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Abstract

Delta compression methods focus on efficiently
serving multiple uniquely fine-tuned models,
each tailored to specific tasks and user require-
ments. These approaches decompose a fine-
tuned LLM into a base model and correspond-
ing delta weights, which are compressed us-
ing low-rank or low-bit representations to re-
duce storage costs. However, their effective-
ness is highly sensitive to the magnitude of
the model deltas—a factor directly influenced
by the scale of the training data. We propose
the Residual Quantization Tree (RQT), a hi-
erarchical quantization framework that auto-
matically shares low-bit integer weights across
similar fine-tuned models. The RQT construc-
tion employs a two-phase greedy algorithm:
a bottom-up aggregation of models based on
weight matrix similarity and top-down resid-
ual quantization, in which each node optimizes
the quantization parameters and then delegates
residual errors to child nodes. We evaluate
RQT on fine-tuned models across mathemat-
ics, coding, chatbot, and Chinese LLMs. The
results show that RQT achieves an average ac-
curacy degradation of approximately 3% (com-
parable to previous 4-bit post-training quanti-
zation) while maintaining an effective bitwidth
of around 2 bits.

1 Introduction

Large Language Models (LLMs), such as GPT
(OpenAl, 2023b) and LLaMA (Touvron et al.,
2023), have demonstrated exceptional performance
and are widely applied in various applications, in-
cluding chatbots (Chiang et al., 2023; OpenAl,
2023b; Touvron et al., 2023) and coding assistants
(Luo et al., 2024; Wei et al., 2024; Roziere et al.,
2023). These models achieve high accuracy in
target domains through a two-stage process: pre-
training on a large corpus of text data, followed by
fine-tuning on task-specific datasets, such as code
(Luo et al., 2024), math (Xiong et al., 2024), or

+ +?

GPTQ
QuaRot
Omniquant
BitDelta
GPT-Zip
RQT (our)

o
=)

v
o

~
> > >

w
=)

A

v
/ 3.45%

4 2

N
o

=
o

Average Relative Accuracy Degradation (%)

3
Bitwidth

Figure 1: We evaluate RQT on fine-tuned models across
mathematics, coding, chatbot, and Chinese LLMs. The
results show that RQT achieves an average accuracy
degradation of approximately 3% (comparable to previ-
ous 4-bit post-training quantization) while maintaining
an effective bitwidth of around 2 bits.

human preferences (OpenAl, 2023b). Cloud Al
infrastructure providers, such as OpenAl (OpenAl,
2023a), Google (Google, 2023), and Microsoft (Mi-
crosoft, 2023) offer APIs that allow users to fine-
tune pre-trained LLMs with their own data, en-
abling the creation of customized model variants.
This paradigm has driven substantial research into
developing efficient methods for serving millions
of uniquely fine-tuned models, each tailored to in-
dividual tasks and user requirements (Liu et al.,
2024a; Ping et al., 2024; Yao and Klimovic, 2023;
Ryu et al., 2023).

Although systems like Punica (Chen et al., 2024)
and S-LoRA (Sheng et al., 2023) can scale to
serve thousands of Low-Rank Adaptation (LoRA)
adapters, these methods are incompatible with tra-
ditional full-parameter fine-tuning approaches. No-
tably, most models on the Open LLM Leaderboard
(Fourrier et al., 2024) still rely on full-parameter
fine-tuning due to the performance gap between
full-parameter fine-tuning and LoRA (Biderman
et al., 2024; Ding et al., 2023). To address these
challenges, delta compression methods (Liu et al.,
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Figure 2: This figure illustrates the relationship be-
tween relative accuracy degradation and delta magni-
tude across models for various tasks. The circle size
represents the training dataset size.

2024a; Ping et al., 2024; Yao and Klimovic, 2023;
Ryu et al., 2023) decompose the fine-tuned model
weights Wy, into the weights of the base pre-
trained model Wy, and the delta induced by the
fine-tuning process A (A = Wyine—Whiase ). This
delta is then compressed using techniques such as
quantization (Liu et al., 2024a; Isik et al., 2023),
pruning (Yu et al., 2024), low-rank matrix factor-
ization (Ping et al., 2024; Ryu et al., 2023), or
combinations of these methods.

Delta compression methods are based on the ob-
servation that model deltas generally have smaller
magnitudes and inherent sparsity (Yu et al., 2024;
Liu et al., 2024a; Yao and Klimovic, 2023). As
a result, deltas tend to be more compressible than
the original model weights. For example, BitDelta
(Liu et al., 2024a) achieves 1-bit quantization of
delta weights, while DARE (Yu et al., 2024) can
prune up to 90% of delta weights. However, this
assumption primarily applies when fine-tuning on
small datasets, such as instruct tuning (Chiang et al.,
2023; Touvron et al., 2023; Xiong et al., 2024; Liu
et al., 2023a). As shown in Figure 2, as the size of
the training data increases, the relative magnitude
of the delta |A|/|Wrine| also increases, leading to
a greater degradation of accuracy when applying
delta compression methods to Chinese and Code
LLM. Consequently, BitDelta confines its experi-
ments to chat models, such as LLaMA-2-chat (Tou-
vron et al., 2023), Vicuna (Chiang et al., 2023), and
WizardLM (Xu et al., 2024). In contrast, while
Delta-CoMe (Ping et al., 2024) broadens its scope
by evaluating delta compression methods across
various tasks, including mathematics, coding, chat,
and multi-modal applications, it still faces a lim-

itation: it selects different base models for each
task to ensure that the fine-tuned models remain
sufficiently close to their base models.

