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ABSTRACT

Sparse Neural Networks (SNNs) have received voluminous attention for mitigating
the explosion in computational costs and memory footprints of modern deep neural
networks. Despite their popularity, most state-of-the-art training approaches seek
to find a single high-quality sparse subnetwork with a preset sparsity pattern and
ratio, making them inadequate to satiate platform and resource variability. Recently
proposed approaches attempt to jointly train multiple subnetworks (we term as
“sparse co-training”) with a fixed sparsity pattern, to allow switching sparsity ratios
subject to resource requirements. In this work, we take one more step forward
and expand the scope of sparse co-training to cover diverse sparsity patterns and
multiple sparsity ratios at once. We introduce Sparse Cocktail, the first sparse
co-training framework that co-trains a suite of sparsity patterns simultaneously,
loaded with multiple sparsity ratios which facilitate harmonious switch across vari-
ous sparsity patterns and ratios at inference depending on the hardware availability.
More specifically, Sparse Cocktail alternatively trains subnetworks generated from
different sparsity patterns with a gradual increase in sparsity ratios across patterns
and relies on an unified mask generation process and the Dense Pivot Co-training
to ensure the subnetworks of different patterns orchestrate their shared parame-
ters without canceling each other’s performance. Experiment results on image
classification, object detection, and instance segmentation illustrate the favorable
effectiveness and flexibility of Sparse Cocktail, pointing to a promising direction
for sparse co-training. Codes will be released.

1 INTRODUCTION

Deep neural networks are boosted by the ever-larger model size (Brown et al., 2020; Ramesh et al.,
2022; Du et al., 2022; Jumper et al., 2021). Despite their impressive performance, these gigantic
models require prohibitive costs to train and infer, pushing the model size beyond the reach of
common hardware. Sparsity serves as a leading concept to shrink model sizes with a negligible
performance drop. By pruning a large fraction of parameters from a well-trained neural network,
the resulting sparse neural networks enjoy significant computational and memory reduction at
inference (Mozer & Smolensky, 1989; Han et al., 2015; Molchanov et al., 2016). Recently, as
the financial and environmental costs of model training grow exponentially (Strubell et al., 2019;
Patterson et al., 2021), people start to pursue training efficiency by inducing sparsity during the early
training phase (Gale et al., 2019; You et al., 2019; Liu et al., 2021b) or before training (Mocanu
et al., 2018; Evci et al., 2020; Lee et al., 2018; Tanaka et al., 2020). These sparse training approaches
launch the new pursuit of end-to-end saving potential for both training and inference stages.

While many sparse training methods aim to pinpoint a singular optimal sparse subnetwork for
a specific sparsity pattern (e.g., unstructured, semi-structured, or structured) and ratio (i.e., the
percentage of zero elements), they often fall short in accommodating the diverse platform and
resource constraints encountered in the real-world deployment of sparse neural networks. Relying on
post-training pruning tailored to each hardware or constraint can be impractical, as it necessitates
a unique pruning strategy for every scenario and many resource-limited platforms cannot sustain
multiple model alternatives. In response, emerging research offers methods that extract multiple
sparse subnetworks from a single training cycle (Chen et al., 2021; Peste et al., 2021; Miao et al.,
2021; Yang et al., 2022; Dao et al., 2022). These resulting dense or sparse subnetworks can be swiftly
toggled per inference requirements. We refer to those methods as sparse co-training for simplicity.

1



Under review as a conference paper at ICLR 2024

Early sparse co-training efforts (Yu et al., 2018; Yu & Huang, 2019; Yang et al., 2021) embed
smaller subnetworks (with higher channel-level sparsity) within larger ones (with lower channel-level
sparsity). This joint training with selective switching yields a set of channel-sparse networks at
varying ratios in addition to the dense variant. AC/DC (Peste et al., 2021) pairs and co-trains a dense
network with a pre-determined sparse subnetwork through group partitioning, alternating between
compression and decompression. Conversely, AST (Yang et al., 2022) utilizes the prune-and-regrow
mechanism (Liu et al., 2021c) to co-train an array of masks of different sparsities, ensuring gradient
alignment between them. Both AC/DC (Peste et al., 2021) and AST (Yang et al., 2022) initially
showcased their methods for unstructured sparsity before adapting them to N :M structured sparsity.
OTO (Chen et al., 2021) can prune a trained network to any channel-level sparsity ratio in a single
attempt, eliminating the need for re-training. (Miao et al., 2021) achieved a similar outcome but
centered on unstructured sparsity. Recently, Monarch (Dao et al., 2022) employed a hardware-efficient
parameterization of dense weight matrices, specifically using the multiplication of two block-diagonal
matrices, generating both dense and hardware-optimized sparse models in a single pass.

Despite advancements, current sparse co-training methodologies are fragmented. Most are confined to
one sparsity pattern per run, and only a handful can yield multiple sparsity ratios alongside the dense
version. We contend that there’s a pressing need to broaden the scope of existing sparse co-training
techniques to simultaneously encompass a wider variety of sparsity patterns and ratios. This belief
stems from several factors. Firstly, real-world hardware resources can fluctuate immensely based
on the specifics of an application. Secondly, sparse accelerators differ in design, each optimized
for distinct sparsity patterns, such as unstructured sparsity (Liu et al., 2021c), group-wise (Rumi
et al., 2020), channel-wise (Li et al., 2016), and N :M sparsity (Nvidia, 2020). For instance, while
unstructured sparsity shows promising acceleration on CPUs (DeepSparse, 2021; Liu et al., 2021c),
its GPU support is considerably thinner, especially when juxtaposed against structured sparsity.
Lastly, the resource needs and provisions of an ML system evolve over time, necessitating the ability
for “in-situ” adaptive toggling between different sparsity ratios to meet dynamic system demands.

