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ABSTRACT

Diffusion large language models (dLLMs) generate text through iterative denois-
ing, yet current decoding strategies discard rich intermediate predictions in favor
of the final output. Our work here reveals a critical phenomenon, temporal
oscillation, where correct answers often emerge in the middle process, but are
overwritten in later denoising steps. To address this issue, we introduce two
complementary methods that exploit temporal consistency: 1) Temporal Self-
Consistency Voting, a training-free, test-time decoding strategy that aggregates
predictions across denoising steps to select the most consistent output; and 2)
a post-training method termed Temporal Consistency Reinforcement, which
uses Temporal Semantic Entropy (TSE), a measure of semantic stability across
intermediate predictions, as a reward signal to encourage stable generations.
Empirical results across multiple benchmarks demonstrate the effectiveness of our
approach. Using the negative TSE reward alone, we observe a remarkable average
improvement of 24.7% on the Countdown dataset over an existing dLLM. Com-
bined with the accuracy reward, we achieve absolute gains of 2.0% on GSMS8K,
4.3% on MATHS500, 6.6% on SVAMP, and 25.3% on Countdown, respectively.
Our findings underscore the untapped potential of temporal dynamics in dLLMs
and offer two simple yet effective tools to harness them.

1 INTRODUCTION

Diffusion large language models (dLLMs) (Nie et al., 2025; Zhu et al., 2025; Ye et al., 2025) have
recently emerged as a promising alternative to the auto-regressive (AR) large language models,
garnering significant attention for their competitive performance and potential for faster inference.
In contrast to AR models, which generate text in a strictly sequential manner by predicting one
token at a time, dLLMs operate through iterative cycles of denoising and remasking, predicting all
masked tokens in parallel at each step. A small subset of the predicted tokens, typically those with
high confidence (Nie et al., 2025), are retained, while the remaining tokens are remasked and refined
in subsequent steps. Despite their drastic architectural differences, current dLLMs typically adopt
a decoding strategy that mirrors AR models: solely relying on the sequence predicted in the final
denoising step as the final answer, and discarding all the intermediate predictions.

In this work, we challenge this convention by uncovering a critical phenomenon that we term
temporal oscillation: correct answers often appear during intermediate denoising steps but
are overwritten in later iterations. This discrepancy between the final output and intermediate
correctness suggests that dLLMs possess rich temporal dynamics that are largely under-utilized.

As depicted in Fig. 1, we analyze two key metrics across four widely used benchmark datasets using
two representative models: LLaDA-8B-Instruct (Nie et al., 2025) and LLaDA-1.5 (Zhu et al., 2025).
The first metric, final pass rate, measures the accuracy of the final output, while the second, ever-pass
rate, captures whether a correct answer appears at any point during the decoding process. In Fig. 1a,
a consistent and significant discrepancy exists between these metrics. This gap reveals a critical
phenomenon: models often generate correct answers during intermediate steps but subsequently
overwrite them with incorrect ones. Fig. 1b illustrates this concretely—in a math problem, the
model produces the correct answer “25” at sampling step 55, only to replace it with an incorrect “2”
by the final step 64. More examples on temporal oscillation are presented in Appendix E.6.
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Figure 1: Illustration of temporal oscillation during sampling. (a) Across four datasets, a
significant gap is observed between the final answer’s pass rate (denoted as Pass @1) and the ever-
pass rate at any intermediate step (denoted as EverPass @1 | ¢). This gap reveals the phenomenon
we refer to as temporal oscillation, where correct intermediate answers are sometimes overwritten
as the generation proceeds. (b) Example of temporal oscillation: For a given math problem, the
model initially gives the correct answer, 25, at an intermediate step (e.g., step 55), aligning with the
ground truth. However, by the final step, this correct answer is replaced with an incorrect one: 2.
More examples with detailed outputs can be found in Appendix E.6.

To better understand this behavior, we analyze dLLMs from the entropy perspective and introduce
a new metric: Temporal Semantic Entropy (TSE), which captures the distribution of semantic
variation across intermediate outputs during decoding. Specifically, we collect the sequence of
intermediate answers across denoising steps and group them into clusters based on semantic
equivalence. TSE then quantifies the degree of uncertainty in the semantic content of these answers.
A higher TSE indicates greater semantic fluctuation throughout the trajectory, i.e., the model changes
its answer frequently, while a lower TSE suggests convergence toward a stable meaning.

To harness the latent signals embedded in dLLMs decoding, we treat temporal oscillation as an
informative feature and develop two complementary methods that exploit the temporal dynamics:

» Temporal Self-Consistency Voting: A training-free, test-time decoding strategy that
aggregates predictions across multiple denoising steps and selects the most temporally
consistent output. This simple yet effective method improves accuracy while introducing
only negligible computational overhead, making it practical for real-world deployment.

* Temporal Consistency Reinforcement: A post-training method based on reinforcement
learning that uses negative TSE as a reward signal to encourage stable and consistent
generations explicitly. Notably, leveraging negative TSE as the reward enables reliable
performance improvements without requiring ground-truth labels for reward computation.
Furthermore, when ground-truth labels are available, combining them with TSE-based
rewards can provide richer and more complementary supervision, ultimately leading to
even greater and more robust improvements in generation quality.

Experiments across multiple datasets validate the effectiveness of both our decoding-time strategy
and our RL-based post-training method. Specifically, Temporal Self-Consistency Voting brings an
average improvement of 1.5% over the LLaDA-8B-Instruct baseline with negligible overhead. In
terms of Temporal Consistency Reinforcement, fine-tuning using the negative TSE reward alone, we
observe a substantial average improvement of 24.7% on the Countdown dataset. When combined
with the accuracy reward derived from ground truth, our approach yields notable improvements
across diverse datasets: 2.0% on GSM8K, 4.3% on MATHS500, 6.6 % on SVAMP, and an impressive
25.3% on Countdown, respectively. By quantifying and leveraging temporal consistency, we offer a
new perspective on dLLM decoding and introduce practical tools to unlock their potential. We hope
that this study inspires further research into the temporal characteristics of diffusion decoding.
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2 RELATED WORK

2.1 DIFFUSION LANGUAGE MODELS

Building on the success of diffusion in image and video generation (Song et al., 2020; Ho et al.,
2020; 2022), diffusion methods have been extended to text. Early continuous approaches (Han
et al., 2022; Li et al., 2022) operate in continuous space, while others map text to the probability
simplex (Avdeyev et al., 2023; Stark et al., 2024). More recent work applies flow matching on the
simplex to learn categorical distributions (Davis et al., 2024; Cheng et al., 2024), but remains limited
to simpler sequences.

Discrete diffusion models, pioneered by D3PM (Austin et al., 2021), advanced through masked
token frameworks (Shi et al., 2024; Sahoo et al., 2024; Nie et al., 2024) and scaling efforts.
Lightweight variants like Plaid (Gulrajani & Hashimoto, 2023) and SEDD (Lou et al., 2023) rival
GPT-2 (Radford et al., 2019), yet lag autoregressive models in scalability. To bridge this gap, BD3-
LMs (Arriola et al., 2025) and Eso-LMs (Sahoo et al., 2025) interpolate between autoregressive
and diffusion paradigms, enabling parallel sampling with competitive performance. Recent efforts
scale up dLLMs: Dream (Ye et al., 2025) converts pretrained autoregressive models into diffusion
models, while LLaDA (Nie et al., 2025) trains strong models from scratch. Another line of work
studies sampling in dLLMs. For instance, Kim et al. (2025) show token ordering affects performance
and propose adaptive inference, while ReMDM (Wang et al., 2025) uses inference-time remasking
to boost generation. Rather than modifying local sampling heuristics, we study dLLMs through the
underexplored lens of temporal stability across the entire denoising trajectory.

Several concurrent work also investigates temporal behaviors in diffusion language models. Li et al.
(2025a) show that dLLMs often generate correct intermediate answers that are later overwritten, and
propose stopping generation early when such signals appear. He et al. (2025) further demonstrate
that temporal cues along the denoising trajectory can be directly exploited to improve reasoning.
Xie et al. (2025) introduce a step-aware RL method that aligns denoising steps with hierarchical
reasoning to avoid unstructured refinement. While these studies highlight the value of early-
step signals or step-specific structure, our work takes a complementary direction by developing
both a lightweight test-time voting method and an unsupervised reinforcement signal grounded in
trajectory-level temporal consistency.

2.2 TEST-TIME STRATEGY

Test-time strategies (Wei et al., 2022; Madaan et al., 2023; Snell et al., 2024; Yao et al., 2023; Liu
et al., 2025a) are widely used to improve LLM accuracy, consistency, and reliability. A simple
yet effective method is Self-Consistency (Wang et al., 2022), which selects the most consistent
answer from multiple outputs via majority voting. Building on this idea, we propose a temporal self-
consistency strategy tailored for dLLMs, which adds negligible inference overhead and integrates
seamlessly into existing frameworks. Another important technique is semantic entropy (Farquhar
et al., 2024; Kuhn et al., 2023), an uncertainty metric that clusters semantically equivalent outputs
before computing entropy. While previously applied to uncertainty estimation and hallucination
detection, we extend it to dLLMs by introducing Temporal Semantic Entropy, capturing stability
and confidence throughout the denoising process.

