if strong
log-concavity should be expected to hold under typical circumstances. Both Skalse & Abate (2023)
and Hong et al. (2022) recognise these issues as limitations that should be lifted in future work. The
analysis we carry out in this paper is not subject to any of these limitations. Moreover, in addition
to being based on a more sound problem formulation, our paper also contains several novel results
that are not analogous to any results derived by Skalse & Abate (2023) or Hong et al. (2022).

There are also earlier papers that study some specific types of misspecification in IRL. In particular,
Freedman et al. (2020) study the effects of misspecified choice sets in IRL, and show that such
misspecification in some cases can be catastrophic, and Viano et al. (2021) study the effects of
misspecified environment dynamics, and propose an algorithm for reducing this effect. By contrast,
we present a broader analysis that covers all forms of misspecification, within a single framework.
Also relevant is the work by Armstrong & Mindermann (2018), who show that it is impossible to
simultaneously learn a reward function and a behavioural model from a single data set, given an
inductive bias towards joint simplicity.

1Indeed, there are detectable differences between data collected from human subjects and data synthesised
using these standard behavioural models, see Orsini et al. (2021).
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1.2 PRELIMINARIES

A Markov Decision Processes (MDP) is a tuple (S,A, τ, µ0, R, γ) where S is a set of states, A
is a set of actions, τ : S×A → ∆(S) is a transition function, µ0 ∈ ∆(S) is an initial state
distribution, R : S×A×S → R is a reward function, and γ ∈ (0, 1) is a discount rate. Here ∆(X)
denotes the set of all probability distributions over X . In this paper, we assume that S and A are
finite, and that all states are reachable under τ and µ0. A policy is a function π : S → ∆(A). A
trajectory ξ = ⟨s0, a0, s1, a1 . . . ⟩ is a possible path in an MDP. The return function G gives the
cumulative discounted reward of a trajectory, G(ξ) =

∑∞
t=0 γ

tR(st, at, st+1), and the evaluation
function J gives the expected trajectory return given a policy, J(π) = Eξ∼π [G(ξ)]. A policy
maximising J is an optimal policy. The value function V π : S → R of a policy encodes the
expected future discounted reward from each state when following that policy, and the Q-function
is Qπ(s, a) = E [R(s, a, S′) + γV π(S′)]. Q⋆ and V ⋆ denote the optimal Q- and value-function.

An IRL algorithm needs a behavioural model that describes how the observed policy π relates to the
underlying reward function R. In the current IRL literature, the most common models are optimal-
ity, where it is assumed that π is optimal under R (e.g. Ng & Russell, 2000), Boltzmann-rationality,
where it is assumed that P(π(s) = a) ∝ eβQ

⋆(s,a), where β is a temperature parameter (e.g. Ra-
machandran & Amir, 2007), and maximal causal entropy (MCE), where it is assumed that π max-
imises the causal entropy objective, which is given by E[

∑∞
t=0 γ

t(R(St, At, St+1) +αH(π(St)))],
where α is a weight and H is the Shannon entropy function (e.g. Ziebart, 2010).

Two reward functions R1, R2 are said to differ by potential shaping (with γ) if there is a function
Φ : S → R such that R2(s, a, s

′) = R1(s, a, s
′) + γΦ(s′) − Φ(s) (Ng et al., 1999), by S′-

redistribution (with τ ) if ES′∼τ(s,a)[R1(s, a, S
′)] = ES′∼τ(s,a)[R2(s, a, S

′)] (Skalse et al., 2022),
and by positive linear scaling if there is a positive constant c such that R2 = c ·R1.

Given a set X , a pseudometric on X is any function d : X×X → R that satisfies the conditions that
d(x, x) = 0, d(x, y) ≥ 0, d(x, y) = d(y, x), and d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X . A
metric additionally satisfies that if d(x, y) = 0 then x = y.

If a reward function R satisfies that J(π1) = J(π2) for all π1 and π2, then we say that R is trivial.
All constant reward functions are trivial, but there are always non-constant trivial rewards as well.2

2 THEORETICAL FRAMEWORK

In this section, we will introduce the theoretical definitions and machinery that we will later use to
analyse how robust the IRL problem is to different forms of misspecification.

