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ABSTRACT

Integrating multimodal, high-resolution biological data is a useful way to char-
acterize biological processes, such as how cells respond to perturbations. Cell
perturbation prediction is a major experimental challenge and has motivated sub-
stantial research in machine learning for biology. In this work, we generated a
multimodal benchmark dataset that captures the dynamic response of human fi-
broblasts to transient transcription factor perturbations. We performed time-series
live cell imaging with fluorescent cell cycle reporters over 72 hours and collected
long-read single-cell RNA sequencing data from the same population of cells. We
release the processed dataset, preprocessing pipelines and benchmarking code
along with the evaluation of existing models using our data as ground truth. This
work supports the development and evaluation of machine learning methods for
modeling dynamical systems from multimodal datasets. HYPED makes the cell per-
turbation problem accessible to machine learning researchers with state-of-the-art
experimental data.

1 INTRODUCTION

Direct cellular reprogramming, the process of converting one cell type into another without passing
through an intermediate pluripotent state, holds promise for personalized and regenerative medicine
(65; 53). Reprogramming requires the introduction of targeted perturbations capable of altering cell
state, most often through the introduction of cell-type specific transcription factors (TFs) (23; 61).
Current methods for delivering TFs, such as lentiviral vectors or CRISPR-based systems, permanently
alter the cell’s DNA. This irreversible modification raises concerns about uncharacterized and
potentially harmful effects, limiting their utility for a wide range of research and clinical applications.
To address this, recent advancements in transient RNA-based methods for TF delivery have emerged
as safer alternatives to lentiviral vector or CRISPR-based methods (57; 24).

Despite experimental progress made over the past decade, direct reprogramming efforts face key
challenges: conversion efficiency remains low, and identifying new TF combinations is difficult due
to limited knowledge of their combinatorial effects (32; 61). Evaluating the effects of perturbations is
essential for optimizing existing cellular reprogramming protocols. This requires capturing molecular
and phenotypic dynamics with high temporal and cellular resolution. While several works have
captured output measurements from reprogramming experiments, most existing datasets are limited to
a single data modality, and few datasets exist for the evaluation of transient TF delivery methods (17;
49; 70; 21; 14; 5). The limitation of data compatible with current experimental perturbation techniques
poses a challenge for evaluating and benchmarking machine learning models for cell perturbation
prediction. In this work, we collected high-resolution, long-read single-cell transcriptomic data and
live-cell fluorescent microscopy data from a state-of-the-art TF reprogramming protocol on human
fibroblasts using a combination of forced overexpression (MYOD1) and gene suppression (PRRX1).
Our dataset is a valuable resource for the machine-learning evaluation of cellular perturbations.

Biological Background. The cellular reprogramming problem originated in the 1980s with H.
Weintraub’s use of the TF MyoD to convert fibroblasts into skeletal muscle (66). In the early 2000s,
S. Yamanaka reprogrammed the first induced pluripotent stem cells (iPSC) (53). Both approaches
perform cell perturbations with viruses that are inserted into the host cell’s DNA permanently
changing the cell. Many contemporary perturbation screens use CRISPR, through methods like
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Figure 1: Experimental Dataset. The HYPED dataset includes time-series imaging and long-read
sequencing to characterize transient cellular perturbations. Top left: Human fibroblasts are perturbed
using combinations of MYOD1 overexpression and PRRX1 attenuation, delivered via modified mRNA
and siRNA, respectively. Bottom left: Live-cell fluorescent imaging with the Zeiss Celldiscoverer 7
(CD7) captures the temporal dynamics of the cell cycle under TF perturbation. Right: Long-read
single-cell sequencing captures the final transcriptional state of the perturbed cells.

Perturb-seq, to upregulate or downregulate gene expression, also irreversibly modifying the host cell
genome (11). These methods have produced many datasets for perturbation prediction using machine
learning; however, the permanent modification of a host cell’s DNA is not suitable for many clinical,
research, and biomanufacturing applications. The dynamics of the cell cycle, a central factor in cell
reprogramming, are not accounted for in the choice to irreversibly modify a cell’s DNA and hence
are not considered by machine learning perturbation models (40).

