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ABSTRACT

Iterative improvement of model architectures is fundamental to deep learning:
Transformers first enabled scaling, and recent advances in model hybridization
have pushed the quality-efficiency frontier. However, optimizing architectures re-
mains challenging and expensive. Current automated or manual approaches fall
short, largely due to limited progress in the design of search spaces and due to the
simplicity of resulting patterns and heuristics. In this work, we propose a new ap-
proach for the synthesis of tailored architectures (STAR). Our approach combines
a novel search space based on the theory of linear input-varying systems, support-
ing a hierarchical numerical encoding into architecture genomes. STAR genomes
are automatically refined and recombined with gradient-free, evolutionary algo-
rithms to optimize for multiple model quality and efficiency metrics. Using STAR,
we optimize large populations of new architectures, leveraging diverse computa-
tional units and interconnection patterns, improving over highly-optimized Trans-
formers and striped hybrid models on the frontier of quality, parameter size, and
inference cache for autoregressive language modeling.

1 INTRODUCTION

Most domains of applications for AI have seen a gradual convergence towards similar model ar-
chitecture designs, based on stacking multi-head attention and gated linear units (Transformers)
(Vaswani et al., 2017; Shazeer, 2020; Brown, 2020) or combinations of other basic computational
units grounded in signal processing, such as recurrences or convolutions (Martin & Cundy, 2017;
Romero et al., 2021; Gu et al., 2022; Smith et al., 2023; Peng et al., 2023; Poli et al., 2023; Massaroli
et al., 2023; Yang et al., 2024b).

Broadly, there are two prominent paths to improve model architectures: automated and manual.
Automated design, leveraging optimization (e.g. evolutionary methods) within a predefined search
space, has seen success in highly-targeted domains, such as the refinement of convolutional neural
networks for resource-constrained applications (Pham et al., 2018; Liu et al., 2018; Howard et al.,
2019; Li et al., 2021; Tan & Le, 2021). Automated methods have also been utilized to identify
candidate improvements to standard computational primitives (So et al., 2021), e.g., depthwise con-
volutions in projections. Nevertheless, to date, automated methods have fallen short of providing a
unified framework that provides significant improvements in quality and efficiency across domains
and objectives over models using standard generalizable recipes. The homogeneity of architectures
applied at scale during the Transformer era highlights this shortcoming.

The main challenge for automated methods lies in curating a search space for computational units
and architectures that is both (a) well-conditioned i.e., populations of model candidates can be
trained effectively, without numerical instability or unpredictable degradation in performance, and
(b) comprehensive i.e., the design space includes candidates with significantly different properties
from existing variants, expanding the range of potential improvements that can be identified.

Despite a wealth of automated approaches for the search and refinement of computational units and
composition strategies (White et al., 2023), the current generation has been obtained mostly through
an iterative manual process, guided by intuition and tuning on representative smaller-scale tasks
via e.g., synthetics and scaling laws (Hoffmann et al., 2022; Arora et al., 2023; Bi et al., 2024).
Manual design has led to a variety of results, most notably in the introduction or improvement of
computational units (Poli et al., 2023; Massaroli et al., 2023; Yang et al., 2024a; Arora et al., 2024),
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Figure 1.1: [Top Left]: Population of architectures undergoing iterative STAR evolution to minimize number
of parameters and maximize quality. [Top Right:] Baseline Transformer++, hybrid model, and representative
architecture found via STAR. [Bottom]: STAR evolution optimizes architectures using principles of evolution-
ary optimization, including assessment, recombination, and mutation.

modifications targeting smaller inference cache (Shazeer, 2019; Brandon et al., 2024), and the dis-
covery of simple interconnection strategies e.g., striped hybridization (Brown, 2020; Fu et al., 2022;
Poli et al., 2024; Lieber et al., 2024), weight sharing (Liu et al., 2024), and others (Liu et al., 2022;
Brandon et al., 2024). Yet, manual design is limited to finding relatively basic design patterns, com-
pared to the total diversity of possible patterns, and requires a significant investment in resources,
expertise and time.

Given the wide range of possible applications of current AI systems, enabling systematic and auto-
matic optimization of model architectures from the multitude of existing computational units is key
to meeting the various demands these applications pose, in terms of efficiency (e.g., model size, in-
ference cache size, memory footprint) and quality (e.g., perplexity, downstream benchmarks), and a
prerequisite on the path to further, consistent improvements on the quality-efficiency Pareto frontier.

In this work, we seek to address limitations of existing automated architecture optimization methods
by introducing an approach for the synthesis of tailored architectures (STAR). STAR is based on the
combination of a novel hierarchical search space of computational units and their composition, as
well as a numerical encoding compatible with evolutionary methods.

Hierarchical search spaces The design space for STAR is grounded in the theory of linear input-
varying systems (LIVs), providing a novel framework to design building blocks in architectures.
LIVs generalize most computational units used in deep learning, such as attention variants, linear1

recurrences, convolutions, and other structured operators. Notably, our framework allows us to char-
acterize model architectures at three hierarchical levels of resolution: (a) featurization, defining how
the linear computation within the LIV is modulated by the input context; (b) operator structure,
defining the token and channel mixing structure of the LIV; and (c) backbone, defining the compo-
sition structure between LIVs. In contrast to previous search spaces (Pham et al., 2018; Liu et al.,
2018; Howard et al., 2019; Li et al., 2021; Roberts et al., 2024), we show how the LIV search space
is both comprehensive and well-conditioned, as most sampled candidates train without instabilities.

Leveraging the modularity of LIVs, we taxonomize the space and devise a hierarchical numerical
representation of a model backbone, which we refer to as the STAR genome. Due to its struc-

1Here, by linear we refer to the linearity of the state transition.
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ture, STAR genomes can be optimized at different levels of the hierarchy. We show how backbone
genomes – defining ordering and interconnection between LIVs – can be automatically refined with
evolutionary algorithms relying on few key principles, such as evaluation, recombination, and mu-
tation.

Exploring the efficiency-quality frontier We evaluate STAR on autoregressive language mod-
eling, a domain historically dominated by Transformers and architecture improvements found via
manual search. In particular, we optimize architectures for various combinations of metrics simul-
taneously: quality (perplexity during pretraining), quality and size, and quality and inference cache
size (KV cache and fixed state cache). When optimizing for quality and size, 7/8 evaluated STAR-
evolved architectures improve over Transformer++ and striped hybrids of recurrences and attention
across downstream evaluation benchmarks (Gao et al., 2024), with a reduction of up to 13% in
parameter counts. Similarly, optimizing for quality and cache size, 7/8 evaluated STAR-evolved
architectures achieve up to 37% smaller cache sizes than striped hybrids, and 90% smaller than
Transformers, while performing at least as well in quality. We also show that 125M-parameter ar-
chitectures optimized for quality and cache by STAR can scale to 1B parameters and perform on
par with parameter-matched Transformer++ and striped hybrid architectures, while maintaining the
same advantages in cache size reductions. When optimizing solely for quality, all evaluated STAR-
evolved architectures outperform standard hybrids on downstream benchmarks, achieving improve-
ments twice as large as those of hybrids over Transformers. Finally, we showcase how STAR can
be used to identify recurring architecture motifs emerging during evolution, driving the observed
performance gains.

2 FOUNDATIONS OF THE SEARCH SPACE

We detail how the framework behind our search space is grounded in the theory of linear systems.

Linear input-varying systems The class of data structures under consideration are sequences of
vectors {x0, x1, . . . , xℓ} where each element xi is referred to as a token. Each token xi is a real-
valued vector in Rd, represented as xi = (x0i , x

1
i , . . . , x

d−1
i ). The individual components xαi of each

token are called channels.

The attention operator (Bahdanau et al., 2014; Vaswani et al., 2017), provides a valuable starting
point to define a search space for model architectures, as it defines a prototype of what we call
linear input-varying (LIV) operators. Attention, in its common formulation, can be expressed as a
linear operator applied to the input, with the operator’s action determined by the input itself:

yαi =
∑
β∈[d]

∑
j∈[ℓ]

σ(q⊤i kj)V
αβ

︸ ︷︷ ︸
attention operator

xβj , (qi, ki) = (φ(xi), ψ(xi))

where σ : R → R is a nonlinear function and V ∈ Rd×d. The intermediate quantities q, k, obtained
through functions φ,ψ : Rd → Rh of the input tokens and used to construct the linear operator T ,
are referred to as feature groups.

