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Abstract
Discovery of causal relationships from observational data, especially from mixed data that consist
of both continuous and discrete variables, is a fundamental yet challenging problem. Traditional
methods focus on polishing the data type processing policy, which may lose data information.
Compared with such methods, the constraint-based and score-based methods for mixed data derive
certain conditional independence tests or score functions from the data’s characteristics. However,
they may return the Markov equivalence class due to the lack of identifiability guarantees, which
may limit their applicability or hinder their interpretability of causal graphs. Thus, in this paper,
based on the structural causal models of continuous and discrete variables, we provide sufficient
identifiability conditions in bivariate as well as multivariate cases. We show that if the data follow
our proposed restricted Linear Mixed causal model (LiM), such a model is identifiable. In addition,
we proposed a two-step hybrid method to discover the causal structure for mixed data. Experiments
on both synthetic and real-world data empirically demonstrate the identifiability and efficacy of our
proposed LiM model.
Keywords: causal discovery, structural causal models, mixed data, identifiability

1. Introduction

Identifying the causal structure from purely observational data, termed as causal discovery, has
been rapidly developed for the past decades with growing interest and has been widely applied in
many domains (Pearl, 2000; Spirtes et al., 1993; Shimizu, 2014; Zhang and Hyvärinen, 2016). The
traditional approaches to causal discovery roughly fall into two categories, namely constraint-based
methods (Spirtes and Glymour, 1991; Spirtes et al., 1995), and score-based ones (Chickering, 2002).
Since they may output Markov equivalence classes, i.e., a set of causal structures entailing the same
conditional independences, they do not offer complete causal information. To distinguish different
causal structures in the Markov equivalence class, several scholars derive additional assumptions
on the data distribution and propose causal methods based on Structural Causal Models (SCM).
These methods, including Linear Non-Gaussian Acyclic Models (LiNGAM) (Shimizu et al., 2006),
Additive Nonlinear Models (ANM) (Hoyer et al., 2009), and Post Nonlinear (PNL) (Zhang and
Hyvärinen, 2009), achieve the unique identifiability of the causal structure. Most existing causal
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discovery methods focus on cases where the involved variables are either continuous or discrete
only.

However, in many real-world scenarios such as economics (Wei et al., 2018), bioinformat-
ics (Sedgewick et al., 2019), etc., the collected data often are a mixture of both continuous and
discrete variables. When encountering such mixed data, one may ignore the discrete variables and
apply the methods for continuous variables to estimate the partial causal network; or utilize a dis-
cretization policy to discretize the continuous variables, so that they can use those methods for dis-
crete causal networks (Monti and Cooper, 1998; Chen et al., 2017). Both methods attempt to convert
mixed data types into the same type, which is naive and can make it easy to lose data information,
inducing non-negligible estimation errors. Yamayoshi et al. (2020) proposed a Latent-LiNGAM
algorithm, which assumed that observed categorical variables are the result of discretizing latent
continuous variables via link functions. But they did not concentrate on the model’s theoretical
analysis with mixed data. Apart from these methods, by and large, causal discovery algorithms for
mixed data can be categorized into two classes: constraint-based and score-based ones. Constraint-
based algorithms are those variants of PC (Pearl, 2000; Spirtes and Glymour, 1991), including Cui
et al. (2016); Sedgewick et al. (2019); Tsagris et al. (2018), which cannot guarantee identifiability
and are sensitive to samples.

Unlike the PC variants, score-based algorithms for mixed data do not use (un)conditional in-
dependence tests, but instead, optimize a likelihood score derived from mixed data’s characteris-
tics with the commonly-used greedy equivalence search framework. Such efforts include Li and
Shimizu (2018); Huang et al. (2018); Andrews et al. (2019); Wei et al. (2018), etc. In particular, the
first three efforts employ different score functions, i.e., with LiNGAM and the logistic regression
model, regression model in RKHS, degenerate distributions, and respectively, whereas they do not
provide the model’s identifiability results and may return Markov equivalence classes. Wei et al.
(2018) developed a mixed causal model and proved its identifiability in the bivariate cases. How-
ever, in their bivariate identifiability, they assumed the noises of continuous variables followed the
Laplace distributions and the intercepts for discrete variables are zeros. Further, the bivariate identi-
fiability is not qualified enough to handle multivariate cases whereas the multivariate data ordinarily
exist in many applications.