We hereby present Sparse Cocktail, a sparse co-training framework that is capable of concurrently
producing multiple sparse subnetworks across a spectrum of sparsity patterns and ratios, in addition to
the dense model. Our approach alternates between various sparsity pattern training phases, meanwhile
incrementally raising the sparsity ratio across these phases. Underlying the multi-phase training
is a unified mask generation process that allows seamless phase transitions without performance
breakdown. This is complemented by a dense pivot co-training strategy augmented with dynamic
distillation, aligning the optimization trajectories of diverse sparse subnetworks. In the end, all sparse
subnetworks share weights from the dense network. This culminates in a “cocktail” of dense and
sparse models, offering a highly storage-efficient ensemble. Our primary contributions are as follows:

• We introduce Sparse Cocktail, a novel sparse co-training approach that produces a diverse
set of sparse subnetworks with various sparsity patterns and ratios at once. Different
from previous sparse (co-)training approaches which only focus on one, at most two,
types of sparsity patterns, and/or with different sparsity ratios, Sparse Cocktail co-trains
a suite of sparsity patterns simultaneously, and each coming at a series of sparsity ratios.
One can handily choose the desired sparsity pattern and ratio at inference based on the target
hardware type and resource availability.

• Sparse Cocktail alternatively trains subnetworks generated from different sparsity patterns ,
meanwhile gradually increasing the sparsity ratios for all. We use a unified mask generation
method and a dense pivot co-training scheme with dynamic distillation to ensure the subnet-
works of different patterns and ratios orchestrate their shared parameters so that they will
not cancel each other’s performance. Within each sparsity pattern, we additionally perform
selective weight interpolation of multiple subnetworks across different sparsity ratios, to
strengthen performance further.

• Our new framework, besides essentially generalizing and “encapsulating” previous sparse
co-training methods, achieves great parameter efficiency and comparable Pareto-optimal
trade-off individually achieved by those methods too. For example, for co-training at
different sparsity ratios, Sparse Cocktail is on par with or even outperforms strong baselines
such as AST (Yang et al., 2022) and MutualNet (Yang et al., 2021). In contrast with methods
that only co-train a dense/sparse network pair, Sparse Cocktail also achieves competitive
performance.
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2 RELATED WORK

2.1 OVERVIEW OF SPARSE TRAINING

Dense-to-Sparse Training. Dense-to-sparse training begins with a dense model and progressively
sparsifies it throughout the training process. Gradual magnitude pruning (GMP)(Zhu & Gupta, 2017;
Gale et al., 2019) incrementally sparsifies the neural network to achieve the target sparsity over the
training duration. Techniques leveraging ℓ0 and ℓ1 regularization to penalize parameters diverging
from zero have also been effective in yielding compact yet performant sparse neural networks (Louizos
et al., 2018; Wen et al., 2016). During training, trainable masks can be learned (Srinivas et al., 2017;
Liu et al., 2020; Savarese et al., 2019; Xiao et al., 2019) and, intriguingly, even at initialization (Ra-
manujan et al., 2020; Chijiwa et al., 2021; Huang et al., 2022) to produce the desired SNNs.

The lottery ticket hypothesis (LTH)(Frankle & Carbin, 2018) can be broadly classified under dense-
to-sparse training. LTH employs Iterative Magnitude Pruning (IMP)(Han et al., 2015) combined with
weight rewinding to accurately identify high-quality sparse subnetworks (often referred to as winning
tickets). When trained in isolation, these subnetworks can match the performance of the dense neural
network. Techniques such as Lottery Pools (Yin et al., 2022) have further shown that most LTH
solutions (i.e., converged subnetworks) reside within the same local basin. Consequently, they can be
selectively interpolated to enhance LTH’s performance. More recently, (Chen et al., 2022) introduced
two post-training operations: weight refilling and weight regrouping. These effectively transition the
benefits of unstructured sparsity to GPU-compatible sparsity patterns.

Sparse-to-Sparse Training. Sparse-to-sparse training, in contrast, begins with and maintains
a sparse neural network throughout training, aiming for potential end-to-end efficiencies during
both training and inference. Dynamic Sparse Training (DST) (Mocanu et al., 2018; Liu et al.,
2021c) has emerged as a promising strategy to derive high-performing sparse networks without the
need for any dense pre-training or fine-tuning phases. Most DST techniques employ a prune-and-
regrow operation(Mocanu et al., 2018) to enhance the efficacy of sparse masks. SNFS (Dettmers &
Zettlemoyer, 2019) and RigL (Evci et al., 2020) notably augment the performance of DST by utilizing
gradient data to cultivate weights. ITOP (Liu et al., 2021d) underscores the essential role of parameter
exploration in sparse training, emphasizing that the performance of sparse training is intrinsically
tied to the total number of parameters it engages with during training. Top-KAST (Jayakumar et al.,
2020) exclusively updates a minor fraction of gradients during backpropagation, bypassing the need
to compute dense gradients. A review of various existing sparsity patterns is in Appendix A.

2.2 SPARSE CO-TRAINING: MORE THAN ONE SPARSITY PATTERNS OR RATIOS AT ONCE

Existing sparse co-training methods can be divided into two paradigms: (i) co-training dense and
sparse networks, and (ii) co-training multiple sparse networks from scratch.

The first paradigm encompasses methods such as S-Net (Yu et al., 2018), US-Net (Yu & Huang, 2019),
and MutualNet (Yang et al., 2021). In these methods, smaller subnetworks are nested within larger
ones and are co-trained through selective switching or random sampling. Partial-SGD (Mohtashami
et al., 2022) employs a mix of parameter perturbation and gradient masking to co-train a full-rank
dense model alongside a low-rank sparse model. In contrast, AC/DC (Peste et al., 2021) co-trains
a dense network and its subnetwork with a predefined sparsity, utilizing group partitioning and
alternating compression/decompression techniques.

The second paradigm, which involves co-training multiple sparse networks from scratch, features
methods such as AST (Yang et al., 2022). AST employs a prune-and-regrow mechanism, enabling the
co-training of several sparse subnetworks with gradient alignment between consecutive mini-batches.
Monarch (Dao et al., 2022) deploys dense matrix approximation with permutable block-diagonal
sparse matrices, obtaining both dense and numerous sparse models simultaneously. Cosub (Touvron
et al., 2022) suggests training two random subsets of all network layers with mutual distillations in
each mini-batch, yielding depth-wise sparse models and a more potent dense model.