This paper proposes a novel quantization frame-
work, the Residual Quantization Tree (RQT), for
efficiently serving multiple fine-tuned models. An
RQT is a hierarchical structure in which the nodes
share low-bit integer weights between similar mod-
els. As illustrated in Figure 3, models are recur-
sively partitioned into child nodes until reaching
the leaf nodes, each corresponding to an individ-
uval model. The quantized weights are computed
by aggregating the quantized values at each node
along the path from the root to the corresponding
leaf. To construct an RQT, we introduce a practi-
cal two-step greedy approach. (a) Bottom-up tree
construction: Starting from leaf nodes (individ-
ual models), we iteratively merge node pairs with
minimal weight matrix divergence (measured by
L distance), forming parent nodes until reaching
the root. (b) Top-down residual quantization: Be-
ginning at the root, we compute optimal low-bit
integer weights for contained models at each node,
then propagate residual errors to child nodes for
refinement, recursively minimizing the weight re-
construction error. Our contributions are threefold:

* We propose the Residual Quantization Tree
(RQT), which addresses the sensitivity of pre-
vious delta compression methods to the mag-
nitude of delta values.

* To construct an RQT, We propose an effi-
cient two-step greedy approach that decouples
model assignment and residual quantization.

» Experiments demonstrate the effectiveness of
RQT in comparison with previous PTQ and
delta-compression methods. Even with an
average bitwidth of approximately 2 bits, RQT
achieves an average accuracy degradation of
approximately 3% on fine-tuned LLaMA-2-
7B models across various tasks.

2 Related Works

2.1 Model Quantization

Quantization has been extensively applied to accel-
erate model inference (Jacob et al., 2018; Nagel
et al., 2020; Li et al., 2021), and it has become a
crucial technique for LLMs in the current era of
rapid development (Wei et al., 2022; Xiao et al.,
2023; Lin et al., 2023; Frantar et al., 2022; Liu



et al., 2023b). Depending on whether activations
are quantized, quantization can be categorized into
weight-only quantization and weight-activation
quantization. Weight-only quantization reduces
memory usage and inference latency by quantizing
weights into low-bit precision while keeping activa-
tions in floating-point. For example, GPTQ (Fran-
tar et al., 2022) introduces a layer-wise quantiza-
tion approach based on approximate second-order
information. OmniQuant (Shao et al., 2023) incor-
porates learnable parameters to clip extreme weight
values and shift the quantization challenge from ac-
tivations to weights. Recently, QuaRot (Ashkboos
et al., 2024) and SpinQuant (Liu et al., 2024b) fa-
cilitate quantization by rotating LLMs to eliminate
outliers in activations without affecting the output.
Despite these advancements, ultra-low-bit quantiza-
tion (e.g., 2-bit) continues to experience significant
performance degradation.

2.2 Delta Compression

The rise of millions of uniquely fine-tuned mod-
els has recently driven significant research inter-
est in delta compression methods. Specifically,
delta compression involves subtracting the base
pre-trained model weights from fine-tuned weights
to obtain the model delta. Since model deltas gen-
erally exhibit smaller magnitudes and inherent spar-
sity, they are often more compressible. For exam-
ple, GPT-Zip (Isik et al., 2023) quantizes model
deltas into 2/3/4 bits using the post-training quanti-
zation (PTQ) method GPTQ (Frantar et al., 2022).
DARE (Yu et al., 2024) eliminates the majority of
delta weights (up to 90%) with minimal impact
on the performance of aligned LLMs. BitDelta
(Liu et al., 2024a) binarizes model deltas and fine-
tunes the quantization scales through knowledge
distillation. Delta-CoMe (Ping et al., 2024) ap-
plies singular value decomposition (SVD) to deltas
and assigns varying bitwidths to different singular
vectors based on their singular values.

Although these methods achieve high compres-
sion ratios by quantizing deltas, they face limita-
tions when applied to models across diverse tasks.
In other words, the assumption that model deltas
are smaller in magnitude than the original weights
is not always valid, especially when fine-tuning
with large datasets, such as those for code and Chi-
nese language models.*
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Figure 3: An illustration of an RQT with four fine-tuned
models. Different colors denote each model. The quan-
tized weights I/I//\l and I/I//\g are computed by summing
along the path from the root to the leaf. They use the
shared integer values Qyoor and Qef, in their common
ancestor node.

3 Methods

3.1 Formulation

Let {W; € R4%>4i}N  represent the weight ma-
trices of a target linear layer across N fine-tuned
models, where d; and d, represent the input and
output dimensions, respectively. We define the
Residual Quantization Tree (RQT) as follows:

Definition 1 (Residual Quantization Tree). Given
a set of weight matrices {W; € R4%*4}V . from
N fine-tuned models, a Residual Quantization Tree
is a tree where each node v contains:

* Sy, C{1,...,N}: The index set of assigned
models to node v.

* Qy € Zdoxdi: A shared integer matrix for
quantizing all weight matrices assigned to
node v, i.e., {W; | i € Sy };

¢ %, = {a! € R% | i € S,}: The model-
specific quantization scales, where each «, is
specific to W; at node v;

e Cy = {v1,v9,...,vy}: The child nodes of v
satisfying U;n:l Sy, = Sy with S, NS, =0

The root node encompasses all models with
Sroot = {1,..., N}. Every non-leaf node v dis-
tributes its ass1gned models .5, to child nodes C,
until the leaf nodes are reached, each containing a
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Figure 4: Illustration of the bottom-up construction
process of the RQT.

single model (| Sieat| = 1). At each node v, weight
matrix W; is quantized as af, - Qy, using the shared
low-bit values @, and the individual per-channel
quantization scales of. This architecture achieves
higher effective bitwidth than the average stor-
age bitwidth, establishing superior compression-
performance trade-offs compared to conventional
quantization methods.