Thus, in this paper, we propose a structural causal model that consists of both continuous and
discrete variables, and give its sufficient identifiability conditions in bivariate as well as multi-
variate cases. Compared with the mixed model developed by Wei et al. (2018), we allow more
non-Gaussian distributions to be followed by the noises of continuous variables and the intercepts
for discrete variables are not restricted to be zeros. Further, we derive a two-step hybrid method
to uniquely estimate the causal structure without discretization. In the first phase, we develop a
log-likelihood score function to characterize the joint distribution for mixed data. It is optimized
globally accompanied by the acyclicity and sparsity constraints. This global search however may
stuck in local optima, which share the same skeleton with the ground truth structure 1. To mitigate
this issue, in the second phase, we search structures over the skeleton spaces and find the graph with
the best score.

Our contributions mainly are detailed in two-fold:

1. We conjectured such local optima belong to the equivalence class of the global optima (the ground truth causal
structure).
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(i) For the mixed causal models that contain both continuous and discrete data, we prove the
identifiability conditions in bivariate as well as multivariate cases. with which we enrich the
identifiability space for causal discovery with mixed data.

(ii) We propose a score-based optimization method to infer the causal structure between mixed
data. Experiments on synthetic and real-world data demonstrate our proposed method’s effi-
cacy, compared with other methods.

2. Preliminary and Model Definition

We consider linear mixed causal models. Speaking concretely, suppose we are given p observed
random variables, including discrete and continuous ones, i.e., X = {x1, ..., xp}. Since a categor-
ical variable with T categories can be regarded as (T − 1) binary variables, we assume that each
discrete variable is binary (Wei et al., 2018). Further, we use the following assumptions from Li and
Shimizu (2018):

A1. Observed variables xi (i = 1, . . . , p) form a Directed Acyclic Graph (DAG).

A2. The value assigned to each continuous variable xi is a linear function of its parent variables
denoted by xpa(i) plus a non-Gaussian error term ei, that is,

xi = ei + ci +
∑

j∈pa(i)

bijxj , ei ∼ Non−Gaussian(·), (1)

where the error terms ei are continuous random variables with non-Gaussian densities, and
the error variables ei are independent of each other. The coefficients bij and intercepts ci are
constants.

A3. For each discrete variable xi, its value equals 1 if the linear function of its parent variables
xpa(i) plus a Logistic error term ei is larger than 0, otherwise, its value equals 0. That is,

xi =

{
1, ei + ci +

∑
j∈pa(i) bijxj > 0

0, otherwise
, ei ∼ Logistic(0, 1), (2)

where the error terms ei are identical to those in Eq.(1), but follow the Logistic distribution.

Definition 1 (Linear Mixed causal model, LiM) If a causal model for mixed data satisfies as-
sumptions A1-A3, then this SCM is called a Linear Mixed causal model, abbreviated as LiM.

Let F = {f con, fdis|f con(x, e) = bx + e + c, fdis(x, e) =

{
1, bx+ e+ c > 0

0, otherwise
} be a set

of two functions which work on continuous and discrete variables, respectively, where x, e, b and c
are a random variable of X , error term, coefficient and intercept, respectively. P = {P con, P dis}
denotes the set of probabilistic distributions for continuous and discrete variables. Using these
notations, our model can be rewritten as:

xi = fi(xpai , ei), ei ∼ P (ei), (3)

where fi ∈ F , and P (ei) ∈ P .
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3. Identifiability Conditions of the LiM

Here we provide a sufficient identifiability condition for the LiM model, inspired by ideas of Wei
et al. (2018) and Peters et al. (2014).

3.1. Bivariate cases

The LiM model of Section 2 is equivalent to the model of Wei et al. (2018) if the intercepts ci are
taken to be zeros and the error terms ei follow the Laplace distributions L(0, αi). Laplace distribu-
tions are commonly used in non-Gaussian models including independent component analysis and
are known to be robust against the misspecification of the distributions if the right distribution is
super-Gaussian (Hyvärinen et al., 2001). Wei et al. (2018) provided a sufficient identifiability con-
dition for two-variable cases of their model, i.e., the two variables do not have the same marginal
distributions if they are binary, all the probabilities and densities are positive, and the error variables
are of non-zero variances. We show the identifiability of our model in a similar manner to Wei et al.
(2018) 2. The major difference lies in the fact that we allow more non-Gaussian distributions to be
followed by the continuous error terms, rather than only the Laplace distributions.

Now we characterize the condition that the non-Gaussian distributions of our model need to
satisfy.

Condition 1 The limit of non-Gaussian density ratio λ, defined as λ := limx→±∞
P con(x)
P con(x−b) ,

satisfies:

λ = C, (4)

where C is a non-zero finite constant. In other words, λ is neither equal to zero nor infinity (λ 6=
0,∞).