2.1 DEFINING MISSPECIFICATION ROBUSTNESS

Before we can derive formal results about what types of misspecification different IRL algorithms
are robust to, we first need to construct an abstract model of the IRL problem. First of all, assume
that we have a fixed set of states S and a fixed set of actions A, that R is the set of all reward
functions R : S×A×S → R, and that Π is the set of all policies π : S → ∆(A). We say that a
behavioural model is a function f : R → Π, i.e. a function that takes a reward function and returns
a policy. For example, the function that, given R, returns the Boltzmann-rational policy of R under
transition function τ , discount γ, and temperature β, is an example of a behavioural model. Using
this, we can now model the IRL learning problem as follows: first, we assume that there is a true
underlying reward function R⋆, and that the training data is generated by a behavioural model g, so
that the learning algorithm observes the policy π given by g(R⋆). Moreover, we assume that an IRL
algorithm L has a model f of how the observed policy π relates to R⋆, where f is also a behavioural
model, such that L converges to a reward function Rh which satisfies f(Rh) = π = g(R⋆). If
f ̸= g, then f is misspecified, and otherwise f is correctly specified.

For convenience, if f(R1) = f(R2) whenever R1 and R2 differ by potential shaping, then we say
that f is invariant to potential shaping, and similarly for S′-redistribution and positive linear scaling.

2These are given by applying potential shaping and S′-redistribution to a constant reward function.
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In many contexts, we have prior information about R⋆, beyond the information provided by g(R⋆).
For example, we may know that R⋆ is defined in terms of some sparse state features, or we may
know that it only depends on the states, and so on. To model this, we give our definitions relative
to an arbitrary set of reward functions R̂ ⊆ R. We then assume that the true reward function R⋆

is contained in R̂, and that the learning algorithm L will learn a reward function Rh that is also
contained in R̂. Unless otherwise stated, our results apply for any choice of R̂ (including R̂ = R).

Intuitively speaking, we want to say that a behavioural model f is robust to misspecification with g if
a learning algorithm that is based on f is guaranteed to learn a reward function that is “close” to the
true reward function if it is trained on data generated from g. To make this statement formal, we need
a definition of what it means for two reward functions to be “close”. In this paper, we assume that
this is defined in terms of some pseudometric dR on R. In Section 2.2, we discuss how to choose
this pseudometric. Unless otherwise stated, our results apply for any choice of pseudometric. Note
also that while dR of course may be a proper metric, we allow it to be a pseudometric since we may
want to consider distinct reward functions to be equivalent. Using this, we can now give our formal
definition of misspecification robustness:

Definition 1. Given a set of reward functions R̂ ⊆ R, a pseudometric dR on R̂, and two behavioural
models f, g : R̂ → Π, we say that f is ϵ-robust to misspecification with g if each of the following
conditions are satisfied:

1. If f(R1) = g(R2) then dR(R1, R2) ≤ ϵ, for all R1, R2 ∈ R̂.

2. If f(R1) = f(R2) then dR(R1, R2) ≤ ϵ, for all R1, R2 ∈ R̂.

3. Im(g) ⊆ Im(f) on R̂.

4. There exists R1, R2 ∈ R̂ such that f(R1) ̸= g(R2).

Before moving on, let us explain each of these conditions intuitively. The first condition is saying
that any learning algorithm L based on f is guaranteed to learn a reward function that has a distance
of at most ϵ to the true reward function when trained on data generated from g; this is the core
property of misspecification robustness. Similarly, the second condition is saying that any learning
algorithm L based on f is guaranteed to learn a reward function that has a distance of at most ϵ to the
true reward function when there is no misspecification; this condition is included to rule out certain
pathological edge cases. The third condition is effectively saying that L can never observe a policy
that is impossible according to its model. Depending on how L behaves, it may in some cases be
possible to drop this condition, but we include it to make our analysis as general as possible. The
fourth condition is simply saying that f and g are distinct on R̂ (otherwise f is not misspecified!).
More extensive discussion of Definition 1, including more subtle issues, is given in Appendix A.