However, several issues prevail in current sparse co-training methods: (1) the limited number of
co-trainable subnetworks due to simplistic alternative or joint training, and (2) their focus on a single
sparsity pattern during one training pass. These issues render them unsuitable for generating more
sparse subnetworks that can cater to the requirements of diverse hardware platforms.
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Figure 1: The flow diagram of Sparse Cocktail. Before each co-training iteration, we first perform
iterative pruning with weight rewinding and the Unified Mask Generation technique. This produces
a set of sparse subnetworks with various sparsity patterns, gradually increasing in sparsity ratios.
During each co-training iteration, we use Dense Pivot Co-training to train subnetworks with
different sparsity patterns alternatively, using a dense network as a pivot. Once all co-training
steps are complete, we introduce Greedy Subnetwork Interpolation to boost the performance of the
subnetworks. The final output of Sparse Cocktail is formed by a set of dense neural networks, each
accompanied by multiple sparse masks with various patterns.

Besides the aforementioned, we would like to mention other loosely related research areas: (i) training
a pruning-friendly network for one-shot pruning without re-training (Chen et al., 2021; Miao et al.,
2021), (ii) neural architecture search (NAS)-based pruning that produces a multitude of subnetworks
with shared parameters, albeit at a significantly higher training cost, such as OFA (Cai et al., 2019) and
BigNAS (Yu et al., 2020), (iii) leveraging dedicated structured pruning and distillation for iterative
pruning of networks without re-training (Kurtic et al., 2023), and (iv) input resolution-switchable
networks, such as RS-Net (Wang et al., 2020) and again, MutualNet (Yang et al., 2021).

3 METHODOLOGY

3.1 PRELIMINARIES AND NOTATIONS

Notations. Let D and S denote the dense and sparse networks, respectively. Operations commonly
referenced in pruning literature, namely pruning, weight rewinding, and re-training, are represented
by P , R, and T , which we’ll elaborate on subsequently. To differentiate between iterations of
pruning and re-training, D and S can be subscripted with k = 1, 2, ..., N . Various sparsity patterns
are symbolized as Su, Sc, and Snm, standing for unstructured sparsity, channel-wise sparsity, and
N :M sparsity, respectively. With m representing the binary masks of each sparse network and ⊙
signifying the unstructured product operation, the sparse neural network at the kth iteration can be
expressed as Sk = Dk ⊙mk.

Iterative Magnitude Pruning. Iterative magnitude pruning (IMP) (Han et al., 2015) iteratively
prunes a dense network D0 using a ratio p (e.g., 20%), yielding a sequence of nested masks with
progressively increasing sparsity ratios. After each pruning step, retraining the sparse subnetwork
is typically essential to restore performance. IMP received renewed attention through the Lottery
Ticket Hypothesis (LTH) (Frankle & Carbin, 2018). LTH reveals that sparse subnetworks derived
from IMP can achieve the performance of the dense network when trained independently with
their original initializations. The power of LTH was further enhanced by weight and learning rate
rewinding (Frankle et al., 2020; Renda et al., 2020). Formally, subnetworks produced by IMP
through rewinding can be defined as Sk|Sk = Tk(R(Pk(Sk − 1))), S0 = D0, k = 1, 2, ..., N . In
this work, we extend our iterative pruning scope to craft not just one specific mask type but multiple
sparsity patterns concurrently. Thus, it yields four distinct network series: Dk, S

u
k , S

c
k, S

nm
k for

k = 0, 1, ..., N . These represent the dense network and the sparse networks with unstructured
sparsity, channel-wise sparsity, and N :M sparsity, respectively.

3.2 OVERVIEW OF SPARSE COCKTAIL

The workflow of Sparse Cocktail is depicted in Fig. 1, comprising three main modules:
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1 Prior to Iterative Co-training: Before embarking on each iterative co-training phase, Sparse
Cocktail first initializes three subnetworks, each embodying a unique sparsity pattern: Su

0 , S
c
0, S

nm
0 ,

all stemming from a pre-trained dense network D0 via IMP. Magnitude pruning gives rise to the
unstructured Su

k and N :M sparse Snm
k . The channel-wise subnetworks are found by transforming

Su
k and Snm

k through the Unified Mask Generation (UMG) process, detailed in subsequent sections.

2 During Iterative Co-training: Within each iterative co-training phase, we rewind the weights,
typically to around the 5th epoch, and alternately train subnetworks of diverse patterns. To ensure the
co-training remains stable, we intersperse with a one-step update of a dense neural network. This
“dense pivot” acts as a lubricant, streamlining the sparse co-training for enhanced efficacy.

3 Post Iterative Co-training: Upon concluding the comprehensive iterative co-training regimen,
we employ an interpolation-driven network merging technique to further augment the performance of
the resultant (sub-)networks.

We shall clarify that the focus of Sparse Cocktail is NOT training efficiency, but instead, the ability
to generate multiple network options at once - for the goal of adaptive deployment and efficient
inference, same as prior works Yang et al. (2021); Peste et al. (2021); Yang et al. (2022).

3.3 USING ITERATIVE PRUNING WITH WEIGHT REWINDING FOR SPARSE CO-TRAINING

One challenge of training multiple diverse sparse subnetworks resembles multi-task learning: when a
single parameter exists in multiple subnetworks simultaneously, it can induce conflicting gradient
directions, a phenomenon observed by Yang et al. (2022). The challenge is amplified as we augment
more co-trained subnetworks, especially given the blend of sparsity patterns and ratios.

To circumvent the gradient conflicts, we embrace iterative pruning, veering away from the one-shot
gradual pruning methods (Yang et al., 2022; Liu et al., 2021b). This strategy ensures that subnet-
works of different sparsity ratios are segregated and nurtured across discrete iterations. Moreover,
with weight rewinding, we ensure these subnetworks to originate from a unified starting point,
harmonizing their optimization trajectories and diminishing the chances of training discord.

However, our approach goes beyond producing multiple sparsity ratios; it also grapples with the
tandem training of assorted sparsity patterns. Guaranteeing that these patterns are cultivated and
honed without adversely affecting each other’s performance is crucial. In pursuit of this, we unveil
three more cornerstone techniques: Unified Mask Generation, Dense Pivot Co-training, and
Sparse Network Interpolation - those will be detailed next.

