
MICRO 2023 Submission #XXX – Confidential Draft – Do NOT Distribute!!

CIM-Aware Quantization for Energy Efficient Generative AI
Models

ABSTRACT

Large language models (LLMs) with generative capabilities
have showcased outstanding performance across a diverse
applications. However, deploying these models on resource-
constrained edge and mobile devices during inference mode
is very challenging due to their massive computations. In
this paper, we proposed a compute-in-memory (CIM) aware
post-training quantization and sparsity technique to achieve
superior energy efficiency compare to the traditional CMOS
architecture. In CIM, multiplying to "W" bit requires less
energy that "1". Therefore, we quantized the LLMs to the
desired numbers where they have less ones in their binary
representations that zero. We used a 2bit/cell resistive CIM
test chip to evaluate out method. Since in the 2bit/cell RCIM
E00 < E01 < E10 < E11, we demonstrated that our method
achieved 2.6x less energy than the baseline method which
eventually enabling running LLMs on edge devices.

1. INTRODUCTION AND BACKGROUND
The extensive integration of mobile devices has brought

about a transformative change in how individuals engage
with technology. Mobile systems are progressively more
proficient in executing advanced artificial intelligence (AI)
tasks, encompassing generative AI models. These generative
AI models, which comprise substantial language models,
have facilitated impressive progress across diverse fields like
computer vision [8], natural language processing [10,12], and
healthcare [11]. Yet, effectively implementing and operating
these demanding generative AI models on mobile platforms
give rise to notable difficulties. Mobile and edge devices are
resource constrained in terms of memory and power which is
very challenging to run AI models on them [5].

Large language models (LLMs) are known for their mas-
sive size, often comprising tens of billions of parameters. The
number of parameters in LLMs natural language processing
(NLP) models are growing exponentially as shown in Fig. 1.
These LLMs necessitate substantial computational resources,
memory, and energy to operate seamlessly. To illustrate fur-
ther, consider a scenario where a mobile application aims
to provide real-time, contextually relevant suggestions for
users’ text input. Achieving this using generative AI entails a
delicate balance between intricate linguistic patterns and in-
stant response times. The challenge magnifies when dealing
with LLMs due to their complex architecture and extensive
parameter count. Deploying LLMs on mobile devices re-
quires careful orchestration of computational resources to

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2017 2018 2019 2020 2020 2022 2023

Transformer

0.05B

GPT

0.11B

BERT

0.34

GPT-2

1.5B

MegatronLM

8.3B

GPT-3

170B

PALM

540B

GPT-4

1800B

Year

N
u

m
b

er
 o

f
P

a
r
a
m

et
er

s
Figure 1: NLP model size is increasing exponentially from
Transformers with less than a billion (B) parameters to
GPT-4 with estimated 1800B parameters.

ensure smooth functioning without compromising the user
experience. In essence, while the potential of generative AI
models on mobile platforms is enormous, the challenge of
effectively accommodating their complexity within the con-
straints of mobile hardware is akin to fitting a grand opera
onto a pocket-sized stage. Finding innovative ways to opti-
mize these models, streamline their deployment, and manage
their resource demands becomes a crucial endeavor to unlock
their benefits on the move.

Quantization, in the context of deploying generative AI
models on mobile devices, emerges as a pivotal technique
to mitigate the challenges posed by their resource-intensive
nature. Quantization essentially involves reducing the pre-
cision of numerical values in the model, thereby decreasing
memory and computation requirements [1]. Two primary
quantization approaches are Quantize Aware Training (QAT)
and Post-Training Quantization (PTQ) [6]. QAT necessi-
tates adjusting the model’s weights during retraining to re-
gain accuracy after quantization. In contrast, PTQ carries
out quantization after training. Although QAT often yields
improved accuracy, its feasibility for LLMs is limited due
to the high retraining costs and potential lack of access to
training data and infrastructure [9]. Consequently, PTQ is a
better candidate for quantizing LLMs since it involves quan-
tizing an already-trained model without retraining it. Thus,
the majority of research on quantizing LLMs has centered
around PTQ techniques [1, 2, 4, 9, 14, 18]. SqueezeLLM [9]
showed that memory bandwidth is the main bottleneck for
generative inference with LLMs and proposed a PTQ method
to quantize LLMs to low-bit precision through sensitivity
based non-uniform quantization. PTQ4ViT [17] proposed
a twin uniform PTQ to quantize vision transformer to 8 bit