Below, we describe how to compute the quan-
tized weights given the RQT:

Definition 2. For weight matrix W;, its quan-
tized weights W; are computed through summation
along the path from the root to the corresponding

leaf:
Wi = Z az; “Qu (1)

veEP(3)

where P (i) denotes the path from root to leaf node
contains i-th model (Siear = {1}).

Remarks. RQT fundamentally advances delta
compression through its hierarchical residual de-
composition. Unlike conventional approaches that
decompose model weights as A = Wipe — Wigse
with manually selected Wy, the RQT has two
advantages: (a) The hierarchical representation of
inter-model similarities aligns naturally with multi-
stage LLM fine-tuning pipelines. (b) RQT achieves
adaptive bitwidth allocation compared to delta com-
pression, making it less sensitive to delta magnitude
and more robust to task diversity.

3.2 Algorithm

In this section, we propose a greedy two-step ap-
proach for constructing an RQT. For simplicity,
we assume that the tree is binary (|C,| = 2 for
all nodes) and that the number of models NV is a
power of 2. In terms of bit allocation, we apply
binary quantization (1-bit) to all nodes except the

root node, which is allocated higher bits (e.g., 4-
bits). This simplification yields a complete binary
tree with an average bitwidth of w]\]—”“ ~ 2
bits. Section 4.4 later relaxes these assumptions to
handle arbitrary N by incorporating new models

into an existing RQT.
3.2.1 Step 1: Tree Construction

Intuitively, models with higher similarity should
be positioned closer in the RQT to enable them to
have more common ancestor nodes. For example,
in Figure 3, the weight matrices W} and W3 should
originate from similar models (e.g., both are math
LLMs), as they utilize the same low-bit matrix Qeft
in the second layer. The same applies to W» and
Wi.

To achieve this, we propose a greedy bottom-up
tree construction method based on the similarity
of weight matrices. An illustration of this proce-
dure is provided in Figure 4. Specifically, we start
with N leaf nodes {v; | i € 1,..., N}, each con-
taining a single model S,, = {i}. Next, we pair
nodes by minimizing the total distance between
their respective weight matrices:

min Z Tij - dija
{zij}1<icj<n 1<i<j<N
_ o 2
subject to: szj =1, xz;€{0,1}.
J#i

Here, x;; is a binary variable indicating whether
nodes ¢ and j are paired, and d;; represents the
distance between the weight matrices W; and W,
chosen as the L9 distance in this work:

dij = |[Wi — Wj]l2. (3)

This problem can be solved using dynamic pro-
gramming or linear integer programming tech-
niques, as detailed in (Cormen et al., 2022). Once
the optimal pairs {x;; }1<i<j<n are determined, we
merge the matched nodes into their parent nodes
by averaging their weights:

Sparent(vi,vj) = S’Uz’ U Svja
Cparent(vi,vj) = {Uia 'Uj}v 4)
1
Wparent(vi,vj) = §(Wz + Wj)'
This iterative process—which comprises
distance computation, matching, and merg-

ing—continues until a single root node remains.
The complete pseudocode is formally described



Algorithm 1 Tree_Construction

Algorithm 2 Residual_Quantization

1: Input: A set of N weight matrices © = {W; | ¢ =
1,...,N}

2: Output: An incomplete residual quantization tree 7" with
defined S and C

3: Let® ={v; | i =1,..., N} be the set of leaf nodes.

4: fori =1to N do

5: Initialize S[v;] = {3}, Clv;] =0

6: end for

7: while |®| > 1 do

8 Compute x;; according to Equation 2

9 for each pair of nodes (vi,v;) € ® x ® do

10 if‘%‘l‘j = 1 then

11: Create a new parent node vnew

12 Whew %(WZ —+ WJ)

13 Slvnew]  S[vi] U S[v;]

14 Clvnew]  {vs,v5}

15 Add vpew to  and Wiew to ©

16 Remove v; and v; from &

17: Remove W; and W; from ©

18: end if

19: end for

20: end while

21: return the root node in ®

in Algorithm 1. Crucially, the newly generated
merged weights are exclusively employed for
similarity computation during tree construction.
Upon completing the initial phase, we obtain an
incomplete RQT with established model indices
S, and child nodes mapping C',. The subsequent
phase involves computing quantization parameters
@, and X, for each node.

3.2.2 Step 2: Residual Quantization.

In the second step, we apply residual quantization
in a top-down manner. Specifically, we compute
the optimal shared binary weights () and quanti-
zation scales 3 = {«;|i € S} by minimizing the
MSE for each node. Without loss of generality we
assume W and () are vectors in R™, where n = d;
in per-channel quantization:

J(@,%) =Y |IWi — Q- aill2

€S
= a}Q"Q — 20,Q"W; + W]'W;
%)

This objective differs from those of previous
binary neural networks (Rastegari et al., 2016;
Courbariaux and Bengio, 2016) in that the binary
weights are shared across multiple models. To ad-
dress this, we propose an iterative method to com-
pute the optimal values for o7 and Q* using Equa-
tion 6 and Equation 7, respectively. Specifically,
the optimal solution for «; is obtained by setting
the partial derivative of the objective function with

1: Input: A set of weights © = {W; |i=1,...,N}
2: Input: An incomplete residual quantization tree 1" with
only defined C' and S

3: Output: A complete residual quantization tree 7" with
defined @ and %

: while not converged do

Compute «; using Equation 6

Compute () using Equation 7

: end while

: Update W; < W; — @ - «; for all ¢

: foreach T; € C[T] do

10: Residual_Quantization({W; | ¢ € S[T;]}, T})

11: end for

12: return T’

N NN R

respect to «; to zero.:

o — QTW;
tQTQ

Similarly, when fixed scales «;, the optimal solu-
tion for () can be derived by taking the sign of the
weighted summation of all weights:

Q" = sign (Z aM) (7

Equations 6 and 7 are applied alternately until con-
vergence is reached. Next, the residual weights are
computed and passed to the child nodes. The com-
plete procedure is formally described in Algorithm
2.

