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Abstract Traditional approaches to pipeline selection in automated machine learning (AutoML) typi-
cally rely on predicting the absolute or relative performance scores of candidate pipelines for
a given task, based on data acquired from previous tasks—i.e., meta-learning. This process
can be complex due to the need for task-specific regression models and performance metrics.
In contrast, rank-based methods estimate the relative ordering of pipelines, which aligns
more directly with the decision-making nature of the selection task. Although ranking-
based approaches have been explored previously, prior work often relies on computationally
expensive pairwise comparisons or complex listwise formulations. In this study, we adopt
a simpler alternative: reformulating the prediction target from absolute scores to rank
positions—without modifying model architectures. This “ranking trick” enables the use of
regression models while leveraging positional information. It is general and compatible with
a wide range of existing AutoML techniques. Additionally, through controlled experiments,
we show that these rank-based regression models are significantly less sensitive to noisy
or overfitted meta-learning data, a common issue in practical AutoML settings. As a result,
this approach enables more robust, metric-agnostic solutions and facilitates evaluation
through ranking metrics such as NDCG and MRR. We evaluate this formulation across three
large-scale OpenML benchmarks, demonstrating consistent advantages for ranking-based
regression models. Furthermore, we explore its integration with Bayesian optimization and
Monte Carlo Tree Search, yielding improved results in ranking quality. Finally, we identify
a strong relationship between ranking-based metrics and key AutoML objectives such as
final performance score and time-to-solution, providing guidance for AutoML practitioners.

1 Introduction

Machine learning (ML) has become an essential component of countless scientific and industrial
endeavors, ranging from healthcare (Waring et al., 2020) to e-commerce (Micu et al., 2019). However,
applying machine learning in the real world is far from straightforward, as it involves multiple
steps such as data preparation (preprocessing), feature and model selection, hyperparameter tuning,
performance evaluation, etc. (Barbudo et al., 2023; Vazquez, 2022). The complexity in the design
of machine-learning solutions led to the development of automated Machine Learning (AutoML)
techniques that seek to relieve ML practitioners from repetitive and time-consuming tasks that
have a large impact on the final performance of ML systems (Karmaker et al., 2021).

While AutoML helped widen the adoption of machine learning solutions at scale by simplifying
the process of finding optimal configurations, it faces significant challenges. One such challenge is
efficiently leveraging past experiences to improve performance on new tasks. This problem led
to the development of meta-learning algorithms and techniques (Vanschoren, 2019) to capture
the knowledge gained from solving a variety of tasks to help find optimal solutions for novel
(future) ones. Meta-learning algorithms rely on meta-models to predict the performance of a given
configuration (pipeline) on a specific dataset. This prediction serves as an approximation of the
actual performance that the model would demonstrate if it were trained with such data. The benefit
of this approach is that it prevents from actually training the model on the data in question, saving

AutoML 2025 © 2025 the authors, released under CC BY 4.0

mailto:email1@example.com
mailto:email2@example.com
mailto:email3@example.com
mailto:email4@example.com
https://creativecommons.org/licenses/by/4.0/


time and costs. Note that predicting pipeline performance involves predicting specific metrics for
the different types of ML tasks (classification, regression, etc.), often requiring different models for
each task-specific metric being optimized (Karmaker et al., 2021).

We can recognize two broad strategies in the design of an AutoML system. One is to build an
optimal machine learning solution from a pool of simpler components (Ren et al., 2021), and the
other is to select it from a set of predefined options or configurations (Yang et al., 2020). When the
problem is about choosing among given solutions, it can be viewed as a ranking or recommendation
task, where the goal is to rank the set of possible configurations according to their effectiveness in
solving the task. However, in many cases, the efforts of AutoML systems are focused on predicting
the performance of configurations rather than tackling the selection or decision-making problem
directly. For instance, when Bayesian optimization is used (Hutter et al., 2011), the selection of
configurations often involves choosing the next most promising configuration based on a surrogate
model. This model is designed to capture the relationship between the configuration and the target
metric, to inform the selection process about which configuration to evaluate next. We argue
that the selection problem could be addressed more effectively by framing it as a decision-making
problem, thereby facilitating a more direct approach to determining the most valuable solutions.

Previous works explored different approaches to navigate the complex combinatorial space of
available options (models, preprocessing steps, hyperparameters, etc.) in AutoML. Drawing parallels
to finance portfolio management, some methods (Fusi et al., 2018; Yang et al., 2019) optimize model
and pipeline selection based on historical performance, akin to optimizing a collection of assets.
Other methods (Laadan et al., 2020; Feurer et al., 2022), directly adopt ranking and meta-learning
strategies, demonstrating improvements in the efficiency of the AutoML workflow through data-
driven decision-making and the pre-ranking of machine learning pipelines. However, although
these approaches make use of ranking information to speed up the search process and improve
AutoML efficiency, they either do not formulate the underlying ranking problem explicitly, or do so
through computationally expensive methods such as pairwise comparisons (Lindauer et al., 2015;
Laadan et al., 2019; Kostovska et al., 2023).

This paper addresses these challenges by proposing a simple reformulation of the pipeline
selection task in AutoML: replacing the prediction of performance scores with the prediction of
rank positions. Instead of relying on complex learning-to-rank (LTR) methods (Liu et al., 2009),
we show that this “ranking trick” can be implemented with standard regression models by simply
reformulating the prediction target as rank positions rather than absolute scores. This approach
aligns more closely with the decision-making nature of the selection task and enables more robust,
metric-agnostic solutions. We evaluate both score-based and rank-based variants of common
selection strategies using ranking metrics such as NDCG and MRR. Furthermore, we explore how
this reformulation can be integrated into classical sequential optimization techniques like Bayesian
Optimization and Monte Carlo Tree Search. Experiments on public benchmarks demonstrate
consistent advantages for ranking-based regression models across diverse conditions.

The main contributions of this paper are:

• A practical formulation of pipeline selection in AutoML using rank-based regressions. This
approach better aligns with the true objective of selecting the most promising pipeline, while
enabling more robust and metric-agnostic solutions, thereby simplifying comparisons.

• A methodological shift toward evaluating AutoML strategies using ranking-based metrics such
as NDCG and MRR. We further analyze the correlation between these ranking metrics and con-
ventional AutoML objectives, such as performance improvement and time-to-solution, providing
deeper insights into their practical relevance.

• Empirical evidence demonstrating that ranking-based approaches consistently outperform tradi-
tional score-based methods under various conditions, including noisy or limited meta-learning
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data. Experiments on public datasets validate the effectiveness and robustness of the proposed
framework in real-world scenarios.

2 Using ranking information for AutoML

To prevent AutoML systems from repeatedly tackling similar tasks starting from scratch each time,
meta-learning methods leverage data acquired from previous experience (meta-learning data) to
improve performance on novel tasks (represented with meta-features) (Vanschoren, 2019). In our
case, this corresponds to optimizing the procedure by which we select optimal pipelines for a wide
variety of problems. We propose to do so by using ranking information instead of task-specific
performance scores. In this way, the process of pipeline selection becomes independent of the
absolute scores observed in the meta-learning data as well as from the different performance values
achieved on each task.

To better motivate our proposed ranking-based approach, we first briefly describe the traditional
score-based formulation, followed by our proposed ranking-based alternative. We conclude by
outlining how this formulation can be naturally integrated into sequential optimization strategies
such as SMBO (Sequential model-based optimization) (Hutter et al., 2011).

Score-Based Models. Score-based models represent most traditional approaches in the AutoML
frameworks. These models aim to predict the target metric of a problem, such as classification
accuracy or mean regression error. The predicted score is then used to select the most promising
configuration or pipeline. This aligns with the pointwise approach in LTR theory, where the input
space consists of individual configurations, and the output space is the score of these configurations
on the target task.

Score-based approach can be formalized as follows. Let C = {𝐶1,𝐶2, . . . ,𝐶𝑛} represent the set
of all possible configurations or pipelines in the AutoML search space. The goal is to predict the
performance score of each configuration 𝐶𝑖 for a new given dataset 𝐷 . To do so, we rely on a
(parametric) score prediction model 𝑓 : C × D → R that takes a candidate configuration 𝐶𝑖 and
dataset 𝐷 as inputs and predicts a score 𝑓 (𝐶𝑖 , 𝐷) that relates to the predictive performance of 𝐶𝑖

on 𝐷 . The score predicted by 𝑓 is specific to each task (accuracy, F1-score, regression errors, etc.).
We assume we know the true value of this score for each pipeline-dataset combination in the
meta-training dataset. We denote the ground-truth scores as 𝑠 (𝐶𝑖 , 𝐷). Training the meta-model is
based on regression towards this metric by optimizing a suitable loss, such as the mean squared
error of the scores, using a meta-training dataset (e.g. mean squeare error of the scores) consisting
of triplets of the form {(𝐶𝑖 , 𝐷 𝑗 , 𝑠𝑖 𝑗 )}, with 𝐶𝑖 ∈ C, 𝐷 𝑗 ∈ D, and 𝑠𝑖 𝑗 = 𝑠 (𝐶𝑖 , 𝐷 𝑗 ).

Ranking-Based Models. Ranking-based models focus on directly learning the ranking order
of different configurations. These models are trained using explicit ranking information. The
two primary formulations in this category are the pairwise and listwise approaches. Despite the
advantages of these techniques, they are often computationally expensive, as they require processing
and comparing multiple configurations simultaneously, which increases training complexity. By
transforming the input and output spaces from scores into ranking positions, we can incorporate
listwise ranking information in a simpler and more efficient way, avoiding the high computational
costs typically associated with these methods.

In this simplification of the listwise approach, the input space corresponds to permutations
of the set of all configurations C. Instead of directly working with the set of all permutations of
C, we can think of a ranking function ℎ : C × D → R |C | that takes as input the set of available
configurations and a dataset𝐷 , and outputs a vector of scores of dimensionality |C |, whose 𝑖-th entry
corresponds to the relevance of configuration 𝐶𝑖 for solving the problem. Sorting the elements
of this vector provides the permutation indices that rank the elements of C according to their
relevance for 𝐷 . Training such a model involves using the entire set of configurations C and their
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rankings for different datasets. The model learns to predict these rankings as accurately as possible.
A schematic overview of our ranking-based formulation and its relation to traditional score-based
models is presented in Appendix A.