3.4 UNIFIED MASK GENERATION

A key question that emerges prior to iterative co-training is the methodological generation of masks
with disparate sparsity patterns mu

k ,m
c
k,m

nm
k in a way not adversely influencing one another. Pursu-

ing independent generation for each might lead to divergent optimization trajectories for Su
k , S

c
k, S

nm
k .

In response to this challenge, we introduce the Unified Mask Generation (UMG) mechanism, designed
to jointly produce mu

k ,m
c
k,m

nm
k grounded on the criterion of individual weight magnitudes:

For the unstructured and N :M patterns, the masks mu
k and mnm

k are crafted by selecting individual
weights based on their magnitudes. It’s worth noting that weight magnitudes are globally ranked for
unstructured sparsity. In contrast, for the N :M pattern, magnitudes are locally ranked across every
contiguous set of M weight elements.

The channel-wise mask mc
k presents a unique nuance: the channels to prune cannot be pinpointed

based on individual weights alone. To address this, we lean on the weight refilling approach (Chen
et al., 2022). Here, the non-pruned weights of both unstructured and N :M patterns guide the decision
on which channels to eliminate. Explicitly, for a channel C ∈ Ri×h×w (with i denoting the number of
input channels and h,w representing the dimensions of weight kernels), the channel’s importance is
gauged by β||mu⊙C||1+(1−β)||mnm⊙C||1. Here, mu and mnm are the respective unstructured
and N :M masks of this channel, with the empirical value of β set at 0.8. Consequently, for each layer,
a subset of channels showcasing peak scores—based on the predetermined channel-wise sparsity
ratio—is chosen. This selection informs the composition of the channel-wise mask mc

k.

Our analysis in Fig. 5 demonstrates that UMG substantially reduces the optimization conflicts between
different sparsity patterns.
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3.5 DENSE PIVOT CO-TRAINING
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Figure 2: The comparison between AST (Yang et al., 2022) and dense pivot co-training. AST switches
among subnetworks of different sparsity levels yet within the same sparsity pattern cyclically (it
does not consider multiple sparse patterns). Dense pivot co-training inserts dense training steps
between switching different sparse patterns.

In (Yang et al., 2022), it was highlighted how SGD training imparts an implicit regularization of
gradient alignment across successive mini-batches (Nichol et al., 2018; Mohtashami et al., 2022).
This characteristic proves advantageous for the efficacious alternate training of multiple subnetworks
within sparse co-training. The authors hence developed Alternate Sparse Training (AST) facilitating
the alternate training of various subnetworks that have differing sparsity ratios. However, in our
settings, which encompass both varying sparsity ratios and patterns, we found naively applying AST
leads to degraded performance, owing to the strong divergence between distinct sparsity patterns.

In response, we discover that introducing a dense training phase as a “buffer” between two sparse
subnetwork updates significantly attenuates this inefficacy. We term this operation the “dense pivot”.
Fig. 2 contrasts AST and our dense pivot co-training. Our primary intent is to harness the gradient
alignment effect observed in AST and guide the gradients of disparate sparse networks. Owing to the
dense pivot, the gradients of each subnetwork become “realigned” with those of the dense networks.
Such alignment benefits from consistent initializations, a facet ensured by weight rewinding.

Supplementing the dense pivot, we also employ “dynamic distillation”, aiming to minimize the opti-
mization discrepancy between the dense network and its subnetworks. Assuming L(output, target)
as the loss function and designating i = 2, 4, 6, ... as the subnetwork training iterations, with Xi

representing the mini-batch input at the ith iteration and Yi signifying the ground-truth labels for Xi,
the dynamic distillation procedure can be articulated as:

LSk
=

1

2
(L(Sk(Xi), Yi) + L(Sk(Xi),∇(Dk(Xi)))) (1)

Note that ∇(·) denotes the stop gradient operator. Due to weight rewinding, all dense networks in
{Dk} are initialized identically and thus will be optimized towards similar directions although they
are trained in different iterative pruning stages. Through Dense Pivot Co-training, the subnetworks
{Su

k , S
c
k, S

nm
k } of different sparsity patterns are also forced to align their gradients w.r.t. Dk. This

leads to each weight parameter being optimized in similar directions across different sparsity ratios
and patterns, which contributes to the successful parameter sharing of Sparse Cocktail.

3.6 SPARSE NETWORK INTERPOLATION

Network merging is an emerging technique that fuses multiple neural networks into a stronger
one (Nagarajan & Kolter, 2019; Frankle et al., 2020; Neyshabur et al., 2020; Von Oswald et al.,
2020; Wortsman et al., 2022; Yin et al., 2022). Sparse Cocktail takes an evolving-and-merging
approach: it employs an interpolation-based merging technique, fusing networks across different
sparsity ratios and patterns, enhancing performance. This interpolation process is: Dbest = αkDbest+
(1− αk)Dk, k = 2, ..., N , wherein αk ∈ [0, 1] represents the interpolation factor, and Dbest is the
preeminent interpolated network, initialized with D1. The determination of αk is grounded in a
hold-out validation set, which we term as ValAcc. Following the interpolation, we refine the batch
normalization statistics with a subsequent data pass, a process we denote as BnUpdate.

Inspired by (Wortsman et al., 2022), our method employs a meticulous, greedy strategy to discern
the optimal co-efficiency within the range [0.05, 0.1, 0.2, ..., 0.9, 0.95, 1] for two subnetworks.
Only subnetworks that do not diminish accuracy on the held-out set are considered for interpolation,
otherwise abandoned. Post-interpolation, we implement magnitude pruning to restore the desired
sparsity. The nuances of our interpolation method are detailed in Algorithm 1 in the Appendix.