We extend this idea to include a broader family of LIVs, expressed in their most general form as:

yαi =
∑
j∈[ℓ]

∑
β∈[d]

Tαβ
ij (x)xβj .

The LIV framework decouples the (potentially) nonlinear and linear computation required to mate-
rialize the operator T (x) and apply it to obtain the outputs, y = Tx. LIVs include and generalize a
diverse array of computational units commonly used in model architectures, whose class is defined
by the structure of the operator: attention, convolutions, linear recurrences, and various forms of
other structured layers:

Tij = σ(CiBj) dense attention [4; 45]
Tij = CiBj low-rank linear attention [21]
Tij = CiAi−1 · · ·Aj+1Bj semi-separable linear recurrence [28; 41; 17; 49]
Tij = CiKi−jBj scaled Toeplitz gated convolution [12; 33]

Tij =

{
σ(C) i = j

0 otherwise
diagonal memoryless system [39]
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where the structure2 of the operator T induces a decomposition into feature groups, analogously
to the attention example. To highlight the parallels between different LIVs and attention, we have
adopted a shared notation for the feature groups. Differentiating between LIV systems are two key
factors, operator structure and featurization.

Featurization refers to the process with which feature groups are obtained, either via direct
parametrization, reparametrization3, or via parametric transformations of inputs as is the case in
attention i.e., linear projections.

Structure We taxonomize the linear operators of LIVs by decoupling the analysis of token-mixing
and channel-mixing structures. To define structure, we look at two different slices of the operator:

• Tαβ ∈ Rℓ×ℓ highlights the token-mixing structure for each tuple of input and output
channels, i.e. the linear contribution of the βth input channel xβ ∈ Rℓ to the αth out-
put channel yα ∈ Rℓ. Loosely speaking, the choice of token-mixing structure determines
the class of matrix multiplication algorithms that can be utilized to apply the operator to
the input (e.g. Fast Fourier Transform based convolution if Toeplitz, or parallel prefix scan
if semi-separable (Dewilde & Van der Veen, 1998)).

• Tij ∈ Rd×d conversely reveals the channel-mixing structure of T , i.e. the (linear) contri-
bution of the jth input token xj of the input sequence to the ith output token yi. In practice,
the most common choice of channel-mixing structure is by far the diagonal one, as used
in attention and most variants of linear recurrences4. Diagonal Tij blocks allow maximum
parallelization of the LIV operators as the linear computation reduces to d independent
matrix multiplications.

Note that we use the same logic to define the structure present in the featurizer itself. The structure
of the featurizer and operator need not be the same.

Composition An architecture backbone can be decomposed into a set of LIVs with different com-
position rules. Beyond sequential stacking of LIVs, as is common in standard deep architectures, we
introduce other composition rules realized via the featurization: featurizer sharing, where the same
featurizer weights are shared between different LIVs of a backbone, and feature group sharing,
where different LIVs share the same feature groups.

Let T, S denote the operators at two different depthsm,n (m < n) of the composition, respectively.
If, for example, both LIV operators are chosen with similar low-rank (linear attention) structure
Tij = CiBj , Sij = EiFj and the dimensions of the feature groups are compatible, i.e. Ci, Ei ∈
Rd×h and Bi, Fi ∈ Rh×d, we can apply both featurizer and feature group sharing techniques:

• If the parametric featurizer of Ci and Ei has the same form Ci = φ(xi; ·), Ei = φ(xi; ·),
we can share the same set of parameters θ between them:

Tij = φ(x
(m)
i ; θ)Bj Sij = φ(x(n); θ)Fjfeaturizer sharing

where x(m), x(n) denote the input to the mth and nth LIV system, respectively.

• Similarly, we can simply re-use one of the feature groups of the mth LIV system in the nth
one, e.g. Bj :

Tij = CiBj Sij = EiBjfeature group sharing

A prominent example of feature group sharing is the sharing of key-value caches between attention
operators (Brandon et al., 2024). Beyond featurizer interconnections, we explore other strategies of
operator composition in Appendix A.7.

2Note that in this list we refer to the sequence-mixing structure i.e., the structure of slices Tαβ of the
operator T . We define the structure via entries Tαβ

ij for convenience.
3Sometimes referred to as implicit parametrization (Mescheder et al., 2019; Romero et al., 2021; Sitzmann

et al., 2020).
4This is brought to an extreme by multi-headed architectures that only present number-of-heads distinct

values on the diagonal.
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Figure 3.1: Hierarchical structure of the STAR genome. Each sequence at lower levels is summarized into a
single value at higher levels, enabling its treatment as a discrete variable. We leverage this property extensively
when optimizing backbones directly.

3 DESCRIBING OPERATORS AND BACKBONES WITH STAR GENOMES

The new design space of LIVs and their compositions serves as the foundation for the automated
synthesis of tailored architectures (STAR). In the following, we will describe how we map the three
hierarchical levels of the LIV description–featurization, structure, and composition–into a numerical
representation suitable for optimization: the STAR genome. Each level of the hierarchy can be sum-
marized into a single integer, yielding a numerical representation that can be optimized at different
levels of granularity (see Fig. 3.1). In this work, we focus on backbone optimization but are report-
ing the full description of the genome for completeness. See Appendix A.6 for a full description of
all genome values considered in this work.

3.1 BACKBONE GENOME

We begin by describing the highest abstraction level of the STAR genome, the backbone genome,
which defines the composition of LIVs in the backbone. We recall that under the LIV framework,
LIVs can be connected with featurizer and feature group sharing, as described in Section 2. Specifi-
cally, the backbone genome represents a set of integer-valued sequences of length five, one for each
LIV of the backbone. Each of these 5-number segments defines the following properties of the LIV:

1. LIV class: integer summary of lower levels of the STAR genome, i.e., operator and featurizer
genomes (see Section 3.2).

2. Featurizer sharing: determines the weight-sharing structure between featurizers of LIVs at
different depth in the backbone. LIVs with the same value at this position share featurizer
weights, as defined by the featurization sharing strategy.

3. Featurization sharing strategy: defines how featurizer sharing is implemented for the LIV
class. Featurizer weights can be shared partially, for example, only those responsible for com-
putingB(x), in contrast to also sharing weights that computeC(x). We explore all combinations
of sharing strategies based on the number of feature groups of the LIV class.

4. Feature group sharing: LIVs with the same index share feature groups directly, instead of
featurizer weights, for example, by using the exact same B(x) and C(x).

5. Feature group sharing strategy: describes which feature groups, of all available feature groups
of the LIV class, are shared.

These 5-number segments are then repeated in the order at which the encoded operators occur in
the backbone (Figure 3.1). Note that outside of the compositions defined by the backbone genome,
LIVs are sequentially stacked using pre-norm residuals i.e., y = T (norm(x))norm(x) + x.

Example: 21211-31112-21221-32112 is the backbone of a genome with 4 LIVs. The first
and third LIV belong to the same class “2”, and are part of the same featurizer sharing group “1”,
thus sharing featurizer weights according to the indexed featurizer sharing strategy “2” (e.g., only
sharing the weights responsible for the first feature group). The second and fourth LIV belong to
class “3”, they do not share any featurizer weights (they have different featurizer sharing indices,
“1” and “2”), and instead share feature groups directly, with strategy “2” (sharing all groups).
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Figure 4.1: Fundamental operations of STAR evolution (akin to other evolutionary optimization algorithms).

3.2 OPERATOR AND FEATURIZER GENOMES

In the backbone genome, LIVs are summarized into a single number, indicating the specific fea-
turizer and structure of the LIV. Unrolling this encoding reveals an additional level, the operator
genome, which identifies a specific LIV in 5 numbers: (1) featurization, indicating the specific fea-
turizer class; (2) linear token-mixing structure of the LIV (Tαβ); (3) possible structured sparsity
masks (e.g., banded) for token-mixing; (4) any nonlinearity applied to the token-mixing structure;
(5) the LIV’s channel-mixing structure (Tij).