We are particularly interested in the three behavioural models that are most common in the current
IRL literature, and so we will use special notation for these models. Given a transition function τ
and a discount parameter γ, let bτ,γ,β : R → Π be the function that returns the Boltzmann-rational
policy of R with temperature β, and let cτ,γ,α : R → Π be the function that returns the MCE policy
of R with weight α. Similarly, let oτ,γ : R → Π be the function that returns the optimal policy of R
that takes all optimal actions with equal probability.

2.2 REWARD FUNCTION METRICS

We wish to obtain results that describe how different the learnt reward function Rh may be compared
to the underlying true reward function R⋆, given different forms of misspecification. To do this, we
need a way to quantify the difference between Rh and R⋆, in the form of a pseudometric dR on R.
However, finding an appropriate choice of dR is not straightforward. For example, suppose we sim-
ply let dR(Rh, R

⋆) = ||Rh−R⋆||2. In that case, we would have that dR(Rh, R
⋆) can be arbitrarily

large, even if Rh and R⋆ have the same ordering of policies, and similarly, that dR(Rh, R
⋆) can be

arbitrarily small, even if Rh and R⋆ have the opposite ordering of policies.3 This means that the
ℓ2-distance between Rh and R⋆ does not quantify their qualitative difference in a useful way.

3To see this, let R be any nontrivial reward function. Then for any positive c, we have that R and cR have
the same ordering of policies, but by making c large, we can make ||R − cR||2 arbitrarily large. Similarly, for
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Intuitively, we want a pseudometric dR with the property that dR(Rh, R
⋆) is small if (and only if)

it would be safe to optimise Rh instead of R⋆. As we have just argued, the ℓ2-norm does not satisfy
this condition. Instead, we will use a STARC-metric, introduced by Skalse et al. (2023):
Definition 2. Let τ be a transition function and γ be a discount factor. Given a reward function
R, let Vτ,γ(R) be the set of all reward functions that differ from R by potential shaping (with γ)
and S′-redistribution (with τ ). Let cSTARC

τ,γ : R → R be the function where cSTARC
τ,γ (R) returns

the element of Vτ,γ(R) that has the smallest ℓ2-norm.4 Moreover, let sSTARC
τ,γ : R → R be the

function where sSTARC
τ,γ (R) = cSTARC

τ,γ (R)/||cSTARC
τ,γ (R)||2 if ||cSTARC

τ,γ (R)||2 > 0, and cSTARC
τ,γ (R)

otherwise. Finally, let dSTARC
τ,γ : R×R → [0, 1] be the function given by

dSTARC
τ,γ (R1, R2) = 0.5 · ||sSTARC

τ,γ (R1)− sSTARC
τ,γ (R2)||2.

There is extensive justification for measuring the distance between reward functions in terms of
dSTARC
τ,γ . However, because the full justification is quite long, and because this justification is not

essential to understand most of our results, we have decided to provide it in Appendix B, instead of
the main text. Appendix B also contains a less formal, more intuitive explanation of Definition 2.
For now, it is sufficient to know that dSTARC

τ,γ (R1, R2) = 0 if and only if R1 and R2 induce the
same ordering of policies under τ and γ. Moreover, while some of our results are given in terms of
dSTARC
τ,γ , we also have many results that apply for any choice of pseudometric on R. This will be

clearly stated in each theorem.

Another prominent pseudometric on R is EPIC, proposed by Gleave et al. (2021). Appendix C puts
forward reasons to not use EPIC for the kind of analysis that we undertake this paper.

2.3 BACKGROUND RESULTS

In this section, we give a few important results from earlier works that we will rely on throughout
this paper, and which will also be helpful for contextualising our results. First, it is useful to know
under what conditions two reward functions have the same ordering of policies:
Proposition 1. (S,A, τ, µ0, R1, γ) and (S,A, τ, µ0, R2, γ) have the same ordering of policies if
and only if R1 and R2 differ by potential shaping (with γ), S′-redistribution (with τ ), and positive
linear scaling.