It’s noteworthy that basic non-Gaussian distributions satisfy Condition 1, including the Laplace
distribution, Uniform distribution, Exponential distribution, and Gamma distribution, etc. With
Condition 1 in the LiM model, we obtain our identifiability result in the bivariate case.

Theorem 2 Let the data X = {xi, xj} be generated by the LiM model in Eqs.(1)-(2) with Con-
dition 1. Under the conditions that xi and xj do not share the same marginal distributions and
P (xi = 1 | xj = 0) = P (xj = 1 | xi = 0) holds 3 if they are both discrete, and all the
probabilities are positive, the model is identifiable.

Proof We prove the identifiability for the bivariate case from three aspects: i) both variables are
continuous; ii) both variables are discrete; iii) one is continuous and the other is discrete.

i), if both variables are continuous, the model of Section 2 is a LiNGAM model (Shimizu et al.,
2006). Therefore, the model is identifiable.

2. The idea that the model identifiability needs systematic differences in the marginal distributions of binary variables,
can be found in other domains. For instance, in the domain of skewed latent variables, Wiedermann and von Eye
(2020) showed that for the bivariate binary variables, due to the different marginal distributions between the outcome
and predictor, asymmetry exists between causally competing non-hierarchical log-linear models.

3. Intuitively, this assumption implies ci = cj , which means the baselines are the same when predicting one discrete
variable from the other. It can be tested easily by computing their values from the raw data. Note that the model
of Wei et al. (2018) assumes ci = cj = 0, which is a special case of ours.
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ii), suppose that two variables {xi, xj} are binary. Assume that all the probabilities are positive
and their marginal distributions are different. Then, we compare the following two models xj → xi
and xi → xj . The conditional probability P (xi | xj) of the first model xj → xi is written as:

P (xi = 1 | xj) =
1

1 + e−(ci+bijxj)
, (5)

P (xi = 0 | xj) = 1− P (xi = 1 | xj). (6)

The conditional probability P (xj | xi) of the second model xi → xj is written as:

P (xj = 1 | xi) =
1

1 + e−(cj+bjixi)
, (7)

P (xj = 0 | xi) = 1− P (xj = 1 | xi). (8)

Assume that two models give the same joint distribution of observed variables xi and xj . Denote
P (xi = 1) by ki and P (xj = 1) by kj . Then,

kxii (1− ki)1−xi(
1

1 + e−(cj+bjixi)
)xj (1− 1

1 + e−(cj+bjixi)
)1−xj (9)

= k
xj
j (1− kj)1−xj (

1

1 + e−(ci+bijxj)
)xi(1− 1

1 + e−(ci+bijxj)
)1−xi . (10)

If xi = xj = 0, we get (1 − ki)(1 − 1

1+e−(cj)
) = (1 − kj)(1 − 1

1+e−(ci)
). From P (xi = 1 | xj =

0) = P (xj = 1 | xi = 0), we have 1

1+e−(cj)
= 1

1+e−(ci)
, which induces ki = kj . It contradicts with

the assumption that the marginal distributions of xi and xj are different.
iii), suppose that one is continuous and the other is binary. Without loss of generality, assume

that xi is continuous and xj is binary. We adopt the contradictory method, i.e., assuming two
models in the following give the same joint distribution, then some conclusion would be drawn
to contradict our model’s conditions. Hence, we first compare such two models. The first model
xi → xj is written as:

xj =

{
1, ej + cj + bjixi > 0

0, otherwise
, ej ∼ Logistic(0, 1), (11)

where xi = ei ∼ Non−Gaussian(·). The second model xj → xi is written as:

xi = ei + ci + bijxj , ei ∼ Non−Gaussian(·), (12)

where xj = ej ∼ Logistic(0, 1). Assume that the two models give the same distribution of
observed variables.

For the first model, the conditional probability of xj = 1 given xi is given by

P (xj = 1 | xi) =
1

1 + e−(ci+bjixi)
. (13)

Then,

lim
xi→∞

P (xj = 1 | xi) = lim
xi→∞

1

1 + e−(ci+bjixi)
(14)

=

{
1 (bji > 0)
0 (bji < 0)

, (15)
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lim
xi→−∞

P (xj = 1 | xi) = lim
xi→−∞

1

1 + e−(ci+bjixi)
(16)

=

{
0 (bij > 0)
1 (bij < 0)

. (17)

For the second model, the conditional probability of xj = 1 given xi is given by

P (xj = 1 | xi) =
P (xj = 1, xi)

P (xi)
(18)

=
P (xi | xj = 1)P (xj = 1)

P (xi | xj = 1)P (xj = 1) + P (xi | xj = 0)P (xj = 0)
(19)

=
P (xj = 1)