6



Under review as a conference paper at ICLR 2024

Table 1: Comparison between Sparse Cocktail and other sparse co-training methods. We test ResNet-
18 on CIFAR10 and ResNet-50 on ImageNet. Co-train Patterns mean whether the method co-trains
more than one sparsity pattern (unstructured, N:M, channel-level) at once, besides the dense one.
Avg. Acc means averaged accuracy over different sparsity ratios. To ensure a fair comparison, we
implement all other methods following the original papers and test all on our pre-defined sparsity
ratios. Notably, ❶ MutualNet co-trains 1 dense network and 10 channel-wise sparse networks with
identical channel-wise sparsities as Sparse Cocktail at once; ❷ AC/DC co-trains 10 dense/sparse
network pairs separately; ❸ AST co-trains 2 sparsity patterns separately; ❹ Sparse Cocktail co-trains
all sparsity patterns and ratios at once.

Method Co-train
Patterns

Sparsity
Pattern

Avg. Acc(%) Sub-net
#ResNet 18 + CIFAR10 ResNet-50 + ImageNet

MutualNet ✗
Dense 92.36 75.94 1

Channel 90.23 72.04 10

AC/DC ✗
Dense 92.58 76.44 10

Unstruct 92.03 75.80 10

AST ✗
Unstruct 92.08 73.15 10

N :M 92.11 76.02 4

Sparse
Cocktail ✓

Dense 92.48 76.32 1

Unstruct 92.09 73.23 10

Channel 90.02 72.22 10

N :M 91.83 75.19 3

4 EXPERIMENTS

Dataset, Architectures, and Evaluations. We conduct experiments on the CIFAR10 (Krizhevsky
et al., 2009) and ImageNet (Deng et al., 2009) datasets. The architectures used are ResNet-18 for
CIFAR10 and ResNet-50 for ImageNet (He et al., 2016). We keep the same sparsity ratios for
different methods, which lead to the same inference time efficiency for each subnetwork. We evaluate
the test set accuracies and parameter efficiency of the individual subnetworks, the dense networks,
the total parameter number, and the subnetwork number in each shared network of each method.

Sparse Cocktail Configurations. For Sparse Cocktail, we record the hyperparameter setting in
Table 5 in the Appendix. Additionally, we use different iterative pruning rates for the 3 sparsity
patterns: for unstructured sparsity, the weight pruning rate pe is set to 0.2 following (Frankle
& Carbin, 2018); for channel-wise sparsity, the channel pruning rate pc is set to 0.1 to keep a
similar parameter number as unstructured sparsity; for N :M sparsity, we focus on three practically
accelerable sparsity ratios——1:2, 2:4 and 4:8 as in (Hubara et al., 2021). We generate these three
N :M masks during P2,P5 and P8, respectively and keep them unchanged elsewhere. Note that
with UMG, the distribution of channel-wise masks will be decided by the magnitude sums of the
remaining weights from both unstructured and N :M sparsity. Under this setting, the default version
of Sparse Cocktail produces 24 networks at once, consisting of 1 dense network, 10 unstructured,
10 channel-wise and 3 N :M subnetworks.

Baselines and Configurations. We compare Sparse Cocktail with three SOTA sparse co-training
methods: AST (Yang et al., 2022), AC/DC (Peste et al., 2021) and MutualNet (Yang et al., 2021).
Note that MutualNet uniquely includes data-level co-training by varying input image resolution; we
identically followed it when using MutualNet, but did not implement the same idea in Sparse Cocktail
since we want to ensure fair comparison with all other methods (without data-level co-training). The
comparison of network number with shared parameters, total subnetwork number, and total parameter
number of different methods is presented in Table 3. Since we enforce identical sparsity distributions
for all sparse co-training methods within each sparsity pattern, the FLOPs of Sparse Cocktail within
each sparsity pattern remain nearly identical with other baseline methods. We thus omit FLOPs
evaluation in our experiments. More details about the implementations and hyperparameter settings
are provided in Appendix B.
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Table 2: The performance of individual subnet-
works of different sparse co-training methods. We
report 4 out of 10 evenly distributed sparsity ratios
for both unstructured and channel-wise sparsities.

Sparsity Ratio
Unstruct 0.20 0.49 0.74 0.87

Channel 0.10 0.27 0.47 0.61Dataset Method

N :M 1:1 1:2 2:4 4:8

MutualNet Channel 92.32 91.74 89.54 87.02

AC/DC Unstruct 92.45 92.26 91.87 91.73

Unstruct 92.34 92.24 92.05 91.73
AST

N :M 92.56 92.23 92.45 92.38

Unstruct 92.45 92.44 92.03 91.67

Channel 92.34 91.89 90.40 87.31
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Sparse
Cocktail

N :M 92.48 92.03 91.93 91.45

MutualNet Channel 75.14 73.62 71.75 68.32

AC/DC Unstruct 76.36 76.25 76.03 74.92

Unstruct 76.67 74.32 73.45 71.26
AST

N :M 76.41 76.07 75.98 75.61

Unstruct 76.36 74.42 73.15 71.03

Channel 75.22 73.79 72.52 69.45

Im
ag

eN
et

Sparse
Cocktail

N :M 76.32 75.23 74.96 74.23

Table 3: The number of networks with shared
parameters, total subnetwork number (including
dense) and total parameter number of each method.
Avg. Sub-net # is obtained by dividing the net-
work number with the sub-net number and reflects
the average subnetwork capacity of each shared
network, which reflects parameter efficiency for
sparse co-training. Binary masks are ignored in
our comparison.

