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Figure 1. Our Grouped Speculative Decoding (GSD) accelerates autoregressive image generation up to 4.3x without compromising quality.

Abstract

Recently, autoregressive (AR) image models have demon-
strated remarkable generative capabilities, positioning
themselves as a compelling alternative to diffusion mod-
els. However, their sequential nature leads to long inference
times, limiting their practical scalability. In this work, we
introduce Grouped Speculative Decoding (GSD), a novel,
training-free acceleration method for AR image models.
While recent studies have explored Speculative Decoding
(SD) as a means to speed up AR image generation, exist-
ing approaches either provide only modest acceleration or
require additional training. Our in-depth analysis reveals
a fundamental difference between language and image to-
kens: image tokens exhibit inherent redundancy and diver-
sity, meaning multiple tokens can convey valid semantics.
However, traditional SD methods are designed to accept
only a single most-likely token, which fails to leverage this
difference, leading to excessive false-negative rejections. To
address this, we propose a new SD strategy that evaluates
clusters of visually valid tokens rather than relying on a sin-
gle target token. Additionally, we observe that static clus-
tering based on embedding distance is ineffective, which

motivates our dynamic GSD approach. Extensive experi-
ments show that GSD accelerates AR image models by an
average of 3.7× while preserving image quality—all with-
out requiring any additional training. The source code is
avaliable at https://github.com/junhyukso/GSD.

1. Introduction
Recent advancements in Large Language Models (LLMs)
[1, 3, 23] have demonstrated the remarkable ability of au-
toregressive (AR) models to capture highly complex distri-
butions. This success has sparked widespread efforts to ex-
tend AR models to various domains [2, 13, 27]. In particu-
lar, AR image models [12, 19, 21] have achieved impressive
generative performance, establishing themselves as a strong
alternative to diffusion models [8, 15, 17]. Compared to
diffusion-based approaches, AR image models offer several
key advantages, including flexible resolution and seamless
support for multimodal tasks.

This paper was accepted to the International Conference on Computer
Vision (ICCV) 2025.
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Despite these advantages, AR image generation faces
a major challenge: sequential token-by-token genera-
tion. Generating a high-resolution image can require an
AR model to produce thousands of tokens in sequence,
whereas diffusion models typically need only dozens [17],
despite their own limitations due to iterative refinement.
This strict sequential dependency imposes a heavy compu-
tational burden, leading to significant latency that hinders
the practical use of AR models in latency-critical scenar-
ios. Furthermore, unlike text generation—where users can
start reading as tokens appear—image generation demands
that all pixels be rendered before any meaningful output is
visible. This all-or-nothing nature of AR image genera-
tion results in a frustrating user experience, making it less
suitable for interactive applications.

To tackle this challenge, various acceleration techniques
have been explored [7, 28, 29]. One promising approach is
Speculative Decoding (SD) based techniques [9, 22], origi-
nally developed and validated in the context of LLMs [10].
In its representative implementation, SD [10] leverages
a lightweight draft model to propose token predictions
rapidly, which are then verified in parallel by a larger base
model. This allows for the simultaneous generation of mul-
tiple tokens, significantly boosting the AR generation speed
of language tokens. However, when applied to AR image
generation, existing SD-based methods have achieved only
modest speed-ups [22] or required additional training for
the draft model [9], limiting their practicality.

In this work, we conduct a thorough investigation
into why SD underperforms in AR image generation.
We identify that the inherent redundancy and diversity
among visual tokens results in relatively low and uni-
formly distributed next-token probabilities during de-
coding, which significantly reduces SD’s acceptance rate.
Building on this insight, we propose Grouped Speculative
Decoding (GSD)—a novel technique that performs SD at
the level of semantically valid token groups rather than fo-
cusing on a single most-likely token. We theoretically and
empirically demonstrate that GSD boosts the acceptance
rate with a simple yet effective modification to the accep-
tance criterion. Additionally, we show that static clustering
methods are suboptimal, leading us to introduce Dynamic
GSD, which dynamically adjusts token grouping based on
contextual information. Extensive experiments show that
GSD achieves an average 3.8× speedup while maintain-
ing high image quality, making it a practical and effective
solution for accelerating AR image generation.