Integrating LTR into SMBO. This formulation of LTR can be naturally integrated into sequential
optimization strategies to improve the efficiency of pipeline selection. By replacing traditional
performance estimators with ranking-based models, frameworks such as Bayesian Optimization
and Monte Carlo Tree Search can prioritize configurations more effectively, reducing evaluation
costs and improving search quality. This integration enables a ranking-aware perspective across
both model-based and model-free optimization methods.

3 Experimental Setup

Models. We evaluate five categories of pipeline selection models:

1. Random Selection: Random pipeline selection as a control baseline.
2. Average Best (Avg): Pipelines ranked by average score or average rank on training data.
3. Regression Models: Score or rank prediction using regressors, without hyperparameter tuning.

Linear Regression (LR), Lasso, Ridge, Random Forest (RF), Gradient Boosting (GB) an Light
Gradient Boosting Machine (LGBM).

4. Sequential Optimization: SMBO strategies using Bayesian Optimization (BO) and Monte Carlo
Tree Search (MCTS), adapted to use score- or rank-based models.

5. AutoFolio: An algorithm selector using pairwise score comparisons, evaluated here with score-
and rank-based variants.

Except for the Random baseline, all approaches were implemented in both score- and ranking-
based variants. For BO, we initialize the search with a meta-learned surrogate model (regression of
scores or ranks) and iteratively select pipelines using a greedy acquisition strategy. MCTS is used
in a model-free setting, where the reward function is either average score or average rank, and
pipelines are selected using UCB and greedy rollout as in (Vazquez et al., 2022). After each round,
the pipeline selected is removed from the candidate pool. The final selection order is taken as the
output ranking. Furthermore, AutoFolio was included to compare its pairwise-based formulation
combined with our ranking approach. Both score and rank variants were tested using default
configurations.

Datasets. We evaluate on three scenarios based on OpenML datasets (as shown in Table 1): (1)
OPENML-WEKA-2017 (from ASLib) with 105 classification tasks and 30 pipelines; (2) AMLB 2023
Classification with 71 tasks and 2160 pipelines; (3) AMLB 2023 Regression with 33 tasks and
1485 pipelines. The AMLB scenarios were created following best practices for reproducibility and
coverage of diverse learning problems. The full list of OpenML task IDs can be found in Appendix B.

Scenario #Tasks #Pipelines Metric
ASLib - OPENML-WEKA-2017 105 30 Accuracy
AMLB Classification 2023 71 2160 Balanced Accuracy
AMLB Regression 2023 33 1485 Negative RMSE

Table 1: Summary of the benchmark scenarios.

Data Collection and Preprocessing. Pipeline evaluations were executed using a grammar-based
search space (Vazquez et al., 2022), with a one-minute time limit per run. Experiments were
conducted on Amazon EC2 R5 instances (8 vCPUs, 64GB RAM), using standard train-test splits
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from OpenML tasks. Meta-features were extracted using pymfe (Alcobaça et al., 2020), based on
the descriptors by Rivolli et al. (2022). Additionally, average pipeline performance (score or rank)
across training tasks was used as an extra meta-feature.

Meta-models were trained using 10-fold cross-validation on tasks and evaluated across 10
random seeds. Performance was assessed using both standard metrics and ranking-specific ones.

Performance Metrics. We report two types of metrics:

• Ranking metrics: NDCG and MRR at cutoff positions 𝑘 ∈ {1, 5, 10} (or 𝑘 ∈ {1, 10, 100} for AMLB
scenarios).

• System-level metrics: SCORE (average of the objective metric), TTB (time to find the best
pipeline), and AVG_RANK (relative rank position between score- and ranking-based variants).

NDCG measures top-𝑘 ranking quality with diminishing weights, while MRR emphasizes early
hits by computing the inverse rank of the best item. SCORE reflects general performance, TTB
measures efficiency, and AVG_RANK compares method quality relative to others.

4 Results

4 2 0
MCTS

BO

LGBM

GB

RF

Ridge

Lasso

LR 

Avg

Random
OpenML-Weka

Random
Scored
Ranked

4 2 0

AMLB Classification

4 2 0

AMLB Regression

Figure 1: Boxplots of variants (Rank-based in blue and Score-based in orange) performance (x-axis)
across tasks for each predictor (y-axis) after scaling the performance values from the mean
(0) to best value observed.

Figure 1 shows the performance distribution of Rank- and Score-based variants across tasks.
The models (e.g., MCTS, BO, LGBM, RF, Ridge, LR, etc.) are applied to the different datasets using
two variants score-based (Scored) and ranking-based (Ranked). Both variants outperform random
baselines, but performance is strongly influenced by the predictor type. Rank-based variants
typically show tighter, more consistent distributions, suggesting greater robustness across tasks.
This is especially evident in AMLB Regression, where Rank-based variants clearly outperform their
Score-based counterparts.
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Specific models, such as LGBM and RF, exhibit tighter and more favorable performance dis-
tributions for both variants, suggesting these models are robust across different tasks. However,
simpler models like LR and Avg show narrower performance ranges in Score-based variants. This
advantage tends to disappear when the target is transformed to a Rank-based variant. This is clearly
visible in the AMLB Regression, although it can also be seen in OpenML-Weka.

NDCG@ MRR@ SCORE@ RANK@

1 5 10 1 5 10 1 5 10 1 5 10

Avg « « « « « « « « « « « «
LR « « « « « « « « « « « «
Lasso « « « « « « « « « « « «
Ridge « « « « « « « « « « « «
RF « « « « « « « « « « « «
GB « « « « « « « « «
LGBM « « « « « « « « « « « «
BO « « « « « « « « « « « «

(a) OpenML-Weka

NDCG@ MRR@ SCORE@ RANK@ TBB@

1 10 100 1 10 100 1 10 100 1 10 100 1 10 100

AMLB Classification
Avg « « « ‹ ‹ ‹
LR « « « ‹ ‹ ‹
Lasso « « « « « « « « « « « « « « «
Ridge « « « ‹ ‹ ‹
RF « « «
GB « « «
LGBM « « «
BO « « « « « «
MCTS ‹ ‹ ‹

AMLB Regression
Avg « « « « « « « « « ‹ ‹ ‹ « « «
LR « « « « « « « « « « « « « « «
Lasso « « « « « « « « « « « « « « «
Ridge « « « « « « « « « « « « « « «
RF « « « « « « « « « « « « « « «
GB « « « « « « « « « « « « « « «
LGBM « « « « « « « « « « « « « « «
BO « « « « « « « « « « « « « « «
MCTS « « « « « « « « « « « «

(b) AMLB Classification and Regression

Table 2: Comparison of different approaches evaluated across three datasets: OpenML-Weka, AMLB
Classification, and AMLB Regression. Each metric is assessed at three positions (“a”, “b”, and
“c”), measuring performance in terms of NDCG, MRR, SCORE, RANK, and TTB. For the AMLB
datasets, the positions are 1, 10, and 100, while for the OpenML-Weka dataset, the positions
are 1, 5, and 10. Cell color indicates where the Rank-based approach improves over the
Score-based approach (green ■ > 0, dark green ■ > 10%, and blue ■ > 50% of improvements),
decreases (yellow ■ < 0, orange ■ < 10%, and red ■ < 50% of improvements), or shows no
changes (grey ■). The symbols “‹” and “«” indicate statistical significance and “–” indicates
not evaluated.

6



Rank-based approaches consistently outperform Score-based ones. Table 2 presents a detailed
comparison of different approaches evaluated across the three datasets: OpenML-Weka, AMLB
Classification, and AMLB Regression. The performance of these approaches is measured using
five metrics (i.e., NDCG, MRR, SCORE, RANK, and TTB) across three cutoff points specific to
each dataset (1, 5, and 10 for OpenML-Weka, and 1, 10, and 100 for the AMLB datasets). The table
also uses color coding to indicate where the Rank-based approach improves over the Score-based
approach. The symbols “‹” and “«” indicate statistical significance using the Wilcoxon signed-rank
test (p-value < 0.05) and after Bonferroni adjustment (p-value < 0.005), respectively. Cells without
symbols indicate that the observed differences are not statistically significant. The missing entries
("-") for OpenML-Weka are due to the dataset’s lack of temporal information, which makes it
impossible to calculate TTB, and its absence of information about the components that form the
pipelines, preventing the execution of MCTS, as MCTS requires knowledge of pipeline components
to structure exploration as a decision tree.

Rank-based approaches consistently outperform Score-based ones across most metrics (green
and blue cells). In particular for AMLB Regression, in terms of the SCORE, MRR, and RANK
metrics, significant improvements are also observed, particularly at lower positions (e.g., SCORE@1,
MRR@1, and RANK@1). For TTB, however, the improvement appears to increase as the number of
positions considered increases. This indicates that the evaluated methods are time-effective while
maintaining performance even as the cutoff position increases.

Although occasional decreases in Score-based variants are observed (yellow and orange cells),
they are generally minor (mostly <10%), with few exceptions. In AMLB Classification, some metrics
(e.g., SCORE@b, RANK@b) show smaller losses, yet statistical significance confirms the advantage
of Rank-based methods in the majority of cases. A detail of the disaggregated experiments can be
seen in Appendix C.

The presence of statistical significance across many of the metrics highlights that the observed
improvements are not just due to chance but are statistically significant, especially in datasets
OpenML-Weka and AMLB Regression, where the majority of improvements across different datasets
and positions are statistically significant. A summary of all experiments corrected using the
Bonferroni method can be found in Appendix C.5.

Ranking metrics correlates with System-level metrics. Figure 2 shows Spearman correlations
between top-position metrics (e.g., NDCG@1, MRR@1, SCORE@1, TTB@1, RANK@1). NDCG and
SCORE show strong alignment (e.g., 0.95 in AMLB Classification), confirming that improvements
in ranking translate to better task performance. TTB correlates negatively with MRR and NDCG,
indicating faster identification of top solutions in Rank-based approaches. RANK also correlates
negatively with these metrics, reinforcing its validity as a proxy for ranking quality. Slight variations
in OpenML-Weka may be due to its smaller pipeline space. Extended and disaggregated correlation
results can be seen in Appendix C.4.

No significant differences with pairwise models.. We additionally evaluated AutoFolio on the
ASLib scenario (OpenML-Weka-2017, Appendix C.1). As it only returns the top pipeline per task,
only MRR@1, SCORE@1, and AVG_RANK@1 could be computed. The Score-based variant slightly
outperforms in MRR and AVG_RANK, while Rank-based performs better in SCORE. However,
differences were not statistically significant (Wilcoxon p-values > 0.2). Given that AutoFolio relies
on pairwise comparisons, which implicitly encode ranking information, this result is expected.
Nevertheless, our findings show that it is possible to achieve competitive performance with simpler
and less computationally expensive approaches.