Method Param
#

Network
#

Sub-net
#

Avg. Sub
-net #

MutualNet 1x 1 11 11

AC/DC 10x 10 20 2

AST 1.94x 2 14 7

Sparse Cocktail 1x 1 24 24

4.1 MAIN RESULTS

We collect the main experiment results in Table 1, which shows the average accuracy of different
sparsity ratios for each sparsity pattern, as well as the subnetwork number for each sparsity pattern.
Furthermore, we compare some individual sparsity ratio networks of different methods in Table 2.
Comparisons with Other Co-Training Methods. Being the most inclusive method that trains
more sparse patterns or ratios than competitor methods, Sparse Cocktail achieves comparable or
even better performance compared to the SOTA sparse co-training methods that only focus on one
sparsity pattern per model. Specifically, ❶ when compared with AST, the current SOTA sparse-
to-sparse co-training method, Sparse Cocktail achieves comparable accuracy when just comparing
single sparsity pattern performance, while additionally uniting 3 sparsity patterns in one network
including the channel-wise sparsity; ❷ when compared to AD/DC, Sparse Cocktail still achieves
the performance on par on individual sparse patterns and ratios, while also avoiding AC/DC’s need
of co-training 10 dense/sparse network pairs; ❸ when compared to MutualNet which is the SOTA
method on channel-wise co-training, Sparse Cocktail wins across all sparsity ratios, e.g., over 1%
accuracy gain at high sparsity ratios, meanwhile providing more sparsity patterns at once. Overall,
Sparse Cocktail can effectively generalize and “encapsulate” these sparse co-training methods.
Comparisons Across Architectures and Datasets. In our main context, we conduct our experi-
ments using ResNet-50 and image classification tasks. Now we validate that Sparse Cocktail remains
effective in different architectures and tasks. Specifically, we showcase the performance of Sparse
Cocktail on two network backbones——ResNet-50 and VGG-16 and on two tasks——object detec-
tion and instance segmentation on the MS COCO benchmark. We follow Table 1 for sparsity choices,
i.e. for Sparse Cocktail we co-train 24 subnetworks with its 10 channel-wise sparsities identical to the
MutualNet. We follow other experiment settings as in Section 4.4 of Yang et al. (2020) and compare
the averaged performance of the 10 channel-wise subnetworks. Note that Sparse Cocktail does not
use switchable resolutions as in Yang et al. (2020). The results are shown in Table 4. The results on
both object detection and instance segmentation again demonstrate that Sparse Cocktail can achieve
superior performance over MultualNet while co-trains 13 more unstructured and N:M subnetworks
simultaneously.

4.2 ABLATION STUDY AND ANALYSIS

We conduct a comprehensive ablation study on Sparse Cocktail to justify the effectiveness of
individual components as proposed in the methodology. Specifically, we compare our full method
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Table 4: The object detection and instance segmentation results on MS COCO dataset.

Method
Object Detection Instance Segmentation

BoxAP MaskAP

ResNet50 VGG-16 ResNet50 VGG-16

Baseline 32.1 33.8 32.5 31.3
MutualNet 31.3 30.7 30.1 29.4

Sparse Cocktail 31.0 32.3 30.9 30.3
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Figure 3: The ablation study of Sparse Cocktail. (a), (b), and (c) contain unstructured, channel-
wise, and N :M performance curves of individual sparse networks under different ablation settings.
W/o UMG means replacing UMG with vanilla mask generation, mainly by replacing the refilling-
based channel-wise mask generation with channel-weight-based mask generation. Dense Pivot
Co-training→AST refers to replacing Dense Pivot Co-training with AST solution as proposed by
(Yang et al., 2022). W/o interpolation means removing the network interpolation step and using the
final for testing. W/o rewinding denotes that we immediately resume the training without rewinding
the weights after pruning. Note from (c) that Sparse Cocktail only produces 3 N :M masks.

with 4 variants ① removing UMG, ② replacing Dense Pivot Co-training with AST, ③ removing the
network interpolation, and ④ removing the weight-rewinding. Moreover, we visualize the proposed
interpolation process of them. The results are presented in Fig. 5.

How does each component of Sparse Cocktail contribute? As we can observe from Fig. 5(a), (b),
(c), ❶ when we remove weight rewinding, the performance decreases drastically. This is reasonable
because without weight rewinding, the dense and sparse networks at different IMP stages do not
have similar optimization processes and thus end up with very different parameter values, which
negatively affects network interpolation. ❷ When we remove network interpolation, we still observe
a big performance drop, which highlights its importance to ensemble parameters from different IMP
stages. ❸ If we replace Dense Pivot Co-training with the AST, there’s also a significant performance
drop, because Dense Pivot Co-training is able to regularize the subnetworks to be optimized in similar
directions across different sparsity ratios, as we analyze in Section 3.5. ❹ Finally, if we remove the
UMG, there is still an observable performance drop, which shows that generating masks of different
sparsity patterns in a united criterion with UMG is better for sparse co-training than generating
them with independent criteria. We can draw the conclusion that weight rewinding and network
interpolation are both necessary components for Sparse Cocktail to function normally, while UMG
and Dense Pivot Co-training also contribute remarkably to the final performance gains.

Additionally, we also investigate the role of our proposed interpolation process in Appendix H.

5 CONCLUSION

This paper proposes Sparse Cocktail, a novel method for training many resource-efficient sparse neural
networks all at once. It simultaneously co-trains a diverse set of sparsity patterns, each characterized
by a range of sparsity ratios. Sparse Cocktail demonstrates a competitive performance, even compared
to prior single-pattern sparse co-training methods, thus generalizing and “encapsulating” those
previous methods. We leave the work of exploring additional sparsity patterns to the future.
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A EXISTING SPARSITY PATTERNS FOR NETWORK PRUNING

Unstructured sparsity is a technique for pruning individual weights globally but is not typically
efficient on hardware. Recent developments, such as CPU-level accelerable (Kurtz et al., 2020;
Liu et al., 2021c; DeepSparse, 2021) and GPU-level accelerable (Gale et al., 2020) unstructured
sparsities, have been proposed to address this issue. Structured sparsity, on the other hand, is more
hardware-friendly but may come at the cost of network performance. The channel-wise sparsity (Liu
et al., 2017; He et al., 2017; Bartoldson et al., 2020; Rumi et al., 2020; Liu et al., 2021a) is a typical
example of structured sparsity that eliminates entire channels from each layer and directly produces
a slimmer network. Other examples include group-wise sparsity (Li et al., 2020; Oyedotun et al.,
2020; Chen et al., 2022) that extracts sparse masks by enforcing entire rows or columns of the weight
matrices to be zero, fine-grained structured sparsity (also called as N :M sparsity) (Zhou et al., 2021;
Pool & Yu, 2021; Hubara et al., 2021) that requires N non-zero elements among M consecutive
weight parameters and can be accelerated by recent NVIDIA Ampere architecture. Other hybrid
sparsity patterns, such as SIMD-friendly vector-wise sparsity (Zhou et al., 2021), pattern-based
structural sparsity (Ma et al., 2020) and half-regular sparsity (Chen et al., 2018) have also been
proposed to take advantage of both unstructured and structured sparsities.