2. Preliminaries

2.1. Autoregressive Image model

The modern AR image models [12, 19, 21] typically consist
of two components: Vector Quantizer (VQ)[25, 31] and an

Autoregressive Transformer [5]. The VQ discretizes con-
tinuous images patches into discrete tokens through three
main elements: an Encoder E , a Decoder D, and a Code-
book C = {c1, c2, . . . , cn}, where each code ci ∈ Rd.

Formally, the encoder maps an input image X ∈
RH×W×C to a latent representation x ∈ Rh×w×d, where
h and w denote the spatial dimensions of the latent space,
and d is the feature dimension. Each of the d dimensional
feature vectors in this latent representation is then quantized
by mapping it to the nearest code c in the codebook, result-
ing in the quantized representation xq . Finally, the decoder
reconstructs the original RGB image from these quantized
codes. The encoder, codebook, and decoder are jointly
optimized by minimizing the reconstruction loss. This en-
tire process can be summarized as follows:

X︸︷︷︸
RH×W×C

E(X)−−−→ x
nearest−−−→ xq︸ ︷︷ ︸
Rh×w×d

D(xq)−−−−→ X̂︸︷︷︸
RH×W×C

Using this codebook C, the AR Image Model is trained
to predict the probability distribution of the next token, just
like text-based transformer models [5]. Recent studies [12,
21] have explored a unified generation of both image and
text tokens within a single vocabulary, allowing for a more
efficient serving system under a unified architecture.

Algorithm 1 Speculative Decoding [10]

Require: Draft Length L, Maximum Length N , Draft
model qθ, Target model pθ, Initial context X0:n0

1: n← n0

2: while n < N do
3: for j = 0 to L do ▷ AR Draft
4: qj ← q(· | [X0:n, X̂0:j ]), X̂j ∼ qj(·)
5: end for
6: parallel for j = 0 to L ▷ Parallel Verify
7: pj ← p(· | [X0:n, X̂0:j ])
8: end for
9: (X̂0:k, k)← VERIFY(X̂0:L, p0:L, q0:L)

10: Xn:n+k−1 ← X̂0:k, n← n+ k ▷ Accept
11: end while
12: return X

Algorithm 2 VERIFY(X, p, q)

Require: Draft X̂0:L, Verifier : p0:L(·) , Drafter : q0:L(·)
1: for k = 0 to L do
2: if not r ∼ U [0, 1] ≤ min

(
1, pk(X̂k)

qk(X̂k)

)
then

3: x ∼ [pk − qk]+ , X̂k ← x, break.
4: end if
5: end for
6: return X̂0:k, k

2



Figure 2. Each patch’s p(x) visualization. We used Lumina mGPT with a standard decoding setting (τ = 1,K = 2000)

2.2. Speculative Decoding

To accelerate AR decoding, SD [10] generates multiple
tokens simultaneously by leveraging two distinct distribu-
tions: a precise expert (base) model pθ(·) and a more effi-
cient draft model qθ(·). The process begins with the draft
model q(·) autoregressively generating L tokens. The ex-
pert model p(·) then evaluates the exact probabilities of
these tokens in parallel. Each token is sequentially ac-
cepted or rejected based on an acceptance probability of
min

(
1, p(x)

q(x)

)
. If a token is rejected, SD resamples from

an adjusted distribution [p − q]+, where [·]+ represents
norm(max(0, ·)). After this step, a new batch of L tokens
is generated by q(·), and the process repeats. The complete
procedure is outlined in Algorithm 1 and Algorithm 2. No-
tably, this approach ensures that the base distribution p(·)
is precisely recovered while sampling from the draft distri-
bution q(·), enabling significant acceleration of AR models
without compromising output quality.

2.3. Speculative Jacobi Decoding

While the original SD [10] uses a separate, lightweight
model to generate the draft, this is not a strict requirement.
Since the correctness of the output distribution is ensured
regardless of the choice of q, other methods with more effi-
cient output estimation can also be used for drafting. From
this perspective, Speculative Jacobi Decoding (SJD) [22]
introduces an alternative approach by leveraging early pre-
dictions from a Jacobi iteration [18] as the draft distribution.
Specifically, SJD starts by randomly initializing L tokens
x0:L and performs a parallel forward pass—similar to the
parallel computation in SD—to estimate the output distribu-
tion p(x)0:L. The tokens are then sequentially verified using
the same verification function, VERIFY(·). A detailed de-

scription of the algorithm is provided in Algorithm 4.
This approach is highly efficient because verification and

drafting occur simultaneously within a single parallel in-
ference step, eliminating the need for autoregressive infer-
ence of q or training a dedicated draft model. Furthermore,
since rejected tokens are reused, they gradually converge to-
ward their correct values over iterations, leading to a higher
acceptance rate. As a result, SJD achieves up to a 2.1×
speedup across various text-to-image AR models. Due to
these advantages, we use SJD as our baseline and intro-
duce novel ideas on top of it throughout the rest of this
paper.