P (xj = 1) +
P (xi|xj=0)
P (xi|xj=1)P (xj = 0)

. (20)

Due to Condition 1, we obtain the limit of the density ratio as

lim
xi→±∞

P (xi | xj = 0)

P (xi | xj = 1)
= lim

xi→±∞

P (xi − ci)
P (xi − ci − ei)

(21)

= λ, (22)

where λ 6= 0 and λ 6= ∞. Note that the limits limxi→±∞ P (xj = 1 | xi) under the second model
are greater than 0 and smaller than 1 due to the assumption P (xj = 1) > 0. This means that
the limits limxi→±∞ P (xj = 1 | xi) under the second model are different from those of the first
model, which contradicts the assumption that the two models give the same distribution of observed
variables.

Thus, the model is bivariate identifiable if two variables xi, xj do not have the same marginal
distributions and P (xi = 1 | xj = 0) = P (xj = 1 | xi = 0) holds in case that they are binary, all
the probabilities and densities are positive, and the error variables are of non-zero variances.

Definition 3 (Bivariate Identifiable Set) LetF = {f con, fdis|f con(x, e) = bx+e+c, fdis(x, e) ={
1, bx+ e+ c > 0

0, otherwise
} be a set of two functions which work on continuous and discrete variables,

respectively. P = {P con, P dis} denotes the set of probabilistic distributions for continuous and
discrete variables. Consider a mixed causal model with two variables xi and xj , i.e., xj = ej
and xi = fi(xj , ei) with xj ⊥ ei, where ⊥ denotes the independence relation. We call a set
B ⊆ F × P × P as a bivariate identifiability set if the triple (fi, P (xj), P (ei)) where f ∈ F , and
P (xj), P (ei) ∈ P hold, follows our LiM model’s assumptions.

Using the definition of the bivariate identifiable set B, if the triple (fi, P (xj), P (ei)) follows our
LiM model, we have (fi, P (xj), P (ei)) ∈ B, which means that the bivariate mixed causal model is
identifiable.

3.2. From bivariate to multivariate cases

Here we first review briefly the multivariate identifiablity of additive noise models for continuous
random variables (Hoyer et al., 2009; Peters et al., 2014) and thereafter give our multivariate iden-
tifiablity of the LiM model for mixed data.
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Intuitively, Peters et al. (2014) showed that under the assumption of causal minimality and that
of positive densities, if two different additive noise graphs are assumed to give the same distribution
of observed variables, it results in contradiction to the bivariate identifiability. They also pointed
out that whenever they have a restriction that ensures identifiability in the bivariate case, the multi-
variate version remains valid. In fact, most parts of their proof other than the bivariate identifiability
condition use only the general properties of non-parametric structural causal models with no hidden
common causes and no cycles, and do not depend on the assumptions of additive noise models.
Therefore, our LiM model also is identifiable for cases with more than two variable using the idea
of Peters et al. (2014) based on the bivariate identifiability.

We then define the restricted mixed causal models to constrain conditional distributions and give
identifiability analysis, in a similar manner to Peters et al. (2014).

Definition 4 (Restricted LiM model) Consider a LiM model with p variables. We call this SCM a
restricted LiM model if for all i ∈ {1, ..., p}, j ∈ pa(i), and all sets S ⊆ {1, ..., p}with pa(i)\{j} ⊆
S ⊆ nd(i)\{i, j}, there exists an x∗S with PS(x∗S) > 0, s.t.

(fi(xpa(i)\{j}, ·︸︷︷︸
xj

), P (xj |xS = x∗S), P (ei)) (23)

satisfies the assumptions and Condition 1 of the LiM’s model in Section 2, i.e.,

(fi(xpa(i)\{j}, ·︸︷︷︸
xj

), P (xj |xS = x∗S), P (ei)) ∈ B, (24)

where the underbrace with xj represents the input component of fi for the variable xj , and fi ∈ F .
pa(i) and nd(i) are index sets of xi’s parents and non-descendants. Further, we require that the
noise variables to have non-vanishing densities.

Theorem 5 Let the data X = {x1, ..., xp} be generated by a restricted LiM model. Under the
conditions that any two discrete variables do not share the same marginal distributions, all the
probabilities are positive, and P (X) satisfies the Markov and faithfulness conditions, the model is
identifiable.

Proof The theorem is proved by contradiction. We assume that our restricted mixed causal model
is not identifiable, i.e., there exist two restricted mixed causal models G1 and G2, which induce
the identical joint distribution P (X). In such a case, we will show that G1 = G2 to induce the
identifiability.