(6)

Wi =W, —a;-Q (8)

4 Experiments

4.1 Experiment Setup

Tasks and Models. We conduct comprehensive
evaluations across four representative applica-
tion domains of aligned LLMs: Mathematical
Reasoning, Code Generation, Chatbots, and Chi-
nese Language Understanding. For each domain,
we systematically select four open-source models
fine-tuned on the LLaMA-2-7B model, creating a
16-model benchmark to establish a five-level RQT.

* Mathematical Reasoning: Employ-
ing GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) benchmarks,
we assess MetaMath-7B-V1.0 (Xiong et al.,
2024), WizardMath-V1.0 (Luo et al., 2023),
Xwin-Math-7B-V1.1 (Li et al., 2024), and
MuggleMath-7B (Li et al., 2023a).



¢ Code Generation: Assessing Pass@1 (%)
performance on HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021), we as-
sess CodeLLaMA-7B-Python (Roziere et al.,
2023), WizardCoder-Python-7B-V1.0 (Luo
et al., 2024), Magicoder-S-CL-7B (Wei et al.,

2024), and ReflectionCoder-CL-7B (Ren
etal., 2024).
* Chatbots: Measuring accuracy on

ARC-Easy (Clark et al., 2018) and Hel-
laSwag (Zellers et al., 2019), we assess

LLaMA-2-7B (Touvron et al., 2023),
LLaMA-2-chat-7B (Touvron et al., 2023),
Vicuna-v1.5 (Chiang et al., 2023), and

Vicuna-7B-v1.5-16k (Chiang et al., 2023).

* Chinese Language Processing: Utilizing C-
Eval (Huang et al., 2023) and CMMLU (Li
et al., 2023b), we assess Chinese-Alpaca-2-
7B (Cui et al., 2023), Chinese-LLaMA-2-
7B (Cui et al., 2023), and their 16k variants.

Setup. We employ per-channel binary quanti-
zation (1-bit) for non-root nodes with 4-bit preci-
sion reserved for the root node, achieving an ef-
fective bitwidth of 43¢ = 2.125. Building upon
BitDelta (Liu et al., 2024a), we optimize quanti-
zation scales «; through end-to-end training while
keeping the low-bit model weights frozen. This
approach effectively incorporates activation distri-
bution characteristics while significantly reducing
GPU memory consumption through weight freez-
ing. The calibration process utilizes 800 randomly
sampled 128-token sequences from the C4 cor-
pus (Pal et al., 2023). We perform 3 training epochs
using the AdamW optimizer with a learning rate of
5x 1076, executed on a single NVIDIA A800 GPU
(80GB). The complete distillation process requires
approximately 20 minutes for the 7B parameter
model. Furthermore, inspired by QuaRot (Ashk-
boos et al., 2024) and SpinQuant (Liu et al., 2024b),
we implement pre-quantization orthogonal rotation
on weight matrices to enhance quantization robust-
ness while introducing no additional inference over-
head.

Baselines. We evaluate our framework against
two categories of compression approaches: (1)
PTQ methods including GPTQ (Frantar et al.,
2022), OmniQuant (Shao et al.,, 2023), and
QuaRot (Ashkboos et al., 2024); and (2) delta com-
pression techniques represented by GPT-Zip (Isik
et al., 2023) and BitDelta (Liu et al., 2024a). For

PTQ baselines, we employ group-wise quantiza-
tion with a group size of 128, achieving an aver-
age storage overhead of 0.125 bits per element.
For delta compression methods, we implement Bit-
Delta and GPT-Zip using the LLaMA-2-7B (16-bit
floating-point) as the base model, quantizing 16
model deltas to 1-bit and 2-bit precision, respec-
tively. This configuration yields effectively 2 bits
(BitDelta: 18%416) and 3 bits (GPT-Zip: 10x2H10)
per element when accounting for base model stor-
age.

4.2 Main Results

Comparison with PTQ Methods. Table 1
presents aggregated results across two evaluation
datasets for L1aMA2-7B fine-tuned variants (more
detailed results are provided in the Appendix). Our
framework employs per-channel binary quantiza-
tion (1-bit) for non-root nodes with 4-bit precision
reserved for the root node, achieving an effective
bitwidth of 4+30 = 2.125 bits/parameter — equiva-
lent to conventlonal 2-bit group-wise quantization
with group size 128 in storage cost. Remarkably,
despite this comparable bandwidth, our method sur-
passes existing 3-bit PTQ approaches in accuracy,
particularly on complex multi-step reasoning tasks
(mathematical problem-solving and code genera-
tion). For instance, in mathematical reasoning eval-
uation, standard PTQ methods exhibit catastrophic
degradation with accuracy dropping to nearly zero,
while our approach maintains robust performance
with a maximum degradation of only 2.51%.