For a proof of Proposition 1, see Skalse & Abate (2023) (their Theorem 2.6). Also recall that
dSTARC
τ,γ (R1, R2) = 0 if and only if R1 and R2 induce the same ordering of policies. Next, it is also

useful to know under what conditions f(R1) = f(R2) when f is the Boltzmann-rational model or
the maximal causal entropy model:
Proposition 2. For any τ , γ, and β, we have that bτ,γ,β and cτ,γ,α are invariant to potential shaping
(with γ) and S′-redistribution (with τ ), and no other transformations.

For a proof of Proposition 2, see Skalse et al. (2022) (their Theorem 3.3). Note that Propositions 1
and 2 together imply that any learning algorithm L that is based on either the Boltzmann-rational
model or the MCE-model is guaranteed to learn a reward function Rh that has the same ordering of
policies as the true reward function R⋆ when there is no misspecification.

3 MISSPECIFICATION ROBUSTNESS

In this section, we provide our main results about the misspecification robustness of various be-
havioural models, including the behavioural models that are most common in the IRL literature.
Section 3.1 is quite dense, but 3.2 and 3.3 both provide more intuitive takeaways.

3.1 NECESSARY AND SUFFICIENT CONDITIONS

Given a behavioural model f , it is desirable to have necessary and sufficient conditions that com-
pletely characterise when f is robust to misspecification with g. Surprisingly, our first result shows

any positive ϵ, we have that ϵR and −ϵR have the opposite ordering of policies. However, by making ϵ small,
we can make ||ϵR− (−ϵR)||2 arbitrarily small.

4Vτ,γ(R) is an affine subspace of R, so there is a unique element of Vτ,γ(R) that minimises the ℓ2-norm.
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that if f(R1) = f(R2) =⇒ dR(R1, R2) = 0, then we can derive such necessary and sufficient
conditions in a relatively straightforward way:
Theorem 1. Let R̂ be a set of reward functions, let f : R̂ → Π be a behavioural model, and let dR

be a pseudometric on R̂. Assume that f(R1) = f(R2) =⇒ dR(R1, R2) = 0 for all R1, R2 ∈ R̂.
Then f is ϵ-robust to misspecification with g (as defined by dR) if and only if g = f ◦ t for some
t : R̂ → R̂ such that dR(R, t(R)) ≤ ϵ for all R ∈ R̂, and such that f ̸= g.

Recall that dSTARC
τ,γ (R1, R2) = 0 if and only if R1 and R2 induce the same ordering of policies.

Thus, if our reward metric is dSTARC
τ,γ , then Theorem 1 applies to any behavioural model f for which

f(R1) = f(R2) implies that R1 and R2 have the same policy ordering. Moreover, also recall that
both the Boltzmann-rational model and the MCE model satisfy this condition (Propositions 1 and
2). Thus, if we can find the set Tϵ of all transformations t : R̂ → R̂ such that dR(R, t(R)) ≤ ϵ, then
we can get the set of all behavioural models g to which f is ϵ-robust to misspecification by simply
composing f with each element of Tϵ. We next derive Tϵ:
Proposition 3. A transformation t : R → R satisfies that dSTARC

τ,γ (R, t(R)) ≤ ϵ for all R ∈ R if
and only if t can be expressed as t1 ◦ · · · ◦ tn−1 ◦ tn ◦ tn+1 ◦ · · · ◦ tm for some n and m where

||R− tn(R)||2 ≤ ||cSTARC
τ,γ (R)||2 · sin(2 arcsin(ϵ/2))

for all R, and for all i ̸= n and all R, we have that R and ti(R) differ by potential shaping (with
γ), S′-redistribution (with τ ), or positive linear scaling.