Consider two variables xi and xj in X where for the sets Q := pa(i)G1\{j}, R := pa(j)G2\{i},
and S := Q ∪ R, they satisfy i) xj → xi in G1 and xi → xj in G2; and ii) S ⊆ nd(i)G1\{j}
and S ⊆ nd(j)G2\{i}. Such two variables do exist (Peters et al., 2014). Firstly, due to ii) we get
ei ⊥ (xj , xS) and ej ⊥ (xi, xS). Let x∗S = {xq, xr}. For the graph G1, we get (fi(xq, ·), P (xj |xS =
x∗S), P (ei)) ∈ B, which satisfies the assumptions of our bivariate mixed causal model. It induces

xi = fi(xq, x
∗
j ), xq ⊥ x∗j , (25)

where x∗j := xj |xS = xS∗ and fi ∈ F . For the graph G2, we get (fj(xr, ·), P (xi|xS = x∗S), P (ej)) ∈
B, which satisfies the assumptions of our bivariate LiM model. It induces

xj = fj(xr, x
∗
i ), xr ⊥ x∗i , (26)
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where x∗i := xi|xS = xS∗ and fj ∈ F . The above analysis contradicts the bivariate identifiability
result in Theorem 2, hence we have G1 = G2.

4. Optimization Method

To uncover the causal structure for mixed data that consist of both continuous and discrete variables,
we propose an integrated hybrid score-based learning method. The objective function is based on
the negative log-likelihood of the data. By instantiating the negative log-likelihood with the joint
probability distribution of the mixed data, we get

L(B) = − log(P (X)) (27)

= − log[
n∏
t

p∏
i

Pd(xi,t | xpa(i),t)ziPc(xi,t | xpa(i),t)1−zi ] (28)

= −
n∑
t

p∑
i

zi log[Pd(xi,t | xpa(i),t)] + (1− zi) log[Pc(xi,t | xpa(i),t)], (29)

= −
n∑
t

p∑
i

zi{xi,t log[σ(B)] + (1− xi,t) log[1− σ(B)]}+ (30)

(1− zi) log pi(xi,t −
∑

k∈pa(i)

bikxk,t), (31)

where B is the adjacency matrix, and xi,t is the tth sample of the ith variable xi. n is the sam-
ple size. Pd and Pc denote the probability distribution of discrete and continuous variables, re-
spectively. zi is an indicator variable, where zi = 1 if xi is discrete while zi = 0 otherwise.
σ(B) = 1

1+e
−(ci+

∑
l∈pa(i) bilxl,t)

, while pi is the density function of the non-Gaussian error terms ei
of continuous variables. In our method, we specified pi to be the density function of Laplace distri-
butions. But, we can use other density functions as well. Thereafter, we seek to solve the following
continuous optimization problem:

min
B

L(B) + Λ||B||1

subject to h(B) = 0,
(32)

where h(B) is an acyclicity constraint which ensures that B is a DAG (Zheng et al., 2018), Λ is
a regularization parameter, and || · ||1 is an l1 sparsity regularization. Following the optimization
procedure in (Zeng et al., 2021b), we leverage the Quadratic Penalty Method (QPM) to estimate B,
converting Eq.(32) into an unconstrained function

min
B
S(B), (33)

where S = L(B) + Λ||B||1 + ρ
2h(B)2 is the quadratic penalty function, and ρ is a regularization

parameter. Then we utilize the L-BFGS-B (Byrd et al., 1995) to solve Eq.(33). Due to the machine
precision, it is well-known that it is hard for the estimated bij to receive absolute zeros if such pairs
have no edges (Zheng et al., 2018). Hence we give a small fixed threshold ε to rule out those whose
estimated effects are lower than ε.
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Algorithm 1 LiM Algorithm

Require: Data X; indicator vector Z; threshold ε; tolerance parameter ω.
Ensure: Connection strengths matrix B∗.

Phase I: Global search
1: Optimize Eq.(32) to obtain B̂ using QPM with the tolerance parameter ω,
2: Rule out edges whose connection strengths are below ε: B̂ = B̂ ◦ 0(b̂ij < ε).

Phase II: Local search
3: Initiate a temporary minimum log-likelihood as Ltmp(B∗) = L(B̂).
4: while B ∈ Ske(B̂) and h(B) < ω do
5: Compute the negative log-likelihood L(B) for B.
6: if L(B) < Ltmp(B∗) then
7: Ltmp(B∗) = L(B).
8: end if
9: end while

10: return B∗ with the minimal log-likelihood Ltmp(B∗).