Comparison with Delta Compression Meth-
ods. Figure 5 and Table 1 demonstrate the supe-
riority of RQT over delta compression baselines
(BitDelta (Liu et al., 2024a), GPT-Zip (Isik et al.,
2023)) when models originate from different tasks.
While these methods achieve comparable perfor-
mance to RQT in single-task settings with manually
chosen base models (e.g., CodeLLaMA-Python for
code generation), their performance on code LLMs
degrades catastrophically to near-zero levels as task
diversity increases. As analyzed in Section 3.2, this
performance collapse arises from the limited rep-
resentation of extreme low-bit quantization when
applied to large-magnitude model deltas, which
result from large-sized fine-tuned datasets. In con-
trast, RQT avoids the explicit introduction of model
deltas A by automatically allocating shared binary
values across similar models, making it less sensi-
tive to task diversity.



Table 1: Results of RQT for 16 models across four tasks, averaged over two evaluation datasets. Our method
employs per-channel binary quantization for all nodes, except the 4-bit root node. This yields an average bit width
of (4 + 30)/16 = 2.125. Previous PTQ methods, including GPTQ, QuaRot, and OmniQuant, utilize group-wise
quantization with a group size of 128. For delta compression, we implement BitDelta and GPT-Zip, using the
LLaMA-2-7B (16-bit floating-point) as the base model and quantizing 16 model deltas to 1-bit and 2-bit precision,

respectively.
Method  #Bits Math Code
WizardMath ~ MetaMath Xwin-Math ~ MuggleMath CodeLLaMA-PY Wizardcoder Magicoder-S-CL  ReflectionCoder
FP 16 32.75 43.76 64.48 46.00 42.32 56.67 69.55 73.05
GPTQ 4.125 30.65 43.35 62.54 43.90 38.68 51.59 70.40 70.32
3.125 21.00 38.85 56.02 34.35 23.48 38.61 55.55 57.54
2.125 2.90 1.37 0.40 2.15 0.00 0.00 0.00 0.00
QuaRot 3.125 23.85 39.25 56.50 37.90 32.14 42.96 61.00 63.73
2.125 0.90 1.85 1.25 1.50 0.00 0.00 0.00 0.00
OminiQuant 3.125 22.65 40.70 57.84 36.85 30.84 46.28 62.70 62.98
2.125 1.95 8.75 2.86 4.95 4.15 1.61 17.70 18.73
BitDelta 2 30.95 41.05 57.57 42.65 0.00 0.00 0.00 0.00
GPT-Zip 3 32.10 43.40 63.21 45.70 0.00 0.00 0.00 0.00
RQT 2.125 35.45 43.35 61.97 48.45 31.57 51.19 64.05 62.43
Chat Chinese
LLaMA-2-Chat Vicuna-v1.5 Vicuna-v1.5-16k LLaMA-2 CN-Alpaca-2 CN-LLaMA-2 CN-Alpaca-2-16k CN-LLaMA-2-16k
FP 16 74.69 74.72 75.25 76.18 40.97 28.06 37.54 27.49
GPTQ 4.125 73.73 74.27 74.67 75.73 40.05 26.91 36.56 25.84
3.125 69.37 70.95 69.60 72.19 34.42 26.28 34.53 24.30
2.125 26.26 32.40 28.62 31.37 24.43 24.21 25.73 26.84
QuaRot 3.125 69.99 71.50 66.81 69.65 3291 26.22 34.52 25.97
2.125 29.06 33.99 28.82 31.02 25.25 24.90 25.11 24.04
OminiQuant 3.125 70.50 71.47 70.92 73.31 33.79 26.33 33.73 26.31
2.125 43.11 50.45 37.65 52.18 24.33 25.27 24.72 24.18
BitDelta 2 74.70 75.10 63.20 75.32 36.91 26.47 29.13 25.31
GPT-Zip 3 75.06 75.15 75.62 76.17 39.83 26.92 35.56 26.13
RQT 2.125 74.92 75.40 74.79 75.28 40.38 27.63 36.07 27.20
Methods Math Code Chat Chinese Models Dataset w2gl128 w3gl128 RQT
Top-down single-step method 40.29 49.19 74.77 30.41 MAmmoTH-7B MATH 1.38 21.94 2544
Our two-step method 42.99 50.74 74.87 3291 LlaVA-v1.5 TextVQA 0.44 53.74 56.64
— w/o model-specific scales 43.32 30.41 74.46 31.87 Magicoder-CL ~ MBPP 0.00 58.5.0 64.00
+ with scale distillation 47.30 52.58 75.09 32.76 XwinLM-v0.2  HellaSwag  29.63 72.66  76.17

Table 2: Design choices of building an RQT.

4.3 Ablation Studies

Metric Math Code Chat Chinese
Lo norm 4299 50.74 74.87 3291
Cosine Similarity 43.56 50.86 74.95 31.78
Sign Difference ~ 42.59 51.05 74.80 31.78

Table 4: Comparison of different distance metrics in
tree construction.

In this section, we experiment with a single-step
method in a top-down manner, which serves as
an alternative to the two-step greedy approach de-
scribed in Section 3.2. Specifically, at each node,
we first compute the optimal quantization parame-
ters using Equation (7) and Equation (6), and then

Table 3: Results of newly added models.

determine how to distribute the residual weights
among the child nodes using Equation 9. More
details can be found in the appendix.

Table 2 shows that the single-step method per-
forms worse than the two-step approach introduced
in Section 3.2. We believe this is because, in the
single-step method, even negligible quantization er-
rors in the current node can lead to different model
assignments, making the algorithm less robust.