The statement of Proposition 3 is quite terse, so let us briefly unpack it. First of all, dSTARC
τ,γ is

invariant to any transformation that preserves the policy ordering of the reward function, and these
transformations are exactly those that can be expressed as a combination of potential shaping, S′-
redistribution, and positive linear scaling. As such, we can apply an arbitrary number of such
transformations. Moreover, we can also transform R in any way that does not change the stan-
dardised reward function sSTARC

τ,γ (R) by more than ϵ; this is equivalent to the stated condition on
tn. Note that sin(2 arcsin(ϵ/2)) ≈ ϵ for small ϵ, so the right-hand side is approximately equal to
ϵ · ||cSTARC

τ,γ (R)||2. However, also note that ||cSTARC
τ,γ (R)||2 ≤ ||R||2. Intuitively speaking, a reward

transformation satisfies the conditions given in Proposition 3 if it never changes the policy order of
the reward function by a large amount.

Using this, we can now state necessary and sufficient conditions that completely characterise all
types of misspecification that the Boltzmann-rational model and the MCE model will tolerate:
Corollary 1. Let R̂ be a set of reward functions, τ be a transition function, γ a discount factor, β a
temperature parameter, and α a weight parameter. Let T̂ϵ be the set of all functions t : R → R that
satisfy Proposition 3, and additionally satisfy that t(R) ∈ R̂ for all R ∈ R̂. Then bτ,γ,β : R̂ → Π
is ϵ-robust to misspecification with g (as defined by dSTARC

τ,γ ) if and only if g = bτ,γ,β ◦ t for some
t ∈ T̂ϵ such that bτ,γ,β ̸= g, and cτ,γ,α : R̂ → Π is ϵ-robust to misspecification with g (as defined
by dSTARC

τ,γ ) if and only if g = cτ,γ,α ◦ t for some t ∈ T̂ϵ such that cτ,γ,α ̸= g.

In principle, Corollary 1 completely describes the misspecification robustness of the Boltzmann-
rational model and of the MCE model (for any R̂). However, the statement of Corollary 1 is rather
opaque, and difficult to interpret qualitatively. For this reason, we will in the subsequent sections
examine a few important special types of misspecification, and analyse them individually.

We should also briefly comment on the fact that Corollary 1 does not cover oτ,γ , i.e. the optimality
model. The reason for this is that, unless |S| = 1 and |A| = 2, there are reward functions R1, R2

such that oτ,γ(R1) = oτ,γ(R2), but dSTARC
τ,γ (R1, R2) > 0. This ought to be intuitive: two reward

functions can have the same optimal policies, but have different policy orderings. This means that
Theorem 1 does not apply to oτ,γ when dR = dSTARC

τ,γ . Moreover:
Proposition 4. Unless |S| = 1 and |A| = 2, then for any τ and any γ there exists an E > 0 such
that for all ϵ < E, there is no behavioural model g such that oτ,γ is ϵ-robust to misspecification with
g (as defined by dSTARC

τ,γ ).

This is simply a consequence of the fact that the second condition of Definition 1 will be violated
for any ϵ that is sufficiently small. An analogous result will hold for any behavioural model f and
any pseudometric dR for which f(R1) = f(R2) ≠⇒ dR(R1, R2) = 0.
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3.2 PERTURBATION ROBUSTNESS

It is interesting to know whether or not a behavioural model f is robust to misspecification with
any behavioural model g that is “close” to f . But what does it mean for f and g to be “close”?
One option is to say that f and g are close if they always produce similar policies. In this section,
we will explore under what conditions f is robust to such misspecification, and provide necessary
and sufficient conditions. Our results are given relative to a pseudometric dΠ on Π. For example,
dΠ(π1, π2) may be the ℓ2-distance between π1 and π2, or it may be the KL divergence between
their trajectory distributions, or it may be the ℓ2-distance between their occupancy measures, etc. As
usual, our results apply for any choice of dΠ unless otherwise stated. We can now define a notion of
a perturbation and a notion of perturbation robustness:

Definition 3. Let R̂ be a set of reward functions, let f, g : R̂ → Π be two behavioural models, and
let dΠ be a pseudometric on Π. Then g is a δ-perturbation of f if g ̸= f and for all R ∈ R̂ we have
that dΠ(f(R), g(R)) ≤ δ.