However, such an optimization method may easily stuck in local optima, which means the
estimated skeleton is consistent with the ground-truth skeleton, while the estimated causal structure
may not be consistent with the ground-truth one. To mitigate this issue, after obtaining the estimated
adjacency matrix B̂, we tackle further the following combinatorial optimization problem:

B∗ = arg min
B∈Ske(B̂),h(B)<ω

L(B), (34)

where Ske(B̂) represents a set where the containing DAGs entail the same skeleton as B̂ and ω is a
tolerance parameter. Compared with the traditional approaches that search over the discrete space
of DAGs with the full graph, we perform our structure search over the narrowed space of DAGs
within the estimated skeleton, which possesses an advantage in computational efficiency. The full
algorithm is outlined in Algorithm 1.

As demonstrated in Algorithm 1, our LiM approach firstly performs global updates, estimating
the connection strengths matrix B̂ in one step with continuous optimization techniques. Then, it
performs a local update to search over the skeleton space, estimating one candidate DAG with one
changing edge at each iteration in a combinatorial optimization manner. To conclude, the LiM
approach is a two-step hybrid method, which takes advantages of both global and local search to
avoid falling into local optima and to be more computationally efficient.

5. Experiments

In this section, we performed simulation experiments and employed our method to real-world ap-
plication data to learn the causal graph with mixed data, evaluating the efficacy of our proposed
method.

5.1. Synthetic data

To generate the data in simulations, we firstly established a randomly unweighted DAG according
to the ER models (Zheng et al., 2018), where the number of edges was randomly selected. Given the

9
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DAG, we assigned uniformly the edge weights from [−2,−1]
⋃

[1, 2] to get an adjacency matrix B.
Without loss of generality, the number of discrete variables was selected randomly from [1, (p−1)],
and thereafter we randomly assigned the discrete and continuous variables. Finally, the data were
generated according to our LiM model in Eqs.(1)-(2).

We compared our method with a constraint-based method, a variant of PC algorithm (PC) (Spirtes
and Glymour, 1991) as a representative. It discretized all continuous variables into discrete ones,
following Li and Shimizu (2018). Besides, since PC may return a DAG pattern, PDAG, instead of
a unique DAG, we took all possible instance for evaluation We compared with score-based meth-
ods, including the scores of Notears (Zheng et al., 2018) with the Logistic or Laplace distributions.
We also compared with a commonly-used functional-based method, the LiNGAM method (Shimizu
et al., 2006). To emphasize the necessity of our local search phase, we took our LiM method without
the second phase as a comparison as well (mixed).

In these experiments, we evaluated the performance of all methods in terms of precision, re-
call and F1 score with both edges and causal directions, where the F1 score is defined as F1 =
2×Precision×Recall
Precision+Recall . For those continuous optimization methods, we chose the threshold ε = 0.1, the

tolerance ω = 1e − 8, and the regularization parameter Λ = 0.1, while for those which exploit
conditional independence tests, we fixed the significance level to be 0.01. For other parameters, we
adopted their default settings.

We performed the simulations using i) different sample sizes, i.e., n = 50, 100, 500, 1000,
2000, 5000, with bivariate and 5 mixed variables in turn. In addition, we generated the data with
ii) different numbers of discrete variables ranging from 1 to (p − 1) where each graph has 5000
samples, to test the robustness of our proposed LiM method. For each setting, we experimented
with 50 realizations and reported the average results.

Sensitivity to different sample sizes. Figure 1 gives the results of the recovered causal graph
with 2 or 5 mixed variables, compared with PC, logistic, laplace, LiNGAM, and mixed methods.
The x-axis shows the sample sizes, while the y-axis is the recall, precision, or F1 score. Overall,
our LiM method gives the best accuracy in both settings, which verified the identifiability results,
especially in bivariate cases. More specifically, the LiM, and PC methods’ accuracies increase
remarkably along with the sample sizes up to 1000 in multi-variate causal networks. When the
sample sizes reach 1000, it decreases slightly with increasing sample sizes. This phenomenon
might be originated from the overfitting problem of optimization. Though our method is sensitive
to sample sizes for learning causal networks, it does perform better than other comparisons. On the
contrary, PC’s unsatisfactory performance is basically due to the usage of conditional independence
tests and the incapability of handling mixed data. Score-based methods are more robust to sample
sizes compared with the constraint-based ones. However, since their score functions may not fit the
mixed data or they may be trapped in local optima problems, their performances are not comparable
despite stability.