1

precision. Smoothquant [14] developed a smoothing strat-
egy to first smooth the activation outliers and then quantize
the LLMs with billions of parameters to enable 8-bit weight,
8-bit activation (W8A8) quantization during inference. Al-
though achieved a negligible negligible loss in accuracy, these
quantization methods are not designed to fully take advan-
tage of novel architectures with emerging technologies like
compute-in-memory (CIM). In contrast to the Von-Neumann
architecture, computation is performed inside memory in
CIM architecture. This characteristic avoids huge power dis-
sipation incurred by massive data transfer between the PEs
and memory [7]. BitS-Net [7] proposed a CIM friendly bit-
level sparsity method which sparsified the traditional deep
learning models in the bit-level. However this method cannot
be applied to LLMs since BitS-Net quantized and sparsified
the networks during training.

In this paper, we developed a CIM-aware PTQ method
which quntized the LLMs by removing the ones in the bit
representation of weight values with no retraining. The moti-
vation is that multiplying to 0 requires 18x less energy than
ones. We demonstrated that by using our proposed method
can achieve 2.6x energy efficiency compared to the uniform
PTG technique.

2. METHOD
Here, we introduce our proposed CIM-aware compression

technique for BERT-like model quantization. We quantize the
network while sparsify the weight values in bit-level during a
PTQ scheme.

2.1 Advantages of Using CIM Architecture
The adoption of CIM architecture holds immense promise

for achieving energy-efficient AI computations, particularly
in the realm of large language models (LLMs). CIM ar-
chitecture integrates processing elements directly within the
memory units, minimizing data movement between storage
and processing units. This characteristic significantly reduces
the energy overhead associated with data transfer, which is
a major bottleneck in traditional architectures. For LLMs,
which are known for their resource-intensive nature, CIM ar-
chitecture can lead to remarkable energy savings by enabling
localized processing of model operations directly within the
memory, avoiding the energy-intensive process of fetching
large amounts of data back and forth. This approach aligns
with the intricacies of LLM computations, such as attention
mechanisms and fully connected feed forward layers by capi-
talizing on parallelism and reducing the overall computational
load. Consequently, the synergy between CIM architecture
and LL Ms has the potential to revolutionize energy efficiency
in AI, enabling more practical deployment of advanced lan-
guage models on resource-constrained mobile devices while
minimizing environmental impact.

In this study, a 2-bit encoding resistive CIM (RCIM) archi-
tecture is utilized [15] for evaluation of our proposed quan-
tization method. The high-level architecture is illustrated in
Fig. 2. Employing RRAM cells encoded with 2-bits (11, 10,
01, and 00) alongside ADC-based readout circuits, the energy
consumed per bit during CIM is measured as 0.83, 0.47, 0.28,
and 0.15 pJ/bit, respectively. The actual measurements from
the 2bit/cell RCIM test chip shows that multiplying to 00 re-

X[t]

Input 9

3
2
:1

 B
L

 M
U

X

3
2
:1

 B
L

 M
U

X
1

6
:1

 S
L

 M
U

X

 x[t]

8x

I.BL &
MUX

WL decoder

4-bit
ADC

8x

Input-
aware
ADC

decoder

MAC.out

Voltage-sensing
readout circuit

Input-aware
current CTRL

Y[t]

WL[0]

BL[0] SL[0] BL[1]

1T-1R RRAM array
with multi-bit encoding

BL

WL

HRS/.../LRS

SET/
RST

SL

1T-1R
multi-bit
RRAM
cells

Figure 2: Architecture of voltage-sensing multi-bit RCIM
architecture. The figure is adopted from [7].

quires less energy that 11 and this our motivation to develop a
bi-level sparsity and PTQ technique for compressing LLMs.