2.3 POST-TRAINING USING REINFORCEMENT LEARNING

Group Relative Policy Optimization (Shao et al., 2024; Guo et al., 2025) (GRPO), a variant of
Proximal Policy Optimization (Schulman et al., 2017), computes advantages directly from group
rewards, removing the need for a separately trained value function. GRPO has shown strong
performance in reasoning tasks like mathematics and code generation, and promising results across
broader modalities (Huang et al., 2025; Shen et al., 2025; Qi et al., 2025; Zhong et al., 2025; Li et al.,
2025b; Damani et al., 2025). Building on this, refinements such as DAPO (Yu et al., 2025) introduce
dynamic sampling to balance training batches, while entropy-based methods (Zhang et al., 2025;
Prabhudesai et al., 2025; Cui et al., 2025; Agarwal et al., 2025) further enhance RL. For example,
EMPO (Zhang et al., 2025) derives rewards from semantic entropy, and Seed-GRPO (Chen et al.,
2025) improves advantage estimation. Recent adaptations to dLLMs include diffu-GRPO (Zhao
et al., 2025), UniGRPO (Yang et al., 2025), and coupled-GRPO (Gong et al., 2025), which still
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rely on ground-truth rewards. By contrast, our method is fully unsupervised, enhancing temporal
consistency without ground-truth supervision.

3 EXPLORATIONS ON DLLMS

3.1 PRELIMINARIES ON DLLMs

DLLMs formulate text generation as a process of iteratively denoising text sequences across
different time steps. Let Xy ~ paaw(X0) denote the original clean input sequence. For each diffusion
step t € [0, 77, let x; € VE denote the corresponding noisy token-sequence tensor of length L. The
noisy sequence X; is generated via a masking-based forward corruption process, in which a subset
of tokens is stochastically masked at each step. The forward noising process is defined as a Markov
chain ¢(x1.7 | x0) = HtT:1 q(x¢ | x¢—1), which progressively adds noise to xo over time steps.
This process incrementally transforms the clean sequence x( into a highly noisy version x7 through
a series of conditional transitions. In contrast, the reverse (generative) process is modeled as:

po(x0.r) = po(xr) [T1_, po(xe—1 | Xe)= po(xr) [1}_, [ a(xe—1 | x5) po(xh | x0)], (D

where the summation ), enumerates all possible decoded clean sequences x at step ¢, making
0

explicit that the sampling procedure first predicts a clean intermediate sequence and then re-applies
noise via q(x;—1 | x§).

This decomposition reveals that each reverse step consists of two sub-operations aligned with the
marginalization in Eq. (1). First, the model predicts a clean latent sequence through py(x} | %),
yielding an intermediate hypothesis x{,. Second, the next state x;_; is generated by sampling from
q(x¢—1 | x}), which re-applies noise to x{, following the forward corruption process. This remasking
mechanism is realized in practice through strategies such as random or low-confidence re-masking,
as adopted in (Nie et al., 2025).

3.2 TEMPORAL OSCILLATION

In the reverse process of dLLMs, predictions py(x}, | x;) at a single step are often inaccurate,
especially under high noise when ¢ is large. Existing models perform iterative denoising according
to the generative process framework, where the final output is determined by the prediction
x ~ pe(xy | x1) at the last denoising step, while neglecting all intermediate predictions
{x} ~ po(x}) | x¢) }/_, generated during the iterative process. In this work, we conduct an in-depth
investigation into these intermediate-step results, revealing a critical phenomenon in diffusion-based
text generation.

To formalize our analysis, let e; ;, denote the Pass @1 rate (Chen et al., 2021) for the prediction
generated at the k-th noise step on the i-th question in the evaluation benchmark. Building on this,
we introduce the ever pass rate , denoted as EverPass @1 | ¢, which measures the proportion of
questions in the dataset for which the model produces a correct answer at any timestep along the
sampling trajectory. Formally, it is defined as:

EverPassQl |t =E { max elk} 2)
i | ke{l,...,t}

This metric captures the cumulative correctness across all sampling steps, reflecting the overall

fraction of questions for which the model arrives at a correct solution at least once, even if that

solution is later discarded in the final output.

Experiment Setup. We compare the final pass rate, i.e., Pass @1 at the last step with EverPass Q1 |
t on two representative dLLMs: LLaDA-8B-Instruct and LLaDA-1.5, evaluated across different
answer lengths and four reasoning benchmarks: GSM8K (Cobbe et al., 2021), MATH500 (Lightman
et al., 2023), SVAMP (Patel et al., 2021), and Countdown (Pan et al., 2025).

Observations. As shown in Fig. 1 and Table 1, there is a notable gap between the final pass rate and
the ever pass rate . For instance, on GSM8K with length 128, LLaDA-8B-Instruct achieves 68.5%
final pass rate versus 80.5% ever pass rate , a gap of 12.0%. This gap shows that many questions
are correctly solved at intermediate steps but later revised to incorrect answers during refinement.
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Figure 2: Patterns of accuracy evolution over diffusion sampling steps. Responses of length 128
are generated with 64 steps using LLaDA-8B-Instruct. Left: Accuracy generally rises with more
steps across datasets; SVAMP starts high, while harder ones like Countdown start low but improve
steadily. Middle/Right: We compare the final pass rate, Pass @1, with cumulative EverPass @1 | ¢
over steps. A clear gap persists between them, shown by the green shaded area.
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Figure 3: Patterns of entropy evolution over diffusion sampling steps. Responses are generated
with length 128 using 64 diffusion steps from the LLaDA-8B-Instruct model. Left: Average token-
level entropy decreases steadily during sampling. GSMS8K shows lower entropy than Countdown,
aligning with its higher accuracy. Middle and Right: Both Intermediate-Correct and Always-
Incorrect questions exhibit higher overall entropy compared to Finally-Correct ones. On GSM8K,
Intermediate-Correct questions display lower entropy in the early steps than Always-Incorrect,
indicating initial confidence, whereas on Countdown the entropy trend is less stable.

It reveals an instability in iterative decoding, where correct paths can be overwritten as generation
proceeds. We term this phenomenon temporal oscillation, with examples in Appendix E.6.

Takeaway 1: Correct intermediate answers may be lost during sampling

During sampling, answers may oscillate between correct and incorrect states across diffusion
steps. A notable portion of questions achieve correct answers in the intermediate steps, but
ultimately yield incorrect results in the final step.

3.3 ANALYSES

To gain a deeper understanding of the temporal oscillation phenomenon, we conduct comprehensive
analyses from multiple dimensions: accuracy, entropy, and semantic stability across decoding steps.

Accuracy Across Sampling Steps. As shown in Fig. 2a, accuracy generally improves with more
sampling steps. Simpler datasets like SVAMP start high and remain stable, while harder ones like
Countdown begin low but benefit from iterative refinement. To probe further, we compare Pass @1
and EverPass @1l | ¢ on GSM8K and Countdown. Early correct predictions appear sooner on
GSMSK but later on Countdown, and a growing gap between the two metrics reveals that early
correctness does not ensure stable reasoning. This underscores the importance of preserving correct
intermediate states. Additional results for SVAMP and MATHS00 are in Appendix C.1.

Entropy Across Sampling Steps. Temporal oscillations reflect model uncertainty. To quantify
this, we analyze the average token-level entropy. As shown in Fig. 3, entropy decreases steadily
and approaches zero by the final step, with GSMS8K starting lower, indicating higher initial
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confidence. We categorize questions into three groups: Finally-Correct, Always-Incorrect, and
Intermediate-Correct, where Intermediate-Correct means at least one intermediate step is correct
but the final answer is incorrect. For GSM8K and Countdown, incorrect final answers show
consistently higher entropy. On GSM8K, Intermediate-Correct questions begin with lower entropy
than Always-Incorrect, suggesting initially confident but unstable predictions. Considering the semi-
autoregressive sampling strategy (Nie et al., 2025), we also measure the average entropy of the
currently generated block, detailed in Appendix C.3.

Temporal Semantic Entropy. Temporal Se-
mantic Entropy. Token-level entropy reflects
local uncertainty, but we also need a measure

SN Finally-Correct
0 Intermediate-Correct

of semantic consistency across the decoding
trajectory. We therefore introduce Temporal
Semantic Entropy (TSE), which captures the se-
mantic variations of answers during sampling.

&~

o
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During decoding, we obtain a sequence of T’
intermediate answers, denoted by {x}}7_,. We
cluster them by semantic meaning into € =
{C4,...,Ck}, where each cluster C}, groups Figure 4: Temporal semantic entropy across
answers with equivalent semantics. We define four benchmarks. Error bars denote the mean +
the probability mass of a semantic cluster as standard deviation of TSE, clipped at O to respect
P(Cy) = sz)p(x}) € Cy) = |Ck|/T, where its non-negative range. This metric measures the
|C%| counts how many intermediate answers uncertainty in the semantic content of answers

fall into cluster (. Based on this, the TSE of a  across decoding steps.  Statistically, correctly
sampling trajectory is defined as: answered questions exhibit lower entropy.

(=}

K

TSE({x}}{_,)=— > P(Ck)log P(Cy), 3)

k=1

which quantifies the uncertainty in semantic content across steps: higher TSE indicates more
semantic variation, while lower TSE implies convergence to a consistent meaning.

As shown in Fig. 4, TSE offers insight into model behavior during generation. In datasets like
Countdown and MATH, where performance is weaker, we observe higher entropy than in GSM8K
and SVAMP, reflecting greater semantic instability. Moreover, questions ultimately answered
correctly generally exhibit lower entropy than incorrect ones, including both “finally correct” and
“intermediate correct” cases, indicating that stable, semantically consistent trajectories align with
better performance. Thus, high TSE may signal model uncertainty and highlight samples for further
improvement. More results on TSE are provided in Appendix C.2.

Takeaway 2: Correct answers statistically exhibit lower temporal semantic entropy

Temporal semantic entropy, computed over intermediate predictions during the decoding
trajectory, reflects the semantic stability of the model’s outputs. Statistically, correctly an-
swered questions tend to have lower entropy, indicating greater consistency and confidence
throughout the generation process.