Sensitivity to different discrete variables. Figure 2 reports the results of the recovered causal
graph with different numbers of discrete variables ranging from 1 to p−1, where there are a total of
4 or 5 observed variables. The x-axis shows the number of discrete variables, while the y-axis is the
recall, precision or F1 score. As shown, we can see that overall, our method and mixed method’s
performances tend to decrease distinctly as the number of discrete variables increases. The reason
might be the violation of the assumption P (xi = 1 | xj = 0) = P (xj = 1 | xi = 0) and with the
increasing number of discrete variables, such an assumption is more likely to be violated. But our
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Figure 1: Recalls, precisions, and F1 scores of recovered causal graphs for bivariate and 5 mixed
variables with different sample sizes. Higher F1 scores, recalls, and Precisions mean higher accura-
cies.

method performs overall better than other comparisons, indicating the capability of handling mixed
data.

5.2. Real-world data

Boston housing data set. We then applied our LiM method to a real-world Boston housing data set,
which was collected at the UCI Repository (Dua and Graff, 2017). Such a data set contains 506 data
points and we chose 11 variables for the experiments, where the chosen continuous variables are
identical to Zhang et al. (2011) and the only binary variable is included. They are CRI (continuous,
per capita crime rate by town), IND (proportion of non-retail business acres per town), CHA (binary,
if tract bounds river or not), NOX (continuous, nitric oxides concentration), RM (continuous, average
number of rooms per dwelling), AGE (continuous, proportion of owner-occupied units built prior to
1940), DIS (continuous, weighted distances to five Boston employment centres), TAX (continuous,
full-value property-tax rate per 10,000 dollars), B (continuous, the proportion of blacks by town),
LST (continuous, percentage lower status of the population), and MED (continuous, median value of
owner-occupied homes). We used the same settings as in the simulation experiments, i.e., we set the
ruled-out threshold ε = 0.1 and tolerance parameter ω = 1e− 8. To provide reliable performance,
due to the different scales of the large number of variables, we standardized the continuous variables
before employing our method. The resulting causal graphs are demonstrated in Figure 3. Since the
logistic method estimated more than 40 edges, and LiNGAM estimated nearly 20 edges, which
have much more spurious edges than others, we only showed the comparison results of laplace and
PC methods. As shown in Figure 3(a), on the one hand, though it is arguable that RM may not
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Figure 2: Recalls, Precisions, and F1 scores of recovered causal graphs with different numbers of
discrete variables, where the sample size is 5000.

be an effect variable, we still found some interesting conclusions which were accordance with our
common understandings. For example, MED is influenced by LST, which is determined by some
house-related indicators, i.e., IND, AGE and TAX; there is no direct link between NOX and MED
but they are dependent through intermediate causal relationships (Margaritis, 2005); it is reasonable
that TAX, which reflects the government’s housing policy, influences IND, LST, and CRI (Kenyon
et al., 2012). On the other hand, laplace and PC methods estimated the TAX as an effect variable,
which was not consistent with our common understanding (Kenyon et al., 2012). Overall, the results
illustrated the effectiveness of our proposed LiM method in inferring causal graphs from mixed data.

6. Conclusions

In this paper, we provided complete identifiability conditions for causal discovery with linear mixed
data that consist of continuous and discrete variables, both in bivariate and multivariate cases. Fur-
ther, we proposed a two-step hybrid approach to uniquely identify the causal structure. Experiments
on synthetic as well as real-world data demonstrate that our LiM method outperformed the compar-
isons.

There are several questions that we aim to answer in the future research. First, in this paper, we
give mathematical identifiability for mixed data under the causal sufficiency. But in many realistic
applications, causal sufficiency may not hold and there may exist latent variables or confounders
in the underlying causal graphs. Thus, it is significant to develop a general identifiability condition
without the causal sufficiency for mixed data. Second, the linearity assumption may decrease the
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Figure 3: Results of (a) our LiM method, (b) laplace method and (c) PC method applied to the
Boston housing data set.

learning effect and limit the applicability. It is essential to generalize the identifiability to cases
where there are nonlinear relationships, not only for bivarate but also multi-variate causal networks.
As for the nonlinear causal modeling, there are some aspects that we could consider deeper research.
For instance, we could focus on the cases where the mixed data are generated by the PNL (Zhang
and Hyvärinen, 2009), or where they are generated by a nonlinear deterministic relation without
noise (Janzing et al., 2012; Zeng et al., 2021a), etc. Third, in practice, there may also exist other
types of discrete variables, e.g., multi-categorical variables or ordinal variables. Ignoring ordinal
information may have adverse effects on model estimation (von Eye and Wiedermann, 2018). Thus,
it is desirable to extend our method to cover general data types.
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Bastian Steudel, and Bernhard Schölkopf. Information-geometric approach to inferring causal
directions. Artificial Intelligence, 182:1–31, 2012.

Daphne A Kenyon, Adam H Langley, and Bethany P Paquin. Rethinking property tax incentives for
business. Lincoln Institute of Land Policy Cambridge, MA, 2012.