2.2 CIM-Aware Quantization Scheme
Quantization reduces the precision of numerical values in

LLMs, decreasing memory and computational requirements.
When coupled with CIM architecture, which integrates pro-
cessing directly within memory units, the benefits multiply.
However, the current quantization methods [] are not designed
to take advantage of CIM architecture. Instead of quantizing
the network uniformly, the network is quantized to the desired
coefficient set which has the characteristics that numbers has
more zeros than 1 in their binary representation. This is a
simple yet effective method to leverage the advantage of CIM
architecture for quantized LLMs.

We define the quantization process as shown in Eq. 1. ∆

is the scaling factor, ΠQ(.) is the method of quantization, b
is the bit-precision and ⌊.⌉ shows the rounding process. Se-
lecting the optimized scaling factor is very important in PTQ
methods. Uniform quantization is a process in which the
range of continuous values is divided into a fixed number of
equally spaced levels, and each input value is mapped to the
nearest level. The quantization process for uniform quanti-
zation is shown in Eq. 2. However, this method quantize the
network to the numbers that is not CIM-friendly for highly
energy-efficient computing. Inspired by [7], we proposed a
CIM-friendly post-training quantization method that quantize
the network non-uniformly to the desired INT8 numbers. The
desired numbers are defined as set of numbers with no 11
at their binary representation like 8. During PTQ and in the
forward path, the weights are quantized based on Eq. 3 by
dividing the weights in each layer (l) by a scaling factor (∆) to
make the weights in the range of [-1, 1]. The scaled weights
are quantized by computing the minimum distance between
the weights and the coefficient set (ci) as illustrated in Eq. 3).

C =±{0,0.3438,0.3750,0.4063,0.5,0.6250,0.6563,1.0}
is an example of a desired coefficient set.

Wq = ∆ΠQ(1,b)⌊
W
∆
,1⌉ (1)

ΠQ(1,b) = clip(⌊W
∆
⌉; 2b −1) (2)

2

ΠQ(1,b) = argminci∈C|ci −|Wl

∆
|| (3)

2.3 Gen AI quantization scheme
In this work, we quantize Bidirectional Encoder Represen-

tations from Transformers (BERT) model [3] which consists
of 12 layers of encoder. BERT is a type of transformer-based
model, and it’s designed to understand the context of words
in a sentence by considering the words that come before and
after them [3]. The illustration of encoder containing multi-
head self-atention and feed forward is illustrated in Fig. 3.
⊗ is an element-wise addition. We apply our proposed PTQ
quantization method on all the weights and activation for
INT8 precision.

3. RESULTS
Here, we evaluate the proposed quantization techniques

for the BERT model on GLUE RTE task.

3.1 Experimental Setup
We used Nvidia GTX 1080 Ti GPUs. Only one GPU is

used during PTQ quantization. we utilized uniform 8-bit
quantization with symmetric weights, asymmetric activation
and the static activation range [1] as the baseline. We used the
General Language Understanding Evaluation (GLUE) [13]
which is a collection of resources for analyzing natural lan-
guage processing (NLP) tasks. Specifically, we used the
Recognizing Textual Entailment (RTE) dataset where con-
structed based on news and Wikipedia text. To have a fully
quantized model, we quantized both weights and activation of
the BERT model to desired coefficient set that can be imple-
mented in an on-chip system. The got the 2% error compared
to the INT8 uniform quantization. This shows that we can
quantized the BERST model with a negligible accuracy loss.