B SPARSE NETWORK INTERPOLATION FOR SPARSE COCKTAIL

We show the network interpolation algorithm for Sparse Cocktail in Algorithm 1.

The network interpolation is used to create a single network with shared parameters among different
subnetworks generated by Sparse Cocktail since we have different output parameter values of
subnetworks at different iterations. It will only be performed once after the whole IMP process is
finished. Our network interpolation is developed based on the interpolation method of Lottery Pool
Yin et al. (2022), the core difference is that they only aim to produce a single sparse network with an
interpolated sparsity ratio, while we need to use the interpolation to produce multiple subnetworks
with a shared parameter set. In terms of technical details, the Lottery Pool evaluates a single network
at every greedy step, while our algorithm performs interpolation using the dense networks obtained
at the end of IMP iteration, and then evaluates the performance of every subnetworks obtained so far
at i-th iteration by applying their sparse masks.

Algorithm 1 Network Interpolation for Sparse Cocktail

1: Input: Dense networks {Dk} and binary sparse masks {mu
k ,m

c
k,m

nm
k } from the IMP process

of Sparse Cocktail, candidate pool C = {0.05, 0.1, 0.2, ..., 0.9, 0.95, 1} for interpolation factors,
hold-out validation set B

2: Output: Interpolated dense network Dbest

3: Dbest ← D1

4: for k = 2 to N do
5: αk ← argmax

α∈C

∑k
j=1

∑
mu

j ,m
c
j ,m

nm
j

ValAcc
B

[(αDbest + (1− α)Dk)⊙m]

6: Dbest ← αkDbest + (1− αk)Dk

7: end for
8: BnUpdate for each subnetwork
9: return Dbest

C DETAILED RATIONALE ON WHY USING ”UNIFIED” MASK GENERATION.

The mask generation process is called ”unified” primarily because now the selection of 3 masks
is all based on individual weight magnitudes by changing the pruning criterion of channel-wise
pruning. In traditional channel-wise pruning, the pruning criterion is usually based on the batch norm
scale factor, which is different from individual weight magnitudes. If we combine this traditional
channel-wise pruning criterion with weight magnitude-based unstructured and N:M pruning, there
could be conflicts for sparse co-training with different sparsity patterns. Now in our proposed unified
mask generation, this is changed by introducing the refilling criterion, which decides which channels
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to prune based on the magnitude sum of all individual weights in each channel. In this way, the sparse
co-training can better orchestrate their shared parameters so that they will not produce conflicts in
pruning criteria and cancel each other’s performance.

D DETAILED METHODOLOGY COMPARISON OF SPARSE COCKTAIL WITH
RELATED WORK

Here, we want to make some complementary discussion about some key differences and contributions
of Sparse Cocktail compared to related work.

One of our major novelty is to expand the scope of sparse co-training to cover diverse sparsity
patterns and multiple sparsity ratios at once. This research goal stands out as novel because previous
works have not addressed such a wide range of sparse patterns and ratios. The harmony among
different sparsity patterns is made possible by UMG and Dense Pivot Co-training. By using UMG
as a universal pruning criterion and producing closely aligned sparse masks, we relieve the gradient
conflicts of different sparsity patterns during training. Then by Dense Pivot Co-training that inserts a
dense mini-batch step at every alternative sparse mini-batch step, we further enforce the optimizing
directions of subnetworks of different sparsity patterns to be aligned with the same dense network.
Meanwhile, the dense network at each IMP iteration has the same initialization as in the Lottery
Ticket Hypothesis, thus the optimization directions from different IMP iteration are aligned because
of the same dense network initialization. Thus, the optimization directions from different sparsity
ratios and patterns are all regularized to be aligned together. We are also the first one to apply LTH
for sparse co-training to amortize the sparse co-training pressure (we only co-trains subnetworks of a
single sparsity ratio from different sparsity patterns at the same time in each IMP iteration, while
finally it produces a lot more subnetworks in total without the need to co-train them together), while
related work such as Lottery Pool only considers aiming to produce a single stronger subnetwork.

We also do not simply reuse existing methods but develop novel adaptations for the sparse co-training
circumstance. Specifically, (1) we adapt the refilling method in Chen et al. (2022) as UMG by
incorporating N:M sparsity and letting both unstructured and N:M sparsity decide which channels
to refill; (2) we adapt the Yang et al. (2022) as Dense Pivot Co-training by not just alternating
mini-batches among sparse networks of the same sparsity ratio and pattern but inserting a dense
mini-batch step and combine it with IMP to achieve optimization alignments across different sparsity
ratios and patterns. (3) we adapt the network interpolation method in Yin et al. (2022) as we state in
A6 below.

E HYPERPARAM SETTING OF SPARSE COCKTAIL

We show our hyperparameter settings of Sparse Cocktail in Table 5 for CIFAR10 dataset and Table 6
for ImageNet dataset, respectively.

F IMPLEMENTATIONS AND SETTINGS OF THE BASELINE METHODS

For AST (Yang et al., 2022),we implement the gradient correction and inner-group iteration as
in (Yang et al., 2022). Following (Yang et al., 2022), and co-train 10 unstructured or 4 N :M
subnetworks in one experiment, with the same number of total training epochs as Sparse Cocktail
(1500). For AC/DC (Peste et al., 2021), we co-train one unstructured subnetwork with the dense
network in one experiment with 150 training epochs per experiment. For MutualNet (Yang et al.,
2021), we also use 1500 training epochs to co-train 10 channel-wise subnetworks, and uses switachble
input resolutions of 32, 28, 24, 16 for CIFAR10 and 224, 196, 160, 128 for ImageNet, repsectively.
All baseline methods are trained to produce the same sparsity ratios as the Sparse Cocktail within a
single sparsity pattern. We keep all the other hyperparameters the same as Sparse Cocktail among all
baseline methods. Early stop is used to avoid overfitting for all methods.