Table 2 also verifies the effectiveness of utilizing
model-specific scales and scale distillation. Ad-
ditionally, Table 4 investigates the impact of the
distance metric on tree construction. Considering
the similar performance, we ultimately chose the
L distance, consistent with the objective of resid-
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Figure 5: Results of RQT on different task numbers, where each task contains four models. Each color represents an
evaluation dataset, and different hatch patterns indicate the various methods used. While delta compression methods
achieve performance comparable to RQT when all models belong to a single task (the first six bars in each figure),
their performance degrades significantly (to near-zero levels) on code LLMs when applied across multiple tasks. In
contrast, RQT is less sensitive to delta magnitude and demonstrates greater robustness to task diversity.

ual quantization.

4.4 Incorporating New Models into the RQT

In this section, we describe the process of incorpo-
rating new models into an existing RQT without
the need to rebuild the entire tree. This method also
relaxes the constraint that the number of models,
N, must be a power of 2. Specifically, we begin by
identifying the optimal position to add the new leaf
and then perform residual quantization from the
root to the leaf. During this process, we only com-
pute the optimal scales for the new models, without
altering the shared low-bit values. The complete
pseudocode for this process is provided in the ap-
pendix. We evaluate the addition of new models
using MAmmoTH-7B (Yue et al., 2024), Llava-
1.5 (Liu et al., 2023a) (evaluated on the TextVQA
dataset (Singh et al., 2019)), Magicoder-CL (Wei
et al., 2024), and Xwin-LM-v0.2 (Cui et al., 2023),
with the existing RQT built upon the previous 16

models introduced in Section 4.1. The results, pre-
sented in Table 3, compare the performance of the
newly added models with that of the GPTQ meth-
ods. In future work, we will explore dynamic ad-
justments to the RQT and develop more general
construction methods.

5 Conclusion

In this paper, we introduce the Residual Quantiza-
tion Tree (RQT), which mitigates the sensitivity of
previous delta compression methods to the magni-
tude of delta values. We also present an efficient
two-step greedy approach that separates model as-
signment from residual quantization. Experimental
results demonstrate the effectiveness of the RQT
when compared to traditional PTQ methods and
delta-compression methods. Even with an average
bitwidth of approximately 2 bits, RQT achieves
only a 3% average accuracy degradation on fine-
tuned LLaMA-2-7B models across a range of tasks.



Limitations

In this paper, we introduce the Residual Quan-
tization Tree (RQT), a hierarchical quantization
framework that automatically shares low-bit integer
weights across similar fine-tuned models. While
the RQT can, in principle, adopt various tree struc-
tures, the algorithm proposed in Section 3.2 is lim-
ited to a complete binary tree. Further research
is needed to explore dynamic adjustments to the
RQT and to develop a more general construction
method. Additionally, although the RQT is primar-
ily designed for multi-model compression, it also
holds potential for applications in other contexts,
such as cross-layer quantization.
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A Appendix

A.1 Detailed Experiment Results

In Section 4, due to page limitations, we present
only the aggregated results from two evaluation
datasets. The detailed results can be found in Ta-
ble 5 to Table 8.

A.2 Visualization of the RQT

Figure 6 shows a visualization of the RQT applied
to the weights of the down projection layer in the
first decoder layer. We observe that (a) similar
models are positioned closer together in the RQT
and (b) the reconstruction errors for each model
decrease as the residual quantization performed
from top to down. These observations validate the
effectiveness of our algorithm.

A.3 More details about ablation studies

The algorithm of top-down single-step method
Although we propose a two-step greedy approach
for constructing an RQT, we also experimented
with a single-step method in a top-down manner,
as shown in Table 2. Specifically, at each node,
we first optimize the quantization parameters using
Equation (7) and Equation (6), and then determine
how to distribute the residual weights among the
child nodes by Equation (9)

min I(.’El :$]’) 'dija
{ﬂﬁi}lgigz\r 1<i<j<N
. N ©
subject to: Z Ti= o, i€ {0,1}.
1<i<N

Here, x; is a binary variable indicating whether
node ¢ belongs to the first set. The indicator func-
tion /(x; = x;) equals 1 when z; = x; (W; and
W; belong to the same set), and O otherwise. Ad-
ditionally, d;; represents the distance between the
weight matrices W; and W;, and it is chosen as the
L distance:

dij = [|Wi — Wj]|a. (10)

The complete pseudocode is formally described in
Algorithm 3.

The algorithm of model addition. In sec-
tion 4.4, we discuss how to incorporate new models
into an existing RQT without rebuilding the entire
tree and relax the constraint that NV is a power of
2. Specifically, we first search for the best posi-
tion to add the new leaf and then perform residual
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Algorithm 3 Single_Step_Method

1: Input: A set of weights © = {W; |i=1,...,N}
: Output: A complete residual quantization tree 7" with
defined Q and X
: while not converged do
Compute «; using Equation 6
Compute () using Equation 7
end while
Update W; < W; — @Q - «; for all ¢
: Create child nodes Tiefi, Tright
s Set C[T] + {Tiete, Trign }
: Compute S[Tiign] and S[Tieq] using Equation 9
: for each T; € C[T] do
Single_Step_Method({W; | i € S[T3]}, T5)
: end for
: return T’

\®}

o
AW —OV0OINUN B W

Algorithm 4 Model_Addition

: Input: A set of weights ©® = {W; |i=1,...,N}
: Input: Newly added weight Wi 1
Input: A residual quantization tree 7" build on ©
k =argmin||Wyn41 — Wj||forj e {1,...,N}
Let T}, denote the leaf node where S[T%] = {k}
: while true do
Compute an+1 by Equation (6)
Set [T <+ X[T] U {ans1}
Set S[T] «+ S[T]U{N + 1}
Set Wi = Wit — ot - Q[T]
if T = parent(7%) then
break
else
T =T; where T; € C[T) and k € T}
end if
: end while
. Create a new leaf node Thew
2 S|Thew] = {N + 1}
: Cparent(Ty)] = Clparent(T%)] U {Thew }
: Compute Q[Thew] and a1 [Thew]
: return T’

R e R

quantization from the root to the leaf, only com-
puting optimal scales for the new models without
changing the shared low-bit values. The complete
pseudocode is formally described in Algorithm 4.