To address this challenge from an experimental standpoint, non-integrative approaches using modified
mRNA (mmRNA) and small interfering RNA (siRNA) have become favored for direct reprogramming
(62; 60; 56). mmRNA enables transient, high-level expression of reprogramming TFs without
genomic integration, while siRNA facilitates the attenuation of endogenous mRNAs that maintain the
original cell identity. Together, these approaches promote efficient and controlled lineage conversion
without permanent genetic alteration (50; 35). To our knowledge, we present the first cellular
perturbation dataset based on state-of-the-art experimental methods for machine learning.

Data Modalities. HYPED is a multimodal dataset that combines high-throughput sequencing with
live-cell imaging (fig. 1). Recent advancements in long-read omics technologies, such as single-
cell RNA sequencing (scRNA-seq), have expanded our ability to investigate complex intracellular
mechanisms across multiple regulatory levels (27; 58; 26). In particular, scRNA-seq with Oxford
Nanopore Technologies enables the direct sequencing of full-length RNA transcripts, providing
insights into transcriptional regulation and cell state dynamics. The long-read capability of Nanopore
sequencing allows for the identification of alternative splicing events, quantification of isoform
diversity, and detection of RNA modifications, which are often inaccessible features through short-
read platforms (25; 27). This enables a more accurate and comprehensive characterization of the
transcriptome, facilitating the study of gene expression heterogeneity at the single-cell level.

RNA sequencing remains one of the most widely used data modalities to assess cellular responses
to perturbation (43; 55; 45). However, sequencing requires cell lysis, resulting in destruction of
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Table 1: Overview of Related Single Cell Datasets. Overview of benchmark datasets used in
machine learning for cellular imaging, sequencing, and perturbation.

Dataset Imaging Sequencing Perturbation
ML Task

Only Imaging

LIVECell (12) ✓
NeurIPS Competition 2022 (34) ✓

Only Sequencing

CellXGene (41) ✓
NeurIPS Competition 2021 (33) ✓

Multi-Modal Perturbation (Perturbation + Sequencing)

scPerturb (19) ✓ ✓
PerturbBase (64) ✓ ✓
sc-pert (28) ✓ ✓
NeurIPS Competition 2023 (8) ✓ ✓

Multi-Modal (Imaging + Perturbation + Sequencing)

HYPED (ours) ✓ ✓ ✓

the cell during sample preparation. In contrast, advances in live-cell imaging technologies have
significantly improved spatial resolution and throughput, offering a non destructive, time-resolved
method for studying dynamic cellular processes. These systems enable high-resolution monitoring
of features like cell morphology, proliferation activity, migration, and apoptosis over time. When
combined with fluorescent reporters such as the Fluorescent Ubiquitination-based Cell Cycle Indicator
(FUCCI) system (18), live-cell imaging allows real-time tracking of specific protein expression to
explore intracellular drivers of phenotypic changes (48). FUCCI distinguishes cell cycle phases
by leveraging fluorescently-tagged proteins whose degradation is regulated by the cell cycle. This
approach provides a dynamic view of cell cycle progression in live cells. In the HYPED dataset,
time-series imaging offers high temporal resolution to capture perturbation dynamics, complementing
sequencing-based approaches. This addition introduces a data modality for machine learning studies
of cellular perturbations, enabling multimodal and temporal analysis of the perturbation prediction
problem (see table 1).

Machine Learning Approaches. Given the significance of the cellular reprogramming problem,
a wide range of machine learning approaches have been developed. Early efforts include graph-
and network-based methods (42; 13), as well as studies that frame reprogramming through system
identification, trajectory optimization, and control theory (43; 7). More recent work leverages
transformers and other modern architectures to represent and embed cell states measured with
sequencing (55; 39; 10). Although these approaches have achieved successes at the machine learning
problem, there remain substantial gaps in the success of experimental perturbations, which motivates
the development and application of new models to state-of-the-art experimental datasets.

Contributions. Imaging and transcriptomics each offer distinct yet complementary insights into
cellular biology; imaging captures spatial and morphological dynamics, while transcriptomics reveals
the molecular and regulatory state of the cell. However, these modalities are typically collected in
isolation, providing only fragmented views of genetic perturbations. Integrating these experimental
modalities promises a more comprehensive understanding of the cell as a dynamical system, revealing
how gene expression and physical behavior co-evolve over time. This integration is technically
challenging, as it involves harmonizing data with vastly different structures, resolutions, and temporal
characteristics. Emerging machine learning approaches, particularly multimodal representation
learning and generative modeling, offer a powerful bridge, enabling alignment, translation, and
predictive modeling across these disparate data types. Leveraging these computational frameworks is
key to unlocking unified models of cellular behavior that incorporate both molecular and phenotypic
dimensions.
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To address this challenge, we designed and performed a perturbation experiment that captures live-cell
imaging and scRNA-seq of the same cells, providing a state-of-the-art ground truth dataset for a
variety of challenges, including improving perturbation prediction outcomes. We overcome several
limitations of existing datasets, which often lack synchronized, time-resolved measurements across
modalities. Our contributions provide not only a valuable resource for benchmarking multimodal
models but also a framework for studying dynamic cellular processes through an integrative lens.