3. Low Acceptance Rate of SD in Image AR
Although SJD achieves a meaningful speedup, its accep-
tance rate in SD remains relatively low (around 40%) com-
pared to that in typical text SD (around 70%) [10]. In this
section, we provide an in-depth analysis of why the accep-
tance rate for SD in image AR is relatively low.

3.1. Characteristics of Image AR Decoding
The figure 2 provides a visual representation of (a) images
generated by the AR model , (b) the top-1 probability val-
ues of the corresponding patchs and (c)–(e) further illustrate
the sorted distribution of these top-1 probabilities across all
tokens. As shown in the figure, the image AR model fre-
quently assigns low top-1 score (below 5%) to 50%–95%
of tokens, depending on the prompt. These probabilities are
nearly uniformly distributed, suggesting that the model con-
siders multiple tokens as equally plausible next steps. We
attribute this phenomenon to two key factors:
• Redundancy in visual tokens : Unlike discrete text to-

kens, visual tokens are derived through vector quantiza-
tion [25] from a continuous latent space. Although quan-

3



Figure 3. t-SNE[26] 3D visual-
ization of the visual token em-
bedding of [12]

Figure 4. Result with
50% random replacement
during decoding, having
CLIP score = 32.089.

tized, these visual tokens still contain significant redun-
dancy in low-frequency components, differing primarily
in subtle, high-frequency details that are often impercep-
tible to the human eyes [34].

• Diversity of image patches : Unlike text, which is con-
strained by syntax and grammar, images can accommo-
date multiple valid visual patterns. For example, in Fig-
ure 2.(b), the model assigns lower top-1 probabilities to
highly variable regions, such as hair, which can differ sig-
nificantly in shape and texture. In contrast, more struc-
tured regions, like faces, tend to have higher top-1 proba-
bilities due to their relatively consistent features.
In Figure 4, we present an additional experiment where

50% of the tokens are randomly replaced with their Top-
100 candidates during decoding. As shown, the overall im-
age quality remains largely unaffected, suggesting that the
model indeed considers multiple valid next-step tokens and
that substituting them has minimal impact. However, these
findings raise a crucial question: Intuitively, if the model
p(x) is indifferent to many possible token choices, the draft
model shouldn’t need to be highly accurate, which should,
in turn, lead to higher acceptance rates. So why does spec-
ulative decoding still slow down in image AR?

3.2. Total Variation Analysis
To explore this question, we start with following definition.
From [10], SD’s expected acceptance rate α is defined as :

Definition. αp,q = Ex∼q(x)

[
min

(
1,

p(x)

q(x)

)]
. (1)

This directly leads to the following proposition:

Proposition 1 (Acceptance and Total Variation)

let αp,q be acceptance rate defined on Eq.1, and
TV (·, ·) be Total Variation distance measure, then
αp,q = 1− 1

2

∑
x |p(x)− q(x)| = 1− TV(p, q).

Proof. See Appendix. A similar analysis has been ex-
plored in previous works [10, 30]. As shown, the expected
acceptance rate for each token is determined by the absolute

(a) Image (b) p(x) Top-1 (c) q(x) Top-1 (d) TV (p, q)

Figure 5. Visualization of image, p(x) Top-1, q(x) Top-1 and
TV (p, q). While both p, q have small Top-1, their TV is high.
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Figure 6. A toy example of the accumulation problem. While the
left tends to have an almost uniform distribution, its total variation
(TV) is larger than that of the right. This problem becomes more
pronounced when the support is larger.

difference between the two probability distributions: the ex-
pert model p and the draft model q.