In this part, we present the outcomes of our RCIM im-
plementation involving the our proposed technique and the
baseline uniform PTQ. The energy estimation encompasses
various components like the RRAM array, the ADC, the
controller, and peripheral circuits, excluding the voltage refer-
ence (VREF) generator. We’ve omitted the VREF generator

Multi-Head Self-Attention Feed Forward

K

MatMul

Softmax

MatMul LayerNorm

Q V

GeLU

FC2

FC1

Figure 3: A schematic illustration of the encoder layer in
BERT. The blue blocks are quantized to INT8.

0 5 10 15 20

Our Method

Uniform PTQ

Energy (mJ)

Multiplication ADC

Figure 4: Energy breakdown for multiplication and ADC
for BERT model and RCIM test chip for our method and
the uniform PTQ during inference.

from this analysis because a single instance of it serves the
entire RRAM macro, and its power consumption becomes
negligible when scaling up the RRAM macro size. Our en-
ergy estimations were conducted using measurements from
the RCIM hardware. However, it’s worth noting that the
RRAM macro’s dimensions are insufficient to accommodate
the entire model at once. Consequently, we adopted a serial
approach where we sequentially input the weights of different
model layers into the RRAM array and measured the energy
consumption for each layer. The RRAM macro primarily
focuses on facilitating CIM operations and, as for array uti-
lization and hardware usage, those will be determined by
the overarching system architecture, compiler, and specific
design choices, which fall beyond the scope of this work.

The energy measured from our 2bits/cell RCIM test chip
[16] are 1.46 pJ/2bits, 0.73 pJ/2bits, 0.36 pJ/2bits, and 79
fJ/2bits for multiplying to 11, 10, 01 and 00, respectively.
Additionally, the energy consumption attributed to the ADC
amounted to 0.208 pJ/2bits. It’s worth noting that these mea-
surements were conducted with a cycle time of 20 nanosec-
onds. For a detailed breakdown of energy consumption dur-
ing multiplication and ADC operations, please refer to Figure
4. Notably, the results reveal that our method exhibits supe-
rior energy efficiency (2.6x less total energy) compared to the
baseline method.

4. CONCLUSION
LLMs are showing amazing performance in different appli-

cation such as vision classification, vision-text, text-text and
etc. However, these models are growing exponentially in size
which makes it hard to deploy LLMs for generative tasks on
resource-constrained edge devices such as cell phones. In ad-
dition, traditional CMOS technologies suffers from massive
energy dissipation as a result of data transfer from PE and
memory. Therefore, CIM architectures plays an important
role for implementing energy-efficient LLMs during infer-
ence. In CIM architectures, the computations are performed
in the memory itself. However, the already proposed spar-
sity and quantization techniques are designed for traditional
CMOS technologies and cannot fully take advantage of CIM.

3

In this work, we proposed a CIM-aware post-training quan-
tization technique where quantize the LLMs to 8-bit precision
while sparsifying the network in the bit-level. We evaluated
our method on a 2bit/cell RCIM test chip for inference mode.
In 2bit/cell RCIM, the energy levels are different for various 2-
bits (i.e. 00, 01, 10 and 11). Energo of multiplication to 00 is
18x less than 11 and therefore we quantized the model to the
numbers that does not have 11 in their binary representations.
As a result, we achieved 2.6x energy reduction compared to
the uniform PTQ method. Our method gain superior energy
efficiency using CIM architecture which eventually leads to
enabling LLMs and generative models to be run on mobile
and edge devices for accurate and energy-efficient processing.
As a future works, we are planing to test our proposed method
on more datasets and use different generative models such
as vision to text. In addition, ADC is the bottleneck in CIM
architecture which is an active area of research.

ACKNOWLEDGMENTS

This work is supported by CocoSys as a part of Semiconduc-
tor Research Corporation (SRC) JUMP 2.0 program.

REFERENCES

[1] Y. Bondarenko, M. Nagel, and T. Blankevoort, “Understanding and
overcoming the challenges of efficient transformer quantization,”
arXiv preprint arXiv:2109.12948, 2021.