4 METHOD

4.1 TEMPORAL SELF-CONSISTENCY VOTING

We propose a temporal self-consistency decoding strategy for dLLMs, which leverages intermediate
predictions to improve final outputs. As discussed in Sec. 3.3, while the last timestep usually yields
the best result, the correct answer may also appear earlier, so relying only on the final prediction
risks discarding better outputs. To address this, we aggregate predictions across timesteps using a

weighted voting mechanism. Formally, given a diffusion sampling trajectory {xg}le, our method
selects the final answer a* according to a weighted vote over all timesteps:

a* = argmax, Y1, f(t) - 1 ( meaning (x}) = a). 4)
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Here, 1(-) indicates whether x{, decodes to a, and f(t) is a timestep weighting function. Since
accuracy generally increases with later steps, we design f(t) as a monotonically decreasing function
of diffusion step. We experiment with constant, linear, and exponential weighting, as in Sec. 5.2.

Discussion. Our method is conceptually related to self-consistency decoding (Wang et al.,
2022), which improves reasoning in autoregressive LLMs by sampling diverse reasoning paths
and selecting the most consistent answer via majority voting. However, self-consistency requires
multiple full-length forward passes with high cost. In contrast, our approach requires only a single
sampling trajectory. By exploiting the temporal nature of diffusion inference indicated by Eq. (1),
we obtain a series of intermediate predictions without additional model evaluations. This makes our
method both efficient and effective for boosting accuracy through temporal aggregation.

4.2 TEMPORAL CONSISTENCY REINFORCEMENT

Motivated by our observation in Sec. 3.3 that correct answers generally exhibit lower Temporal
Semantic Entropy (TSE) than incorrect ones, reflecting stronger semantic consistency over time,
we propose a post-training approach designed to encourage temporal consistency in model outputs.
Specifically, we adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024; Guo et al.,
2025) as our reinforcement learning framework and use TSE as a self-supervised reward signal.

Negative TSE as the Reward. Following GRPO, for each question ¢ sampled from the dataset
D, we draw a group of G responses {01,029, ...,0¢} from the old policy mg,,. Each response
0, receives a scalar reward r; = — TSE(0;), where TSE(0;) is computed using Eq. (3) from
Sec. 3.3. This reward encourages the model to produce responses whose intermediate predictions
remain semantically consistent throughout the decoding process. Based on this, we define the
unnormalized advantage (Liu et al., 2025b) for all tokens k = 1,...,|o;| as A¥(7) = r;(m) —

mean ({rj(w)}G

j:l) . The training objective follows the standard GRPO formulation with our TSE-

based reward. We optimize the policy model by maximizing the following objective:

G |oi|
Joreo(0) = E oo [(é ; ﬁ };min (pFA¥,clip (12,1 +¢) A?)) = BDx [mo ()| mer ()] | (5)

o1,....,0g~mgy, (:|q)

w9 (0F |q)
TOo1d (Of |q>
threshold, and S controls the strength of the KL penalty. To compute the token-level probabilities
used in pf?, we follow the diffu-GRPO method (Zhao et al., 2025), which estimates these probabilities
by averaging outputs from multiple randomly masked versions of the prompt.

where T is the reference policy, p¥ = is the importance sampling ratio, € is the clipping

Combining TSE with Accuracy Reward. When ground-truth answers are available during
training, we combine TSE with an accuracy reward to further enhance performance. Specifically,
We design a composite reward function that integrates correctness and temporal consistency.

The accuracy reward follows a binary scheme: it assigns 1 when the model’s prediction is correct
(0; = 0), and 0 otherwise. To measure temporal consistency, we derive a normalized confidence
score from TSE: ¢(0;) = M, Hmax = log T. Here, T denotes the total sampling steps.
This normalization yields ¢ € [0, 1], with larger values indicating stronger consistency.

max

We further transform c(0;) using the spherical scoring rule (Gneiting & Raftery, 2007), which has
shown strong empirical performance across tasks. The final reward is defined as:

c(0i)
V(e(0:))? + (1 = c(0))?
Here, the first term enforces correctness while the second term encourages higher temporal
consistency. This formulation makes the reward sensitive not only to prediction accuracy, but also

to the stability of the underlying generation process. A detailed comparison of various scoring rules
and their empirical performance in the Appendix E.4.

Ty = ]]-o,;:o* + (6)

Discussion. Unlike prior reinforcement learning post-training methods for dLLMs, such as diffu-
GRPO, which relies on ground-truth answers for reward computation, our approach operates without
any labeled data. Instead, we harness the model’s internal temporal dynamics as a self-supervised
signal, employing negative TSE to assess answer quality. This enables our method to be broadly
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Table 1: Performance of temporal majority voting. We compare three strategies: fixed, linear,
and exponential weighting, on four datasets using LLaDA-8B-Instruct and LLaDA-1.5. Bold
numbers mark group bests, and green values show gains over baseline. For reference, we report
the oracle EverPass @1 | ¢ as an upper bound.

‘ GSMSK MATHS00 SVAMP Countdown

Method / Seq Len ‘ 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct  baseline ‘ 683+03 764+03 781402 276404 332403 358+04 843+02 83.0+03 843+£02 204404 214+04 165+05
Fixed Weighting ‘ 680+02 734402 783402 266402 308402 342+02 87.0+02 843+02 843+02 227402 188+02 11.3+02
+ Temporal Voting Linear Weighting 700+02 78.0+02 788+02 280+02 344402 346+02 870+02 843+02 843+02 242402 219+02 160+02
Exp. Weighting 70.1+02 788+02 789+02 286+02 352402 362+02 X:’).}yi 02 840+02 847+02 249 i}(i.Z 233+02 165+02

+1.8 +2.4 +0.8 +1.0 +2.0 +0.4 +2.0 +1.0 +0.4 +4.5 +1.9 +0.0
‘ 805+03 852403 803+03 402+04 456+04 472+04 913+02 893+03 867+03 28.1+04 27.7+04 21.1+04
LLaDA-1.5 baseline ‘ 69.9+03 792+03 81.0+£02 292+04 322403 356+04 853+02 863+02 830+03 21.6+04 21.0+04 208+04
Fixed Weighting ‘ 68.8+02 757+02 803+02 274402 308402 346+02 873+02 853+02 840+02 234402 223+02 188+02
+ Temporal Voting Linear Weighting ‘ 71.0£0.2 798402 81.0+02 292+02 328+02 358+02 860+02 870+02 840+02 242+02 234402 191402
Exp. Weighting 70.8+£02 79.6+02 81.1+£02 292402 330 i‘(l.'_’ 36.4+02 857402 87.7+02 840+02 263 i—(l.l 249402 212402

+0.9 +0.4 +0.1 +0.0 +0.8 +0.8 +0.4 +1.4 +1.0 +4. +3.9 +0.4

‘ 81.5+03 889403 836+03 39.8+04 474+04 492+04 90.7+02 903+02 860+03 305+04 27.0+04 254+04

applicable, particularly in unsupervised settings, and offers a novel direction for improving dLLMs.
Furthermore, we show that combining the negative TSE reward with the accuracy reward based on
ground-truth answers yields notably better performance than using the accuracy reward alone.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Experimental Setup. We use LLaDA-8B-Instruct (Nie et al., 2025) and LLaDA-1.5 (Zhu et al.,
2025), evaluating on four math benchmarks: GSM8K (Cobbe et al., 2021), MATH500 (Hendrycks
et al., 2021), SVAMP (Patel et al., 2021), and Countdown (Pan et al., 2025). Following d1 (Zhao
etal., 2025), we report performance under different output lengths. Temporal self-consistency voting
applies exponential weights to sampling steps. All of our experiments adopt semi-autoregressive
decoding with low-confidence remasking, using a block size of 32. The diffusion step is set
to half of the target output length. For post-training, LLaDA-8B-Instruct undergoes supervised
fine-tuning (SFT) on s1K (Muennighoff et al., 2025) for 20 epochs with 4,096 token sequences,
followed by reinforcement fine-tuning (RFT). For LLaDA-1.5, we omit SFT because it often results
in performance degradation, likely due to the model having already undergone sophisticated post-
training. All training uses 8 H800 GPUs. Further details are in Appendix B.

Answer Extraction for Voting and Semantic Clustering. At every diffusion step, LLaDA first
generates a fully decoded token sequence before applying the remasking operation. Although some
positions may be remasked and re-predicted in later steps, this pre-remask sequence is always a
complete, unmasked prediction. We use these fully decoded sequences as the intermediate outputs
for all temporal analyses. This design guarantees that each intermediate prediction provides a
syntactically complete candidate answer. Answer extraction itself is performed by parsing the
<answer>...</answer> block. If a pre-remask sequence does not contain a valid answer
span at a particular step, that step is excluded from temporal self-consistency voting or semantic
clustering. Only steps containing valid, fully parsed answers contribute to our temporal statistics.

5.2 TEMPORAL SELF-CONSISTENCY VOTING

Voting Strategies. We apply weighted voting across denoising steps using three schemes: fixed,
linear, and exponential. Each uses a weighting function f(¢), where ¢ is the current diffusion step.
The fixed scheme assigns equal weight to all steps with f(¢) = 1. The linear weighting takes the
form f(t) = 1 —¢/T, and exponential uses f(t) = exp(a(1 — ¢/T)) with « = 5. Both linear and
exponential schemes prioritize early diffusion time steps, i.e., latter sampling steps.

Ablations on Voting Strategies. As shown in Table 1, linear and exponential weighting improve
inference performance, with exponential yielding the largest gains, e.g., LLaDA-8B-Instruct
improves by 1.6%, 1.2%, 1.0%, and 2.2% on GSMS8K, MATH500, SVAMP, and Countdown,
respectively. Fixed weighting performs slightly worse, likely because equal weights amplify
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Figure 5: (a) Ablations on « value selection in temporal voting with exponential weighting. (b)
Negative temporal semantic entropy reward curve during reinforcement fine-tuning.

Table 2: Performance of reinforcement fine-tuning. Unlike d1 (Zhao et al., 2025), which
requires ground-truth answers, our method uses negative Temporal Semantic Entropy (TSE) as the
reward without labels. Combining TSE with accuracy-based rewards yields further gains across
benchmarks. Green numbers denote improvements over baseline.