2 RELATED WORK

2.1 CELLULAR REPROGRAMMING

Direct cellular reprogramming is a complex process that involves activating lineage-specific target
networks while simultaneously silencing the original cell identity (37). Most reprogramming strate-
gies have relied on viral vectors or plasmids to deliver lineage-specifying genes. Pioneer factors, such
as MYOD in muscle (66) or OCT4 in pluripotency (53), can initiate reprogramming but often require
cooperative TFs to fully activate and maintain the target gene regulatory network (20). Without the
proper TFs, most cells fail to convert fully, instead stalling in unstable intermediate states (9; 38).
Researchers have mapped regulatory networks that govern cell identity and have developed libraries
of transcription factors capable of inducing cell transitions (47; 69; 67; 29).

In parallel, RNA-based approaches have gained traction as non-integrative tools for cellular repro-
gramming (63; 62; 60). Synthetic mmRNA delivery allows for transient and tunable expression of
reprogramming factors, minimizing risk of genomic integration and long-term mutagenesis (50; 7; 6).
Similarly, siRNA can be used to transiently suppress endogenous factors that stabilize native cell
identity (56; 31). While RNA-based systems offer less fine-tuned control compared to viral or
plasmid-based delivery methods, they have significantly greater clinical promise (24). Their transient
nature is well suited to control the cell cycle and reduces the risk of mutagenesis and tumorigenesis,
making them attractive for therapeutic applications (4). As RNA delivery technologies and engineer-
ing strategies mature, RNA-based reprogramming offers a safe path to clinical translation without
compromising on effectiveness (32).

2.2 DATASETS AND MODELS FOR GENE PERTURBATIONS

Gene perturbations are a core laboratory technique for cellular reprogramming and have become
a focus of machine learning in biology. RNA-seq is the primary technique for measuring cellular
responses to perturbations, with scRNA-seq enabling high-resolution analysis of development, disease,
and treatment effects. This has led to the development of large single cell atlases (22; 52; 15; 54)
and foundation models (55; 16; 51). Together, these datasets and models provide a rich resource for
developing machine learning strategies to infer cell identity and predict perturbation outcomes.

Perturb-seq, which combines CRISPR perturbations with scRNA-seq, enables high-throughput
measurement of gene function and has led to the creation of several public datasets and resources
(11). The Gene Perturbation Atlas (GPA) compiles single-gene perturbation data across diverse cell
types to systematically assess how individual genes influence cell identity (68). The Perturbation Cell
and Tissue Atlas (PCTA) extends this effort by integrating genetic and environmental perturbations
with molecular and imaging readouts to support causal inference in cell and tissue biology (44).

Early computational frameworks for direct reprogramming combine gene expression, regulatory
networks, and epigenetic information to predict optimal TF combinations (30; 43; 42; 13). However,
the low efficiency of current reprogramming protocols has positioned cell perturbation prediction
as a standard machine learning challenge (45; 55; 28; 72). While many models focus on forward
prediction—forecasting the cellular response to a given perturbation—few address how to identify the
optimal perturbation strategy. Moreover, existing methods often overlook important biological priors
such as cellular dynamics, cell cycle phase, and other factors known to influence reprogramming
success (71).
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Figure 2: HYPED Dataset Overview. (a) Shows the Distribution of cells across different cell cycle
phases, quantified from Incucyte imaging data across the different fluorescence channels. The (b)
t-SNE projection of cells colored by cell cycle phase shows (c) t-SNE projection of cells colored by
experimental condition. (d) Top 10 differentially expressed genes across experimental conditions.