Table 5: The detailed results of experiments on math LLMs.

MODEL WizardMath-7B MetaMath-7B  Xwin-Math-7B-V1.1 MuggleMath-7B

DATASET GSMSK MATH Avg. GSMSK MATH Avg. GSMSK MATH Avg. GSMSK MATH Avg.
FP 54.20 11.30 32.75 66.71 20.80 43.76 84.53 44.42 6448 67.10 24.90 46.00
GPTQ-w4-g128 51.30 10.00 30.65 66.60 20.10 43.35 82.90 42.18 62.54 63.80 24.00 43.90
GPTQ-W3-g128 3590 6.10 21.00 61.00 16.70 38.85 75.57 36.46 56.02 53.40 15.30 34.35
GPTQ-W2-g128 3.10 270 290 1.10 1.63 137 037 042 040 2.00 230 2.15
QuaRot-w2g128 1.30 050 090 270 1.00 1.85 090 160 125 150 1,1 1.50
QuaRot-w3g128 40.80 6.90 23.85 61.50 17.00 39.25 76.95 36.04 56.50 58.50 17.30 37.90
Omniquant-w3g128 38.50 6.80 22.65 63.50 17.90 40.70 79.30 36.38 57.84 55.00 18.70 36.85
Omniquant-w2g128 230 1.60 195 1430 320 875 4.01 170 286 6.70 3.20 4.95
BitDelta (1-bit Delta) 51.60 10.30 30.95 62.90 19.20 41.05 78.24 36.90 57.57 62.20 23.10 42.65
GPT-Zip (2-bit Delta) 52.80 11.40 32.10 65.30 21.50 43.40 83.62 42.80 63.21 66.00 25.40 45.70
RQT 58.20 12.70 35.45 66.00 20.70 43.35 83.01 40.92 61.97 70.80 26.10 48.45

RQT (w/o scales distillation) 57.60 13.10 35.35 65.40 20.50 42.95 82.94 40.90 61.92 69.80 25.00 47.40
RQT (w/o model-specific scales ) 59.10 12.80 35.95 66.20 20.40 28.30 81.12 40.16 60.64 70.80 26.00 48.40
Top-down Single-step method  49.70 10.10 29.90 65.40 20.20 29.30 78.92 36.06 57.49 65.70 23.20 44.45
Cosine Similarity 57.50 13.00 35.25 65.00 21.30 30.30 83.01 41.88 62.45 68.70 23.80 46.25
Sign difference 47.90 10.10 29.00 66.60 20.30 31.30 83.26 41.52 62.39 70.40 24.90 47.65

Table 6: The detailed experimental results on code LLMs are provided. HE refers to the HumanEval (Chen et al.,
2021) dataset.

MODEL CodeLLaMA-Python-7B  WizardCoder-7B Magicoder-S-CL-7B  ReflectionCoder-7B

DATASET HE MBPP Avg. HE MBPP Avg. HE MBPP Avg. HE MBPP Avg
FP 40.84 43.80 42.32 48.78 64.55 56.67 69.50 69.60 69.55 74.40 71.69 73.05
GPTQ-w4-g128 34.75 42.60 38.68 42.07 61.11 51.59 72.00 68.80 70.40 73.17 67.46 70.32
GPTQ-W3-g128 22.56 24.40 23.48 29.87 47.35 38.61 51.80 59.30 55.55 56.09 58.99 57.54
GPTQ-W2-g128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
QuaRot-w2g128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 000 0.00 0.00 0.00
QuaRot-w3g128 29.87 34.40 32.14 33.53 52.38 42.96 60.40 61.60 61.00 61.58 65.87 63.73
Omniquant-w3g128 31.20 30.48 30.84 37.80 54.76 46.28 64.00 61.40 62.70 60.36 65.60 62.98
Omniquant-w2g128 6.09 220 4.15 243 079 1.61 790 27.50 17.70 15.24 22.22 18.73
BitDelta (1-bit Delta) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 000 0.00 0.00 0.00
GPT-Zip (2-bit Delta) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RQT 33.53 29.60 31.57 42.07 60.31 51.19 62.80 65.30 64.05 64,63 62.43 62.43

RQT (w/o scales distillation) 35.36 33.60 34.48 38.41 57.14 47.78 54.30 64.00 59.15 60.97 62.16 61.57
RQT (w/o model-specific scales) 43.32 15.85 20.80 18.33 7.31 34.65 20.98 27.40 46.80 37.10 37.80 52.64
Top-down Single-step method  40.29 30.60 34.14 32.37 34.14 56.08 45.11 54.90 60.80 57.85 60.97 61.90
Cosine Similarity 43.56 3231 32.40 32.36 38.41 55.82 47.12 58.50 63.80 61.15 61.58 64.02
Sign difference 42.59 3231 32.60 32.46 38.41 56.08 47.25 58.50 64.00 61.25 62.19 64.28

Figure 6: Visualization of the Residual Quantization Tree (RQT) applied to the down projector of the first decoder
layer, with the MSE of each model annotated.
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Table 7: The detailed results of experiments on chat LLMs are presented. ARC-E refers to the ARC-Easy (Clark
et al., 2018) dataset, and HS refers to the HellaSwag (Zellers et al., 2019) dataset.