In Figure 5, we present (a) a generated image, (b) the
top-1 probability of p(x), (c) the top-1 probability of q(x),
and (d) the total variation TV(p, q) for each patch. No-
tably, even when both distributions p(x) and q(x) agree that
multiple tokens are plausible—indicated by low top-1 prob-
abilities—the total variation between them remains high.
Conversely, regions with higher confidence (e.g., faces) ex-
hibit relatively low TV values. These results suggest that
although many tokens are valid as the next choice, the ac-
cumulation of subtle differences between distributions
p and q significantly increases total variation, ultimately
lowering the acceptance rate. To illustrate this concept more
clearly, we provide a toy example in Figure 6. In prac-
tice, this effect is further amplified by the large vocabulary
size—approximately 20,000 tokens—used in recent AR im-
age models [12, 21].

4. Method: Grouped Speculative Decoding

To overcome this issue, we introduce a novel approach
called Grouped Speculative Decoding (GSD), which bases
acceptance decisions on semantically meaningful tokens
rather than solely selecting the most likely token.

Specifically, let X represent the token vocabulary, and
let p(x) and q(x) be the probability mass functions (p.m.f.)
of the expert and draft models, respectively, defined overX .
We then partition X into disjoint clusters:

C = {C1, C2, . . . , CK}, (2)

where Ci ∩ Cj = ∅ for i ̸= j and
⋃K

i=1 Ci = X . For each

4



cluster Ci, we define the grouped probability mass as:

p′(Ci) =
∑
x∈Ci

p(x), q′(Ci) =
∑
x∈Ci

q(x). (3)

Consequently, p′ and q′ are also p.m.f. defined over C,
satisfying

∑
Ci

p′(Ci) = 1, with a similar condition hold-
ing for q′. We denote by C(·) the mapping X → C that
assigns each token x to its corresponding cluster Ci. The
specific implementation of C(·) will be detailed in the next
section.

In GSD, we use the identical SD verification procedure
but decide to accept a token x if its cluster C(x) satisfies:

min
(
1,

p′
(
C(x)

)
q′
(
C(x)

)) ≥ r, r ∼ U [0, 1]. (4)

If rejected, we follow the same resampling strategy as in
standard SD. Intuitively, by summing individual masses
within each cluster, we obtain a more coarse-grained prob-
ability distribution, smoothing out subtle differences be-
tween p and q. This reduces TV(p′, q′) and thereby im-
proves the acceptance rate. We formally state this in the
theorem below:

Theorem 1. Lower Bound on GSD Accept Rate

Let p, q be p.m.f defined over X , let C is disjoint
clstuer defined by Eq. (2) and let p′, q′ be the cor-
responding grouped p.m.f defined by Eq. (3). Then
for any choice of (p, q, C), the acceptance rate of
GSD is bounded below by the acceptance rate of
standard SD, meaning that αGSD ≥ αSD

Proof Sketch. From Proposition 1, to show αGSD > αSD,
we sufficient to show TV(p′, q′) ≤ TV(p, q). By Eq. (3),
the total variation of p′, q′ and p, q can be expaned as :

TV(p′, q′) =
1

2

∑
Ci

∣∣p′(Ci)− q′(Ci)
∣∣

=
1

2

∑
Ci

∣∣∣∑
x∈Ci

(
p(x)− q(x)

)∣∣∣.
TV(p, q) =

1

2

∑
x∈X

∣∣p(x)− q(x)
∣∣

=
1

2

∑
Ci

∑
x∈Ci

∣∣∣p(x)− q(x)
∣∣∣.

Because of the triangle inequality, for any C we have,∣∣∣∑
x∈Ci

(
p(x)− q(x)

)∣∣∣ ≤ ∑
x∈Ci

∣∣p(x)− q(x)
∣∣.

Summing it over all C, we have TV(p′, q′) ≤ TV(p, q)
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Figure 7. Diffrence of acceptance proability ( p
′(C(x))

q′(C(x))
− p(x)

q(x)
)

during image AR decoding.

As shown, while p′(C(x))
q′(C(x)) ≥

p(x)
q(x) may not hold for ev-

ery individual token x, its expected rate is still higher. To
support our theoretical anlysis, we depicts the probability
difference during image AR decoding in Fig. 7. As shown,
most tokens have greater acceptance probability in cluster
level and mean difference is actually positive value, validat-
ing our theoretical result.