Definition 4. Let R̂ be a set of reward functions, let f : R̂ → Π be a behavioural model, let dR be
a pseudometric on R̂, and let dΠ be a pseudometric on Π. Then f is ϵ-robust to δ-perturbation if f
is ϵ-robust to misspecification with g (as defined by dR) for any behavioural model g : R̂ → Π that
is a δ-perturbation of f (as defined by dΠ) with Im(g) ⊆ Im(f).

A δ-perturbation of f simply is any function that is similar to f on all inputs, and f is ϵ-robust to
δ-perturbation if a small perturbation of the observed policy leads to a small error in the inferred
reward function. It would be desirable for a behavioural model to be robust in this sense. To start
with, this captures any form of misspecification that always leads to a small change in the final
policy. Moreover, in practice, we can often not observe the exact policy of the demonstrator, and
must instead approximate it from a number of samples. In this case, we should also expect to infer
a policy that is a perturbation of the true policy. Before moving on, we need one more definition:

Definition 5. Let R̂ be a set of reward functions, let f : R̂ → Π be a behavioural model, let
dR be a pseudometric on R̂, and let dΠ be a pseudometric on Π. Then f is ϵ/δ-separating if
dR(R1, R2) > ϵ =⇒ dΠ(f(R1), f(R2)) > δ for all R1, R2 ∈ R̂.

Intuitively speaking, f is ϵ/δ-separating if reward functions that are far apart, are sent to policies
that are far apart.5 Using this, we can now state our main result for this section:

Theorem 2. Let R̂ be a set of reward functions, let f : R̂ → Π be a behavioural model, let dR be
a pseudometric on R̂, and let dΠ be a pseudometric on Π. Then f is ϵ-robust to δ-perturbation (as
defined by dR and dΠ) if and only if f is ϵ/δ-separating (as defined by dR and dΠ).

We have thus obtained necessary and sufficient conditions that describe when a behavioural model
is robust to perturbations — namely, it has to be the case that this behavioural model sends reward
functions that are far apart, to policies that are far apart. This ought to be quite intuitive; if two
policies are close, then perturbations may lead us to conflate them. To be sure that the learnt reward
function is close to the true reward function, we therefore need it to be the case that policies that
are close always correspond to reward functions that are close (or, conversely, that reward functions
which are far apart correspond to policies which are far apart).

Our next question is, of course, whether or not the standard behavioural models are ϵ/δ-separating.
Surprisingly, we will show that this is not the case, when the distance between reward functions is
measured using dSTARC

τ,γ , and the policy metric dΠ is similar to Euclidean distance. Moreover, we
only need very mild assumptions about the behavioural model to obtain this result:

Theorem 3. Let dR be dSTARC
τ,γ , and let dΠ be a pseudometric on Π which satisfies the condition

that for all δ there exists a δ′ such that if ||π1−π2||2 < δ′ then dΠ(π1, π2) < δ. Let c be any positive
constant, and let R̂ be a set of reward functions such that if ||R||2 = c then R ∈ R̂. Let f : R̂ → Π
be a behavioural model that is continuous. Then f is not ϵ/δ-separating for any ϵ < 1 or δ > 0.

5Note that this definition is not saying that reward functions which are close must be sent to policies which
are close. In other words, f being ϵ/δ-separating is not a continuity condition. It is also not a local property of
f , but rather, a global property. It is, however, a continuity condition on the inverse of f .

7



Published as a conference paper at ICLR 2024

This theorem is telling us several things at once. To make things easy, we can begin by noting that
we may let R̂ = R, and that we may assume that dΠ simply is the ℓ2-norm, i.e. dΠ(π1, π2) =
||π1 − π2||2. Theorem 3 is then telling us that no continuous behavioural model is ϵ/δ-separating
for any ϵ or δ (and therefore, by Theorem 2, also not ϵ-robust to δ-perturbation for any ϵ or δ). Note
that the Boltzmann-rational model and the maximal causal entropy model (i.e. bτ,γ,β and cτ,γ,α)
both are continuous, and hence subject to Theorem 3. The condition given on dΠ in Theorem 3 is
simply a generalisation, that covers other policy-metrics than the ℓ2-norm.6 Similarly, the condition
on R̂ is also a generalisation to certain restricted reward spaces. We give a more in-depth, intuitive
interpretation of Theorem 3, and an explanation of why it is true, in Appendix D.