\ GSMSK MATHS500 SVAMP Countdown
Method / Seq Len | 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA baseline | 702 787 80.1 238 344 368 817 833 827 215 199 215
accuracy reward (d1) | 717 783 823 310 360 404 857 880 887 348 355 379
N , [ 722 788 802 30.6 346 380 843 89.0 887 386 535 449
+RFT negative TSEreward (ours) | [5°0 0| 401 468 402 +12 426 +57 +60 +17.1 4336 +234

72.1 80.0 83.0 312 354 414 850 903 923 415 426 547

combining both (ours) +1.9 413 429 +74 +1.0 +4.6 433 +7.0 +9.6 +20.0 +22.7 +33.2

LLaDA-15 baseline 698 794 811 290 324 354 853 863 833 215 201 207
accuracy reward (d1) | 730 789 831 298 362 402 847 8§93 880 387 297 391

: 720 808 826 302 350 400 863 883 873 500 559 531

+RET negative TSE reward (ours) ‘ $22 +14 +15 412 26 +46 +1.0 +20 +40 +285 +348 4324
732 805 840 296 354 414 863 90.3 890 445 469 633

combining both (ours)

+34 +1.1 +29 +0.6 +3.0 +6.0 +1.0 +4.0 457 +23.0 +25.8 +42.6

inaccurate early predictions. We therefore adopt exponential weighting by default. We futher ablate
the exponential hyperparameter o. As shown in Fig. 5a, o values ranging from 1 to 11 consistently
improve accuracy, peaking at o = 5 with an average gain of 1.5%. Thus, we set o = 5 by default.

5.3 TEMPORAL CONSISTENCY REINFORCEMENT

Main Results. Table 2 reports results of incorporating temporal consistency into RFT. We have
the following observations. (1) Using TSE reward alone consistently improves performance across
lengths and datasets. (2) TSE reward matches or surpasses accuracy reward despite not using ground
truth, e.g., on Countdown, LLaDA-8B-Instruct improves 24.7% vs. 15.1% with d1. (3) Combining
TSE with accuracy reward further boosts results, with absolute gains of 0.9% (GSMS8K), 0.2%
(MATHS500), 1.7% (SVAMP), and 10.2% (Countdown) over d1. Overall, our method achieves
average improvements of 2.0%, 4.3%, 6.6%, and 25.3% over the SFT baseline, confirming the
benefit of encouraging temporal consistency.

Training Dynamics. We visualize the reward curves during training using LLaDA-8B-Instruct as
an example, as shown in Fig. 5b. The curves demonstrate a consistent upward trend in rewards
across different datasets as training progresses, indicating effective learning and stable optimization.

Model Attributes After RFT. We analyze LLaDA-8B-Instruct fine-tuned with the negative TSE
reward, with generation length 128, evaluating its behavior across several dimensions: TSE, the ever
pass rate , and the number of effective tokens (defined as the average count of non-padding, non-
EOS tokens per generation). We have the following observations. (1) As shown in Fig. 6a, temporal
semantic entropy consistently decreases across various datasets after RFT, reflecting enhanced
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Figure 6: Model attributes after reinforcement finetuning (RFT). (a) Temporal semantic entropy
decreases after RFT, showing improved semantic consistency in outputs. (b) The ever pass rate
remains above the final pass rate, leaving room for further gains. (c) Effective tokens per generation
drop after RFT, yielding more concise outputs.

temporal consistency in the model’s outputs—an anticipated result of reinforcement learning; (2)
Fig. 6b demonstrates that the ever pass rate remains higher than the final pass rate after RFT,
suggesting there is still potential for further improvement. (3) In Fig. 6c, effective tokens decline
after RFT, implying more concise outputs. We suspect shorter generations may reduce temporal
oscillations, though this requires further study. Further analysis of model attributes after RFT and a
detailed discussion of limitations are provided in Appendix E.5 and Appendix D.

6 CONCLUSION

This work uncovers a critical yet overlooked aspect of diffusion large language models: their
rich temporal dynamics. By identifying temporal oscillation as a recurring issue in dLLM
decoding, we challenge the convention of relying solely on final-step predictions. Our proposed
methods—Temporal Self-Consistency Voting and Temporal Consistency Reinforcement —demon-
strate that intermediate predictions are not noise, but signal. These strategies improve accuracy
and stability without requiring additional inference passes or ground-truth supervision. Through
extensive experiments, we show that temporal consistency is not just a desirable property—it’s a
powerful lever for performance. We hope that this study inspires future research to treat intermediate
denoising time steps not as a nuisance, but as a feature in diffusion-based text generation.

ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive information. All datasets
used in our experiments (GSM8K, MATHS500, SVAMP, and Countdown) are publicly available
benchmark datasets designed for evaluating mathematical reasoning in large language models. We
strictly adhered to ethical research practices and did not conduct any data collection that could
raise privacy, security, or fairness concerns. Our methods—Temporal Self-Consistency Voting and
Temporal Consistency Reinforcement—focus on improving the robustness and accuracy of diffusion
language models, without introducing risks of harmful applications. To the best of our knowledge,
this research complies with the ICLR Code of Ethics and poses no foreseeable ethical concerns.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. Detailed dataset
descriptions are provided in Appendix B.1, and training configurations and hyperparameters are
reported in Appendix B.2. The sampling and evaluation procedures are outlined in Appendix B.3.
To further promote transparency, we provide mathematical formulations and thorough descriptions
of our proposed algorithms—Temporal Self-Consistency Voting and Temporal Consistency Rein-
forcement—directly in the main paper. Upon acceptance, we will release our models, together with
training and inference code, to facilitate replication and further research.

10



Under review as a conference paper at ICLR 2026

REFERENCES

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable
effectiveness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han,
Subham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between
autoregressive and diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981-17993, 2021.

Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Kseniia Dudnyk, and Jian Zhou. Dirichlet diffusion score
model for biological sequence generation. In International Conference on Machine Learning, pp.
1276-1301. PMLR, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Minghan Chen, Guikun Chen, Wenguan Wang, and Yi Yang. Seed-grpo: Semantic entropy enhanced
grpo for uncertainty-aware policy optimization. arXiv preprint arXiv:2505.12346, 2025.

Chaoran Cheng, Jiahan Li, Jian Peng, and Ge Liu. Categorical flow matching on statistical
manifolds. Advances in Neural Information Processing Systems, 37:54787-54819, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

Mehul Damani, Isha Puri, Stewart Slocum, Idan Shenfeld, Leshem Choshen, Yoon Kim, and Jacob
Andreas. Beyond binary rewards: Training Ims to reason about their uncertainty. arXiv preprint
arXiv:2507.16806, 2025.

Oscar Davis, Samuel Kessler, Mircea Petrache, Ismail Ceylan, Michael Bronstein, and Joey Bose.
Fisher flow matching for generative modeling over discrete data. Advances in Neural Information
Processing Systems, 37:139054-139084, 2024.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
language models using semantic entropy. Nature, 630(8017):625-630, 2024.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American statistical Association, 102(477):359-378, 2007.

Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code
generation. arXiv preprint arXiv:2506.20639, 2025.

Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models.
Advances in Neural Information Processing Systems, 36:16693—16715, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,

Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

11



Under review as a conference paper at ICLR 2026

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-
based diffusion language model for text generation and modular control. arXiv preprint
arXiv:2210.17432, 2022.

Haoyu He, Katrin Renz, Yong Cao, and Andreas Geiger. Mdpo: Overcoming the training-inference
divide of masked diffusion language models. arXiv preprint arXiv:2508.13148, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in neural information processing systems, 35:8633—
8646, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
Shaohui Lin. Vision-rl: Incentivizing reasoning capability in multimodal large language models.
arXiv preprint arXiv:2503.06749, 2025.

Sakaguchi Keisuke, Le Bras Ronan, Bhagavatula Chandra, and Choi Yejin. Winogrande: An
adversarial winograd schema challenge at scale. 2019.

Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham Kakade, and Sitan Chen. Train for the
worst, plan for the best: Understanding token ordering in masked diffusions. arXiv preprint
arXiv:2502.06768, 2025.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. arXiv preprint arXiv:2302.09664, 2023.

Pengxiang Li, Yefan Zhou, Dilxat Muhtar, Lu Yin, Shilin Yan, Li Shen, Yi Liang, Soroush Vosoughi,
and Shiwei Liu. Diffusion language models know the answer before decoding. arXiv preprint
arXiv:2508.19982, 2025a.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
Im improves controllable text generation. Advances in neural information processing systems, 35:

4328-4343, 2022.

Yuetai Li, Zhangchen Xu, Fengqing Jiang, Bhaskar Ramasubramanian, Luyao Niu, Bill Yuchen Lin,
Xiang Yue, and Radha Poovendran. Temporal sampling for forgotten reasoning in llms. arXiv
preprint arXiv:2505.20196, 2025b.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Yexiang Liu, Zekun Li, Zhi Fang, Nan Xu, Ran He, and Tieniu Tan. Rethinking the role of
prompting strategies in llm test-time scaling: A perspective of probability theory. arXiv preprint
arXiv:2505.10981, 2025a.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding rl-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025b.

12



Under review as a conference paper at ICLR 2026

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534-46594, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text. arXiv preprint arXiv:2410.18514, 2024.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
Maximizing confidence alone improves reasoning. arXiv preprint arXiv:2505.22660, 2025.

Zhangyang Qi, Zhixiong Zhang, Yizhou Yu, Jiaqi Wang, and Hengshuang Zhao. VIn-rl: Vision-
language navigation via reinforcement fine-tuning. arXiv preprint arXiv:2506.17221, 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 37:130136-130184, 2024.

Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models. arXiv
preprint arXiv:2506.01928, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qiangian Zhang, et al. VIm-rl: A stable and generalizable r1-style large
vision-language model. arXiv preprint arXiv:2504.07615, 2025.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and
generalized masked diffusion for discrete data. In Advances in Neural Information Processing
Systems, 2024.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and
Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design. arXiv
preprint arXiv:2402.05841, 2024.

13



Under review as a conference paper at ICLR 2026

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
diffusion models with inference-time scaling. arXiv preprint arXiv:2503.00307, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Shaoan Xie, Lingjing Kong, Xiangchen Song, Xinshuai Dong, Guangyi Chen, Eric P Xing, and Kun
Zhang. Step-aware policy optimization for reasoning in diffusion large language models. arXiv
preprint arXiv:2510.01544, 2025.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
Multimodal large diffusion language models. arXiv preprint arXiv:2505.15809, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Advances
in neural information processing systems, 36:11809—-11822, 2023.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b, 2025. URL https://hkunlp.github.io/blog/2025/dream.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
is already half the answer: Fully unsupervised llm reasoning incentivization. arXiv preprint
arXiv:2504.05812, 2025.

Siyan Zhao, Devaansh Gupta, Qinging Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Hao Zhong, Muzhi Zhu, Zongze Du, Zheng Huang, Canyu Zhao, Mingyu Liu, Wen Wang, Hao
Chen, and Chunhua Shen. Omni-rl: Reinforcement learning for omnimodal reasoning via two-
system collaboration. arXiv preprint arXiv:2505.20256, 2025.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
large language diffusion models. arXiv preprint arXiv:2505.19223, 2025.

14


https://hkunlp.github.io/blog/2025/dream

Under review as a conference paper at ICLR 2026

LLM USAGE

In this section, we clarify the role of large language models (LLMs) in preparing this work. The
model was used exclusively for language polishing, such as refining grammar, style, and readability,
without contributing to the research design, analysis, or conclusions.

A APPENDIX OVERVIEW

This appendix provides additional implementation details, empirical analysis, and extended results
to supplement the main paper. It is organized as follows:

¢ Appendix B: More Implementation Details
Provides further implementation information, including:
— Appendix B.1: Detailed descriptions of the datasets used
— Appendix B.2: Training configurations and hyperparameters
— Appendix B.3: Sampling strategies and evaluation procedures

* Appendix C: More Analysis
Presents extended analyses, including:

Appendix C.1: Accuracy and entropy analysis on the MATHS500 and SVAMP datasets
Appendix C.2: Temporal semantic entropy across varying generated lengths
Appendix C.3: Block-level token entropy analysis

Appendix C.4: Time analysis for temporal consistency voting

Appendix C.5: Investigating the Causes of Time Oscillation
* Appendix D: Limitations
Discuss limitations and analyze failure cases, including:
— Appendix D.1: Discuss potential limitations of our method
— Appendix D.2: Analysis of failure cases on the Sudoku dataset
¢ Appendix E: More Experimental Results
Includes additional experimental findings, such as:
— Appendix E.2: Training a unified model across multiple tasks
Appendix E.3: Possible alternatives to temporal semantic entropy

Appendix E.4: Ablation studies on different scoring rules for combining TSE with
accuracy reward

Appendix E.5: Performance of temporal self-consistency voting on reinforcement
fine-tuned models

Appendix E.6: Detailed examples illustrating temporal oscillation

B MORE IMPLEMENTATION DETAILS

B.1 DATASETS
We provided detailed descriptions of the datasets as follows:

* GSMBSK (Cobbe et al., 2021) comprises 8.5K linguistically diverse grade school math word
problems (7.5K training, 1K test), solvable by bright middle school students via 2—-8 steps
of basic arithmetic, suited for multi-step mathematical reasoning.

* MATHS00 (Lightman et al., 2023) is a curated subset of 500 problems selected from the
broader MATH dataset (Hendrycks et al., 2021), featuring high-school-level competition
math problems.

* SVAMP (Patel et al., 2021) serves as a benchmark for elementary-level Math Word
Problems (MWPs), where each MWP is a short natural language narrative describing a
scenario and asking questions about unknown quantities.
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Figure S1: Top Row: Pass@1 and Pass@1 | ¢t for MATH500 and SVAMP are provided as

supplementary results to Fig. 2, using the same experimental settings. A noticeable gap similar
to that observed in GSM8K and Countdown between Pass @1 and Pass @1 | ¢ is present across
all sampling steps. Bottom Row: Answer Entropy for MATH500 and SVAMP are provided as
supplementary results to Fig. 3, using the same experimental setups. MATHS500 and SVAMP exhibit
answer entropy patterns similar to those of GSM8K and Countdown.

» Countdown (Pan et al., 2025) involves a combinatorial arithmetic game with three numbers,
requiring models to reach target numbers using basic arithmetic operations on a given set
of numbers.

B.2 TRAINING

During reinforcement fine-tuning, we train our model using sequences of 256 tokens, with a batch
size of 6 per GPU and gradient accumulation over 2 steps. Low-Rank Adaptation (LoRA) (Hu et al.,
2022) is applied with a rank of 128 and a scaling factor of 64. During reward computation, answers
are parsed from generated text sequences for semantic clustering. When answer parsing fails due
to an inaccurate format, we simply discard the answer for temporal semantic entropy computation.
Moreover, since answers generated in the first half of the sampling steps tend to be rough and less
reliable, we exclude them from consideration. Only answers from the second half of the sampling
steps are used to calculate the temporal semantic entropy.

B.3 SAMPLING AND EVALUATION

Unified Decoding Configuration. During sampling, we adopt the semi-autoregressive sampling
approach following LLaDA (Nie et al., 2025). Specifically, the sequence is split into multiple
blocks, which are generated in a left-to-right manner. For each individual block, we employ the low-
confidence remasking strategy during the sampling process. We use a block size of 32, following
LLaDA (Nie et al., 2025) and d1 (Zhao et al., 2025). Following the practice in d1 (Zhao et al.,
2025), we evaluate the model every 100 steps, starting from step 600 to 8,000 steps, and report the
best results.

Generation Lengths. (/) Evaluation. For test-time self-consistency voting and all RL evaluations,
we evaluate three output lengths: 128, 256, and 512 tokens, corresponding to 64, 128, and 256
diffusion steps, respectively (again following d1 (Zhao et al., 2025)). (2) Analysis experiments. In
the exploratory study in Sec. 3.2/ Fig. 1, we analyze output lengths of 128, 256, and 512, and observe
temporal oscillation under all settings. Sec. 3.3 uses the default 128-token / 64-step configuration.
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Figure S2: Temporal semantic entropy with varying generation lengths. Average temporal
semantic entropy across datasets with generation lengths of 256 and 512, showing consistent patterns
with Fig. 4. Higher entropy generally correlates with lower accuracy.

Appendix Sec. C.2 / Fig. S2 further reports temporal semantic entropy under 256- and 512-length
generations to demonstrate robustness.

C MORE ANALYSIS

C.1 ANALYSIS ON MATH500 AND SVAMP DATASETS

Accuracy Analysis. As shown in the first row in Fig. S1, MATH500 and SVAMP exhibit a similar
pattern to that observed Fig. 2 in Sec. 3.3, where a noticeable gap emerges between Pass @1 and
Pass@1 | t. In MATH500 and SVAMP, correct answers start to appear early in the sampling
process(near 4% and 39% at first step, respectively), and continue to improve over subsequent
iterations. Interestingly, on the SVAMP dataset, a distinct pattern emerged in the model’s Pass @1
accuracy across different sampling steps. Between steps 3 and 20, performance declined noticeably,
followed by a recovery after step 20. This distinctive fluctuation trajectory represents another
manifestation of the temporal oscillation phenomenon.

Entropy Analysis. As shown in the second row in Fig. S1, for MATH500 and SVAMP, the
answer entropy of Finally-Correct questions remains the lowest throughout the sampling process.
Intermediate-Correct questions consistently exhibit lower entropy in the early sampling steps
compared to Always-Incorrect ones, a pattern observed across all four datasets. However, unlike
GSMB8K, MATHS500, and Countdown, where the final entropy of Intermediate-Correct and Always-
Incorrect questions is similar, SVAMP displays relatively high entropy in the final sampling step for
Intermediate-Correct questions.

C.2 TEMPORAL SEMANTIC ENTROPY OVER VARYING GENERATED LENGTH

To further validate the generalizability of our findings regarding temporal semantic entropy, we
extended the experiments beyond those presented in Fig. 4, which used a generation length of 128
and 64 diffusion steps. Specifically, we tested generation lengths of 256 and 512, with diffusion
steps set to half the generation length.

As shown in Fig. S2, the pattern of temporal semantic entropy observed here aligns with the
conclusions drawn in Sec. 3.3: questions that are eventually answered correctly tend to display
consistently low temporal semantic entropy, indicating that their intermediate predictions remain
stable and semantically coherent throughout the decoding process.

C.3 ANALYSIS ON THE AVERAGE ENTROPY IN BLOCKS

In addition to the token-level entropy considered in Sec. 3.3 and the answer-level entropy considered
in temporal semantic entropy, we additionally introduce a block-level entropy. This is motivated by
the fact that dLLMs typically adopts a semi-autoregressive sampling strategy. In this sampling
strategy, the entire generated sequence is divided into multiple fixed-length blocks, with each block
allocated a specific number of sampling steps. During these steps, remasking and unmasking
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Figure S3:  Block-level entropy dynamics under semi-autoregressive sampling. During
sampling, sequences are partitioned into fixed-length blocks, processed in a left-to-right order, with
remasking and unmasking operations restricted to the current block. Average token entropy within
a block decreases with more sampling steps. A sharp entropy spike occurs when shifting to a new

block, likely due to simultaneous decoding of multiple masked tokens increasing initial uncertainty.