4.1. Context-aware Dynamic Clustering
The key takeaway from Theorem 1 is that GSD improves
or at least preserves decoding speed regardless of how clus-
ters are formed. However, designing an effective clustering
strategy remains critical for maintaining output quality.

How can we form effective clusters? A straightforward
approach is to cluster tokens based on pairwise distances
among their corresponding codebook embeddings in the
embedding space. However, we observed that this strategy
frequently underperforms, as shown in Table 2. We attribute
this primarily to two reasons:
• Uniformity of the codebook embedding space : Fig-

ure 3 shows a t-SNE [26] 3D visualization of the visual
token embeddings obtained from [12]. As illustrated, em-
beddings are distributed nearly uniformly, making it dif-
ficult to construct semantically coherent clusters. This
phenomenon becomes more pronounced as the codebook
have higher utilization [34].

• Impact of token context in image : Figure 8 visualizes
decoded results during generation using varying numbers
of rows. Although tokens remain identical , their decoded
RGB representations significantly differ, particularly in
colors and fine details, highlighting the substantial influ-
ence of context. This effect becomes more pronounced
when fewer tokens are present.

These observations offer an important insight: the raw em-
bedding space does not fully represent a semantic manifold
for image tokens. Instead, semantic meanings emerge when
considering the token context, as thousands of tokens jointly
input to the decoder.

Context-aware Dynamic GSD. Inspired by this insight,
we propose leveraging the token probability p(x) itself as a
dynamic measure of token similarity. This choice is moti-
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(a) 20% (b) 50% (c) 80%

Figure 8. Visualization of decoded results during generation with
different numbers of rows. Even though tokens are identical, the
resulting RGB images differ in details and color, indicating that
accurate clustering should consider the context of nearby tokens.

vated by the fact that the model’s predicted probability in-
herently reflects its perception of token similarity within the
current decoding context.

Specifically, at each decoding step t, tokens are sorted
according to their probability values, and clusters are
formed by grouping the number of G nearest tokens. To
avoid grouping tokens with significantly different seman-
tics, we further exclude tokens whose embedding distances
or probability differences exceed predefined thresholds d
and δ. In Algorithm. 3, we show psuedo-code of our Dy-
namics GSD verification. The complete detailed algorithm
for our final method is provided in the Algorithm. 5.

Importantly, as established by Theorem 1, even if the
clustering function dynamically changes at each decoding
step t, GSD still guarantees a higher acceptance rate than
standard SD. This dynamic clustering not only improves the
final image quality but also accelerates the decoding speed,
as we will demonstrate in the next experimental section.

5. Experiments
For our experiments, we employed the SOTA text-to-image
AR Image model, Lumina-mGPT [12]. Specifically, we
used the standard 7B model and conducted experiments at a
resolution of 768×768. In all experiments, we followed the
default settings: Top-K sampling with K = 2000 and tem-
perature τ = 1. For GSD, we set d = 0.5, δ = 0.15, and
L = 16. We did not conduct experiments with the Greedy
setting (τ = 0), as it significantly degrades the quality of
generated images [12, 22]. We used PyTorch 2.3 [14] on a
high-performance server equipped with 8 RTX 3090 GPUs
and an AMD EPYC 7402 processor.

Qualtitiatve Experiments We first present qualitative ex-
periments comparing generated images from Vanilla AR,
SJD [22], and our proposed method. To thoroughly evaluate
the robustness and effectiveness of our approach, we care-
fully select five prompts designed to capture a wide range
of environmental conditions and generation challenges.

Specifically, in Figure 9, we illustrate the following
cases: (1) Unrealistic images, showcasing the model’s abil-
ity to generate novel and imaginative content in a zero-shot

Algorithm 3 VERIFY GSD(X, p, q,G)

Require: Draft X̂0:L, Verifier : p0:L(·) , Drafter : q0:L(·),
Group size G, Embedding distance matrix Md, thresh-
olds d, δ

1: for k = 0 to L do
2: ▷ Dynamic Clustering with p(·)
3: p sortvals, p sortidx ← sort(pk)
4: idx← find-idx(p sortvals, pk(X̂k))
5: Cidxs ← p sortidx[idx−G//2 : idx+G//2]
6: Cvals← pk[Cidxs]
7:
8: ▷ Filter Outliers
9: for cv, ci in [Cvals, Cidxs] do