MODEL LLaMA-2-chat-7B  Vicuna-7B v1.5  Vicuna-7B-v1.5-16k LLaMA-2-7B

DATASET ARC-E HS Avg. ARC-E HS Avg. ARC-E HS Avg. ARC-E HS Avg.
FP 7391 7547 74.69 75.63 73.81 74.72 76.18 74.31 75.25 76.35 76.00 76.18
GPTQ-w4-g128 72.77 74.69 73.73 75.34 73.20 74.27 76.26 73.07 74.67 75.84 75.62 75.73
GPTQ-W3-g128 67.30 71.44 69.37 72.22 69.68 70.95 69.99 69.20 69.60 72.31 72.06 72.19
GPTQ-W2-g128 25.29 27.23 26.26 32.66 32.14 32.40 29.59 27.65 28.62 31.52 31.22 31.37
QuaRot-w2g128 29.04 29.08 29.06 35.73 32.24 33.99 29.67 27.96 28.82 31.48 30.55 31.02
QuaRot-w3g128 68.81 71.17 69.99 73.02 69.98 71.50 69.87 63.74 66.81 69.44 69.85 69.65
Omniquant-w3g128 69.57 71.43 70.50 72.64 70.30 71.47 72.58 69.25 70.92 74.07 72.54 73.31
Omniquant-w2g128 43.48 42.73 43.11 53.75 47.14 50.45 37.37 3792 37.65 52.95 51.40 52.18
BitDelta (1-bit Delta) 73.95 7544 74770 75.80 74.40 75.10 68.48 57.92 63.20 74.66 7598 75.32
GPT-Zip (2-bit Delta) 74.45 75.66 75.06 76.18 74.11 75.15 76.68 74.56 75.62 76.35 7598 76.17
RQT 74.03 75.80 74.92 76.47 74.32 7540 7542 74.15 74.79 74.62 7593 75.28

RQT (w/o scales distillation) 74.33 7498 74.66 76.22 73.70 74.96 75.04 73.57 7431 75.04 76.08 75.56
RQT (w/o model-specific scales) 45.22 30.41 73.86 74.20 74.03 75.88 73.04 74.46 7496 72.60 73.78 75.93
Top-down Single-step method  61.44 49.19 74.83 74.78 74.81 75.38 73.17 7428 76.09 72.89 74.49 75.55
Cosine Similarity 62.80 50.86 75.00 74.92 74.96 75.97 73.47 7472 75.08 73.61 74.35 75.76
Sign difference 63.24 51.05 74.33 74.16 74.25 75.88 73.56 74.72 75.13 73.63 74.38 75.63

Table 8: The detailed results of experiments on Chinese LLMs.

MODEL Chinese-Alpaca-2 Chinese-LLAMA -2 Chinese-Alpaca-2-16k  Chinese-LLAMA-2-16k

DATASET CEval CMMLU Avg. CEval CMMLU Avg. CEval CMMLU Avg. CEval CMMLU Avg.
FP 42.05 39.88 40.97 28.45 27.66 28.06 37.89 37.18 37.54 28.45 26.52 27.49
GPTQ-w4-g128 41.08 39.02 40.05 26.52 27.29 26.91 37.41 3571 36.56 2592 25.75 25.84
GPTQ-W3-g128 3499 33.84 34.42 26.52 26.04 26.28 35.36 33.69 34.53 23.32 25.28 24.30
GPTQ-W2-g128 24.14 2471 24.43 23.84 24.57 24.21 26.37 25.09 25.73 28.15 25.52 26.84
QuaRot-w2g128 25.70 24.80 25.25 25,85 24.90 24.90 25.18 25.03 25.11 22.88 25.19 24.04
QuaRot-w3g128 3276 33.05 3291 26.59 25.84 26.22 36.55 32.49 34.52 26.96 24.98 25.97
Omniquant-w3g128 35.14 3243 33.79 26.82 25.83 26.33 3521 32.24 33.73 26.74 25.87 26.31
Omniquant-w2g128 23.25 2541 24.33 23,03 2527 25.27 2347 2472 24.72 2295 2540 24.18
BitDelta (1-bit Delta) 38.11 35.70 36.91 25.92 27.01 26.47 3098 27.28 29.13 24.96 25.66 25.31
GPT-Zip (2-bit Delta) 41.60 38.05 39.83 26.98 26.86 26.92 35.51 35.60 35.56 25.85 26.40 26.13
RQT 41.30 39.46 40.38 27.86 27.39 27.63 36.62 35.52 36.07 27.34 27.05 27.20

RQT (w/o scales distillation) 40.71 37.94 39.33 28.52 28.58 28.55 37.29 35.10 36.20 27.56 27.54 27.55
RQT (w/o model-specific scales) 75.17 75.55 74.46 40.56 37.30 38.93 27.34 27.14 27.24 36.47 34.53 35.50
Top-down Single-step method  75.50 75.53 74.77 35.58 35.35 35.47 26.96 26.54 26.75 34.99 32.99 33.99
Cosine Similarity 75.80 75.78 74.95 38.03 36.04 37.04 28.08 28.03 28.06 36.47 34.38 3543
Sign difference 76.09 75.86 74.80 38.03 36.04 37.04 28.08 28.03 28.06 36.47 34.38 3543
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