The featurizer class can be similarly unrolled. In STAR, each featurizer genome is a sequence defin-
ing for each of the feature groups: token and channel mixing structure (akin to the operator genome);
expansion factor, defining the ratio of the feature group channel dimension over the input channel
dimension, encoded as one number; repeat factor, defining how many times the feature groups are
replicated across the channel dimension, encoded as one number. For a detailed description of all
genome entries, and the respective values considered in this work, see Appendix A.6.

4 SYNTHESIZING ARCHITECTURES BY EVOLVING GENOMES

We have devised the STAR genome as a hierarchical numerical representation that encodes a specific
LIV backbone, suitable for gradient-free optimization. In the following, we will outline how a
STAR genome can be optimized via evolutionary methods (Beyer & Schwefel, 2002); a process
subsequently referred to as STAR evolution. To allow for the application of evolutionary optimization
methods to the STAR genome, we adapted methods commonly used to iteratively evolve an initial
population of genomes.

4.1 KEY STEPS OF STAR EVOLUTION

Assessment STAR evolution begins by evaluating the quality of each genome in the initial popula-
tion. This involves realizing the model encoded in each genome and scoring it against the objective
functions of interest, either by training and assessing its performance or through a static analysis for
efficiency objectives, such as the total number of trainable parameters in the model. Notably, STAR
evolution can incorporate multiple and diverse objectives.

Pairing After assessing the quality of each genome, STAR evolution selects parent genomes for
generating the next generation of offspring through tournament selection. Parents are chosen by
randomly selecting a set of k genomes from the population and then picking the one with the highest
quality—typically based on criteria such as predictive accuracy or the lowest parameter count.5.

Recombination Next, STAR evolution generates new candidate solutions by applying k-point
crossover to the selected parent genomes. Here, genetic material from two parents is exchanged
between k randomly chosen points, resulting in offspring that inherit traits from both parents. All
random sampling in STAR is performed with a uniform probability across all valid options.

Mutation Finally, STAR evolution introduces random mutations to the offspring. These mutations
are essential for maintaining diversity in the population and promoting exploration of the search
space. In STAR evolution, random mutations are implemented as alterations to the numbers in a
genome, where values are randomly replaced by others from a predefined set of possible choices. As

5As we will explore later, STAR evolution also takes into account solution diversity in the selection process
to maintain variety within the population (see Appendix A.4)
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discussed earlier (Sec. 3), these choices vary depending on the genome position. To ensure that all
genomes encode models capable of being trained stably and showing smooth quality improvements,
STAR enforces several constraints on these random mutations, as outlined below (Sec. 4.2).

4.2 GUIDING EVOLUTION WITH HIERARCHICAL MUTATIONS

To ensure compatibility with evolutionary optimization, the STAR genome must remain robust to
random edits such as recombination, mutation, or initialization. The backbone genome is composed
of 5-number segments. When mutating the first entry (LIV class), mutation is restricted to valid LIV
classes. For the second and fourth entries (defining featurizer and feature group sharing), only LIVs
within the same class can connect. The third and fifth entries are mutated by randomly sampling
valid sharing strategies for the corresponding LIV class. If mutations or recombinations result in
invalid configurations, such as incompatible sharing strategies, these are detected and repaired by
either removing the invalid connection for entries 2 and 4 of the operator genome, or re-sampling
the respective genome value from the set of valid choices for entries 1, 3, and 5.
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Figure 4.2: Training perplexity for
all runs during STAR evolution of a
population.

Controlled improvements Combining the LIV search space,
genome encoding, and guidelines for mutation and recombina-
tion, leads to stable training runs for most candidates obtained
during the course of STAR evolution, as shown in Figure 4.2.

5 EXPERIMENTS

Experimental setup The goal of our experiments is to test
whether STAR is suitable for synthesizing architectures tailored
to diverse objectives, such as predictive quality and efficiency. If
not noted otherwise, STAR evolutions presented are performed at
125M-parameter model scale, where backbones contain 24 LIVs
at a width of 768 dimensions, with populations of 16 genomes
that are evolved for 18 generations. During each STAR evolution,
we keep the depth and width of the backbone fixed. Experiments are performed in autoregressive
language modeling on 4096 token sequences from the RedPajama dataset (Weber et al., 2024).

Training details During STAR evolution, models are trained from scratch for 1.3B tokens using
AdamW (Loshchilov et al., 2017) with a peak learning rate of 0.0008, a batch size of 0.25M tokens,
and a cosine learning rate schedule with a 130M-token linear warmup. The resulting synthesized
backbones are evaluated by training them from scratch for 5B tokens under the same setup but with
an extended warmup of 400M tokens. Additionally, we train select 1B-parameter models (48 LIVs
at a width of 2048) for 40B tokens, increasing the batch size to 0.75M tokens and the warmup to
2.6B tokens. See Appendix A.2 for details.

Evaluation We use a two-stage evaluation process. During STAR evolution, performance metrics
are computed on a 500M-token evaluation set from RedPajama (Weber et al., 2024)6. Post-evolution,
we select the 8 models with the lowest perplexity among those with lower parameter counts (for qual-
ity and quality-size optimizations) or smaller cache size (quality-cache optimization) than baseline
models. These models are trained further and evaluated on downstream tasks: HellaSwag (Zellers
et al., 2019), ARC-e (Clark et al., 2018), Winogrande (Sakaguchi et al., 2019), PiQA (Bisk et al.,
2020), and SciQ (Welbl et al., 2017); and ARC-c (Clark et al., 2018) for 1B-parameter models.

Option pool To improve initialization during STAR evolution, we incorporate genomes of com-
mon backbone types (see Sec. 4). Unless stated otherwise, initial populations include simple hybrid
backbones without special interconnections, combining memoryless LIVs (e.g., SwiGLU (Shazeer,
2020)) with baseline LIVs such as convolutions, recurrences, or attention. Other backbones are ran-
domly initialized, with random LIV class choices and compositions. As the focus is on backbone
optimization, the pool of LIV classes is limited to a subset of systems encodable through the operator
and featurizer genomes, including token-mixing structures from Section 2. This includes common
dense channel-mixing featurizers (linear projections), more advanced Toeplitz token-mixing featur-
izers, and "differential" variants of all LIV classes except memoryless ones, which use two identical,
parallel LIVs and output their difference. See Appendix A.6 for all included LIV classes.

6We used two different randomly-drawn evaluation datasets for our ablation and main experiments.
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Figure 5.1: [Left]: Evolutionary algorithms: Final populations evolved with the Firefly Algorithm (FA),
Genetic Algorithm (GA), and Non-dominated Sorting Genetic Algorithm II (NSGA-2). [Right]: Backbone
synthesis scales (left to right): synthesized at reduced depth ("motif," 8 LIVs at 768), reduced width (24 LIVs
at 256), or full depth and width (24 LIVs at 768). Models are scaled to the same LIV count and width via
stacking or width extension.

5.1 IDENTIFYING A SYNTHESIS PROTOCOL

Evolutionary algorithm We compare three gradient-free evolutionary algorithms—Firefly Algo-
rithm (FA) (Yang, 2009), Genetic Algorithm (GA) (Bremermann et al., 1966), and NSGA-2 (Deb
et al., 2002)—for optimizing STAR genomes toward quality and parameter count. Each algorithm
evolves a population of 16 genomes (8 LIVs, 768 dimensions) over 8 iterations (details in Appendix
A.4)7. Results show GA and NSGA-2 outperform FA, achieving lower parameter counts while
maintaining comparable predictive quality. GA slightly surpasses NSGA-2 in performance but pro-
duces larger models, whereas NSGA-2 achieves greater solution diversity (Fig. 5.1). We thus use
NSGA-2 in subsequent experiments. Hyperparameter tuning indicates optimal performance with a
population size of 16, a 10% mutation probability, and 2 crossover points (Appendix A.4)8.