10: if |cv − pk(X̂k)| > δ then Cidxs.pop(ci)
11: if Md[X̂k, ci] >d then Cidxs.pop(ci)
12: end for
13:
14: ▷ Verification with Cluster Probability
15: p′C ← sum(pk[Cidxs])
16: q′C ← sum(qk[Cidxs])

17: if not r ∼ U [0, 1] ≤ min
(
1,

p′
C

q′C

)
then

18: x ∼ [pk − qk]+ , X̂k ← x, break.
19: end if
20: end for
21: return X̂0:k, k

manner. (2) Realistic images, which require precise render-
ing of complex contextual details. (3) Human faces, a par-
ticularly challenging category where even minor discrepan-
cies in facial features are easily noticeable. (4) Animation-
style illustrations, highlighting the method’s adaptability
to stylized visual content. Detailed prompts correspond-
ing to each case are listed in the appendix. As clearly
demonstrated in the figure, our proposed method consis-
tently achieves superior image quality across all prompt cat-
egories while delivering an impressive 3.5× speedup com-
pared to Vanilla AR decoding.

Quantitative Experiment To quantitatively evaluate
both the generation quality and speed of our method, we
conducted experiments on two datasets: Parti-Prompt [32]
and MS-COCO [11]. For Parti-Prompt, we evaluated the
generation quality using the CLIP Score [16], which mea-
sures the similarity of images to a given prompt, on a set of
1,600 text prompts. For MS-COCO, we used 5,000 prompts
from the validation set and measured both the CLIP Score
and the FID Score [11], where the latter was computed by
comparing the quality of generated images against the val-
idation set images. To evaluate generation speed, we mea-
sured the average latency required to generate a single im-
age and the number of function evaluations (NFE), which
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Figure 9. Qualitative experiment. Our GSD shows on average 3.6x NFE acceleration while maintaining image quality

indicates the number of model forward passes performed.
We benchmarked our method against three baselines:

(A) Vanilla AR, (B) Lossless methods, including Jacobi De-
coding [18] and SJD [22], and (C) Naive Lossy SD, such as
Amplify

(
k·p
q

)
and Addition

(
p+ϵ
q

)
introduced in [10, 30],

along with (D) Ours. For (C) and (D), we applied a lossy
acceptance criterion atop SJD [22].

As shown in Table 1, when G = 3, our method achieves
higher performance with fewer NFEs compared to both (A)
Vanilla and (B) Lossless. This indicates that GSD’s cluster-
ing effectively smooths minor fluctuations in the next-token
distribution p(x), positively influencing overall image qual-
ity by reducing the noise in model predictions. When we
allow slight quality degradation (G = 50), our approach
achieves a 3.6× speedup compared to Vanilla and a 1.63×
speedup over SJD, enabling highly efficient speculative de-
coding in image AR. Furthermore, compared to naive lossy
methods (C), which drastically degrade image quality, our
method gives large acceleration with minimal quality loss.

5.1. Ablation Stuides

Pareto-front Comparison In Figure 10, we expand on
the experiments presented in Table 1 by evaluating perfor-
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Figure 10. Pareto-front Comparision: NFE vs CLIP score

mance across a wider range of group sizes and visualizing
these results using a Pareto front plot. As illustrated, our
method achieves a superior Pareto front compared to naive
lossy SD methods and notably also surpasses the lossless
SJD by delivering higher performance with fewer NFEs.
These findings indicate that GSD positively influences im-
age quality by smoothing probabilities among similar to-
kens, thereby improving overall performance. Moreover,
naive lossy methods suffer from drastic degradation due to
bias or exploding behavior when q(x) becomes small, as
they only increase the numerator. In contrast, our method
increases both p and q in an unbiased manner, effectively
avoiding such issues and better preserving performance.
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Table 1. Quantitative evaluation on the MS-COCO 2017 and Parti-prompt.