Table S1: Runtime comparison (in seconds) for temporal self-consistency voting. For the voting
setting, we report end-to-end latency from receiving the input to producing the final voted output.
For the non-voting setting, we measure the time required to generate an output of the same final
length. Across all datasets, the additional cost introduced by voting is minimal.
| GSMSK MATHS00 SVAMP Countdown

Method /SeqLen | 128 256 512 128 256 512 128 256 512 128 256 512
w/o voting (baseline) | 4.48 1076 29.24 447 10.87 2945 423 1031 2845 4359 1099 29.58
w/ voting | 453 1086 2976 454 1091 2961 429 1041 2859 464 1112 298I

LLaDA-8B-Instruct

operations are performed exclusively on the current block. Starting with the first block, the process
steps to the next block only after all tokens in the current block have been unmasked.

We denote the current block as containing tokens indexed from a start s to an end e — 1 (inclusive),
such that the block spans indices i € {s, s+ 1,...,e — 1}. The block entropy is then calculated as:

1 e—1
Hyjock = > H(i)
1=8

€ — S8 “

where H (i) represents the entropy of the i-th generated token, and e — s denotes the total number
of tokens in the block.

As illustrated in Fig. S3, the average token entropy within a single block exhibits a consistent
downward trend as sampling steps accumulate. This pattern is intuitive: as more tokens in the
current block are decoded, they collectively form a richer contextual foundation, thereby mitigating
the model’s uncertainty about subsequent tokens in the block. Interestingly, when decoding shifts to
a new block, the entropy rises sharply. This phenomenon is likely due to the need to decode multiple
masked tokens simultaneously at the start of a new block, which increases the model’s uncertainty.

C.4 TIME ANALYSIS FOR TEMPORAL SELE-CONSISTENCY VOTING

To assess the efficiency of our temporal self-consistency voting approach, we compare the per-
sample runtime with and without voting. We use LLaDA-8B-Instruct with semi-autoregressive
decoding (block size 32), a diffusion step set to half of the target output length, and a batch size
of 1. All timing experiments are performed on four NVIDIA 4090-24GB GPUs.

For the voting setting, we measure the end-to-end runtime from receiving the input to producing the
final voted answer. For the non-voting setting, we measure the time to generate an output of the
same final length. The difference reflects the additional operations performed by voting—namely
answer parsing, clustering, and selecting the final answer. We report the average time to generate
one response of the fixed output length for each dataset.

As shown in Table S1, temporal self-consistency voting introduces essentially no extra runtime.
Across all datasets, the overhead is about 1% per sample—negligible relative to the total
computation time.
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Table S2: Evaluation results under different randomness levels and remasking strategies.
Black numbers denote Pass @1, while gray numbers denote EverPass @1|¢. As shown, the gap
between Pass @1 and EverPass @1|¢ persists across all seeds, temperature settings, and remasking
strategies, indicating that the phenomenon of time oscillation is not sensitive to these configuration
choices.

Setting GSMSK MATHS00 SVAMP Countdown
Seed Temp. Remasking | 128 256 512 128 256 512 128 256 512 128 256 512

679 765 792 274 334 358 833 840 847 188 203 15.6
80.3 84.8 81.0 402 456 472 90.7 89.7 873 258 27.7 199
682 765 792 272 334 358 83.0 840 847 203 203 16.0
81.5 848 81.0 408 456 472 91.0 89.7 873 293 27.0 20.7

69.6 763 782 272 334 358 833 833 847 203 223 188
80.3 852 803 408 456 472 90.7 893 86.7 277 293 227

674 76.6 785 256 33.8 338 847 850 847 203 223 188
82.6 86.7 815 432 490 508 91.7 90.7 87.0 293 207 227

66.1 752 770 238 30.6 308 850 843 850 195 176 168
78.8 819 792 376 420 422 897 87.0 873 223 195 21.1

572 645 621 198 244 234 730 733 727 109 82 105
76.9 76.6 668 358 38.6 334 86.0 820 780 223 125 145

594 61.6 621 198 246 212 750 733 727 121 98 105
753 757 672 352 422 33.6 873 79.0 777 238 141 15.6

42 0.0 Low Confidence

218 0.0 Low Confidence

66 0.0 Low Confidence

42 0.6 Low Confidence

42 1.0 Low Confidence

42 0.0 Random

218 0.0 Random

C.5 INVESTIGATING THE CAUSES OF TIME OSCILLATION

First, we investigate the effects of randomness and temperature on time oscillation. As shown in
Table S2, although both Pass @1 and EverPass @1|¢ exhibit slight fluctuations across different seeds
and temperature settings, the gap between them consistently persists. We further examine the impact
of applying a random remasking strategy. While this strategy noticeably reduces both Pass @1 and
EverPass @1|t, the gap remains. These observations suggest that time oscillation is an inherent and
pervasive phenomenon originating from the model itself.

We hypothesize that time oscillation may arise from the training dynamics, where the same input
signal can be associated with multiple valid outputs, which is analogous to diffusion models in the
vision domain (Liu et al., 2022; Lipman et al., 2022) Specifically, consider a sequence seq; =
“abcd”, possible that another sequence seqs = “abce” also appears in the training data with the
same masked pattern, and the model is likewise supervised to predict from “<MASK >bc <MASK
>”. As a result, the model receives conflicting supervision signals, causing it to oscillate between
“abed” and “abce” during sampling.

Moreover, even if no alternative sequence like seq2 exists, the model may still suffer from
underfitting under certain masking patterns. In such cases, given the prompt “<MASK>bc
<MASK>", the model might incorrectly predict “abcx” instead of the intended sequence. This
behavior can likewise induce time oscillation during sampling.

D LIMITATIONS

D.1 DISCUSSIONS ON LIMITATIONS

While our temporal self-consistency voting and post-training approach demonstrates effectiveness
in many scenarios, it exhibits significant limitations when applied to tasks where the model’s
intermediate predictions are consistently inaccurate. As discussed in Appendix D.2, for the Sudoku
dataset, the average correctness across all intermediate generation steps remains exceedingly low
(below 5%), making it difficult to reliably vote for the correct answer. Similarly, RFT relies
on the model already achieving reasonably good performance to produce meaningful reward
signals (Prabhudesai et al., 2025; Agarwal et al., 2025), though combining TSE with the accuracy
reward may alleviate this issue to some extent. This underscores that our approach depends on the
model’s inherent ability to generate correct or near-correct answers in the sampling trajectory.
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Table S3: Performance of temporal self-consistency voting and temporal consistency
reinforcement on the Sudoku dataset. The baseline model is obtained by applying supervised
fine-tuning to LLaDA-8B-Instruct using the s1K dataset.

Model \ Sudoku
Method / Seq Len | 128 256 512
baseline | 122 67 55
+ temporal voting | 125 61 28
accuracy reward (d1) 232 178 127
+RFT  negative TSE reward (ours) ‘ 152 94 33
combining both (ours) | 27.5 278 16.6
EEE GSMSK  EEE SVAMP = Sudoku
BN MATHS500 B Countdown
40
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Figure S4: Temporal accuracy across datasets. Temporal Accuracy on Sudoku remains
consistently low (all below 5%) across different settings, indicating that the model rarely generates
correct answers during the sampling process. This scarcity of valid candidates severely limits the
effectiveness of voting mechanisms, as there are insufficient correct outputs to reliably converge on
the correct answer.

D.2 FAILURE CASE ANALYSIS

As discussed in Appendix D.1, our method may rely on the model’s initial performance to achieve
further improvements. To investigate this limitation, we take the challenging Sudoku dataset as a
case study. As shown in Table S3, directly applying our proposed temporal self-consistency voting
and temporal consistency reinforcement with the negative TSE reward alone results in a noticeable
performance drop on the Sudoku dataset. For example, the original accuracy of the base model for

the generation length of 512 is 5.5%, while the voting method achieves 2.8%, reflecting a decline of
2.7%.

To better understand this problem, we conduct a deeper analysis of the model’s behavior during
generation. We define a metric called Temporal Accuracy, which quantifies the average correctness
across all intermediate sampling steps in the generation process. Formally, let e; ; represent the
correctness indicator for the i-th question at the ¢-th sampling step, where ¢; ; = 1 if the answer
is correct, and 0O otherwise. Then, the Temporal Accuracy for a dataset with N examples and T’
sampling steps is computed as:

N T
1
TemporalAccuracy = N.T Z Z €it- (S1)

i=1 t=1

As shown in Fig. S4, the Temporal Accuracy of the Sudoku is much lower than the other 4 datasets,
where temporal self-consistency voting proved effective. On the Sudoku dataset, we observe that
the Temporal Accuracy remains exceedingly low—below 5% on average—across all intermediate
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Table S4: Temporal self-consistency voting results on ARC-C and Winogrande using the
semi-autoregressive setup (block size 32). Exponential and linear weighting schemes yield
consistent accuracy improvements without QA-specific tuning, demonstrating robust gains across
both datasets.

| ARC-C Winogrande
Method /Seq Len | 128 256 512 128 256 512
LLaDA-8B-Instruct baseline ‘ 814 833 83.1 531 536 525

Fixed Weighting ‘82.6 83.8 834 544 551 550
+ Temporal Voting Linear Weighting | 82.6 83.8 834 561 57.7 584

82.6 838 834 544 551 550
+1.2 +05 +03 +1.3 +1.5 +25

EverPass @1 | ¢ ‘S(x] 869 855 615 61.6 620

Exp. Weighting

Table S5: Temporal Consistency Reinforcement results on ARC-C and Winogrande. Both
TSE-only and combined rewards consistently outperform the baseline across sequence lengths, with
the combined reward yielding the largest gains.

| ARC-C Winogrande
Method / Seq Len ‘ 128 256 512 128 256 512
LLaDA baseline ‘ 81.6 828 834 545 56.6 56.5

845 848 848 59.1 60.6 613
+29 420 +14 +46 +4.0 +4.8

845 858 863 666 69.0 685
+2.9 +43.0 +29 +12.1 +124 +12.0

negative TSE reward (ours)
+RFT

combining both (ours)

steps. This low signal makes it difficult for temporal voting mechanisms to reliably identify the
correct answer and for reinforcement learning signals to guide the model effectively.