Synthesis scale Automated architecture optimization in language modeling faces the challenge
of high compute costs for training and evaluating large-scale models. We explore two paths to
reducing this cost: (a) optimizing smaller backbone motifs (groups of fewer LIVs in deeper mod-
els) and stacking them to build deeper models; and (b) optimizing full-depth backbones at reduced
widths. For both approaches, we evolve 16 genomes over 12 iterations, optimizing for parameter
count and quality, and compare the resulting models to those synthesized at full width and depth
under identical settings. From each evolution, we select 8 backbones smaller in parameter count
than Transformer++ and StripedMamba baselines (Appendix A.3) and with the lowest evaluation
perplexity. Selected backbones are scaled to the same LIV count and width (via motif stacking or
width extension) and trained for 5B tokens before downstream evaluation.

Finding 1: Synthesizing backbones at full width and depth yields consistent improvements, while
reduced-width synthesis achieves similar results with fewer successful candidates. Motif synthesis
underperforms both approaches (Fig. 5.1).

5.2 SYNTHESIZING HIGH-QUALITY LANGUAGE MODELS
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Figure 5.2: Genome scores during STAR evolu-
tion, when optimizing for quality.

We apply our identified protocol to synthesize high-
quality backbones for language modeling by evolv-
ing a population using perplexity as the only objec-
tive. When optimizing for quality, STAR evolution
achieves a reduction of the average quality of an ini-
tial population by 1.0 PPL point without changes to
model depth and width (Figs. 5.2, B.34).

Finding 2: STAR backbones–optimized for
quality–outperform parameter-matched Trans-
former++ and StripedMamba backbones in
RedPajama eval. PPL as well as on Hellaswag,
ARC-Easy, Winogrande, PiQA, and SciQ. Im-
provements of STAR backbones over standard
hybrids on benchmark averages is 2 times
larger than the improvement of hybrids over
Transformers (Tables 5.1 and A.4).

7FA and GA optimize a single objective, using the sum of normalized loss L and parameter count P :
U(L) + U(P ), where U(x) = x−min(X)

max(X)−min(X)
for x ∈ X .

8The 2 best-performing genomes per population are carried over to prevent performance regression.
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Backbone / Size Cache RedPj. Hella. ARC-e Wino. PiQA SciQ Avg.
Optimized for (bytes | 4K) ppl ↓ acc. norm. ↑ acc. ↑ acc. ↑ acc. ↑ acc. ↑ ↑
Transformer++ 85M 150MB 7.3 28.9 38.8 51.2 61.2 64.1 48.8
StripedMamba 80M 25MB 7.2 28.6 39.3 51.1 60.9 67.4 49.5

STAR-1 / Quality 79M 100MB 7.0 29.8 39.3 51.2 62.2 72.5 51.0
STAR-2 / Quality 80M 82MB 7.1 29.2 40.5 51.1 61.6 72.4 51.0
STAR-3 / Quality 78M 120MB 7.1 29.7 40.0 50.9 62.0 71.2 51.0
STAR-4 / Quality 79M 94MB 7.1 29.3 39.7 51.0 61.5 72.6 50.8

STAR-1 / Q.+Size 74M 63MB 7.2 28.9 39.3 51.0 61.8 67.6 49.7
STAR-2 / Q.+Size 74M 64MB 7.2 28.7 37.5 52.8 61.0 68.9 49.8
STAR-3 / Q.+Size 70M 151MB 7.2 29.2 39.5 51.9 61.5 69.4 50.3
STAR-4 / Q.+Size 70M 114MB 7.2 29.2 40.0 52.7 61.4 68.9 50.4

STAR-1 / Q.+Cache 77M 16MB 7.2 28.9 40.0 51.3 61.0 66.4 49.5
STAR-2 / Q.+Cache 83M 22MB 7.2 28.7 40.1 50.3 62.2 66.0 49.5
STAR-3 / Q.+Cache 75M 23MB 7.2 28.9 40.6 50.2 61.3 67.2 49.6
STAR-4 / Q.+Cache 78M 22MB 7.2 29.1 39.9 53.0 62.2 66.7 50.2

Table 5.1: Evaluation of backbones optimized for quality (upper third), quality and size (middle third), and
quality and cache (lower third). We test on LM-Eval-Harness (Gao et al., 2024), reporting Transformer++ and
StripedMamba baselines trained on the same data. Size indicates trainable parameter count w/o embeddings.

Backbone Size Cache RedPj. ARC-c Hella. ARC-e Wino. PiQA SciQ Avg.
(bytes | 4K) ppl ↓ acc. norm. ↑ acc norm. ↑ acc. ↑ acc. ↑ acc. ↑ acc. ↑ ↑

Transf.++ 1.2B 805MB 5.9 27.3 49.3 58.9 51.3 71.2 86.3 57.4
StripedMb. 1.1B 136MB 5.7 28.3 52.8 59.8 54.1 72.9 86.0 59.0
STAR-1B 1.1B 86MB 5.7 27.9 52.6 60.8 53.9 71.8 87.0 59.0

Table 5.2: Evaluation of a 1B STAR backbone (48 LIVs, 2048 width) optimized for quality and cache (LM-
Eval-Harness (Gao et al., 2024)). Results are compared to parameter-matched Transformer++ and Striped-
Mamba baselines trained on 40B RedPajama tokens. Size excludes embedding layers.

5.3 SYNTHESIZING PARAMETER-EFFICIENT HIGH-QUALITY LANGUAGE MODELS

We observed that STAR can synthesize high-quality language models. Next, we ask whether it can
likewise synthesize language models of high quality and smaller parameter counts. To this end,
we evolve a population using evaluation perplexity and parameter count as objectives. Optimizing
for quality and size, STAR evolution improves an initial population by 0.5 PPL points at an aver-
age reduction of 10% in trainable parameter count, as shown in Figure 1.1. We also evaluate the
performance of representative synthesized backbones when training them longer.

Finding 3: STAR backbones–optimized for quality and size–outperform Transformer++ and
match StripedMamba backbones in RedPajama eval PPL, while surpassing both on Hellaswag,
ARC-Easy, Winogrande, PiQA, and SciQ, with a reduction in parameter count by 13% and 8%
respectively (Table 5.1 and A.4).

5.4 SYNTHESIZING CACHE-EFFICIENT HIGH-QUALITY LANGUAGE MODELS

High inference costs limit the widespread use of language models. To address this, we test whether
STAR can synthesize architectures with reduced inference cache size without sacrificing predictive
quality. By optimizing for perplexity and cache size (Fig. 5.3), STAR evolution improves an initial
population by 0.4 PPL points and a 40% cache size reduction.

Finding 4: STAR backbones–optimized for quality and cache size–outperform Transformer++ and
match StripedMamba in RedPajama perplexity while surpassing both on HellaSwag, ARC-Easy,
Winogrande, and PiQA, with cache size reductions of 90% and 36%, respectively, at a sequence
length of 4096 tokens (Tables 5.1 and A.4).

Our previous experiments have shown that STAR synthesis at smaller scales yields suboptimal re-
sults (see Fig. 5.1). Nevertheless, when scaling a 24-LIV backbone at 768 dimensions, optimized
for quality and cache size, to 48 LIVs at 2048 dimensions, through stacking and width extension,
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Figure 5.3: [Left]: Genome scores during STAR evolution when optimizing for quality and cache size. Cache
size is computed at a fixed sequence length of 4096 tokens. [Right]: Cache size scaling with increasing input
sequence length for the models show in Table 5.2.

we find that it matches the performance of a parameter-matched StripedMamba baseline and outper-
forms a parameter-matched Transformer++ baseline when all are trained for 40B tokens:

Finding 5: Scaling a synthesized STAR backbone from 125M to 1B parameters (Fig. B.25) out-
performs a parameter-matched Transformer++ baseline and matches a StripedMamba baseline in
RedPajama evaluation perplexity and performance on ARC-Challenge, HellaSwag, Winogrande,
PiQA, and SciQ, while reducing cache size by 90% and 37%, respectively (Table 5.2).

Finding 6: Overall, synthesized STAR backbones outperform Transformer++ and StripedMamba
baselines with hit rates of 8/8, 7/8, and 7/8 when optimizing for quality, quality and size, and
quality and cache, respectively (Tables 5.1 and A.4).