Chao Li and Shohei Shimizu. Combining linear non-gaussian acyclic model with logistic regression
model for estimating causal structure from mixed continuous and discrete data. arXiv preprint
arXiv:1802.05889, 2018.

Dimitris Margaritis. Distribution-free learning of Bayesian network structure in continuous do-
mains. In AAAI, volume 5, pages 825–830, 2005.

Stefano Monti and Gregory F. Cooper. A multivariate discretization method for learning Bayesian
networks from mixed data. In Proc. 14th Conference on Uncertainty in Artificial Intelligence
(UAI1998), pages 404–413, 1998.

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.

Jonas Peters, Joris M. Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with
continuous additive noise models. Journal of Machine Learning Research, 15:2009–2053, 2014.

Andrew J Sedgewick, Kristina Buschur, Ivy Shi, Joseph D Ramsey, Vineet K Raghu, Dimitris V
Manatakis, Yingze Zhang, Jessica Bon, Divay Chandra, Chad Karoleski, et al. Mixed graphical
models for integrative causal analysis with application to chronic lung disease diagnosis and
prognosis. Bioinformatics, 35(7):1204–1212, 2019.

Shohei Shimizu. LiNGAM: Non-Gaussian methods for estimating causal structures. Behav-
iormetrika, 41(1):65–98, 2014.

14

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


SHORT TITLE

Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvärinen, and Antti Kerminen. A linear non-Gaussian
acyclic model for causal discovery. Journal of Machine Learning Research, 7:2003–2030, 2006.

Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. Social
Science Computer Review, 9:67–72, 1991.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. Springer
Verlag, 1993. (2nd ed. MIT Press 2000).

Peter Spirtes, Christopher Meek, and Thomas S Richardson. Causal inference in the presence of
latent variables and selection bias. In Proc. 11th Annual Conference on Uncertainty in Artificial
Intelligence (UAI1995), pages 491–506, 1995.

Michail Tsagris, Giorgos Borboudakis, Vincenzo Lagani, and Ioannis Tsamardinos. Constraint-
based causal discovery with mixed data. International journal of data science and analytics, 6
(1):19–30, 2018.

Alexander von Eye and Wolfgang Wiedermann. Strengthening arguments based on scale levels?
Journal for Person-Oriented Research, 4(1):45, 2018.

Wenjuan Wei, Feng Lu, and Chunchen Liu. Mixed causal structure discovery with application
to prescriptive pricing. In Proc. 27rd International Joint Conference on Artificial Intelligence
(IJCAI2018), pages 5126–5134, 2018.

Wolfgang Wiedermann and Alexander von Eye. Log-linear models to evaluate direction of effect in
binary variables. Statistical Papers, 61(1):317–346, 2020.

Mako Yamayoshi, Jun Tsuchida, and Hiroshi Yadohisa. An estimation of causal structure based on
latent lingam for mixed data. Behaviormetrika, 47(1):105–121, 2020.

Yan Zeng, Zhifeng Hao, Ruichu Cai, Feng Xie, Libo Huang, and Shohei Shimizu. Nonlinear causal
discovery for high-dimensional deterministic data. IEEE Transactions on Neural Networks and
Learning Systems, 2021a.

Yan Zeng, Shohei Shimizu, Ruichu Cai, Feng Xie, Michio Yamamoto, and Zhifeng Hao. Causal dis-
covery with multi-domain lingam for latent factors. In Proc. 30th International Joint Conference
on Artificial Intelligence (IJCAI2021), 2021b.

Kun Zhang and Aapo Hyvärinen. On the identifiability of the post-nonlinear causal model. In Proc.
25th Conference on Uncertainty in Artificial Intelligence (UAI2009), pages 647–655, 2009.

Kun Zhang and Aapo Hyvärinen. Nonlinear functional causal models for distinguishing causes
form effect. In W. Wiedermann and A. von Eye, editors, Statistics and Causality: Methods for
Applied Empirical Research. Wiley & Sons, 2016.

Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Kernel-based conditional
independence test and application in causal discovery. In 27th Conference on Uncertainty in
Artificial Intelligence (UAI 2011), pages 804–813. AUAI Press, 2011.

15



ZENG SHIMIZU MATSUI SUN

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continu-
ous optimization for structure learning. Advances in Neural Information Processing Systems, 31,
2018.

16


	Introduction
	Preliminary and Model Definition
	Identifiability Conditions of the LiM
	Bivariate cases
	From bivariate to multivariate cases

	Optimization Method
	Experiments
	Synthetic data
	Real-world data

	Conclusions