Interestingly, while RFT with only negative TSE reward leads to poorer results, combining TSE with
accuracy reward can achieve better performance than using accuracy reward alone. We hypothesize
that this is because the integration of TSE allows the model to receive more fine-grained rewards,
rather than just binary outcomes of correct or incorrect.

E MORE EXPERIMENTAL RESULTS

E.1 EXPERIMENTS ON NATURAL LANGUAGE QUESTION-ANSWERING DATASETS

To verify that our methods generalize beyond math reasoning, we added experiments on two natural
language QA benchmarks, ARC-C (Clark et al., 2018) and Winogrande (Keisuke et al., 2019),
evaluating both Temporal Self-Consistency Voting and Temporal Consistency Reinforcement.

Temporal Self-Consistency Voting. We adopt exactly the same semi-autoregressive decoding
configuration as described in the main paper, using a block size of 32. For the exponential weighting
scheme, we directly reuse the hyperparameter o = 1.5, which was originally tuned on mathematical
reasoning datasets, and perform no additional tuning on QA tasks. As shown in Table S4, on ARC-
C, exponential temporal voting yields an average improvement of approximately +0.7 accuracy
points over the baseline. On Winogrande, the untuned exponential weighting achieves an average
gain of +1.8 points, and applying linear weighting leads to further improvements, reaching 58.4
accuracy (compared to a 52.5 baseline at length 512). These findings demonstrate that temporal
voting provides consistent benefits on natural-language QA tasks and remains robust under different
weighting schemes.

Temporal Consistency Reinforcement. We train on ARC-C and Winogrande using the same
GRPO configuration as in the main experiments, adopting either (i) a negative TSE reward
alone or (ii) a combined TSE + accuracy reward. As shown in Table S7, both configurations
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Table S6: Unified Model Performance Across Multiple Tasks. A single model is trained jointly
on GSMS8K, MATH500, SVAMP, and Countdown.

| GSMSK MATHS500 SVAMP Countdown
Method / Seq Len | 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA baseline | 702 787 80.1 238 344 368 817 833 827 215 199 215
accuracy reward (d1) [ 713 773 807 280 336 392 840 840 850 258 223 37.1
+ RFT negative TSE reward (ours) | 71.5 77.2 812 29.0 338 39.0 863 847 87.0 367 254 46.1
combined reward (ours) | 724 788 804 288 352 40.2 887 87.0 860 371 27.7 469
LLaDA-1.5 baseline | 69.8 794 811 290 324 354 853 863 833 215 21.1 207
accuracy reward (d1) ‘ 725 79.2 81.7 286 350 390 89.0 877 853 305 246 418
+RFT negative TSE reward (ours) | 72.5 792 814 29.0 32.6 382 893 853 867 373 445 340

combined reward (ours) | 737 795 825 282 350 41.6 883 90.0 88.0 379 297 504

consistently outperform the baseline across all sequence lengths on ARC-C, yielding improvements
of approximately 2-3 accuracy points (e.g., 81.6 to 84.5 at 128 tokens and 82.8 to 85.8 at 256
tokens). On Winogrande, the combined reward yields the largest gains, with improvements of up to
+12.4 points (e.g., 56.6 to 69.0 at 256 tokens).

Overall, these additional experiments on ARC-C and Winogrande demonstrate that both our test-
time voting and reinforcement learning approaches generalize beyond mathematical reasoning to
natural-language QA. This further supports our claim that leveraging temporal dynamics constitutes
a broadly applicable principle for improving diffusion language models.

E.2 TRAINING A UNIFIED MODEL ACROSS MULTIPLE TASKS

To evaluate the generalization ability of our approach, we validate the proposed method in a multi-
task setting. Specifically, we jointly train a single model on four datasets: GSM8K, MATHS500,
SVAMP, and Countdown. To ensure balanced training across tasks, we subsample each dataset so
that the number of training examples is equal for all tasks.

Table S6 summarizes the results. Across all four benchmarks, our combined reward method
consistently outperforms the supervised fine-tuning baselines. On GSM8K, we observe clear gains
at shorter sequence lengths, for example, with LLaDA-1.5 on length 128, accuracy improves from
69.8 to 73.7, yielding +3.9 points. On SVAMP, similar short-sequence gains are observed, from 81.7
to 88.7, a +7.0 points increase. For the more challenging MATHS500, the best improvement occurs
at LLaDA-1.5, length 512, where performance increases from 35.4 to 41.6 (+6.2 points). Finally, on
Countdown, our method achieves dramatic improvements, for instance, with LLaDA-1.5 at length
512, accuracy climbs from 20.7 to 50.4, a striking +29.7 points.

These results demonstrate that our method not only scales well across different reasoning domains
but also enhances robustness under varying sequence lengths, confirming its effectiveness as a
unified reward design for multi-task learning.

E.3 POSSIBLE ALTERNATIVES TO TEMPORAL SEMANTIC ENTROPY

Our method primarily adopts Temperal Semantic Entropy(TSE) as the underlying mechanism for
temporal consistency modeling. However, TSE is not the only viable choice. To contextualize our
design and clarify the landscape of alternatives, we examine two additional possible approaches:
pairwise agreement and token entropy.

To measure temporal consistency, a natural idea is to quantify how frequently the predicted answer
changes along the sampling trajectory. Motivated by this intuition, we introduce ChangeRate as a
metric for assessing the model’s confidence and stability.

During decoding, we obtain a sequence of T intermediate predictions, denoted as {x{}7_,. Based on
this sequence, we define ChangeRate as the fraction of consecutive steps that produce the different
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Figure S5: ChangeRate of correct answers across different output lengths for each dataset.
Lower ChangeRate indicates more stable predictions over the sampling trajectory.

Table S7: Ablation results replacing TSE with alternative metrics, including negative average token
entropy (ATE) and pairwise agreement (PA) between consecutive diffusion steps. Bolded values
indicate the best performance among the three methods.

\ GSMSK MATHS500 SVAMP Countdown
Method / Seq Len | 128 256 512 128 256 512 128 256 512 128 256 512
baseline \ 70.2 787 80.1 23.8 344 368 81.7 833 827 215 199 215

negative TSE reward | 722 788 802 30.6 34.6 38.0 843 89.0 887 386 535 449
negative ATE reward | 69.1 777 795 274 322 372 827 853 850 229 234 305
PA reward | 713 789 79.7 31.0 33.0 376 830 873 867 320 447 413
TSE & Accuracy reward | 72.1 80.0 83.0 312 354 414 850 903 923 415 426 54.7
ATE & Accuracy reward | 70.2 772 802 30.8 348 384 847 863 853 281 297 359
PA & Accuracy reward | 71.0 792 814 32.0 338 39.6 850 897 887 369 434 505

answer:

T-1
_ 1 bt
ChangeRate = 1 ;_1 1[xy =% '] (S2)

A higher ChangeRate indicates that the model’s predictions vary more frequently across successive
steps, signaling lower temporal consistency. For completeness, we define pairwise agreement (PA)
as the complement of ChangeRate, PA = 1 — ChangeRate, and employ it as an RL reward to
promote temporally consistent predictions.

Similar to TSE, we compute the ChangeRate for correct answers across different output lengths,
with the results shown in Fig. S5. We observe that, for correctly answered questions, the
ChangeRate tends to be lower. However, unlike TSE, ChangeRate does not exhibit significant
variation across datasets. That is, whether the model performs well or poorly on a given dataset, the
ChangeRate does not show a clear pattern. In contrast, TSE is noticeably lower on easier datasets
such as GSM8K and SVAMP compared to more challenging ones like MATH500 and Countdown,
as shown in Sec. 3.3.

In addition, we propose using the answer entropy, which is computed from the token distribution
of the predicted answer, as a supervisory signal. Although this entropy measure cannot directly
supervise temporal consistency in the answer trajectory, it still provides a meaningful indication of
how confident the model is in its prediction. As shown in Fig. 3, higher entropy corresponds to
lower confidence, while lower entropy suggests that the model is more certain about the generated
answer.

As shown in Table S7, we observe that: (1) Using negative token entropy as the reward yields
moderate improvement, indicating that local confidence is useful but insufficient. Gains are
consistently smaller than with TSE; (2) The pairwise agreement reward performs better than token
entropy and comparable to TSE.

Intuitively, PA captures dynamic stability; for example, it can tell that "010101” is less stable than
”000111,” but it cannot differentiate between semantically diverse outputs such as ”010203” and
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Table S8: Ablations on scoring rules for combining TSE with accuracy reward. We compare 4
different scoring rules, including entropy scoring, quadratic scoring, spherical scoring, and logistic
scoring.

Model / Dataset \ GSMS8K MATHS500 SVAMP Countdown
Method / Seq Len \ 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA baseline \ 70.2 78.7 80.1 238 344 368 81.7 833 827 215 199 215
entropy 717 785 823 31.6 382 392 88.7 893 893 47.6 50.0 53.1
+RFT quadratic 713 799 820 31.0 376 40.0 88.0 83 893 50.0 344 43.1
logistic 73.0 79.5 81.1 31.6 368 394 877 873 90.7 465 379 512
spherical 72.1 80.0 83.0 312 354 414 850 903 923 415 42,6 54.7
LLaDA-1.5 baseline \ 69.8 79.4 81.1 29.0 324 354 853 863 833 21.5 21.1 207
entropy 712 792 834 278 36.6 412 86.7 903 89.0 44.1 453 58.6
+RFT quadratic 734 79.1 832 292 332 424 86.0 86.7 90.0 434 453 574
logistic 712 792 83.1 302 33.8 41.0 883 89.0 91.0 488 469 61.3
spherical 73.2 80.5 84.0 296 354 414 863 903 89.0 445 469 63.3

”010101.” In contrast, TSE measures the semantic dispersion of intermediate predictions, capturing
how the meaning of partial answers drifts along the trajectory, but it is less sensitive to fine-grained
dynamical fluctuations among semantically similar states.