5.5 COMPARING SYNTHESIZED BACKBONES

STAR is well-suited for the synthesis of backbones optimized for various objectives. In addition,
it provides a tool for the automated discovery of backbone motifs that drive these performance
improvements, as it evolves populations towards using those combinations and compositions of
LIVs that perform best. Figure 5.4 demonstrates this for the evolution targeting model quality and
size. We observe that STAR favors gated short convolutions (GConv-1), grouped query (Ainslie
et al., 2023) attention variants (SA-3), and differential variants of input-varying recurrences (Rec-
1-Diff), as well as SwiGLUs (Shazeer, 2020) (GMemless). A more detailed analysis of the motifs
resulting from all STAR evolutions, as well as visualizations of all evaluated backbones, can be
found in Appendix B.
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Figure 5.4: Evolution of backbones opti-
mized for quality and size, averaged per
population. Distance measures the num-
ber of other LIVs between two connected
LIVs.

This work presents STAR, a framework for the auto-
mated evolution of tailored architectures. Unlike other
approaches, STAR explores a hierarchical, general de-
sign space encompassing attention, recurrences, convo-
lutions, and other input-dependent units. Its design space
is well-conditioned, with most architecture candidates
training stably. Using evolutionary methods on a nu-
merical backbone encoding, STAR achieves significant
improvements in perplexity, downstream benchmarks,
model size, and inference cache compared to optimized
striped hybrid and Transformer baselines.

Reproducibility statement To aid in reproducibil-
ity, we run optimization and training on open-source
datasets (RedPajama). We report full training and STAR
evolutionary algorithms details in Appendix A and a full
description of the STAR genome in Appendix A.6.
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A EXPERIMENTAL DETAILS

A.1 DISCUSSION

Limitations and extensions of STAR While the LIV search space is general in the context of
sequence modeling primitives, it does not include all classes of functions that can be embedded in a
backbone, potentially missing options for further optimization.

Relation to scaling laws and mechanistic design Since STAR evolution can target any objective,
the methods presented in this paper are suited to integration within scaling laws protocols. Another
options is optimizing efficiently computed metrics that correlate with performance at scale e.g.,
average accuracy on curated synthetic tasks (Arora et al., 2023; Poli et al., 2024).

Optimizing variable depth backbones Currently, STAR optimizes fixed-length genomes, lim-
iting architectures to fixed depth and width. Optimizing variable-depth and variable-width archi-
tectures is challenging due to the hierarchical and modular design space. Shallower genomes are
computationally cheaper and converge faster but may lack the complexity needed for difficult tasks.
Deeper genomes offer greater representational power but expand the search space, risking subop-
timal convergence due to overfitting or inefficient sampling. Future extensions of STAR could ad-
dress these challenges with adaptive mechanisms like depth-aware sampling or dynamic penalties
to improve scalability. Testing these methods on tasks requiring deeper architectures will be key to
enhancing STAR’s robustness and versatility.

Multi-level optimization STAR streamlines the search by treating the genome as a unified en-
tity, enabling efficient exploration—especially beneficial for rapid iteration or limited resources.
However, this approach may not fully exploit the hierarchical design space, potentially overlook-
ing dependencies or key subspaces across genome levels. In contrast, a multi-stage optimization
strategy could systematically refine each hierarchical level—featurization, operator structure, and
backbone—using tailored evolutionary algorithms. This could improve convergence, especially in
complex task settings, by leveraging the genome’s modularity and addressing interactions incremen-
tally, but it would increase algorithmic complexity and computational costs.

A.2 TRAINING

Tables A.1, A.2, and A.3 provide an overview of the training settings used during STAR evolution
and when evaluating the resulting synthesized backbones.

Table A.1: Training setting during STAR evolution.

OPTIMIZER ADAMW
OPTIMIZER MOMENTUM β1, β2 = 0.9, 0.95
BATCH SIZE 0.25M TOKENS
TRAINING STEPS 5000
LEARNING RATE SCHEDULE COSINE DECAY
LINEAR LEARNING RATE WARM-UP 500 STEPS
BASE LEARNING RATE 0.0008
WEIGHT DECAY 0.1
DROPOUT NONE
GRADIENT CLIPPING 1.0

Table A.2: Training setting for evaluation of synthesized backbones.

OPTIMIZER ADAMW
OPTIMIZER MOMENTUM β1, β2 = 0.9, 0.95
BATCH SIZE 0.25M TOKENS
TRAINING STEPS 20000
LEARNING RATE SCHEDULE COSINE DECAY
LINEAR LEARNING RATE WARM-UP 1500 STEPS
BASE LEARNING RATE 0.0008
WEIGHT DECAY 0.1
DROPOUT NONE
GRADIENT CLIPPING 1.0
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Table A.3: Training setting for models with 48 LIVs at a width of 2048 dimensions (see Table 5.2).

OPTIMIZER ADAMW
OPTIMIZER MOMENTUM β1, β2 = 0.9, 0.95
BATCH SIZE 0.75M TOKENS
TRAINING STEPS 50000
LEARNING RATE SCHEDULE COSINE DECAY
LINEAR LEARNING RATE WARM-UP 3500 STEPS
BASE LEARNING RATE 0.0008
WEIGHT DECAY 0.1
DROPOUT NONE
GRADIENT CLIPPING 1.0

A.3 BASELINE MODELS

All baseline models are trained according to the recipe described in Table A.2. We train the two
baseline models each at two depths widths to match the parameter counts of our synthesized models
(Tables 5.1 and 5.2): 24 operators at 768 dimensions and 48 operators at 2048 dimensions.

Transformer++ A Transformer (Vaswani et al., 2017) with an improved architecture, namely
rotary positional encodings (Su et al., 2024), SwiGLU MLP (Shazeer, 2020), RMSNorm instead
of LayerNorm, and no linear bias term. We use a head dimension of 64 for all Transformer++
baselines trained in this work, resulting in 12 and 32 heads for models with 768 and 2048 width.

StripedMamba A striped hybrid backbone (Poli et al., 2024) that combines Mamba (Gu & Dao,
2023), SwiGLU MLP (Shazeer, 2020), and self-attention (Vaswani et al., 2017) operators. The 24
operator backbone is composed of interleaved Mamba and SwiGLU operators, with the exception of
operators 6 and 18, which are softmax attention. The Mamba operators have a state size of 32, while
we use a head dimension of 64 for the attention operators. The 48 operator StripedMamba backbone
is obtained by stacking two 24 operator backbones in depth and increasing the overall width to 2048.

A.4 EVOLUTIONARY OPTIMIZATION ALGORITHMS

In this section, we present an overview of the three variants of commonly used gradient-free evo-
lutionary optimization algorithms applied in this work. These algorithms have been adapted as
necessary to be compatible with the STAR genome. Before discussing their individual differences,
we will first describe several core operations shared across all variants.

Tournament selection selects parent candidates by randomly sampling a subset of individuals
from the population and choosing the highest-performing individual from this subset. This method
promotes the propagation of strong candidates while preserving diversity through its inherent ran-
domness.

K-point crossover recombines the genomes of two parents by exchanging segments of genetic
material at k randomly selected points, creating offspring that inherit a mix of traits from both
parents.

Elitism balances exploration and exploitation by preserving a subset of the top-performing indi-
viduals from the current population and carrying them over directly to the next generation. This
approach ensures that high-quality solutions are not lost and generally accelerates convergence,
while reducing the risk of premature convergence to suboptimal regions of the solution space.

Mutation maintains population diversity by introducing randomness through random alterations
to a genome, helping the algorithm explore new regions of the solution space.

Firefly Algorithm (FA) The Firefly Algorithm (FA) is inspired by fireflies’ attraction to brighter
(fitter) individuals based on their light intensity. FA assigns a light intensity a = 1

1+s to each
genome, inversely related to its fitness score s. In each iteration, FA pairs genome i with genome j
via tournament selection. If aj > ai, FA updates gi to resemble gj through two steps: (1) computing
attraction strength β = β0(1 − e−γ(1−r)), where β0 is baseline attraction, γ is the light absorption
coefficient, and r is the similarity ratio of matching LIVs, and (2) replacing LIV gik with gjk with
probability β. If ai ≥ aj , gi remains unchanged. Finally, gi undergoes mutation.
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Genetic Algorithm (GA) In each iteration, the Genetic Algorithm (GA) generates new genomes
by: (i) selecting two parents via tournament selection; (ii) recombining them using k-point
crossover; and (iii) mutating the recombined genomes.