Robustness to Overfitting. Figure 3 illustrates how increasing Gaussian noise (𝜎) affects global
ranking quality, as measured by Kendall’s Tau, for two datasets: OpenML-Weka (left) and AMLB
Classification (right). Each line corresponds to a fixed proportion of meta-training tasks (25%,
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Figure 2: Spearman correlation between metrics at first position.

50%, 75%, 100%), with darker tones indicating more tasks. We compare score-based (orange) and
rank-based (blue) averaging.

As noise increases, Kendall’s Tau declines, reflecting reduced ranking quality. Rank-based
models consistently achieve higher Tau values across all conditions, indicating better preservation
of global ordering.

These results provide evidence that rank-based supervision more effectively preserves ordering
information, particularly in scenarios where meta-data is limited or corrupted by noise introduced
by overfitting or measurement variability. A complementary synthetic experiment can be found in
Appendix E
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10 2 10 1 100
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Figure 3: Comparison of Kendall’s Tau under increasing Gaussian noise (𝜎 ∈ [0.01, 1.0]) in the meta-
learning training data for two datasets: OpenML-Weka (left) and AMLB (CLS) (right). Each
line corresponds to a fixed number of meta-training tasks {25%, 50%, 75%, 100%}, with darker
tones indicating more tasks. Rank-based models (blue) consistently preserve global ranking
structure better than score-based models (orange), especially under high noise and limited
data.

5 Related Work

Pipeline selection is a key challenge in AutoML, with several approaches developed to navigate the
combinatorial space of models, preprocessing steps, and hyperparameters (Hutter et al., 2011; Feurer
et al., 2015; Vanschoren, 2019). Vanschoren (2019) distinguish between performance predictors
and ranking generators. We build on this by showing that reformulating traditional score-based
approaches such as BO and MCTS into ranking-based methods can lead to improved pipeline
selection.
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Several works have explored ranking or pairwise comparison techniques in algorithm selection.
AutoFolio (Lindauer et al., 2015), for instance, uses pairwise classifiers trained on performance
scores, incorporating transformations like log (Xu et al., 2008) or z-score normalization (Collautti
et al., 2013). Other methods also employ pairwise comparisons, though typically based on absolute
(Sun and Pfahringer, 2013; Tornede et al., 2020) or relative (Kostovska et al., 2023) performance
scores, rather than explicitly modeling ranking positions.

Preselection of pipeline spaces is another common strategy. AutoGluon (Erickson et al., 2020)
combines predictions from fixed pipelines using ensembles, while GramML (Vazquez et al., 2022;
Vázquez et al., 2023) learns to explore a predefined search space via MCTS. Similarly, portfolio-based
methods such as Probabilistic Matrix Factorization (Fusi et al., 2018) and Oboe (Yang et al., 2019)
use collaborative filtering to predict performance from historical data.

Ranking has also been used to address cold-start and meta-learning challenges. Auto-sklearn
2.0 (Feurer et al., 2022) and RankML (Laadan et al., 2019) prioritize promising configurations based
on prior performance. MetaTPOT (Laadan et al., 2020), in turn, enhances TPOT (Olson and Moore,
2016) by leveraging ranking-based meta-learning to guide evolutionary search.

The approaches described above recognize the importance of using ranking information,
whether to preselect the system’s components, order them to expedite the search, or as a form of
meta-learning to enhance system efficiency. However, the problem of learning to rank and the
importance of using positional information has not been addressed, to our knowledge, until this
work. We believe this work presents a novel conceptual framework as a basis for learning to rank
in AutoML that can potentially be transferred to many other approaches.

6 Conclusions and Discussion

This work presents a simple yet effective reformulation of pipeline selection in Automated Machine
Learning (AutoML) as a rank prediction problem. By replacing performance score prediction
with rank position estimation, we align model objectives more closely with the decision-making
structure of the selection task.

Through a systematic comparison of score-based and rank-based approaches across three
large-scale OpenML benchmarks, we show that rank-based regression consistently outperforms
traditional methods in ranking quality, robustness to noise, and alignment with AutoML objectives
such as time-to-solution and final performance. These findings offer valuable practical guidance
for AutoML practitioners and system designers.

Moreover, our analysis highlights the advantages of modeling positional information directly,
using simple modifications to existing regression models. This lightweight “ranking trick” provides
a general and compatible approach that avoids the complexity of traditional listwise or pairwise
learning-to-rank techniques.

While this study focuses on scenarios with predefined pipelines and finite search spaces—typical
of many AutoML tools—it lays the groundwork for future investigations into other relative ranking
techniques, as well as extensions to dynamic pipeline construction or hyperparameter tuning.

Although limited to OpenML, ASLib, and AMLB benchmarks, our results are broadly applicable
and point to a promising direction for building more robust, efficient, and decision-oriented AutoML
systems.

7 Broader Impact Statement

After careful reflection, the authors have determined that this work presents no notable negative
impacts to society or the environment.
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A Schematic representation of the proposed approach

ĥ = 𝑓 (𝐶𝑖, 𝐷𝑗)

ℎ (𝐶𝑖, 𝐷𝑗)

prediction

ground truth

loss

(𝐶1, 𝐷1, 1 )
(𝐶2, 𝐷1, 2 )
(𝐶3, 𝐷1, 3 )

...
(𝐶𝑖, 𝐷𝑗 , _ )

relative position

hypothesis h

Output space

(𝐶1, 𝐷1, 𝑠11 )
(𝐶2, 𝐷1, 𝑠12 )
(𝐶3, 𝐷1, 𝑠13 )

...
(𝐶𝑖, 𝐷𝑗 , _)

Score-based
Input space

Ranking-based
Input space

rank r

Figure 4: The left block illustrates the original meta-learning data, consisting of triplets (𝐶𝑖 , 𝐷 𝑗 , 𝑠𝑖 𝑗 )
where 𝑠𝑖 𝑗 denotes the performance score of configuration 𝐶𝑖 on dataset 𝐷 𝑗 . These scores
are then transformed into rank (𝑟 ) positions, as shown in the middle block, yielding
(𝐶𝑖 , 𝐷 𝑗 , ℎ(𝐶𝑖 , 𝐷 𝑗 )), where ℎ denotes the rank mapping function. The ranking model 𝑓 is
then trained to predict these positions ℎ̂ based on (𝐶𝑖 , 𝐷 𝑗 ) pairs. The loss is computed as
the difference between predicted and true ranks. Regardless of the specific loss function
used, this change of representation enables the model to directly optimize relative positions
rather than absolute performance values, providing increased robustness to score variability,
improved generalization, and better alignment with the final selection goal.

B OpenML tasks
This appendix provides additional details on the specific datasets used in our study. OpenML
tasks are separated by scenario into OpenML-Weka tasks, AMLB-Classification tasks and AMLB-
Regression tasks.

B.1 OpenML-Weka tasks
The OpenML task IDs for OpenML-Weka 2017 as described in ASLib initiative are:

2097, 2098, 2102, 1701, 1702, 1705, 1710, 1711, 1713, 1714, 1715, 1717, 1719, 1720, 1721, 1722,
1723, 1727, 1728, 1730, 1731, 1735, 1736, 1740, 1742, 1744, 1752, 1757, 1764, 10041, 10045, 10046,
10047, 10050, 10053, 10054, 10055, 10067, 10069, 10070, 10071, 10072, 10074, 10075, 10076, 10077,
10079, 10080, 10082, 10083, 10084, 10085, 10086, 7532, 7535, 7536, 125849, 125850, 125851, 125852,
125853, 125854, 125855, 125857, 125859, 125861, 125865, 125866, 125867, 125868, 125869, 125870,
125871, 125873, 125874, 125875, 125876, 125877, 125878, 125879, 125880, 125881, 125884, 125885,
125886, 125887, 125888, 125889, 125890, 125891, 125892, 125894, 125897, 125898, 125899, 125901,
125902, 125905, 125906, 125909, 125910, 125911, 125913, 125914, 125915

We excluded from the selectable datasets those from the AutoML Benchmark (AMLB) that also
met the criteria, as they are used in the other experiment. The excluded dataset IDs are as follows:
146818, 359955, and 190146.

B.2 AMLB-Classification tasks
The selected AMLB IDs for classification tasks are:

2073, 3945, 7593, 10090, 146818, 146820, 167120, 168350, 168757, 168784, 168868, 168909, 168910,
168911, 189354, 189355, 189356, 189922, 190137, 190146, 190392, 190410, 190411, 190412, 211979,
211986, 359953, 359954, 359955, 359956, 359957, 359958, 359959, 359960, 359961, 359962, 359963,
359964, 359965, 359966, 359967, 359968, 359969, 359970, 359971, 359972, 359973, 359974, 359975,
359976, 359977, 359979, 359980, 359981, 359982, 359983, 359984, 359985, 359986, 359987, 359988,
359989, 359990, 359991, 359992, 359993, 359994, 360112, 360113, 360114, 360975
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B.3 AMLB-Regression tasks

The selected AMLB IDs for regression tasks are:
167210, 233211, 233212, 233213, 233214, 233215, 317614, 359929, 359930, 359932, 359933, 359934,

359935, 359936, 359937, 359938, 359939, 359940, 359941, 359942, 359943, 359944, 359945, 359946,
359948, 359949, 359950, 359951, 359952, 360932, 360933, 360945

Task 359931 was excluded due to errors.
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C Detailed experiments results

In this section we break down the results presented in Section 4, separating them into scenarios
OpenML-Weka, AMLB-Classification and AMLB-Regression problems.