3 DATASET

We present a multimodal dataset that captures the dynamic response of human fibroblasts to transcrip-
tion factor (TF) perturbations. The dataset includes long-read scRNA-seq and time-lapse imaging data
collected under four experimental conditions: MYOD1 activation via modified mRNA (mmMYOD1),
PRRX1 suppression via siRNA (siPRRX1), sequential dual perturbation (siPRRX1 followed by
mmMYOD1), and an unperturbed control. The scRNA-seq dataset comprises approximately 20,000
cells (∼11,000 perturbed, ∼9,000 controls), enabling isoform-level transcriptomic profiling. Time-
lapse imaging data were collected at 20 minute intervals over 72 hours, capturing high-resolution
trajectories of cell cycle dynamics and morphological changes.

3.1 EXPERIMENTAL SETUP

Human neonatal foreskin fibroblasts (BJ, ATCC CRL-2522) carrying the Incucyte Cell Cycle Reporter
(Sartorius 4779) were used for perturbation experiments. Cells were cultured at 37◦C in 5% CO2

on standard cultureware in full media (FM; Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco
11965-092) + 10% Fetal Bovine Serum (FBS, Corning 35-015-CV) + 1% Penicillin-Streptomycin
(P/S, Gibco 15140-122)). Cells were seeded at 1.03 - 1.33 x 104 cells/cm2 in 6- and 48-well plates,
followed by 24 hours of serum starvation (0.2% FBS) for G0/G1 phase synchronization. At t=0h, cells
were released from serum starvation, and respective cells were transfected with PRRX1 siRNA (25
nM; Dharmacon) in FM using the TransIT-X2 Dynamic Delivery System (Mirus MIR6000). At t=24h,
siRNA was washed out with FM. Respective cells were then transfected with MYOD1 modified
mRNA (1 ng/µl; Pseudouridine + Silica purification, Trilink WOTL39876) in FM supplemented
with 2 µM 4OH-Tamoxifen (Sigma-Aldrich H7904) using the Lipofectamine MessengerMAX
Transfection Reagent (Invitrogen 100026485). At t=48h, cells were harvested with TrypLE Express
(Gibco 12604-013) for scRNA-seq sample preparation. For imaging plates, cells were treated the
same as described above with two differences: (1) Cells were cultured in imaging media (FluoroBrite
DMEM (Gibco A18967-01) + 10% FBS + 1% P/S) instead of standard FM; (2) Cells were stained
with 250 nM SiR-DNA (Cytoskeleton, Inc. CY-SC007) at t=-24h to enable tracking of cell nuclei.
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Table 2: Imaging Data Structure. These dimensions are used to operate on the imaging files, named
according to CZI specification.

Symbol Description
H Phase
S Scene (plate/well)
T Time
C Channel
Z Depth dimension
M Mosaic (determines sub-tile)
Y Vertical axis
X Horizontal axis

3.2 SINGLE CELL RNA SEQUENCING WITH LONG READS

Cells from siPRRX1, siPRRX1/mmMYOD1, and mmMYOD1 were individually labeled with
TotalSeq-B human cell hashing antibodies (BioLegend, Cat# 394631, #394633, and #394635,
respectively). 20,000 cells from each condition were mixed together (viability >98%) and sin-
gle cell barcoded on the 10x Genomics Chromium Controller (X) using the Next GEM Sin-
gle Cell 3’ Kit V4. Barcoded cDNA amplicons from transcript and hashing libraries were pre-
pared according to the Oxford Nanopore Technologies (ONT) 3’ cDNA protocol (SQK-LSK114,
SST_9198_v114_revJ_13Nov2024). Libraries were assessed for quality following ONT recommen-
dations. Prepared libraries were sequenced on the ONT PromethION Solo 2 (P2) sequencer. Raw
reads were base-called with Dorado v0.9.1 (3) using the High Accuracy basecalling model and stored
as fastq files.

For unperturbed controls, fibroblasts were sorted by fluorescence activated cell sorting (FACS) into
their respective cell cycle phases after staining with 16 µM Hoechst 33342 for 50 minutes. Cells
in G1, S, and G2/M were individually labeled with TotalSeq-B hashing antibodies (BioLegend,
Cat# 394631, #394603, #394605, respectively), mixed, and single cell barcoded (viability >97%).
Transcript and hashing libraries were processed and sequenced as described above.

Raw sequencing files obtained from scRNA-seq of the perturbed cells and controls were processed
using the EPI2ME wf-single-cell pipeline v3.1.0 (2) with the human GRCh38 reference genome. The
processed gene expression matrices were combined into a single AnnData object containing cells as
rows (obs) and genes as columns (var) (59).