Non-dominated Sorting Genetic Algorithm II (NSGA-2) NSGA-2 extends GA for multi-
objective optimization by maintaining a diverse set of Pareto-optimal solutions through non-
dominated sorting and crowding distances. It first segregates genomes into fronts, with the first
front containing the most optimal, non-dominated solutions. Genome gi dominates gj if it outper-
forms gj in at least one objective without being worse in others. Within each front, genomes are
sorted by objective scores, such as predictive quality, and assigned crowding distances 9 Boundary
solutions, with extreme objective scores, receive infinite crowding distances to ensure preservation,
while non-boundary solutions are assigned crowding distances based on differences from adjacent
neighbors. Selection then favors genomes with higher front rank and crowding distance.

Determining hyper-parameters for NSGA-2 We found that NSGA-2 performed the best in our
comparison (Section 5). We also investigate the optimal hyper-parameter settings for NSGA-2,
specifically population size n, mutation probability p, and number of crossover points k. To do this,
we evolved two population sizes (16 and 32), optimizing for quality and parameter count, while
varying the number of crossover points (1 or 2) and mutation probabilities (10% or 20%) (Fig.
A.1). To keep to overall number of sampled genomes constant, we evolve populations containing
16 genomes for 8 iterations and populations containing 32 genomes for 4 iterations. All genomes
contain 24 LIVs at a width of 64 dimensions. Our results indicate that NSGA-2 performs best with
a population size of 16, 2 crossover points, and a 10% mutation probability.
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Figure A.1: Comparison of different hyper-parameter settings for NSGA-2.

A.5 GENOME SCORES

We provide visualizations of all genome scores in all STAR evolutions:

i. Evolutionary algorithm ablations: figures B.28 and B.29.

ii. Comparison of synthesis scales: figures B.30, B.31, and B.32.

iii. Direct quality optimization: figure B.34.

iv. Quality and size optimization: figure B.33.

v. Quality and cache optimization: figure B.35.

A.6 LINEAR INPUT-VARYING SYSTEMS AND FEATURIZERS: OPTION POOLS

Modifying the STAR genome – the numerical encoding enabled by the LIV framework – allows
exploration of model architectures with substantial differences at multiple levels, including in the
type of LIVs they are composed of, as well as their ordering and interconnection.

Recall that the STAR genome is structured hierarchically: At the highest level, the backbone genome
specifies the composition of LIVs in the backbone, with each LIV represented by a single inte-
ger. Expanding this integer reveals the operator genome, which identifies the LIV. At the operator
genome level, the specific featurizer of the LIV is similarly encoded as a single integer, which can

9Crowding distance in multi-objective optimization is a measure of the density of solutions surrounding
a particular solution, calculated as the sum of the normalized distances between adjacent solutions across all

objectives: di =
∑M

m=1

(
fi+1
m −fi−1

m

fmax
m −fmin

m

)
, where di is the crowding distance for solution i, and fm is the objective

value in the mth objective.
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be further expanded into the featurizer genome, which specifies the particular featurizer used by the
LIV.

Below, we provide an overview of the specific integer values and their corresponding meanings
considered in this work for each level of the STAR genome. Note that this definition of the genome
is not exhaustive and can be extended further.

A.6.1 BACKBONE GENOME

The basic formulation of the backbone genome (without extensions such as residual composition
explored in A.7) consists of sequences of five integers, where each sequence corresponds to one of
the LIVs contained in the backbone, defining (a) the individual operator and (b) composition rules
with other LIVs.

For each integer in the genome, we detail the set of options considered in this work. While we
present a specific set of choices here, the pool of options can be readily expanded, provided the
results compile to valid operators and backbones within the LIV framework.

Tthe first integer specifies the LIV class and can take on the following values in our experiments:

1-4. Softmax attention variants (SA) 1-4

5-6. Recurrences (Rec) 1-2

7-8. Gated convolutions (GConv) 1-2

9. Gated memoryless unit (GMemless)

10-17. Differential variants of LIV classes 1-8 (akin to the "Differential Transformer" (Ye et al.,
2024))

The second integer defines the weight-sharing structure of the LIVs’ featurizers. Specifically, all
LIVs within a backbone that share featurizer weights will have the same value in this position.
The mapping of integer values to the weight-sharing structure thereby depends on the number of
occurrences of each LIV class (N ) in the backbone. If all LIVs of the same class share featurizer
weights, they are all assigned a value of 1 at this position. Conversely, if none of these LIVs share
featurizer weights, each LIV is assigned a unique integer value from 1 to N .

The third integer defines the strategy for sharing featurizer weights. In this work, we are consider-
ing only two possible featruizer sharing strategies:

1. No weights are shared

2. All weights are shared

The fourth integer establishes the feature group sharing structure of the LIVs. Similar to the featur-
izer weight-sharing structure (second integer), all LIVs within a backbone that share feature groups
will have the same value at this position. The assignment of integer values to feature group sharing
follows the same logic described for the second integer.

The fifth integer specifies the strategy used for sharing feature groups. Since feature groups are
unique to each LIV class, the possible values for this integer vary depending on the LIV class. The
range is between 1 (indicating no shared feature groups) and N +1, where N represents the number
of unique feature groups in the given LIV class. For example, in the case of softmax attention, the
possible values are:

1. No shared feature groups

2. Shared key cache

3. Shared value cache

4. Shared key and value cache

For clarity, we provide examples of backbone genomes below:
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11111 91111 12121 92121

This genome consists of four LIVs arranged in an interleaved order. The first and last LIVs belong to
the SA-1 class, while the second and fourth LIVs belong to the GMemless class. None of the LIVs
share featurizer weights or feature groups, as each occurrence of a LIV class has distinct integer
values for featurizer sharing (integer 2) and feature group sharing (integer 4). Both the featurizer
sharing strategy (integer 3) and feature group sharing strategy (integer 5) are set to 1, indicating no
sharing.

11111 91111 51111 92121

This genome represents a variation of the genome shown above, where the third LIV has been
switched from class SA-1 to class Rec-1. As before, none of the LIVs share feature groups of
featurizer weights.

11111 91111 51111 92121 11221 91131

This genome is comprised of six LIVs. The first and fifth belong to the SA-1 class. The first and
fifth belong to the SA-1 class, the second, fourth, and sixth to the GMemless class, and the third to
the Rec-1 class. Notably, the two SA-1 LIVs share the weights of their featurizers, as both have a
value of 1 at the second integer position and a value of 2 at the third integer position.

A.6.2 OPERATOR GENOME

The operator genome specifies a particular LIV and consists of five integer values. Integer 1 sum-
marizes the LIV’s featurizer, integers 2–4 define the token-mixing structure of the LIV, and integer
5 determines the channel-mixing structure.

The first integer specifies the featurizer class. In this work, we consider the following 9 featurizer
classes:

1. Dense channel mixing structure with diagonal token mixing structure on all feature groups
(3 groups e.g., in SA-1).

2. Dense channel mixing structure with Toeplitz token mixing structure on all feature groups
(3 groups e.g., in SA-2).

3. Variant of 1. where a repeat factor of 4 is applied to the last two feature groups (e.g., used
for SA-3).

4. Variant of 1. where a repeat factor of 2 is applied to the last two feature groups (e.g., used
for SA-4).

5. Dense channel mixing and Toeplitz token mixing structure. An expansion factor of 16 is
applied to the last two feature groups (e.g., used for Rec-1).

6. Dense channel mixing and Toeplitz token mixing structure. An expansion factor of 2 is
applied to the last two feature groups (e.g., used for Rec-2).

7. Diagonal channel mixing structure with Toeplitz token mixing structure for all feature
groups. One of the groups is explicitly parametrized (e.g., short convolutions of length
3 used for GConv-1).