Configuration Latency (↓) NFE (↓) Acceleration (↑) FID (↓) CLIP-Score (↑)

Latency NFE

Parti-prompt
A Lumina-mGPT [12] 112.29s 2392 1.00× 1.00× – 32.091
B Jacobi Decoding [18] 116.31s 2300.0 0.97x 1.04× – 32.091
B SJD [22] 52.34s 1035.3 2.15x 2.31× – 32.090

C Amplify (k=2) 37.48s 705.13 3.00x 3.39× – 31.906
C Amplify (k=3) 31.31s 586.23 3.59x 4.08x – 31.774
C Addition (ϵ=1e-1) 40.01s 755.05 2.81x 3.17x – 31.919
C Addition (ϵ=3e-1) 24.93s 644.57 4.50x 3.71x – 31.776

D Ours (G=3) 47.12s 898.97 2.38x 2.66x – 32.125
D Ours (G=50) 24.13s 636.75 4.65x 3.76x – 32.075
D Ours (G=100) 23.01s 611.75 4.88x 3.91× – 31.975

MS-COCO 2017
A Lumina-mGPT [12] 122.45s 2379 1.00× 1.00× 30.79 31.308
B Jacobi Decoding [18] 121.16s 2312 1.01x 1.03x 30.78 31.308
B SJD [22] 55.26s 1058.6 2.22x 2.25× 30.78 31.308

C Amplify (k=2) 35.98s 738.96 3.40x 3.22x 34.79 31.18
C Amplify (k=4) 32.29s 635.17 3.79x 3.75x 40.05 30.99
C Addition (ϵ=1e-1) 47.80s 909.12 2.56x 2.62x 32.75 31.2707
C Addition (ϵ=3e-1) 31.20s 661.66 3.92x 3.60x 40.20 30.937

D Ours (G=3) 48.28s 925.89 2.54x 2.57x 31.50 31.33
D Ours (G=10) 33.79s 701.35 3.62x 3.39x 33.12 31.25
D Ours (G=25) 32.52s 674.04 3.77x 3.53× 33.55 31.24

Table 2. Comparison of different clustering on Parti.

Method NFE CLIP Score

Baseline (SJD [22]) 1035 32.090

(A) Embed distance 913.80 32.081
(B) draft q(x) 685.31 31.791
(C) expert p(x) 636.24 32.056
(D) Ours 636.75 32.075

Effect of Cluster In Table 2, we evaluate the performance
of GSD using three different clustering methods. As shown,
(A) clustering solely based on static embedding distance
fails to achieve speedup, indicating that probability is not
strongly correlated with static embedding distance. (B)
Clustering based on the draft q(x) leads to speedup but re-
sults in a significant decline in the CLIP score, indicating
that q does not accurately capture token similarity when
contexts are given. (C) When expert p(x) is used for cluster-
ing, it successfully preserves the CLIP score while achiev-
ing acceleration. (D) Additionally, when filtering out tokens
that exceed a certain threshold, performance improves.

6. Related Works: Speculative Decoding

After the pioneering work [10], numerous studies have at-
tempted to improve acceptance rates in SD. Mainstream
approaches enhance acceptance while maintaining sam-
pling exactness by proposing multiple drafts in batches
[20, 30] or structuring them as trees [4, 6]. Recently, a few
studies [9, 24, 33] have explored relaxing the exact sam-
pling constraints to further boost acceptance rates. Among
these, LANTERN [9] proposes enlarging the numerator in
the acceptance criterion by incorporating neighboring to-
kens’ probabilities, similar to our approach. However, this
method has several issues, such as requiring training and
lacking a detailed analysis of image AR acceptance rates.
Critically, since it increases only the numerator, it shares
the same drawbacks as naive lossy methods—bias and the
exploding problem—achieving only a 1.6× speed-up.

7. Conclusion

In this work, we propose Grouped Speculative Decoding
(GSD), a novel training-free SD method specifically de-
signed for image AR. We first thoroughly analyze the pri-
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mary challenge of SD in image AR and identify that the core
issue arises from high-entropy predictions of the next token
caused by the inherent variability of the images. Motivated
by this, we introduce GSD, which effectively improves the
acceptance rate of SD by smoothing the probability distri-
butions through clustering semantically similar tokens. Fur-
thermore, we observe that naive clustering relying on static
embedding distances yields suboptimal outcomes, leading
us to propose a dynamic clustering approach. Experimental
results demonstrate that GSD achieves an average speed-up
of 3.8× while maintaining image quality.
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Grouped Speculative Decoding for Autoregressive Image Generation

Supplementary Material

S1. Proof of proposition 1

αp,q = Eq(x)

[
min

(
1,

p(x)

q(x)

)]
=
∑
x

q(x)min

(
1,

p(x)

q(x)