[2] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “Gpt3. int8 ():
8-bit matrix multiplication for transformers at scale,” Advances in
Neural Information Processing Systems, vol. 35, pp. 30 318–30 332,
2022.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[4] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “Gptq: Accurate
post-training quantization for generative pre-trained transformers,”
arXiv preprint arXiv:2210.17323, 2022.

[5] F. Karimzadeh, N. Cao, B. Crafton, J. Romberg, and
A. Raychowdhury, “A hardware-friendly approach towards sparse
neural networks based on lfsr-generated pseudo-random sequences,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68,
no. 2, pp. 751–764, 2020.

[6] F. Karimzadeh and A. Raychowdhury, “Towards cim-friendly and

energy-efficient dnn accelerator via bit-level sparsity,” in 2022
IFIP/IEEE 30th International Conference on Very Large Scale
Integration (VLSI-SoC). IEEE, 2022, pp. 1–2.

[7] F. Karimzadeh, J.-H. Yoon, and A. Raychowdhury, “Bits-net:
Bit-sparse deep neural network for energy-efficient rram-based
compute-in-memory,” IEEE Transactions on Circuits and Systems I:
Regular Papers, 2022.

[8] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah,
“Transformers in vision: A survey,” ACM computing surveys (CSUR),
vol. 54, no. 10s, pp. 1–41, 2022.

[9] S. Kim, C. Hooper, A. Gholami, Z. Dong, X. Li, S. Shen, M. W.
Mahoney, and K. Keutzer, “Squeezellm: Dense-and-sparse
quantization,” arXiv preprint arXiv:2306.07629, 2023.

[10] B. Min, H. Ross, E. Sulem, A. P. B. Veyseh, T. H. Nguyen, O. Sainz,
E. Agirre, I. Heintz, and D. Roth, “Recent advances in natural
language processing via large pre-trained language models: A survey,”
ACM Computing Surveys, 2021.

[11] K. Singhal, S. Azizi, T. Tu, S. S. Mahdavi, J. Wei, H. W. Chung,
N. Scales, A. Tanwani, H. Cole-Lewis, S. Pfohl et al., “Large language
models encode clinical knowledge,” Nature, pp. 1–9, 2023.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[13] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“Glue: A multi-task benchmark and analysis platform for natural
language understanding,” arXiv preprint arXiv:1804.07461, 2018.

[14] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han,
“Smoothquant: Accurate and efficient post-training quantization for
large language models,” in International Conference on Machine
Learning. PMLR, 2023, pp. 38 087–38 099.

[15] J.-H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and
A. Raychowdhury, “A 40-nm 118.44-tops/w voltage-sensing
compute-in-memory rram macro with write verification and multi-bit
encoding,” IEEE Journal of Solid-State Circuits, vol. 57, no. 3, pp.
845–857, 2022.

[16] J. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and
A. Raychowdhury, “29.1 a 40nm 64kb 56.67 tops/w
read-disturb-tolerant compute-in-memory/digital rram macro with
active-feedback-based read and in-situ write verification,” in 2021
IEEE International Solid-State Circuits Conference (ISSCC), vol. 64.
IEEE, 2021, pp. 404–406.

[17] Z. Yuan, C. Xue, Y. Chen, Q. Wu, and G. Sun, “Ptq4vit: Post-training
quantization for vision transformers with twin uniform quantization,”
in European Conference on Computer Vision. Springer, 2022, pp.
191–207.

[18] C. Zhao, T. Hua, Y. Shen, Q. Lou, and H. Jin, “Automatic
mixed-precision quantization search of bert,” arXiv preprint
arXiv:2112.14938, 2021.

4

	Introduction and Background
	Method
	Advantages of Using CIM Architecture
	CIM-Aware Quantization Scheme
	Gen AI quantization scheme

	Results
	Experimental Setup

	Conclusion