Respective perturbation conditions (siPRRX1, siPRRX1/mmMYOD1, mmMYOD1) were assigned to
individual cell barcodes using a custom demultiplexing pipeline (1). We add the assigned_condition
column to AnnData.obs.

3.3 TIME SERIES MICROSCOPY

The Zeiss Celldiscoverer 7 (CD7) live-cell imaging system was used to capture time-lapse images
over the course of perturbation experiments. Oblique contrast and fluorescence microscopy was
performed with a Plan-Apochromat 20x/0.7 objective and 0.5x tube lens. Images were taken using
an Axiocam 506 with 14 bit resolution. Cells were imaged at 37◦C in 5% CO2 in imaging media.
Images were captured every 20 minutes over 72 hours. Raw CZI files were exported from the Zen
Blue 3.0 software for image processing and downstream analyses.

3.4 DATA STORAGE

The HYPED dataset is made available on kaggle along with the software used to process the raw
experimental data from the sequencers. Each modalitiy of the dataset is structured separately. The
raw CZI files exported from the microscope contain data with dimensions HSTCZMYX (table 2).
There are 4 channels that correspond to markers that may be used to delinieate the cell cycle phase:
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• Cy5 - cell nuclei
• MKate - G2/M phase
• tagGFP - G1 phase
• Oblique - oblique contrast

Each scene is associated with one of the four experimental conditions. We extract only the relevant
scenes across time frames where each frame is split into mosaics of 6× 5. These mosaic tiles are
stitched together to get the full frame. Each frame was then converted into a four-mode numpy array
(T, C, X, Y) with dimensions (202, 4, 2826, 3245). To make the dataset standardized and accessible,
tensor data of each frame was embedded into a HDF5 (Hierarchical Data Format). Each HDF5 file
consists of a single frame with the four channels at a particular image capture point of the experiment.
The dataset is designed and to load frames across any range of time points into compute memory

The long read sequencing gene expression data is stored in the HDF5 AnnData format .h5ad, a
commonly-used HDF5-based format with extensive support in Python and R. This format stores the
measured gene expression in each single cell in a cell by gene matrix, with the rows and columns
annotated to correspond to the genes and experimental conditions of the cells.

4 BENCHMARKING

Sequencing. We compare the ground truth results obtained from the experiment and the outputs
from predictive models. We use two models to benchmark: the foundation model Geneformer (55)
and the perturbation prediction model GEARS (46) and report on Cosine similarity, Mean Squared
Error (MSE), Mean Absolute Error (MAE) and Pearson correlation coefficient between the predicted
and observed values (see table 3).

Geneformer is a Transformer-based Deep Learning model which utilizes unsupervised self-attention
mechanism to generate Transcriptomic representations. This generates embeddings in a lower-
dimensional space that can be fine-tuned for a variety of tasks.

We tokenize the transcriptome of each cell in the data set with rank value encoding. For the in-silico
perturbation, we set the expression level of MYOD1 to a value greater than the highest expressed gene,
which places it at the top of the ranked value encoding, simulating the activation of MYOD1 within
the cell. Similarly, we simulate suppression of PRRX1 by setting the expression level to zero before
rank value encoding. The tokenized data is then run through Geneformer generating embeddings.
This embedded data is compared with those of experimentally perturbed cells, and the metrics are
reported.

GEARS is a Deep Learning perturbation prediction model which can predict gene expression vectors
under certain perturbation conditions. We first split our experimental data into Test, Train and
validation splits and created a GEARS graph dataset. We then performed in silico prediction for all
three conditions using GEARS. This generates the predicted gene expression vector for the top 500
genes which we compare with the average expression of our held out conditional cells, and calculate
different metrics.

Imaging. To evaluate the performance of noise removal techniques, we performed a benchmarking
task on our dataset, first generating regions of interest from the original data by employing image
processing techniques and segmenting the cells. These cells are then labeled as foreground, and
everything else is considered noise and the Signal-to-Noise Ratio is calculated. We then run the
images through a machine learning algorithm and various quantitative measures including PSNR and
SSIM were calculated. FM2S (36) is a Deep Neural Network based Fluorescent Microscopy Imaging
denoiser. We Run this model on different conditions of our dataset and report the average metrics
(see table 4).