)

=
∑
x

p(x), if p(x) < q(x)

q(x), otherwise

=
∑
x

min(p(x), q(x))

=
∑
x

p(x) + q(x)− |p(x)− q(x)|
2

=
1

2

(∑
x

p(x) +
∑
x

q(x)−
∑
x

|p(x)− q(x)|

)

=
1

2

(
1 + 1−

∑
x

|p(x)− q(x)|

)

= 1− 1

2

∑
x

|p(x)− q(x)|

= 1− TV (p, q)

S2. Full algorithm of GSD
In this section, we provide detailed pseudocode for the im-
plementation of GSD in Algorithm 5 and 3. Since GSD
is built upon SJD, it operates by simply replacing the
VERIFY(·) part with our VERIFY GSD(·). For a more de-
tailed implementation, please refer to the source code.

S3. Additional Results
In this section, we present additional experiments expand-
ing upon the visualizations discussed in the main text.

Top-1 probabilities In Fig. S1, we illustrate the visual-
ization of Top-1 probabilities across a wider variety of im-
ages. As shown, regardless of the prompts, many images
exhibit numerous tokens with low Top-1 probability distri-
butions.

Visual quality comparison In Fig. S3, we visually il-
lustrate the differences in generation quality among various
methods compared in Table 1. As shown in the figure, our
GSD achieves approximately a 4× speed-up while maintain-
ing generation quality comparable to lossless methods such

Algorithm 4 Speculative Jacobi Decoding[22]

Require: Speculative Length L, maximum seq length N ,
expert model pθ, initial context X0:n0

1: k ← L, n← n0

2: while n < N do
3: qL−k:L, X̂L−k:L ∼ Rand-init(·)
4: parallel for j = 0 to L ▷ Parallel Verify
5: pj ← pθ(· | [X0:n, X̂0:j ])
6: end for
7: (X̂0:k, k)← VERIFY(X̂0:L, p0:L, q0:L)
8: Xn:n+k−1 ← X̂0:k ▷ Accept.
9: q0:L−k ← pk:L, X̂0:L−k ← X̂k:L ▷ Draft update

10: n← n+ k
11: end while
12: return X

Algorithm 5 Grouped Speculative Decoding

Require: Speculative Length L, maximum seq length N ,
expert model pθ, initial context X0:n0

, Group size G,
Embedding distance matrix Md, thresholds d, δ

1: k ← L, n← n0

2: while n < N do
3: qL−k:L, X̂L−k:L ∼ Rand-init(·)
4: parallel for j = 0 to L ▷ Parallel Verify
5: pj ← pθ(· | [X0:n, X̂0:j ])
6: end for
7: (X̂0:k, k)← VERIFY GSD(X̂0:L, p0:L, q0:L, G)
8: Xn:n+k−1 ← X̂0:k ▷ Accept.
9: q0:L−k ← pk:L, X̂0:L−k ← X̂k:L ▷ Draft update

10: n← n+ k
11: end while
12: return X

as vanilla AR and SJD. In contrast, the naive lossy method
also achieves acceleration but significantly degrades gener-
ation quality.

GSD generation performance Fig. S2 presents further
qualitative results of our method when accelerated by an av-
erage factor of 3.6. As demonstrated in the figure, our GSD
significantly accelerates AR image decoding while main-
taining generation quality across diverse prompts.

S4. Prompts on Qualititave Experiment

In Figure. 9 on main paper, the prompts for each images are
as follows :
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• Rusty robot on a skateboard in the hallway of domitory,
photography, 4k, realistic, detailed, bright

• Origami astronaut, waliking in the cloud, bright back-
ground, realistic, 4k, photography, bright color

• photography, realistic, White cute fluffy dog, skyblue
background, very intricate, very detailed, realistic.,
bright

• color photo, photography, Face of a young man, very de-
tailed, realistic. sharp, film grain, high contrast

• animation art work, cute, cat character, bright color pal-
lette

12



Figure S1. Additional p(x) visualization.
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Figure S2. Qualtitiave experiment on various prompt. Our GSD shows on average 3.6x NFE acceleration while maintaing image quality
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Amplify (k=3) Addition (𝝐=3e-1) OursSJD

Figure S3. Qualitative comparison between methods in Table 1 of the main paper
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