3.3 MISSPECIFIED PARAMETERS

A behavioural model is typically defined relative to some parameters. For example, the Boltzmann-
rational model is defined relative to a temperature parameter β and a discount parameter γ, as well
as the transition dynamics τ . Moreover, determining the exact values of these parameters ex post
facto can often be quite difficult. For example, there is a sizeable literature that attempts to estimate
the rate at which humans discount future reward, and there is a fairly large range in the estimates
that this literature produces (e.g. Percoco & Nijkamp, 2009). It is therefore interesting to know to
what extent a behavioural model is robust to misspecification of its parameters. If π is Boltzmann-
rational for discount parameter γ1, but an IRL algorithm interprets it as being Boltzmann-rational
for discount parameter γ2, where γ1 ≈ γ2, then are we still guaranteed to learn a reward function
that is close to the true reward function? These are the questions that we will study in this section.

We will first consider the case when the discount parameter, γ, is misspecified. Say that a transition
function τ is trivial if for all states s and all actions a1, a2, we have that τ(s, a1) = τ(s, a2). We
now have the following rather surprising result:

Theorem 4. If fγ : R → Π is invariant to potential shaping with γ, and γ1 ̸= γ2, then fγ1 is not
ϵ-robust to misspecification with fγ2

under dSTARC
τ,γ3

for any non-trivial τ , any γ3, and any ϵ < 0.5.

Note that Theorem 4 permits that γ3 = γ1 or γ3 = γ2. Of course, any interesting environment will
have a non-trivial transition function, so this requirement is very mild. Moreover, a dSTARC

τ,γ -distance
of 0.5 is very large; this corresponds to the case where the reward functions are nearly orthogonal.
This means that Theorem 4 is saying that if a behavioural model f is invariant to potential shaping,
then it is not robust to any misspecification of the discount parameter. Note that this holds even
if γ1 and γ2 are arbitrarily close! Moreover, optimal policies, Boltzmann-rational policies, and
MCE policies are all invariant to potential shaping, and hence oτ,γ , bτ,γ,β , and cτ,γ,α are subject to
Theorem 4. In general, we should expect any behavioural model that uses exponential discounting
to be invariant to potential shaping, and so Theorem 4 will apply very widely.

We will next consider the case when the transition function, τ , is misspecified. Here, we similarly
find that a very wide class of behavioural models are non-robust to any amount of misspecification:

Theorem 5. If fτ : R → Π is invariant to S′-redistribution with τ , and τ1 ̸= τ2, then fτ1 is not
ϵ-robust to misspecification with fτ2 under dSTARC

τ3,γ for any τ3, any γ, and any ϵ < 0.5.

Note that Theorem 5 permits that τ3 = τ1 or τ3 = τ2. Thus, Theorem 5 is saying that if a behavioural
model f is invariant to S′-redistribution, then it is not robust to any degree of misspecification of
τ (even if τ1 and τ2 are arbitrarily close). Moreover, optimal policies, Boltzmann-rational policies,
and maximal causal entropy policies, are all invariant to S′-redistribution, and hence oτ,γ , bτ,γ,β ,
and cτ,γ,α are subject to Theorem 5. Indeed, since S′-redistribution does not change the expected
value of any policy, we should expect almost all sensible behavioural models to be invariant to
S′-redistribution. As such, Theorem 5 will also apply very widely.

Theorem 4 and 5 show that a very wide range of behavioural models in principle are highly sensi-
tive to arbitrarily small misspecification of two of their core parameters. To make this result more
accessible and easier to understand, we have included two examples in Appendix E that explain the
intuition behind these two theorems.