We believe an ideal temporal-consistency metric should integrate the complementary strengths of
PA and TSE, leveraging PA’s sensitivity to dynamics and TSE’s sensitivity to semantic variation,
and we plan to explore such hybrid rewards in future work.

E.4 ABLATIONS ON SCORING RULES FOR COMBINING TSE WITH ACCURACY REWARD

In Sec. 4.2, we combine TSE with the accuracy reward using the proper scoring rule (Gneiting &
Raftery, 2007). The purpose of these scoring rules is to promote truthful confidence assessments:
they attain their minimum value when the predicted confidence c precisely mirrors the actual
probability that the model’s output o corresponds to the correct answer 0*. An exception is the
spherical version we use, which consistently encourages both correctness and higher certainty,
without penalizing overconfidence in incorrect predictions. Here, we conduct an ablation study
on different scoring rules. Specifically, we consider the following four forms:

Entropy scoring: 7" = 1,,—,+ - ¢(0;)

Quadratic scoring: 3" = 1, _,. — (¢(0;) — 14,0+ )?
Logistic scoring: 7% = 1o, —o+ + 1o, o+ 10g(c(0;)) 4+ (1 = 14,—0-) log(1 — ¢(0;))
c(0i)
V(e(0:))? + (1 = c(0:))?

All four proposed reward functions aim to jointly encourage correctness and temporal self-
consistency. Notably, the r$™ function gives a reward of 0 for incorrect answers, while for correct
answers, the reward is given by c(o;) = }C%TSE(O) where H,,.x = log T'. This reward reaches
a maximum value of 1 when all sampling steps yield the correct answer. The remaining three

functions, 7, 7.°¢, and ", correspond to the commonly used quadratic scoring, logarithmic
scoring, and spherical scoring in proper scoring rules (Gneiting & Raftery, 2007), respectively. We
report the performance of all four reward combination methods in Table S8. By default, we use the

spherical scoring rule because it demonstrates more superior results compared to the alternatives.

sphe
Tz‘p = I]-oi:o* +

Spherical scoring:

E.5 TEMPORAL SELF-CONSISTENCY VOTING AFTER RFT

It is worthwhile to investigate whether Temporal Self-consistency Voting continues to provide
performance benefits after Temporal Consistency Reinforcement. To this end, we conducted
experiments using two models: the first is derived from the LLaDA-8B-Instruct model trained with
the negative TSE reward, and the second is trained using the accuracy reward combined with TSE.
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Table S9: Performance of temporal majority voting after reinforcement learning. Temporal
self-consistency voting was applied to the model fine-tuned via temporal consistency reinforcement.
The upper part is derived from the LLaDA-8B-Instruct model trained using the Negative TSE
reward, whereas the lower part is based on the model trained with a combination of TSE and
accuracy reward. For reference, we include the oracle EverPass @1 | ¢ as a performance upper
bound.

‘ GSMSK MATHS00 SVAMP Countdown
Method /Seq Len | 128 256 512 128 256 512 128 256 512 128 256 512
Negative TSE reward After RFT | 722 78.8 802 30.6 346 38.0 843 89.0 887 38.6 535 449
Fixed Weighting | 704 77.6 802 30.8 344 376 850 883 887 395 535 457
+ Temporal Voting Linear Weighting | 723 78.8 80.6 30.8 354 38.0 853 883 887 39.1 535 457

72,6 792 80.6 308 350 380 853 89.0 887 395 539 457
+04 +04 +04 +02 +04 +0.0 +1.0 +0.0 +0.0 +09 +04 +0.8

Exp. Weighting

TSE & accuracy reward  After RFT | 721 80.0 830 312 354 414 850 903 923 415 426 547
Fixed Weighting | 712 79.6 828 312 356 412 853 907 923 40.6 415 532

+ Temporal Voting Linear Weighting | 73.0 81.9 83.0 312 360 41.0 867 903 927 409 428 542
Exp. Weighting 72.§ 81.1 83.% 31.§ 35.$ 414  86.3 90.7 923 415 427 55.1

+0.5 +1.1 +03 +04 +04 +0.0 +1.3 +04 +0.0 +0.0 +0.1 +04

We applied Temporal Self-Consistency Voting to both models, and the results are summarized in
Table S9. The findings indicate that both models still exhibit performance improvements when
temporal voting is applied, even after undergoing reinforcement learning. This suggests that
Temporal Self-Consistency Voting and Temporal Consistency Reinforcement are complementary
techniques, and can be effectively combined to further enhance model performance.

E.6  EXAMPLES OF TIME OSCILLATION

We present representative examples of temporal oscillation from GSM8K, using LLaDA-8B-Instruct
as the backbone model. Note that all examples shown below were ultimately incorrect but were
classified as correct answers by our voting method, as described in Sec. 4.1. Correct answers are in
green, incorrect answers in red. We use blue to highlight the key segments in each example.

We observe that many questions become incorrect during temporal oscillation due to flawed
reasoning paths. Although the model may initially provide the correct answer and follow a logical
reasoning path, an incorrect trajectory can ultimately lead to an erroneous response.

A notable case is seen in Example 3. Initially, the model correctly calculates the total cups, per-hour
revenue, and the per-hour cost deduction to derive the right profit per hour (step 54). However,
during reasoning, it introduces erroneous masking regarding key calculation elements—the per-
hour cost to subtract. Even though the answer remains correct at first (step 61), the flawed reasoning
trajectory eventually results in miscalculations and an incorrect final response (step 62).
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Example 1

Problem: Ruby is 6 times older than Sam. In 9 years, Ruby will be 3 times as old as Sam.
How old is Sam now?

Correctness HENEEEEEEENEEEEEEEEEEE NN NN NN
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Sampling Step

Step 59:

<reasoning>

Let Sam’s age be x years. Then Ruby’s age is 6 years. In 9 years, Ruby’s age will be 6x+9
and Sam’s age will be x + 9. According to the problem, in 9 years, Ruby will be 3 times as
old as Sam, so we have the equation 6z + 9 = 3(z + 9). Simplifying this equation, we get
3z=0soz = 3.

</reasoning>

<answer>

</answer>

Step 60:

<reasoning>

Let Sam’s age be x years. Then Ruby’s age is 6x years. In 9 years, Ruby’s age will be 62 +9
and Sam’s age will be © + 9. According to the problem, in 9 years, Ruby will be 3 times as
old as Sam, so we have the equation 6z + 9 = 3(z + 9). Simplifying this equation, we get
3r=0=2=0

</reasoning>

<answer>

</answer>

Example 2

Problem: Shiela bought five cell phones for $150 each for a 3-month installment. A 2%
interest will be charged for each unit. How much will Shiela pay each month for 3 months

Correctness HENNEENEEEEEEEENEEEEEEEEEEEE NN NN
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Sampling Step

Step 59:

<reasoning>

Shiela bought five cell phones for $150 each, so the total cost is $5 x 150 = $750. The
interest for each unit is 2%, so the total interest is $750 x 0.02 = $15. SincelELa will pay
this amount over 3 months, the monthly payment is $750 + $15 =$<< . >> 750\1. = 255.
</reasoning>

<answer>

</answer>

Step 60:

<reasoning>

Shiela bought five cell phones for $150 each, so the total cost is $5 x 150 = $750. The
interest for each unit is 2%, so the total interest is $750x 0.02 = $15. SincelELa will pay this
amount over 3 months, the monthly payment is $750 + $15 = $<< . >> 750/3 =>> 250.
</reasoning>

<answer>

</answer>
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Example 3

Problem: Millie decides to open a lemonade stand. She spends $18 to buy enough supplies
to make 3 pitchers of lemonade. Each pitcher holds 12 cups of lemonade. She sells each cup
of lemonade for $1. She sells an average of 4 cups per hour that her lemonade stand is open.
If Millie sells all of the lemonade, how much profit will she make per hour that she spends
running the lemonade stand?

Correctness HENEEEEENENEENEEEEEEEEEENE NN NN NN
0 4 8 12 16 20 24 28 32 36 40 4 48 52 56 60
Sampling Step

Step 54:

<reasoning>

Millie spends $18 on supplies to make 3 pitchers of lemonade. Each pitcher holds 12 cups,
so she has a total of 3 * 12 = 36 cups of lemonade. She sells each cup for $1 and and sells
an average of 4 cups per hour. Therefore, her revenue per hour is 4 * $1 = $4. To find per
hour profit, we subtract the cost of supplies from the revenue: $4 - $2 = $2 per hour.
</reasoning>

<answer>

</answer>

Step 61:

<reasoning>

Millie spends $18 on supplies to make 3 pitchers of lemonade. Each pitcher holds 12 cups,
so she has a total of 3 * 12 = 36 cups of lemonade. She sells each cup for $1 and and sells
an average of 4 cups per hour. Therefore, her revenue per hour is 4 * $1 = $4. To find per
hour profit, we subtract the cost of supplies from the revenue: $4 - $3 = $2 per hour.
</reasoning>

<answer>

</answer>

Step 62:

<reasoning>
Millie spends $18 on supplies to make 3 pitchers of lemonade. Each pitcher holds 12 cups,
so she has a total of 3 * 12 = 36 cups of lemonade. She sells each cup for $1 and and sells
an average of 4 cups per hour. Therefore, her revenue per hour is 4 * $1 = $4. To find per
hour profit, we subtract the cost of supplies from the revenue: $4 - $3 = $1 per hour.
</reasoning >
answer>

1

</answer>
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