C.1 OpenML-Weka

Table 3: Comparison of approaches using ranking metrics NDCG and MRR on ASLib tasks. The best
results in each group are highlighted in bold.

var NDCG@1 NDCG@5 NDCG@10 MRR@1 MRR@5 MRR@10

Random 0.600 (0.27) 0.638 (0.16) 0.671 (0.13) 0.068 (0.25) 0.123 (0.27) 0.146 (0.26)

Avg Score 0.872 (0.10) 0.863 (0.08) 0.858 (0.07) 0.128 (0.33) 0.301 (0.34) 0.318 (0.32)

Rank 0.879 (0.09) 0.865 (0.08) 0.860 (0.06) 0.133 (0.34) 0.304 (0.34) 0.330 (0.32)

LR Score 0.872 (0.10) 0.863 (0.08) 0.858 (0.07) 0.128 (0.33) 0.301 (0.34) 0.318 (0.32)

Rank 0.879 (0.09) 0.865 (0.08) 0.860 (0.06) 0.133 (0.34) 0.304 (0.34) 0.330 (0.32)

Lasso Score 0.610 (0.26) 0.638 (0.16) 0.668 (0.13) 0.076 (0.27) 0.144 (0.29) 0.165 (0.28)

Rank 0.879 (0.09) 0.865 (0.08) 0.860 (0.06) 0.133 (0.34) 0.304 (0.34) 0.330 (0.32)

Ridge Score 0.872 (0.10) 0.863 (0.08) 0.858 (0.07) 0.128 (0.33) 0.301 (0.34) 0.318 (0.32)

Rank 0.879 (0.09) 0.865 (0.08) 0.860 (0.06) 0.133 (0.34) 0.304 (0.34) 0.330 (0.32)

RF Score 0.884 (0.14) 0.878 (0.09) 0.881 (0.07) 0.253 (0.43) 0.383 (0.40) 0.403 (0.38)

Rank 0.899 (0.13) 0.892 (0.08) 0.898 (0.06) 0.296 (0.46) 0.426 (0.41) 0.448 (0.39)

GB Score 0.846 (0.16) 0.853 (0.10) 0.854 (0.07) 0.201 (0.40) 0.333 (0.38) 0.352 (0.37)

Rank 0.872 (0.12) 0.867 (0.08) 0.866 (0.06) 0.156 (0.36) 0.321 (0.35) 0.344 (0.34)

LGBM Score 0.830 (0.17) 0.850 (0.10) 0.865 (0.08) 0.177 (0.38) 0.306 (0.37) 0.333 (0.35)

Rank 0.889 (0.12) 0.888 (0.07) 0.894 (0.06) 0.221 (0.41) 0.383 (0.38) 0.402 (0.36)

BO Score 0.872 (0.10) 0.863 (0.08) 0.858 (0.07) 0.128 (0.33) 0.301 (0.34) 0.318 (0.32)

Rank 0.879 (0.09) 0.865 (0.08) 0.860 (0.06) 0.133 (0.34) 0.304 (0.34) 0.330 (0.32)

AutoFolio Score - - - 0.388 (0.32) - -
Rank - - - 0.380 (0.32) - -
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Table 4: Comparison of approaches using AutoML metrics average SCORE and average RANK on
ASLib tasks. The best results in each group are highlighted in bold.

var SCORE@1 SCORE@5 SCORE@10 RANK@1 RANK@5 RANK@10

Random 0.765 (0.23) 0.856 (0.17) 0.866 (0.17) - - -

Avg Score 0.854 (0.18) 0.869 (0.17) 0.873 (0.17) 1.041 (0.20) 1.006 (0.08) 1.107 (0.31)

Rank 0.856 (0.18) 0.869 (0.17) 0.874 (0.17) 1.014 (0.12) 1.002 (0.04) 1.025 (0.16)

LR Score 0.854 (0.18) 0.869 (0.17) 0.873 (0.17) 1.041 (0.20) 1.006 (0.08) 1.109 (0.31)

Rank 0.856 (0.18) 0.869 (0.17) 0.874 (0.17) 1.014 (0.12) 1.002 (0.04) 1.027 (0.16)

Lasso Score 0.767 (0.24) 0.854 (0.18) 0.865 (0.17) 1.784 (0.41) 1.632 (0.48) 1.524 (0.50)

Rank 0.856 (0.18) 0.869 (0.17) 0.874 (0.17) 1.146 (0.35) 1.137 (0.34) 1.103 (0.30)

Ridge Score 0.854 (0.18) 0.869 (0.17) 0.873 (0.17) 1.041 (0.20) 1.006 (0.08) 1.109 (0.31)

Rank 0.856 (0.18) 0.869 (0.17) 0.874 (0.17) 1.014 (0.12) 1.002 (0.04) 1.027 (0.16)

RF Score 0.857 (0.17) 0.870 (0.17) 0.874 (0.17) 1.249 (0.43) 1.150 (0.36) 1.110 (0.31)

Rank 0.855 (0.18) 0.873 (0.17) 0.874 (0.17) 1.174 (0.38) 1.069 (0.25) 1.054 (0.23)

GB Score 0.852 (0.18) 0.869 (0.17) 0.872 (0.17) 1.272 (0.45) 1.089 (0.28) 1.117 (0.32)

Rank 0.853 (0.18) 0.871 (0.17) 0.874 (0.17) 1.240 (0.43) 1.043 (0.20) 1.034 (0.18)

LGBM Score 0.850 (0.18) 0.870 (0.17) 0.874 (0.17) 1.416 (0.49) 1.237 (0.43) 1.131 (0.34)

Rank 0.855 (0.18) 0.873 (0.17) 0.875 (0.17) 1.214 (0.41) 1.081 (0.27) 1.061 (0.24)

BO Score 0.854 (0.18) 0.869 (0.17) 0.873 (0.17) 1.039 (0.19) 1.006 (0.08) 1.109 (0.31)

Rank 0.856 (0.18) 0.869 (0.17) 0.874 (0.17) 1.016 (0.13) 1.002 (0.04) 1.026 (0.16)

AutoFolio Score 0.852 (0.18) - - 1.146 (0.35) - -
Rank 0.853 (0.18) - - 1.152 (0.36) - -

Table 5: Improvement Percentage: Rank-based over Score-based approaches

Avg LR Lasso Ridge RF GB LGBM BO AutoFolio

NDCG@1 0.008 0.008 0.269 0.008 0.016 0.025 0.059 0.007
NDCG@5 0.002 0.002 0.227 0.002 0.013 0.014 0.038 0.002
NDCG@10 0.003 0.003 0.192 0.003 0.017 0.011 0.030 0.002
MRR@1 0.006 0.006 0.057 0.006 0.043 -0.045 0.044 0.006 -0.021
MRR@5 0.003 0.003 0.160 0.003 0.044 -0.012 0.076 0.003
MRR@10 0.012 0.012 0.166 0.012 0.045 -0.008 0.069 0.012
SCORE@1 0.002 0.002 0.089 0.002 -0.002 0.001 0.005 0.002 0.001
SCORE@5 0.000 0.000 0.015 0.000 0.003 0.001 0.003 0.000
SCORE@10 0.001 0.001 0.008 0.001 0.000 0.001 0.001 0.001
RANK@1 -0.027 -0.027 -0.638 -0.027 -0.074 -0.032 -0.202 -0.023 0.005
RANK@5 -0.004 -0.004 -0.495 -0.004 -0.081 -0.046 -0.156 -0.004
RANK@10 -0.082 -0.082 -0.421 -0.082 -0.056 -0.083 -0.070 -0.083
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Table 6: Results of the Wilcoxon signed rank test comparing the rankings induced by the ranked-
based vs scored-based strategies. The statistically significant differences (p_value < 0.05) in
each group are highlighted in blue.

Avg LR Lasso Ridge RF GB LGBM BO AutoFolio

NDCG@1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NDCG@5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NDCG@10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MRR@1 0.042 0.042 0.000 0.042 0.000 1.000 0.001 0.042 0.879
MRR@5 0.083 0.114 0.000 0.083 0.000 0.945 0.000 0.083
MRR@10 0.000 0.000 0.000 0.000 0.000 0.267 0.000 0.000
SCORE@1 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.248
SCORE@5 0.046 0.046 0.000 0.046 0.000 0.000 0.000 0.046
SCORE@10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RANK@1 0.000 0.000 0.000 0.000 0.000 0.071 0.000 0.001 0.653
RANK@5 0.079 0.079 0.000 0.079 0.000 0.000 0.000 0.079
RANK@10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C.2 AMLB-Classification

Table 7: Comparison of approaches using ranking metrics NDCG and MRR on AMLB clasification
tasks. The best results in each group are highlighted in bold.

var NDCG@1 NDCG@10 NDCG@100 MRR@1 MRR@10 MRR@100

Random 0.679 (0.23) 0.669 (0.14) 0.686 (0.12) 0.003 (0.05) 0.009 (0.06) 0.013 (0.07)

Avg Score 0.850 (0.16) 0.859 (0.13) 0.872 (0.09) 0.001 (0.04) 0.028 (0.09) 0.035 (0.09)

Rank 0.884 (0.12) 0.890 (0.10) 0.878 (0.08) 0.023 (0.15) 0.040 (0.16) 0.049 (0.16)

LR Score 0.850 (0.16) 0.860 (0.13) 0.872 (0.09) 0.001 (0.04) 0.028 (0.09) 0.035 (0.09)

Rank 0.885 (0.12) 0.890 (0.10) 0.878 (0.08) 0.023 (0.15) 0.041 (0.17) 0.049 (0.16)

Lasso Score 0.653 (0.23) 0.662 (0.14) 0.684 (0.12) 0.003 (0.05) 0.009 (0.07) 0.013 (0.07)

Rank 0.884 (0.12) 0.890 (0.10) 0.878 (0.08) 0.023 (0.15) 0.039 (0.16) 0.048 (0.16)

Ridge Score 0.850 (0.16) 0.860 (0.13) 0.872 (0.09) 0.001 (0.04) 0.028 (0.09) 0.035 (0.09)

Rank 0.885 (0.12) 0.890 (0.10) 0.878 (0.08) 0.023 (0.15) 0.041 (0.17) 0.049 (0.16)

RF Score 0.846 (0.18) 0.845 (0.14) 0.847 (0.11) 0.044 (0.20) 0.067 (0.22) 0.075 (0.22)

Rank 0.878 (0.14) 0.876 (0.11) 0.870 (0.09) 0.030 (0.17) 0.047 (0.18) 0.056 (0.18)

GB Score 0.870 (0.14) 0.872 (0.11) 0.872 (0.09) 0.023 (0.15) 0.044 (0.16) 0.051 (0.16)

Rank 0.893 (0.12) 0.894 (0.09) 0.878 (0.07) 0.023 (0.15) 0.041 (0.17) 0.050 (0.17)

LGBM Score 0.868 (0.15) 0.870 (0.11) 0.867 (0.09) 0.015 (0.12) 0.038 (0.15) 0.045 (0.15)

Rank 0.888 (0.12) 0.885 (0.09) 0.874 (0.08) 0.021 (0.14) 0.039 (0.16) 0.047 (0.16)

BO Score 0.850 (0.16) 0.860 (0.13) 0.872 (0.09) 0.001 (0.04) 0.028 (0.09) 0.035 (0.09)