6Note that while Theorem 3 uses a “special” pseudometric on R, in the form of dSTARC
τ,γ , we do not need to

use a special (pseudo)metric on Π, because for policies, ℓ2 does capture the relevant notion of similarity.
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Before moving on, we also want to note that the Boltzmann-rational model is robust to arbitrary
misspecification of the temperature parameter, β, and that the maximal causal entropy model is
robust to arbitrary misspecification of the weight parameter, α. This was shown by Skalse & Abate
(2023), in their Theorems 3.2 and 3.4. Specifically, we have that for any τ and γ, any ϵ ≥ 0, and
any β1, β2, α1, α2, we have that bτ,γ,β1

is ϵ-robust to misspecification with bτ,γ,β2
, and that cτ,γ,α1

is ϵ-robust to misspecification with cτ,γ,α2
, as defined by dSTARC

τ,γ . For a detailed description of how
to connect the results of Skalse & Abate (2023) to ours, see Appendix G.

4 DISCUSSION

We have quantified how robust IRL is to misspecification of the behavioural model. We first pro-
vided necessary and sufficient conditions that fully describe what types of misspecification many
behavioural models will tolerate. In principle, these conditions give a complete answer to how tol-
erant a given behavioural model is to any given type of misspecification. However, these conditions
are rather opaque, and difficult to interpret. Therefore, we have also separately provided necessary
and sufficient conditions that characterise when a behavioural model is robust to perturbation, and
we have analysed how robust many behavioural models are to misspecification of the discount factor
γ or the environment dynamics τ . Our analysis suggests that the IRL problem is highly sensitive to
many plausible forms of misspecification. In particular, a very wide class of behavioural models are
unable to guarantee robust inference under arbitrarily small perturbations of the observed policy, or
under arbitrarily small misspecification of γ or τ .

Our results present a serious challenge to IRL in the context of preference elicitation. The relation-
ship between human preferences and human behaviour is very complex, and while it is certainly
possible to create increasingly accurate models of human behaviour, it will never be realistically
possible to create a model that is completely free from all forms of misspecification. Therefore, if
IRL is unable to guarantee accurate inferences under even mild misspecification of the behavioural
model, as our results suggest, then we should expect it to be very difficult (and perhaps even pro-
hibitively difficult) to guarantee that IRL reliably will produce accurate inferences in real-world
situations. This in turn means that IRL should be used cautiously, and that the learned reward func-
tions should be carefully examined and evaluated (as done by e.g. Michaud et al., 2020; Jenner
& Gleave, 2022). It also means that we need IRL algorithms that are specifically designed to be
more robust under misspecification, such as e.g. that proposed by Viano et al. (2021). It may also
be fruitful to combine IRL with other data sources, as done by e.g. Ibarz et al. (2018), or consider
policy optimisation algorithms that assume that the reward function may be misspecified, as done
by e.g. Krakovna et al. (2018; 2020); Turner et al. (2020); Griffin et al. (2022).

We also need more extensive investigations into the issue of how robust IRL is to misspecification,
and there are several ways that our analysis can be extended. First of all, it may in some cases be
possible to mitigate some of our negative results if R is restricted. For example, Theorem 4 and
5 rely on the fact that we for any reward R1 can find a reward R2 such that R1 and R2 differ by
potential shaping or S′-redistribution for a given choice of γ and τ , but such that R1 and R2 have
a large STARC-distance for other choices of γ and τ . We may thus be able to circumvent these
results by restricting R̂ in a way that removes all such reward pairs. However, this is of course not
straightforward, not least because we need to ensure that the true reward in fact is contained in R̂.
Moreover, some of our results rely on the fact that we use STARC-metrics to quantify the difference
between reward functions. While there are compelling theoretical justifications for doing so (cf.
Appendix B and C), there may be other relevant options. STARC-metrics are quite strong, and we
may be able to derive weaker guarantees using other forms of reward metrics. Furthermore, it may
also be fruitful to modify Definition 1, for example by making it more probabilistic, or generalising
it in other ways. This topic is discussed in Appendix A. Finally, our analysis can also be extended
to other types of behavioural models and other types of misspecification. For example, are policies
that use (e.g.) hyperbolic discounting subject to a result that is analogous to Theorem 4? Such
investigations also present an interesting direction for future work.
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Stuart Armstrong and Sören Mindermann. Occam’s razor is insufficient to infer the preferences of
irrational agents. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, volume 31, pp. 5603–5614, Montréal, Canada, 2018. Curran Associates,
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