8. Variant of 5. Where the short convolution kernel feature group is replaced with an implicitly
parametrized feature group (e.g., long convolutions used in GConv-2).

9. Dense channel mixing structure with diagonal token mixing structure with 2 feature groups
(e.g., used for GMemless). Variant of 1 with one fewer feature group.

The second integer defines the linear token-mixing structure of the LIV, before any final nonlinear-
ity, and can take on the following values in this work:

1. Diagonal (e.g., GMemless)

2. Low rank (e.g., SA)
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3. Scaled Toeplitz (e.g., GConv)

4. Sequentially semi-separable (e.g., Rec)

The token-mixing structure determines the class of matrix multiplication algorithms that can be used
to apply the operator to the input. For instance, if the LIV is sequentially semi-separable, it supports
an O(l) algorithm implemented as a linear recurrence.

The third integer determines whether any structured sparsity mask is applied to the token-mixing
structure. We consider the following in this work:

1. No sparsity

2. Banded (e.g., as used for short convolutions)

Note that all models trained in this work are causal, and as such upper-triangular sparsity masks are
introduced whenever needed e.g., in LIVs wrapped by nonlinearities.

The fourth integer describes whether any final nonlinearity is applied to the token-mixing structure.
We consider the following set of static and normalization non-linearities in this work:

1. None

2. Softmax

3. ReLU

4. Swish

The fifth integer describes the LIV channel mixing structure, for which we consider the following
two possible structures in this work:

1. Diagonal

2. Dense

Below we provide the specific operator genomes for each LIV class considered in this work:

SA-1 12121 refers to the standard attention operator using a featurizer with a dense channel mixing
and diagonal token mixing structure with 3 feature groups, a low-rank token-mixing structure, no
sparsity mask, a softmax non-linearity, and a diagonal channel-mixing structure.

SA-2 22121 represents a variant of SA-1 whose featurizer has a dense channel mixing and Toeplitz
token mixing structure. This is realized in practice by adding depth-wise convolutions to the featur-
izer, in line with the findings of (So et al., 2021; Poli et al., 2023).

SA-3 32121 represents a variant of SA-1 where a repeat factor of 4 is applied to the last two feature
groups. This is akin to variants of multi-query (MQA) and grouped-query attention (GQA) (Shazeer,
2019).

SA-4 42121 represents a variant of SA-3 with a lower repeat factor of 2 for the last two feature
groups.

Rec-1 54111 is characterized by a featurizer with Toeplitz token mixing structure and dense chan-
nel mixing structure with 5 feature groups where an expansion factor of 16 is applied to the last two
feature groups, a semi-separable token mixing structure, no sparsity, no non-linearity, and a diag-
onal channel mixing structure. Rec-1 is representative of a variety of modern input-varying linear
recurrent layers (Gu & Dao, 2023; Yang et al., 2024a).

Rec-2 64111 is the same as Rec-1, with the exception of an expansion factor of 2 for the last two
feature groups.

GConv-1 73111 is characterized by a featurizer with diagonal channel mixing structure and
Toeplitz token mixing structure (using a short convolution filter) applied to all feature groups in
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addition to an explicitly parametrized feature group for short convolution, a Toeplitz token mixing
structure, no sparsity, no non-linearity, and a diagonal channel mixing structure.

GConv-2 83111 has the same structure as GConv-1, except for the use of an implicitly parametrized
feature group for long convolutions. GConv-2 represents modern operators in the gated long convo-
lution family (Poli et al., 2023).

GMemless 91142 is characterized by a featurizer with dense channel mixing structure and diagonal
token mixing structure with two feature groups, a diagonal token mixing structure, no sparsity, swish
non-linearity, and dense channel mixing structure. GConv-1 thereby represents a SwiGLU (Shazeer,
2020).

In addition, we include differential variants of LIV classes 1–8 (SA, Rec, and GConv), where two
identical LIVs are applied in parallel, outputting their difference, similar to the "Differential Trans-
former" (Ye et al., 2024).

A.6.3 FEATURIZER GENOME

The featurizer genome is composed of sequences of seven integers, one sequence per feature group
of the featurizer. The first five integers are akin to integers 2-5 of the operator genome, respec-
tively indicating the linear token-mixing structure, whether any sparsity is applied, whether any
non-linearity is applied, and the channel mixing structure. The sixth integer indicates an expansion
factor of the feature group channel dimension over the input channel dimension. The seventh inte-
ger indicates a repeat factor for how many times the feature groups are replicated across the channel
dimension.

Note that we restrict the featurizer genome to a maximum of 5 feature groups (ie, 35 integers in
total). If the featurizer takes in less than 5 feature groups, we set the sequences of all excess feature
groups to 0.

A.7 EXTENDING THE BACKBONE GENOME FOR VARIABLE RESIDUAL CONNECTIONS

In our main experiments, we constrain backbone topologies to a pre-norm residual structure, where
the output ym of LIV Tm at backbone depthm is defined as: ym = T (norm(ym−1)) norm(ym−1)+
ym−1.

However, the backbone genome can be extended to support more flexible residual streams. This can
be achieved by introducing a sixth entry to each subsection of the backbone genome, corresponding
to its respective LIV. Recall that the backbone genome consists of sequences of five integers, where
each sequence encodes the characteristics of an LIV and its integration within the composition struc-
ture. If two LIVs, at depths m and n (where m < n), share the same value at this new genome
position, the residual stream is extended such that: yn = T (norm(u)) norm(u) + u, where u =
yn−1 + ym.

We evaluate this extended backbone genome in an ablation study by comparing the outcomes of
two STAR evolutions: one incorporating this extension and the other using the standard backbone
genome. In both conditions, we evolve a population of 16 genomes, each consisting of 24 LIVs with
a width of 768 dimensions, for 7 generations. The results indicate that the extension allows STAR
to synthesize architectures of even smaller parameter counts while maintaining the same level of
quality (see Fig. A.2).

Based on these promising findings, we plan to further investigate composition strategies via residuals
and inputs to LIVs in future work, in addition to improved featurizer interconnections e.g., sharing
inputs to the system, the featurizer, and the residual stream itself.

A.8 EVALUATION OF SYNTHESIZED BACKBONES

Table A.4 provides an overview of the evaluation performances of the remaining 4 synthesized
backbones that were selected from each STAR evaluation and trained for longer (for comparison,
see Table 5.1).
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Figure A.2: Comparison of two STAR evolutions with and without an extension of the backbone
genome allowing for more flexible residual connections.

Backbone / Size Cache RedPj. Hella. ARC-e Wino. PiQA SciQ Avg.
Optimized for (bytes | 4K) ppl ↓ acc. norm. ↑ acc. ↑ acc. ↑ acc. ↑ acc. ↑ ↑
Transformer++ 85M 150MB 7.3 28.9 38.8 51.2 61.2 64.1 48.8
StripedMamba 80M 25MB 7.2 28.6 39.3 51.1 60.9 67.4 49.5

STAR-5 / Quality 78M 94MB 7.1 29.2 39.1 52.1 62.1 72.7 51.0
STAR-6 / Quality 79M 94MB 7.1 29.0 39.9 50.9 61.7 71.1 50.5
STAR-7 / Quality 79M 107MB 7.1 29.3 38.2 51.5 61.6 70.2 50.2
STAR-8 / Quality 79M 94MB 7.1 29.1 40.6 50.8 62.0 70.3 50.6

STAR-5 / Q.+Size 78M 64MB 7.2 29.2 40.0 52.7 61.0 67.8 50.1
STAR-6 / Q.+Size 73M 104MB 7.2 27.7 39.5 53.1 61.6 69.4 50.3
STAR-7 / Q.+Size 69M 170MB 7.2 27.8 39.2 49.9 61.2 69.5 49.5
STAR-8 / Q.+Size 72M 92MB 7.2 27.5 39.2 51.7 61.8 64.1 48.9

STAR-5 / Q.+Cache 79M 22MB 7.2 28.9 40.0 50.2 61.1 69.1 49.9
STAR-6 / Q.+Cache 68M 25MB 7.2 29.1 40.0 51.3 60.9 68.7 50.0
STAR-7 / Q.+Cache 75M 22MB 7.3 28.6 39.4 52.6 61.0 66.6 49.6
STAR-8 / Q.+Cache 74M 16MB 7.3 28.8 38.8 51.2 61.0 67.0 49.4

Table A.4: Evaluation of backbones optimized for quality (lower half) and quality and size (upper
half). We test on LM-Eval-Harness (Gao et al., 2024), reporting parameter-matched Transformer++
and StripedMamba baselines trained on the same data. Size indicates trainable parameter count,
excluding embeddings layers. All models were trained for 5B tokens from Redpajama.