Rank 0.884 (0.12) 0.890 (0.10) 0.878 (0.08) 0.023 (0.15) 0.041 (0.17) 0.049 (0.16)

MCTS Score 0.864 (0.15) 0.855 (0.13) 0.837 (0.10) 0.030 (0.17) 0.052 (0.18) 0.061 (0.18)

Rank 0.876 (0.13) 0.852 (0.10) 0.824 (0.08) 0.051 (0.22) 0.059 (0.22) 0.068 (0.22)
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Table 8: Comparison of approaches using AutoML metrics average SCORE and average RANK on
AMLB classification tasks. The best results in each group are highlighted in bold.

var SCORE@1 SCORE@10 SCORE@100 RANK@1 RANK@10 RANK@100

Random 0.558 (0.22) 0.723 (0.18) 0.777 (0.17) - - -

Avg Score 0.675 (0.20) 0.723 (0.19) 0.767 (0.17) 1.500 (0.50) 1.238 (0.43) 1.172 (0.38)

Rank 0.701 (0.18) 0.720 (0.18) 0.772 (0.17) 1.366 (0.48) 1.399 (0.49) 1.172 (0.38)

LR Score 0.675 (0.20) 0.723 (0.19) 0.767 (0.17) 1.504 (0.50) 1.238 (0.43) 1.170 (0.38)

Rank 0.702 (0.18) 0.720 (0.18) 0.772 (0.17) 1.361 (0.48) 1.392 (0.49) 1.168 (0.37)

Lasso Score 0.545 (0.22) 0.724 (0.18) 0.776 (0.17) 1.813 (0.39) 1.469 (0.50) 1.510 (0.50)

Rank 0.701 (0.18) 0.720 (0.18) 0.772 (0.17) 1.156 (0.36) 1.473 (0.50) 1.331 (0.47)

Ridge Score 0.675 (0.20) 0.723 (0.19) 0.767 (0.17) 1.504 (0.50) 1.238 (0.43) 1.170 (0.38)

Rank 0.702 (0.18) 0.720 (0.18) 0.772 (0.17) 1.361 (0.48) 1.392 (0.49) 1.168 (0.37)

RF Score 0.674 (0.19) 0.739 (0.17) 0.779 (0.17) 1.485 (0.50) 1.361 (0.48) 1.306 (0.46)

Rank 0.688 (0.19) 0.737 (0.18) 0.781 (0.17) 1.427 (0.49) 1.437 (0.50) 1.272 (0.44)

GB Score 0.684 (0.20) 0.734 (0.18) 0.768 (0.17) 1.459 (0.50) 1.282 (0.45) 1.193 (0.39)

Rank 0.702 (0.18) 0.731 (0.18) 0.772 (0.17) 1.375 (0.48) 1.377 (0.48) 1.199 (0.40)

LGBM Score 0.688 (0.19) 0.735 (0.18) 0.770 (0.17) 1.423 (0.49) 1.327 (0.47) 1.225 (0.42)

Rank 0.697 (0.18) 0.734 (0.18) 0.773 (0.17) 1.420 (0.49) 1.377 (0.48) 1.208 (0.41)

BO Score 0.675 (0.20) 0.723 (0.19) 0.767 (0.17) 1.503 (0.50) 1.238 (0.43) 1.170 (0.38)

Rank 0.701 (0.18) 0.720 (0.18) 0.772 (0.17) 1.358 (0.48) 1.392 (0.49) 1.168 (0.37)

MCTS Score 0.686 (0.19) 0.725 (0.18) 0.774 (0.17) 1.306 (0.46) 1.454 (0.50) 1.286 (0.45)

Rank 0.698 (0.18) 0.733 (0.18) 0.773 (0.17) 1.325 (0.47) 1.368 (0.48) 1.341 (0.47)

Table 9: Comparison of approaches using average TTB on AMLB classification tasks. The best results
in each group are highlighted in bold.

var TTB@1 TTB@10 TTB@100

Random 5041.482 (3583.41) 4908.858 (3639.28) 4081.935 (3736.80)

Avg Score 5043.765 (3580.72) 4448.601 (3677.92) 3033.816 (3525.23)

Rank 4874.958 (3624.69) 4362.415 (3660.09) 2926.108 (3514.38)

LR Score 5043.765 (3580.72) 4437.394 (3679.17) 3033.332 (3524.90)

Rank 4874.908 (3624.76) 4352.566 (3662.46) 2924.392 (3515.49)

Lasso Score 5032.579 (3583.86) 4876.417 (3636.97) 4203.129 (3747.74)

Rank 4874.958 (3624.69) 4362.433 (3660.07) 2925.991 (3514.42)

Ridge Score 5043.765 (3580.72) 4437.394 (3679.17) 3033.332 (3524.90)

Rank 4874.908 (3624.76) 4352.566 (3662.46) 2924.392 (3515.49)

RF Score 4787.428 (3668.17) 4249.099 (3724.16) 2849.469 (3502.55)

Rank 4934.319 (3615.37) 4578.992 (3718.60) 2939.404 (3455.19)

GB Score 4927.551 (3616.19) 4347.207 (3679.70) 3061.660 (3518.02)

Rank 4873.310 (3623.17) 4367.823 (3672.12) 2988.906 (3558.88)

LGBM Score 4947.902 (3602.84) 4509.409 (3674.22) 3138.629 (3504.85)

Rank 4878.782 (3613.86) 4369.698 (3668.37) 3075.300 (3562.53)

BO Score 5043.765 (3580.72) 4437.394 (3679.17) 3033.415 (3524.88)

Rank 4874.908 (3624.76) 4352.566 (3662.46) 2924.351 (3515.50)

MCTS Score 4812.553 (3628.41) 4218.461 (3735.58) 2965.364 (3726.11)

Rank 4631.098 (3651.16) 4330.997 (3729.38) 3165.093 (3672.53)
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Table 10: Improvement Percentage: Rank-based over Score-based approaches

Avg LR Lasso Ridge RF GB LGBM BO MCTS

NDCG@1 0.040 0.041 0.353 0.041 0.038 0.027 0.023 0.041 0.014
NDCG@10 0.036 0.036 0.344 0.036 0.037 0.025 0.017 0.036 -0.003
NDCG@100 0.007 0.007 0.284 0.007 0.027 0.007 0.008 0.007 -0.016
MRR@1 15.000 15.000 7.000 15.000 -0.323 0.000 0.364 15.000 0.714
MRR@10 0.430 0.457 3.446 0.457 -0.297 -0.061 0.032 0.457 0.145
MRR@100 0.374 0.398 2.641 0.398 -0.260 -0.027 0.036 0.398 0.110
SCORE@1 0.039 0.040 0.287 0.040 0.021 0.026 0.013 0.040 0.017
SCORE@10 -0.005 -0.004 -0.007 -0.004 -0.003 -0.004 -0.002 -0.005 0.011
SCORE@100 0.007 0.007 -0.005 0.007 0.003 0.006 0.004 0.007 -0.001
TTB@1 -0.033 -0.033 -0.031 -0.033 0.031 -0.011 -0.014 -0.033 -0.038
TTB@10 -0.019 -0.019 -0.105 -0.019 0.078 0.005 -0.031 -0.019 0.027
TTB@100 -0.036 -0.036 -0.304 -0.036 0.032 -0.024 -0.020 -0.036 0.067
RANK@1 -0.089 -0.096 -0.362 -0.096 -0.039 -0.058 -0.002 -0.097 0.015
RANK@10 0.130 0.124 0.003 0.124 0.056 0.075 0.038 0.124 -0.059
RANK@100 0.000 -0.002 -0.118 -0.002 -0.026 0.005 -0.014 -0.002 0.043

Table 11: Results of the Wilcoxon signed rank test comparing the rankings induced by the ranked-
based vs scored-based strategies. The statistically significant differences (p_value < 0.05) in
each group are highlighted in blue.

Avg LR Lasso Ridge RF GB LGBM BO MCTS

NDCG@1 0.000 0.000 0.000 0.000 0.001 0.001 0.008 0.000 0.137
NDCG@10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.992
NDCG@100 0.004 0.003 0.000 0.003 0.000 0.002 0.000 0.003 1.000
MRR@1 0.000 0.000 0.000 0.000 0.926 0.500 0.197 0.000 0.004
MRR@10 0.108 0.081 0.000 0.081 0.981 0.618 0.411 0.081 0.356
MRR@100 0.006 0.005 0.000 0.005 0.943 0.462 0.252 0.005 0.995
SCORE@1 0.000 0.000 0.000 0.000 0.007 0.002 0.107 0.000 0.359
SCORE@10 1.000 1.000 0.843 1.000 0.999 1.000 0.930 1.000 0.000
SCORE@100 0.001 0.001 0.144 0.001 0.022 0.012 0.018 0.001 0.578
TTB@1 0.000 0.000 0.000 0.000 0.990 0.258 0.081 0.000 0.000
TTB@10 0.945 0.933 0.000 0.933 1.000 0.974 0.338 0.933 0.978
TTB@100 0.000 0.000 0.000 0.000 0.971 0.001 0.006 0.000 0.863
AVG_RANK@1 0.000 0.000 0.000 0.000 0.053 0.007 0.467 0.000 0.746
AVG_RANK@10 1.000 1.000 0.546 1.000 0.988 0.999 0.946 1.000 0.006
AVG_RANK@100 0.500 0.449 0.000 0.449 0.118 0.595 0.247 0.449 0.968
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C.3 AMLB-Regression

Table 12: Comparison of approaches using ranking metrics NDCG and MRR on AMLB regression
tasks. The best results in each group are highlighted in bold.

var NDCG@1 NDCG@10 NDCG@100 MRR@1 MRR@10 MRR@100

Random 0.711 (0.20) 0.715 (0.12) 0.736 (0.11) 0.000 (0.00) 0.010 (0.06) 0.016 (0.06)

Avg Score 0.778 (0.23) 0.789 (0.16) 0.817 (0.10) 0.039 (0.19) 0.062 (0.20) 0.068 (0.20)

Rank 0.846 (0.19) 0.855 (0.15) 0.868 (0.11) 0.073 (0.26) 0.113 (0.28) 0.123 (0.28)

LR Score 0.723 (0.21) 0.715 (0.13) 0.736 (0.11) 0.012 (0.11) 0.016 (0.11) 0.022 (0.11)

Rank 0.845 (0.20) 0.855 (0.15) 0.869 (0.11) 0.079 (0.27) 0.116 (0.29) 0.125 (0.28)