Based on the above settings, all the methods have the same number of training iterations and batch
size (regardless of which subnetwork will be trained at each mini-batch), and thus the same training

1https://github.com/abhuse/cyclic-cosine-decay
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Table 5: The hyperparameter setting of Sparse Cocktail on CIFAR10 dataset.

Hyperparameter Configuration

IMP setting iterations = 10, rewind epoch = 7,
training epochs = 150

Optimizer SGD (lr = 0.1, momentum = 0.9,
weight decay = 1e− 4)

LR scheduler
CyclicCosineDecay1(init epoch
= 100, interval = 10, min lr
= 0.001, restart lr = 0.01)

Candidate Pool B {0.05, 0.1, 0.2, ..., 0.9, 0.95, 1}
Hold-out validation set Last 5% of training set

Pruning Range All convolutional
layers except the 1st layer

Pruning Rate
0.2 for unstructured
0.1 for channel-wise
1:2, 2:4, 4:8 for N :M

Table 6: The hyperparameter setting of Sparse Cocktail on ImageNet dataset.

Hyperparameter Configuration

IMP setting iterations = 10, rewind epoch = 5,
training epochs = 90

Optimizer SGD (lr = 0.1, momentum = 0.9,
weight decay = 1e− 4)

LR scheduler
CyclicCosineDecay(init epoch
= 70, interval = 10, min lr
= 0.001, restart lr = 0.01)

Candidate Pool B {0.05, 0.1, 0.2, ..., 0.9, 0.95, 1}
Hold-out validation set Last 5% of training set

Pruning Range All convolutional
layers except the 1st layer

Pruning Rate
0.2 for unstructured
0.1 for channel-wise
1:2, 2:4, 4:8 for N :M

cost. We also empirically find that Sparse Cocktail has only around 1/8 extra total wall-clock training
time primarily due to 1 extra distillation step every 2 mini-batches.

G THE INFLUENCE OF HIGHER SPARSITY ON SPARSE CO-TRAINING WITH
DIFFERENT SPARSITY RATIOS

Under our hyper-parameter setting, the unstructured and structured sparsity ratios range in [0.20, 0.87]
and [0.10, 0.61], respectively. We do not use higher sparsity ratios higher than 90% primarily because
the compared sparse co-training methods all have performance degradation when the sparsity gets
very high. In the two compared unstructured sparse co-training methods, AC/DC Peste et al. (2021)
has 3.5% performance degradation (compared to vanilla dense network) at 95% sparsity and 8.5%
degradation at 98% sparsity; AST Yang et al. (2022) has less performance degradation at high sparsity
primarily likely because it doesn’t involve co-training with different sparsity ratios and only focus on
single sparsity ratio but different masks.
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Figure 4: The performance comparison of individual sparse networks of different sparse co-training
methods on CIFAR10 dataset.

20 36 49 59 67 74 79 83 87 89
Sparsity (%)

66

68

70

72

74

76

78

80

A
cc

ur
ac

y 
(%

)

Dense
AC/DC
AST
SparseCocktail

(a) Unstructured Sparsity

10 19 27 34 41 47 52 57 61 65
Sparsity (%)

66

68

70

72

74

76

78

80
A

cc
ur

ac
y 

(%
)

Dense
US-Net
SparseCocktail

(b) Channel-wise Sparsity

1:1 1:2 3:4 7:8
Sparsity

66

68

70

72

74

76

78

80

A
cc

ur
ac

y 
(%

)

Dense
AST
SparseCocktail

(c) N :M Sparsity

Figure 5: The performance comparison of individual sparse networks of different sparse co-training
methods on the ImageNet dataset.

H WHAT IS THE ROLE OF THE PROPOSED INTERPOLATION PROCESS?

Recall that Algorithm 1 greedily chooses interpolation factors αk as k increases based on the average
accuracy of all the subnetworks currently being considered, i.e. {Sj |j = 1, 2, ..., k}. From Fig. 6,
we find that our full method has a reasonable interpolation process. Compared to the Dense Pivot
Co-training→AST setting that simply averages all the networks from different IMP stages, and the
W/o rewinding setting where the interpolation is severely biased towards the parameters at the last
several IMP stages, our full method reaches a good balance between these two settings.
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Figure 6: The changes of the optimal interpolation factors αk as k increases in Algorithm 1.
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Table 7: The performance influence of network interpolation in Sparse Cocktail.

Dataset CIFAR10 ImageNet
Before Interp. After Interp. Before Interp. After Interp.

Dense 92.56 92.48 76.45 76.32
Unstructured 92.45 92.09 74.64 73.23
Channel-wise 90.97 90.02 74.02 72.22

N:M 92.32 91.83 76.13 75.19

I THE PERFORMANCE INFLUENCE OF NETWORK INTERPOLATION

Regarding the performance influence of network interpolation, we list the average performance before
and after the interpolation of Sparse Cocktail on image classification datasets in Table 7. The results
show that there will be slight performance degradation after interpolation, but we consider this a
necessary sacrifice since we aim to produce a single network with shared parameters of multiple
subnetworks.

We empirically find that different subnetworks of the same sparsity pattern obtained by IMP with
weight rewinding are located in the same loss basin, i.e. there are no significant error barriers for
interpolations similar to Figure 2 in Yin et al. (2022), while subnetworks from different sparsity
patterns have at most 3.2% error barriers on average due to the divergence in sparse masks. We show
the latter phenomenon in Fig. 7, by plotting the performance change using different interpolation
factors as in Algorithm 1. However, by finding proper interpolations the error barrier problem can be
mitigated or avoided.
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Figure 7: The averaged candidate interpolation performance of all subnetworks considered at greedy
step k as in Algorithm 1. At each greedy interpolation step k, we use Dbest (that represents the shared
dense network of the best average performance of subnetworks obtained before k-th IMP iteration)
and Dk to perform the interpolation, and [k, k + 1) represent the interpolated average performance
of all subnetworks obtained before k + 1-th IMP iteration, where the points of x value between
[k, k + 1) represent the interpolation factor 1− αk.
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