B VISUALIZATION AND ANALYSIS OF STAR BACKBONES

We provide visualization of the STAR backbones presented in Tables 5.1, 5.2, and A.4. Featurizer
sharing between operators is indicated as solid black arrows on the right, feature group sharing as
dashed black arrows on the left.

i. Direct quality optimization: figures B.1 (STAR-1), B.2 (STAR-2), B.3 (STAR-3), B.4
(STAR-4), B.5 (STAR-5), B.6 (STAR-6), B.7 (STAR-7), B.8 (STAR-8)

ii. Quality and size optimization: figures B.9 (STAR-1), B.10 (STAR-2), B.11 (STAR-3),
B.12 (STAR-4), B.13 (STAR-5), B.14 (STAR-6), B.15 (STAR-7), B.16 (STAR-8)

iii. Quality and cache optimization: figures B.17 (STAR-1), B.18 (STAR-2), B.19 (STAR-3),
B.20 (STAR-4),B.21 (STAR-5), B.22 (STAR-6), B.23 (STAR-7), B.24 (STAR-8), and B.25
(STAR-1B)

We also provide overviews of the average count at which each LIV type occurs in a population over
the course of STAR optimization, the average count of LIVs that share featurizer weights or groups,
and the average distance between LIVs sharing featurizer weights or feature groups10:

i. Direct quality optimization: figure B.26

10Distance is indicated by the number of LIVs between two LIVs with connected through featurizer or
feature group sharing.
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ii. Quality and size optimization: figure 5.4

iii. Quality and cache optimization: figure B.27

We have observed that STAR can evolve populations of architectures to optimize their quality (per-
plexity, accuracy, downstream performance), size (number of parameters), and efficiency (inference
cache). The basis for this is laid out by the flexibility of the LIV design space, which allows con-
structing computational units tailored to these various objectives. STAR leverages evolutionary opti-
mization methods to search the design space and converge on those solutions performing best under
the given set of objectives.

For example, a key mechanism for STAR to reduce parameter counts is to identify which LIVs can
be connected through featurizer or feature group sharing without degrading performance. Likewise,
STAR can reduce parameter counts by purposefully placing MLPs only at those positions of the
backbone (as observed in Figs. B.9, B.10, B.11, B.12), instead of at every other depth index as is
otherwise common.

By contrast, STAR can reduce cache size by deliberately placing LIVs with large cache sizes in
the backbone and connecting these through featurizer or feature group sharing, while increasing the
overall amount of MLPs in the backbone (as observed in Figs. B.27, B.17, and B.23).

B.1 RECURRING MOTIFS

Feature group sharing in softmax attention When optimizing solely for quality, a notable pat-
tern in STAR is that the first LIV in the model is typically a variant of softmax attention (SA),
connected via feature group sharing to other SA-LIVs positioned toward the end of the model (Figs.
B.1, B.3, B.5, and B.7).

Dominance of softmax attention and memoryless LIVs when optimizing for quality Softmax
attention and memoryless LIVs are foundational to the Transformer architecture. When optimiz-
ing for quality, STAR tends to favor these LIV classes (Fig. B.26). Their performance is further
enhanced by strategically placed recurrences and differential variants of short gated convolutions
(Figs. B.1, B.4, and B.5).

Sparsely placed differential gated convolutions with featurizer sharing Backbones optimized
for quality often include two differential variants of short gated convolutions connected through
featurizer sharing (as illustrated in Figs. B.2, B.4, B.5, B.6, and B.8).

Reduced connectivity when optimizing for quality and size Interestingly, backbones synthe-
sized by STAR for both quality and size exhibit significantly fewer LIVs connected through featur-
izer and feature group sharing compared to those optimized for quality alone (compare Figs. B.26
and 5.4).

Connected gated convolutions A recurring motif from the evolutionary process involves LIVs
with a block-Toeplitz token-mixing structure (e.g., convolutions, gated convolutions). In these cases,
earlier LIVs in the model are connected through feature group sharing to later LIVs (Figs. B.12 and
B.22).
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Figure B.1: STAR-1 optimised for quality (see Table 5.1). Dashed lines on the left indicate feature
group sharing while solid lines on the right indicate featurizer sharing.
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Figure B.2: STAR-2 optimised for quality (see Table 5.1). Dashed lines on the left indicate feature
group sharing while solid lines on the right indicate featurizer sharing.
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Figure B.3: STAR-3 optimised for quality (see Table 5.1). Dashed lines on the left indicate feature
group sharing.
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Figure B.4: STAR-4 optimised for quality (see Table 5.1). Dashed lines on the left indicate feature
group sharing while solid lines on the right indicate featurizer sharing.
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Figure B.5: STAR-5 optimised for quality (see Table A.4). Dashed lines on the left indicate feature
group sharing while solid lines on the right indicate featurizer sharing.
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Figure B.6: STAR-6 optimised for quality (see Table A.4). Dashed lines on the left indicate feature
group sharing while solid lines on the right indicate featurizer sharing.
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Figure B.7: STAR-7 optimised for quality (see Table A.4). Dashed lines on the left indicate feature
group sharing.
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Figure B.8: STAR-8 optimised for quality (see Table A.4). Dashed lines on the left indicate feature
group sharing while solid lines on the right indicate featurizer sharing.
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Figure B.9: STAR-1 optimised for quality and size (see Table 5.1). Dashed lines on the left indicate
feature group sharing while solid lines on the right indicate featurizer sharing.
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Figure B.10: STAR-2 optimised for quality and size (see Table 5.1). Dashed lines on the left indicate
feature group sharing while solid lines on the right indicate featurizer sharing.
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Figure B.11: STAR-3 optimised for quality and size (see Table 5.1). Solid lines on the right indicate
featurizer sharing.
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Figure B.12: STAR-4 optimised for quality and size (see Table 5.1). Dashed lines on the left indicate
feature group sharing.
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Figure B.13: STAR-5 optimised for quality and size (see Table A.4). Solid lines on the right indicate
featurizer sharing.
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Figure B.14: STAR-6 optimised for quality and size (see Table A.4).
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Figure B.15: STAR-7 optimised for quality and size (see Table A.4). Dashed lines on the left indicate
feature group sharing while solid lines on the right indicate featurizer sharing.
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Figure B.16: STAR-8 optimised for quality and size (see Table A.4).
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Figure B.17: STAR-1 optimised for quality and cache (see Table 5.1). Dashed lines on the left
indicate feature group sharing.
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Figure B.18: STAR-2 optimised for quality and cache (see Table 5.1).
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Figure B.19: STAR-3 optimised for quality and cache (see Table 5.1). Dashed lines on the left
indicate feature group sharing.
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Figure B.20: STAR-4 optimised for quality and cache (see Table 5.1).
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Figure B.21: STAR-5 optimised for quality and cache (see Table A.4). Dashed lines on the left
indicate feature group sharing.
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Figure B.22: STAR-6 optimised for quality and cache (see Table A.4). Dashed lines on the left
indicate feature group sharing.
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Figure B.23: STAR-7 optimised for quality and cache (see Table A.4). Dashed lines on the left
indicate feature group sharing.
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Figure B.24: STAR-8 optimised for quality and cache (see Table A.4). Dashed lines on the left
indicate feature group sharing.
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Figure B.25: STAR backbone optimized for quality and cache, consisting of 48 LIVs with a width
of 2048 dimensions (see Table 5.2). This backbone was generated by duplicating a backbone from
the STAR evolution for quality and cache and increasing its width from 768 to 2048 dimensions.
Dashed lines on the left indicate feature group sharing.
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Figure B.32: Note that we used different evaluation datasets for our ablation and main experiments.
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