Lasso Score 0.721 (0.22) 0.714 (0.13) 0.736 (0.11) 0.012 (0.11) 0.016 (0.11) 0.022 (0.11)

Rank 0.846 (0.19) 0.855 (0.15) 0.869 (0.11) 0.073 (0.26) 0.113 (0.28) 0.123 (0.28)

Ridge Score 0.721 (0.22) 0.714 (0.13) 0.736 (0.11) 0.012 (0.11) 0.016 (0.11) 0.022 (0.11)

Rank 0.845 (0.20) 0.855 (0.15) 0.869 (0.11) 0.079 (0.27) 0.116 (0.29) 0.125 (0.28)

RF Score 0.702 (0.22) 0.711 (0.13) 0.737 (0.11) 0.000 (0.00) 0.009 (0.05) 0.014 (0.05)

Rank 0.858 (0.17) 0.858 (0.15) 0.863 (0.13) 0.030 (0.17) 0.062 (0.19) 0.075 (0.19)

GB Score 0.693 (0.23) 0.708 (0.13) 0.734 (0.11) 0.003 (0.05) 0.008 (0.06) 0.014 (0.06)

Rank 0.835 (0.20) 0.847 (0.16) 0.868 (0.11) 0.067 (0.25) 0.093 (0.26) 0.105 (0.26)

LGBM Score 0.613 (0.26) 0.663 (0.18) 0.724 (0.12) 0.000 (0.00) 0.006 (0.03) 0.012 (0.03)

Rank 0.828 (0.20) 0.839 (0.16) 0.859 (0.12) 0.055 (0.23) 0.076 (0.24) 0.089 (0.23)

BO Score 0.796 (0.21) 0.804 (0.14) 0.816 (0.10) 0.027 (0.16) 0.062 (0.19) 0.070 (0.19)

Rank 0.846 (0.19) 0.855 (0.15) 0.869 (0.11) 0.079 (0.27) 0.116 (0.29) 0.125 (0.28)

MCTS Score 0.733 (0.23) 0.732 (0.19) 0.754 (0.14) 0.052 (0.22) 0.066 (0.22) 0.072 (0.22)

Rank 0.878 (0.17) 0.845 (0.11) 0.851 (0.09) 0.085 (0.28) 0.085 (0.28) 0.091 (0.28)

Table 13: Comparison of approaches using AutoML metrics average SCORE and average RANK on
AMLB regression tasks. The best results in each group are highlighted in bold.

var SCORE@1 SCORE@10 SCORE@100 RANK@1 RANK@10 RANK@100

Random -1.90e+22 (3.02𝑒+23) -2.13e+06 (1.06𝑒+07) -1.94e+06 (9.89𝑒+06) - - -

Avg Score -2.28e+06 (1.07𝑒+07) -2.01e+06 (1.01𝑒+07) -1.90e+06 (9.70𝑒+06) 1.418 (0.49) 1.403 (0.49) 1.358 (0.48)

Rank -2.10e+06 (1.07𝑒+07) -1.91e+06 (9.70𝑒+06) -1.91e+06 (9.70𝑒+06) 1.382 (0.49) 1.352 (0.48) 1.264 (0.44)

LR Score -1.26e+14 (2.27𝑒+15) -2.19e+06 (1.10𝑒+07) -1.95e+06 (9.95𝑒+06) 1.721 (0.45) 1.630 (0.48) 1.464 (0.50)

Rank -2.08e+06 (1.06𝑒+07) -1.91e+06 (9.70𝑒+06) -1.91e+06 (9.70𝑒+06) 1.267 (0.44) 1.321 (0.47) 1.339 (0.47)

Lasso Score -1.26e+14 (2.27𝑒+15) -2.19e+06 (1.10𝑒+07) -1.95e+06 (9.94𝑒+06) 1.721 (0.45) 1.627 (0.48) 1.464 (0.50)

Rank -2.10e+06 (1.07𝑒+07) -1.91e+06 (9.70𝑒+06) -1.91e+06 (9.70𝑒+06) 1.267 (0.44) 1.327 (0.47) 1.339 (0.47)

Ridge Score -1.26e+14 (2.27𝑒+15) -2.19e+06 (1.10𝑒+07) -1.95e+06 (9.94𝑒+06) 1.721 (0.45) 1.633 (0.48) 1.467 (0.50)

Rank -2.08e+06 (1.06𝑒+07) -1.91e+06 (9.70𝑒+06) -1.91e+06 (9.70𝑒+06) 1.267 (0.44) 1.324 (0.47) 1.339 (0.47)

RF Score -2.19e+37 (3.97𝑒+38) -2.11e+06 (1.06𝑒+07) -1.94e+06 (9.92𝑒+06) 1.782 (0.41) 1.506 (0.50) 1.424 (0.49)

Rank -2.34e+06 (1.17𝑒+07) -2.23e+06 (1.14𝑒+07) -1.98e+06 (1.01𝑒+07) 1.215 (0.41) 1.467 (0.50) 1.379 (0.49)

GB Score -3.90e+58 (2.21𝑒+59) -2.13e+06 (1.07𝑒+07) -1.95e+06 (9.91𝑒+06) 1.742 (0.44) 1.633 (0.48) 1.521 (0.50)

Rank -2.09e+06 (1.06𝑒+07) -1.97e+06 (1.00𝑒+07) -1.91e+06 (9.72𝑒+06) 1.242 (0.43) 1.309 (0.46) 1.279 (0.45)

LGBM Score -6.71e+57 (4.93𝑒+58) -1.40e+34 (1.33𝑒+35) -1.93e+06 (9.82𝑒+06) 1.833 (0.37) 1.655 (0.48) 1.439 (0.50)

Rank -5.53e+06 (6.37𝑒+07) -1.98e+06 (1.01𝑒+07) -1.92e+06 (9.78𝑒+06) 1.164 (0.37) 1.309 (0.46) 1.306 (0.46)

BO Score -2.39e+06 (1.17𝑒+07) -2.01e+06 (1.01𝑒+07) -1.91e+06 (9.74𝑒+06) 1.542 (0.50) 1.436 (0.50) 1.367 (0.48)

Rank -2.08e+06 (1.06𝑒+07) -1.91e+06 (9.70𝑒+06) -1.91e+06 (9.70𝑒+06) 1.370 (0.48) 1.367 (0.48) 1.273 (0.45)

MCTS Score -2.31e+06 (1.08𝑒+07) -2.13e+06 (1.01𝑒+07) -1.92e+06 (9.70𝑒+06) 1.639 (0.48) 1.597 (0.49) 1.379 (0.49)

Rank -1.92e+06 (9.70𝑒+06) -1.91e+06 (9.70𝑒+06) -1.91e+06 (9.70𝑒+06) 1.330 (0.47) 1.348 (0.48) 1.309 (0.46)
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Table 14: Comparison of approaches using average TTB on AMLB regression tasks. The best results
in each group are highlighted in bold.

var TTB@1 TTB@10 TTB@100

Random 3586.084 (1832.81) 3453.575 (1911.90) 2761.787 (2145.84)

Avg Score 3424.625 (1951.65) 2903.705 (2142.14) 2111.220 (1812.69)

Rank 3290.290 (2042.10) 2708.923 (2060.88) 1859.865 (1852.73)

LR Score 3545.273 (1864.66) 3455.948 (1928.41) 2747.323 (2190.03)

Rank 3255.857 (2045.68) 2690.243 (2056.09) 1859.944 (1852.76)

Lasso Score 3545.273 (1864.66) 3455.916 (1928.47) 2729.861 (2181.15)

Rank 3290.291 (2042.10) 2708.788 (2061.04) 1859.427 (1852.95)

Ridge Score 3545.273 (1864.66) 3455.916 (1928.47) 2737.503 (2177.95)

Rank 3255.857 (2045.68) 2690.243 (2056.09) 1859.944 (1852.76)

RF Score 3586.084 (1832.81) 3458.212 (1897.20) 2843.086 (2124.43)

Rank 3477.630 (1924.12) 3024.837 (2140.76) 1941.372 (2036.63)

GB Score 3572.849 (1842.57) 3485.569 (1903.98) 2798.697 (2151.61)

Rank 3317.121 (2027.53) 2849.755 (2131.73) 1731.679 (1866.51)

LGBM Score 3586.084 (1832.81) 3416.294 (1896.80) 2541.332 (2095.30)

Rank 3371.637 (1979.92) 2941.128 (2091.28) 1757.136 (1800.78)

BO Score 3477.129 (1919.76) 2986.739 (2124.44) 2175.204 (1870.60)

Rank 3255.857 (2045.68) 2690.243 (2056.08) 1859.945 (1852.76)

MCTS Score 3378.009 (1983.92) 3145.425 (2127.41) 2319.453 (2258.28)

Rank 3148.875 (1956.02) 3137.958 (1963.27) 2549.071 (2148.62)

Table 15: Improvement Percentage: Rank-based over Score-based approaches

Avg LR Lasso Ridge RF GB LGBM BO MCTS

NDCG@1 0.088 0.169 0.173 0.173 0.221 0.204 0.351 0.063 0.198
NDCG@10 0.083 0.196 0.198 0.198 0.207 0.195 0.266 0.064 0.154
NDCG@100 0.063 0.180 0.180 0.180 0.171 0.183 0.186 0.065 0.129
MRR@1 0.846 5.500 5.000 5.500 21.000 1.889 0.647
MRR@10 0.826 6.433 6.107 6.282 6.233 10.791 12.154 0.862 0.292
MRR@100 0.791 4.689 4.466 4.592 4.310 6.432 6.370 0.785 0.258
SCORE@1 -8.08e-02 -1.00e+00 -1.00e+00 -1.00e+00 -1.00e+00 -1.00e+00 -1.00e+00 -1.28e-01 -1.70e-01
SCORE@10 -4.60e-02 -1.27e-01 -1.27e-01 -1.27e-01 5.83e-02 -7.56e-02 -1.00e+00 -4.69e-02 -1.01e-01
SCORE@100 2.48e-03 -2.13e-02 -1.98e-02 -1.98e-02 2.00e-02 -1.81e-02 -4.64e-03 -6.35e-04 -3.94e-03
TTB@1 -0.039 -0.082 -0.072 -0.082 -0.030 -0.072 -0.060 -0.064 -0.068
TTB@10 -0.067 -0.222 -0.216 -0.222 -0.125 -0.182 -0.139 -0.099 -0.002
TTB@100 -0.119 -0.323 -0.319 -0.321 -0.317 -0.381 -0.309 -0.145 0.099
RANK@1 -0.026 -0.264 -0.264 -0.264 -0.318 -0.287 -0.365 -0.112 -0.189
RANK@10 -0.037 -0.190 -0.184 -0.189 -0.026 -0.199 -0.209 -0.049 -0.156
RANK@100 -0.069 -0.085 -0.085 -0.087 -0.032 -0.159 -0.093 -0.069 -0.051
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Table 16: Results of the Wilcoxon signed rank test comparing the rankings induced by the ranked-
based vs scored-based strategies. The statistically significant differences (p_value < 0.05) in
each group are highlighted in blue.