5 DISCUSSION

Here, we introduced the HYPED benchmark dataset for cellular reprogramming, designed using
state-of-the-art perturbation techniques. The use of transient techniques with modified mmRNA and
siRNA provides the first multimodal perturbation dataset suitable for settings that prevent gene editing.
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Algorithm 1 Geneformer Validation Experiment
Require: perturbed_group, control_group, perturbation_genes
Ensure: cos_sim

1: // Initialize lists to store control and perturbed group embeddings
2: Ec, Ep ← [ ], [ ]
3:
4: // Compute Geneformer embeddings of perturbed data
5: for each cell x in perturbed_group do
6: e← Geneformer(x)
7: Ep ← [Ep e]
8: end for
9:

10: // Compute Geneformer embeddings with in silico perturbations
11: for each cell x in control_group do
12: if MYOD ∈ perturbation_genes then
12: x[MYOD]← max(x)
13: end if
14: if PRRX1 ∈ perturbation_genes then
14: x[PRRX1]← 0
15: end if
16: e← Geneformer(x)
17: Ec ← [Ec e]
18: end for
19:
20: // Determine the average embedding of each experimental group
21: ep ← mean(Ep)
22: ec ← mean(Ec)
23:
24: Return CosineSimilarity(u, v) =0

Table 3: Benchmarking Perturbation Models Against Experimental Data. Single-cell control
data were computationally perturbed using Geneformer and GEARS, and the resulting profiles were
compared to experimentally perturbed counterparts.

Model Perturbation Cell Cycle Cosine Sim. MSE MAE Pearson

Geneformer

+ MYOD1
G1 0.9808 0.0148 0.0902 0.9807
S 0.9776 0.0172 0.0988 0.9775

G2/M 0.9715 0.0221 0.1119 0.9714

− PRRX1
G1 0.9913 0.0068 0.0605 0.9913
S 0.9900 0.0078 0.0660 0.9900

G2/M 0.9900 0.0078 0.0680 0.9900

− PRRX1 + MYOD1
G1 0.9902 0.0076 0.0645 0.9902
S 0.9887 0.0086 0.0697 0.9887

G2/M 0.9851 0.0115 0.0810 0.9851

GEARS
− PRRX1 All Phases 0.9518 0.0502 0.1079 0.9358
+ MYOD1 All Phases 0.9741 0.0129 0.0622 0.9625
− PRRX1 + MYOD1 All Phases 0.9772 0.0116 0.0598 0.9676

Unlike widely used lentiviral, CRISPR, and Perturb-seq datasets, which though commonplace are not
suitable for many biological applications, HYPED provides a biologically relevant alternative better
suited for learning and predicting perturbation dynamics based on established biological constraints.
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Table 4: Image Benchmarking. Image Quality Metrics Averaged Across Timepoints.
Model MSE PSNR (dB) SSIM Calculated SNR Denoised SNR
FM2S 0.000146 86.480553 0.877678 14.082471 15.051044

Moreover, HYPED’s live cell imaging provides one of the first perturbation datasets to capture
cell cycle dynamics with perturbations. It has long been recognized by cellular reprogramming
and biological researchers that cell perturbations are transient processes, yet many current models
including GEARS, Geneformer, scGPT, and others do not account for or model the dynamics. This
dataset provides an improved opportunity to train models that account for perturbation and biological
dynamics at a higher temporal resolution and under current experimental conditions than previously
possible.

To advance cellular reprogramming and related biological problems, it is essential that machine
learning models are aligned with the capabilities and limitations of contemporary experiments by
training on modern experimental data modalities. Many existing approaches are trained on idealized
or outdated datasets that fail to reflect the transient, dynamic nature of real biological systems. By
employing modified mmRNA and siRNA and including live-cell imaging with long-read single-cell
transcriptomics, the HYPED dataset serves as a resource for researchers to develop models that are
not only more predictive, but also more actionable in laboratory and clinical settings.

6 LIMITATIONS

We identified two main limitations in our study. First, the experiment conducted includes the effects
of three unique transcription factor perturbations captured on skin fibroblasts. Although this describes
the activity of a small subset, the vast combinatorial space of transcription factors and cell types
remains largely unexplored. Second, we considered a limited number of tasks for each modality, but
there are a variety of challenges that can be explored with our dataset.

7 ETHICAL CONSIDERATIONS

All resources provided as part of this cell reprogramming study are strictly for research purposes only
and should not be used in clinical settings and diagnostic procedures. No sensitive information is
included in the dataset. With the aforementioned restrictions, we have not identified any potential
adverse impacts from the HYPED dataset.
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