Avg LR Lasso Ridge RF GB LGBM BO MCTS

NDCG@1 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NDCG@10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NDCG@100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MRR@1 0.004 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.039
MRR@10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.304
MRR@100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.517
SCORE@1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SCORE@10 0.000 0.000 0.000 0.000 0.899 0.000 0.000 0.012 0.000
SCORE@100 0.813 0.004 0.005 0.004 0.686 0.000 0.003 0.697 0.001
TTB@1 0.250 0.000 0.000 0.000 0.006 0.000 0.000 0.011 0.000
TTB@10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
TTB@100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.072
AVG_RANK@1 0.230 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
AVG_RANK@10 0.141 0.000 0.000 0.000 0.234 0.000 0.000 0.079 0.000
AVG_RANK@100 0.015 0.006 0.006 0.005 0.178 0.000 0.003 0.016 0.063
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C.4 Correlation between metrics

Tables 17, 18 and 19 show all Spearman correlations between all the metrics calculated for each
dataset, respectively.

Table 17: Correlation between metrics in OpenML-Weka dataset.

N@1 N@5 N@10 M@1 M@5 M@10 S@1 S@5 S@10 R@1 R@5 R@10

N@1 1.00 0.87 0.72 0.57 0.57 0.55 0.88 0.55 0.86 -0.41 -0.27 -0.56
N@5 0.87 1.00 0.85 0.68 0.71 0.69 0.73 0.73 0.84 -0.27 -0.25 -0.65
N@10 0.72 0.85 1.00 0.81 0.81 0.78 0.55 0.86 0.80 0.01 0.05 -0.39
M@1 0.57 0.68 0.81 1.00 0.99 0.98 0.40 0.97 0.63 0.32 0.29 -0.13
M@5 0.57 0.71 0.81 0.99 1.00 0.99 0.37 0.97 0.66 0.28 0.21 -0.21
M@10 0.55 0.69 0.78 0.98 0.99 1.00 0.38 0.96 0.64 0.30 0.23 -0.20
S@1 0.88 0.73 0.55 0.40 0.37 0.38 1.00 0.35 0.74 -0.60 -0.43 -0.61
S@5 0.55 0.73 0.86 0.97 0.97 0.96 0.35 1.00 0.68 0.30 0.25 -0.22
S@10 0.86 0.84 0.80 0.63 0.66 0.64 0.74 0.68 1.00 -0.36 -0.28 -0.74
R@1 -0.41 -0.27 0.01 0.32 0.28 0.30 -0.60 0.30 -0.36 1.00 0.95 0.76
R@5 -0.27 -0.25 0.05 0.29 0.21 0.23 -0.43 0.25 -0.28 0.95 1.00 0.78
R@10 -0.56 -0.65 -0.39 -0.13 -0.21 -0.20 -0.61 -0.22 -0.74 0.76 0.78 1.00

Table 18: Correlation between metrics in AMLB Classification dataset.

N@1 N@10 N@100 M@1 M@10 M@100 S@1 S@10 S@100 T@1 T@10 T@100 R@1 R@10 R@100

N@1 1.00 0.90 0.76 0.40 0.42 0.42 0.95 -0.20 -0.05 -0.51 -0.36 -0.41 -0.67 0.36 -0.28
N@10 0.90 1.00 0.92 0.17 0.25 0.25 0.88 -0.37 -0.26 -0.27 -0.22 -0.55 -0.46 0.25 -0.55
N@100 0.76 0.92 1.00 0.03 0.13 0.13 0.75 -0.59 -0.39 -0.17 -0.31 -0.63 -0.36 0.12 -0.72
M@1 0.40 0.17 0.03 1.00 0.93 0.93 0.46 0.28 0.63 -0.90 -0.70 -0.44 -0.66 0.52 0.39
M@10 0.42 0.25 0.13 0.93 1.00 1.00 0.46 0.36 0.37 -0.84 -0.79 -0.50 -0.57 0.28 0.24
M@100 0.42 0.25 0.13 0.93 1.00 1.00 0.46 0.36 0.37 -0.84 -0.79 -0.50 -0.57 0.28 0.23
S@1 0.95 0.88 0.75 0.46 0.46 0.46 1.00 -0.32 -0.06 -0.58 -0.42 -0.49 -0.78 0.42 -0.28
S@10 -0.20 -0.37 -0.59 0.28 0.36 0.36 -0.32 1.00 0.36 -0.13 0.04 0.36 0.29 -0.22 0.51
S@100 -0.05 -0.26 -0.39 0.63 0.37 0.37 -0.06 0.36 1.00 -0.49 -0.10 -0.07 -0.35 0.75 0.64
T@1 -0.51 -0.27 -0.17 -0.90 -0.84 -0.84 -0.58 -0.13 -0.49 1.00 0.80 0.46 0.74 -0.45 -0.23
T@10 -0.36 -0.22 -0.31 -0.70 -0.79 -0.79 -0.42 0.04 -0.10 0.80 1.00 0.53 0.62 -0.14 0.02
T@100 -0.41 -0.55 -0.63 -0.44 -0.50 -0.50 -0.49 0.36 -0.07 0.46 0.53 1.00 0.40 -0.32 0.38
R@1 -0.67 -0.46 -0.36 -0.66 -0.57 -0.57 -0.78 0.29 -0.35 0.74 0.62 0.40 1.00 -0.57 -0.07
R@10 0.36 0.25 0.12 0.52 0.28 0.28 0.42 -0.22 0.75 -0.45 -0.14 -0.32 -0.57 1.00 0.37
R@100 -0.28 -0.55 -0.72 0.39 0.24 0.23 -0.28 0.51 0.64 -0.23 0.02 0.38 -0.07 0.37 1.00

Table 19: Correlation between metrics in AMLB Regression dataset.

N@1 N@10 N@100 M@1 M@10 M@100 S@1 S@10 S@100 T@1 T@10 T@100 R@1 R@10 R@100

N@1 1.00 0.93 0.87 0.88 0.84 0.88 0.87 0.67 0.48 -0.86 -0.74 -0.68 -0.81 -0.71 -0.77
N@10 0.93 1.00 0.92 0.81 0.87 0.91 0.82 0.61 0.50 -0.79 -0.84 -0.76 -0.86 -0.73 -0.73
N@100 0.87 0.92 1.00 0.88 0.95 0.95 0.87 0.77 0.66 -0.87 -0.90 -0.80 -0.81 -0.85 -0.84
M@1 0.88 0.81 0.88 1.00 0.95 0.95 0.96 0.85 0.68 -1.00 -0.82 -0.72 -0.75 -0.81 -0.83
M@10 0.84 0.87 0.95 0.95 1.00 0.99 0.92 0.81 0.70 -0.94 -0.91 -0.80 -0.76 -0.83 -0.83
M@100 0.88 0.91 0.95 0.95 0.99 1.00 0.92 0.78 0.66 -0.94 -0.90 -0.81 -0.80 -0.82 -0.83
S@1 0.87 0.82 0.87 0.96 0.92 0.92 1.00 0.81 0.71 -0.96 -0.84 -0.68 -0.71 -0.77 -0.79
S@10 0.67 0.61 0.77 0.85 0.81 0.78 0.81 1.00 0.82 -0.87 -0.72 -0.57 -0.54 -0.81 -0.83
S@100 0.48 0.50 0.66 0.68 0.70 0.66 0.71 0.82 1.00 -0.71 -0.81 -0.60 -0.35 -0.62 -0.72
T@1 -0.86 -0.79 -0.87 -1.00 -0.94 -0.94 -0.96 -0.87 -0.71 1.00 0.83 0.72 0.73 0.82 0.83
T@10 -0.74 -0.84 -0.90 -0.82 -0.91 -0.90 -0.84 -0.72 -0.81 0.83 1.00 0.88 0.74 0.80 0.81
T@100 -0.68 -0.76 -0.80 -0.72 -0.80 -0.81 -0.68 -0.57 -0.60 0.72 0.88 1.00 0.84 0.83 0.82
R@1 -0.81 -0.86 -0.81 -0.75 -0.76 -0.80 -0.71 -0.54 -0.35 0.73 0.74 0.84 1.00 0.87 0.72
R@10 -0.71 -0.73 -0.85 -0.81 -0.83 -0.82 -0.77 -0.81 -0.62 0.82 0.80 0.83 0.87 1.00 0.86
R@100 -0.77 -0.73 -0.84 -0.83 -0.83 -0.83 -0.79 -0.83 -0.72 0.83 0.81 0.82 0.72 0.86 1.00

22



C.5 Bonferroni Correction

Table 20 describes the experimental results using the Bonferroni correction for each metric, consid-
ering the number of independent tests as the product of the number of seeds, the number of tasks,
and the number of models evaluated for the metric. The column "p-value" contains the p-value
obtained after performing the Wilcoxon signed-rank test between the score-based and rank-based
versions. The column "𝛼Bonferroni" contains the corrected value (i.e., 𝛼/# independent tests, with
𝛼 = 0.05). Finally, the column "<" indicates whether the p-value is less than 𝛼Bonferroni, meaning
that the null hypothesis—that the metric value obtained by the rank-based version is less than or
equal to that of the score-based version—is rejected.

Table 20: Results of the statistical significance tests for each metric after Bonferroni correction

#independent tests (𝑠𝑒𝑒𝑑𝑠 ∗ 𝑡𝑎𝑠𝑘𝑠 ∗𝑚𝑜𝑑𝑒𝑙𝑠) p-value 𝛼Bonferroni diff < 0

NDCG@1 17760 0.00e+0 2.82e-6 -2.82e-6 yes
NDCG@5 8400 7.56e-239 5.95e-6 -5.95e-6 yes
NDCG@10 17760 0.00e+0 2.82e-6 -2.82e-6 yes
NDCG@100 9360 0.00e+0 5.34e-6 -5.34e-6 yes
MRR@1 17760 1.51e-26 2.82e-6 -2.82e-6 yes
MRR@5 8400 1.21e-43 5.95e-6 -5.95e-6 yes
MRR@10 17760 3.07e-108 2.82e-6 -2.82e-6 yes
MRR@100 9360 6.12e-49 5.34e-6 -5.34e-6 yes
SCORE@1 17760 1.65e-303 2.82e-6 -2.82e-6 yes
SCORE@5 8400 3.22e-100 5.95e-6 -5.95e-6 yes
SCORE@10 17760 4.27e-30 2.82e-6 -2.82e-6 yes
SCORE@100 9360 4.13e-17 5.34e-6 -5.34e-6 yes
TTB@1 9360 1.07e-27 5.34e-6 -5.34e-6 yes
TTB@10 9360 1.72e-15 5.34e-6 -5.34e-6 yes
TTB@100 9360 4.77e-60 5.34e-6 -5.34e-6 yes
AVG_RANK@1 17760 3.65e-209 2.82e-6 -2.82e-6 yes
AVG_RANK@5 8400 3.13e-100 5.95e-6 -5.95e-6 yes
AVG_RANK@10 17760 1.49e-32 2.82e-6 -2.82e-6 yes
AVG_RANK@100 9360 2.63e-11 5.34e-6 -5.34e-6 yes
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D Pipeline Search Space

We describe the search space for machine learning pipelines as a grammar, with non-terminal sym-
bols in ALL CAPS and terminal symbols in CamelCase. This encompasses the various components
that can be assembled to preprocess data, select features, and construct models for classification
or regression tasks. The structure of the pipeline is modular, allowing for different preprocessing
techniques for categorical and numerical data, various feature selection methods, and a wide range
of classifiers and regressors. A simplified grammar is described below.

PIPELINE := DATA_PREPROCESS& FEATURE_SELECTOR& (CLASSIFIER | REGRESSOR)

DATA_PREPROCESS := CATEGORICAL |NUMERICAL | (CATEGORICAL&NUMERICAL)

CATEGORICAL := (CategoricalImputation&ENCODING) | ENCODING

ENCODING := NoEncoding |OneHotEncoder

NUMERICAL := (NumericalImputation& SCALING) | SCALING

SCALING := NoRescaling | StandardScaler |MinMaxScaler |
Normalizer |QuantileTransformer | RobustScaler

FEATURE_SELECTOR := NoPreprocessing |Densifier | ExtraTreesPreprocessor |
FastICA | FeatureAgglomeration | KernelPCA |
RandomKitchenSinks | LibLinear |Nystroem |
PCA | PolynomialFeatures | RandomTreesEmbedding |
SelectPercentile | SelectClassificationRates | TruncatedSVD

CLASSIFIER := AdaboostClassifier | BernoulliNBClassifier |
DecisionTreeClassifier | ExtraTreesClassifier |
GaussianNBClassifier | GradientBoostingClassifier |
KNearestNeighborsClassifier | LDAClassifier |
LibLinear_SVCClassifier | LibSVM_SVCClassifier |
MultinomialNBClassifier | PassiveAggressiveClassifier |
QDAClassifier | RandomForestClassifier | SGDClassifier |MLPClassifier

REGRESSOR := AdaboostRegressor |ARDRegressor |
DecisionTreeRegressor | ExtraTreesRegressor |
GaussianProcessRegressor | GradientBoostingRegressor |
KNearestNeighborsRegressor | LibSVM_SVRegressor |
MLPRegressor | RandomForestRegressor | SGDRegressor
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E Simulated Experiment: Robustness of Rank-Based method

To complement our empirical analysis on real-world datasets, we designed a controlled simulation
to evaluate the robustness of rank-based aggregation under increasing noise levels. This experiment
aims to isolate the effects of noise on the ranking quality of two strategies: score-based average and
rank-based average, when selecting pipelines across tasks.

Setup. We simulate a meta-learning scenario with 𝑇 = 200 tasks and 𝐶 = 20 configurations. For
each task 𝑡 , we sample a vector of ground-truth performance scores 𝑠𝑡 ∈ R𝐶 using a uniform
distribution. To make the simulation realistic and heterogeneous, each task draws scores from a
different range:

𝑠
(𝑖 )
𝑡 ∼ U (0.5 + 0.2 sin(𝑡 + seed), 0.95 − 0.2 cos(𝑡 + seed)) .

This ensures variability in scale, spread, and ordering of configuration performance across tasks,
mimicking what is typically observed in real-world meta-data.

We then introduce Gaussian noise to the scores:

𝑠
(𝑖 )
𝑡 = 𝑠

(𝑖 )
𝑡 + 𝜖, 𝜖 ∼ N (0, 𝜎),

for noise levels 𝜎 ∈ {0.01, 0.02, . . . , 1.0} (log-spaced). This models task-specific measurement noise,
overfitting, or instability in reported performance.

For each noise level, and each seed in a set of 10 random seeds, we compute:

• Score-Based Average: For each configuration 𝑐 , compute the average noisy score across tasks:

𝑠𝑐 =
1
𝑇

𝑇∑︁
𝑡=1

𝑠
(𝑐 )
𝑡 .

• Rank-Based Average: For each task, convert the noisy scores into inverse ranks (best = highest).
Then compute the average inverse rank:

𝑟
(𝑐 )
𝑡 = 𝐶 − rank𝑡 (𝑐), 𝑟𝑐 =

1
𝑇

𝑇∑︁
𝑡=1

𝑟
(𝑐 )
𝑡 ,

where 𝐶 is the number of configurations.

Evaluation. We evaluate the quality of each global ranking using Kendall’s Tau (𝜏) between the
predicted ranking (score-based or rank-based) and a reference ground truth. Importantly, the
ground truth is defined as the ranking resulting from the true (noise-free) scores, ensuring that the
evaluation focuses on preserving relative configuration quality.

Results. For each method and noise level, we average the Kendall’s Tau over all seeds and report
the standard deviation. Figure 5 shows that rank-based aggregation consistently achieves higher
correlation with the ground-truth ranking under increasing noise, and demonstrates lower variance
across seeds.

Finally, this controlled experiment shows that rank-based strategy is more robust to noise than
score-based strategy, especially when performance scores are not directly comparable across tasks.
These results align with our findings on real-world datasets, supporting the generalization capacity
of rank-based methods for pipeline selection in meta-learning.
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Figure 5: Kendall’s Tau of predicted global rankings under increasing noise (𝜎) in simulated task
performance data. Results are averaged over 5 seeds. The evaluation ground truth is based
on average rank over noise-free scores.
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F Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The abstract and introduction clearly state the contributions,
and these claims are supported by extensive experimental results provided in Sections 3
and 4.

(b) Did you describe the limitations of your work? [Yes] Section 6 clearly describes the limita-
tions, such as the focus on predefined pipeline sets and finite search spaces.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Section 7
explicitly states there are no notable negative impacts to society or the environment.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?
[Yes] We have reviewed the guidelines and confirmed that our paper conforms to ethical
standards.

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same
benchmarks, data (sub)sets, available resources, etc.)? [Yes] All methods were evaluated
using identical evaluation protocols as detailed in Section 3.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,
search spaces, hyperparameter tuning details and results, etc.)? [Yes] All experimental
details are comprehensively provided in Section 3, including data collection, preprocessing,
and evaluation metrics.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account
for the impact of randomness in your methods or data? [Yes] Experiments were repeated
using 10 random seeds as described in Section 3.

(d) Did you report the uncertainty of your results (e.g., the standard error across random seeds
or splits)? [Yes] Results include detailed statistical analysis, including standard errors and
significance tests, as shown in Section 4 and Appendix sections.

(e) Did you report the statistical significance of your results? [Yes] Statistical significance using
Wilcoxon tests and Bonferroni adjustments are reported clearly in Section 4 and Appendix.

(f) Did you use enough repetitions, datasets, and/or benchmarks to support your claims? [Yes]
We used multiple diverse datasets (OpenML-Weka, AMLB classification, AMLB regression)
and sufficient repetitions (10 random seeds) as detailed in Section 3.

(g) Did you compare performance over time and describe how you selected the maximum
runtime? [No] We did not compare performance over continuous time or define a fixed
maximum runtime. However, we evaluated performance at different ranking cutoffs and
included the TTB (Time-To-Best) metric, which captures how quickly the best pipeline is
found within the evaluation process (Section 4).

(h) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Compute resources (Amazon EC2 R5
instances) and their specifications are detailed in Section 3.

(i) Did you run ablation studies to assess the impact of different components of your approach?
[No] Our approach focuses on comparing score-based versus ranking-based formulation,
which represents a single component variation. While we did not perform traditional
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ablation studies with multiple internal components, we conducted robustness analyses
(e.g., noise experiments) and model comparisons to better understand the effect of this key
design choice (Section 4 and Appendices).

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results, including all dependencies (e.g., requirements.txt with explicit versions), random
seeds, an instructive README with installation instructions, and execution commands? [Yes]
All code, data, and detailed instructions for reproducing the experiments are included in
the supplementary material. We provide a README, requirements.txt, random seeds, and
reproducible jupyter notebooks.

(b) Did you include a minimal example to replicate results on a small subset of the experiments
or on toy data? [No] No, but we provide pre-computed results that replicate our main
findings, allowing readers to inspect outcomes and run analyses without full re-execution.
This facilitates quick testing and understanding.

(c) Did you ensure sufficient code quality and documentation so that someone else can execute
and understand your code? [Yes] The codebase is well-structured and documented, with
comments explaining all key components, and includes usage instructions in the README
file. Some code duplication is present due to experiment-specific scripts.

(d) Did you include the raw results of running your experiments with the given code, data, and
instructions? [Yes] Yes, we provide all raw results, along with the scripts used to process
and analyze them.

(e) Did you include the code, additional data, and instructions needed to generate the figures
and tables in your paper based on the raw results? [Yes] Yes, all plotting scripts and post-
processing notebooks used to generate the figures and tables in the paper are included in
the supplementary material.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] All used datasets and assets (OpenML, AMLB,
AutoFolio, etc.) are properly cited in Section 3.

(b) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating if the license requires it? [N/A] All datasets used are publicly available and
widely used in the community without specific consent issues.

(c) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] The datasets used do not contain personally
identifiable information or offensive content.

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [N/A]
No new assets were created.

(b) Did you include the new assets either in the supplemental material or as a URL? [N/A] No
new assets were created.

6. If you used crowdsourcing or conducted research with human subjects. . . [N/A] No crowdsourc-
ing or human subject research was conducted.
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7. If you included theoretical results. . . [N/A] No theoretical results were included in this paper.
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