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Abstract

We address the Metro Network Expansion Problem (MNEP), a subset of the Transport
Network Design Problem (TNDP), which focuses on expanding metro systems to satisfy
travel demand. Traditional methods have relied on exact and heuristic approaches that
require expert-defined constraints to reduce the search space and enable tractability. Re-
cently, reinforcement learning (RL), particularly deep reinforcement learning (Deep RL), has
emerged as a powerful alternative due to its effectiveness in optimizing complex sequential
decision-making processes. However, Deep RL methods can be computationally expensive,
environmentally costly and hard to interpret. In this paper we re-formulate the MNEP as a
Markov Decision Process (MDP), and solve it through tabular Q-Learning. By using a re-
defined MDP and a tabular RL approach, we achieve similar performance to Deep RL, with
substantially fewer training episodes, offering the added benefit of greater interpretability.
Furthermore, we incorporate diverse social equity criteria into the reward functions, balanc-
ing efficiency with fairness, thus highlighting the versatility of our method. Our approach
is evaluated in real-world settings—specifically in Xi’an and Amsterdam—where it demon-
strates competitive results, reducing the total training episodes by a factor of 18 and total
carbon emissions by a factor of 12 on average. Our approach provides a replicable, inter-
pretable, and resource-efficient solution, with potential applicability to other combinatorial
optimization problems.

1 Introduction

Public transport is fundamental to modern, fast-paced lifestyles, as it enables citizens to participate in
employment, education, healthcare, and social activities Martens|(2016). However, planning public transport
networks is especially challenging due to physical, social, economic and legal constraints that complicate the
creation of new transport routes, or the expansion of existing ones. Additionally, sustainability and equity
are values that increasingly shape the design of public transport networks. Modern transportation systems
must be accessible, ensuring that citizens of all locations, socioeconomic statuses, and ages can benefit from
these services Martens| (2016). They also need to be efficient, as they must cover actual demand for mobility
rather than being designed arbitrarily. Efficiency is also vital for sustainability: buses with low passenger
loads can have a higher environmental impact per passenger than cars [Lowe et al.| (2009)), and low ridership
can degrade the quality of transit systems over time|Mohring] (1972). These trade-offs add further complexity
to transport design problems, leading to the need for increasingly sophisticated solutions.

The Transport Network Design Problem (TNDP) is an NP-hard combinatorial optimization problem that
addresses the design of public transport, by maximizing maximize total travel demand satisfaction [Farahani
et al.| (2013). For metro systems, a specific subset of TNDP, known as the Metro Network Expansion Problem
(MNEP), is central to expanding existing metro lines within cities [Wei et al.| (2020); Wang et al.| (2023)); |Su
et al.| (2024)). Metro networks are especially important in modern cities for their speed, reliability, and high
passenger capacity compared to other traditional modes of public transport [Wang et al.| (2023).

MNEP are a subset of problems of TNDP, focused on expanding an existing metro network in a city. Metro
lines generally cover long distances, cross multiple urban zones, and are typically designed as relatively
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straight routes without excessive meandering [Wei et al.| (2020)). As a distinct sub-problem within TNDP,
MNEP introduces additional constraints specific to metro network design.

Traditionally, TNDP problems have been approached with integer optimization and heuristic algorithms
Laporte & Pascoal (2015); |Owais & Osman| (2018]), which require extensive expert-defined constraints to
reduce the search space for tractability. Recently, the Metro Network Expansion Problem (MNEP) has been
framed as a sequential decision-making problem, leveraging Reinforcement Learning (RL) to derive optimal
solutions Wei et al.|[(2020). RL is well-suited for sequential decision-making with multiple objectives, such
as efficiency and fairness, and has been successfully applied to combinatorial optimization problems Darwish
et al.| (2020); Raman et al.| (2021)); Jullien et al.|(2022)). Unlike traditional methods, RL can explore the search
space flexibly by optimizing a reward function, avoiding the need for exponentially increasing constraints.

Given the large state-action spaces in many problems, the complexity of Reinforcement Learning (RL) may
seem justified. Recently, Deep Reinforcement Learning (Deep RL) has shown promise in scaling combinatorial
optimization, learning policy representations that autonomously identify key features and achieving state-
of-the-art results in real-world problems Mazyavkina et al.| (2021); [Neustroev et al.| (2022)); Xu et al.| (2022]).

While advances in computing power and algorithmic research suggest that RL could transform problems
like MNEP, we argue that Deep RL is not always the ideal solution. Its substantial training time and
environmental costs are becoming increasingly significant with the widespread deployment of Al systems
Anthony et al| (2020); [Strubell et al.| (2020)); |Patterson et al.| (2021)); Krishnan et al| (2022). Given that
MNEP and similar problems are static optimizations with limited features, complex neural network structures
may not be necessary for effective policy training. This is supported by findings in other machine learning
domains |Cuccu et al.| (2019).

In this paper, we propose that traditional, tabular-based methods in reinforcement learning can effectively
address complex problems like MNEP, provided the problem is framed appropriately. We show that a
tabular approach can achieve competitive performance compared to deep-learning methods, reducing train-
ing time significantly in two real-world environments (Xi’an and Amsterdam), while also offering greater
interpretability than black-box deep learning models.

To further demonstrate the potential of tabular RL, we examine various aspects of social equity in MNEP
by employing a range of reward functions based on diverse concepts of social good. We achieve this by
expanding the state-of-the-art RL formulation of the MNEP, to incorporate fairness criteria aligned with
diverse definitions of social welfare.

In summary, we make the following contributions:

o We reformulate the Transport Network Design and Metro Network Expansion problems as Markov
Decision Processes with two-stage actions, significantly reducing the action space compared to ex-
isting approaches.

o We bridge machine learning and transport planning research by extending the RL framework to
integrate considerations of social good, balancing efficiency and fairness.

o We propose a Monte Carlo Tabular Reinforcement Learning algorithm for MNEP, designed to require
fewer training episodes than deep learning models.

e We validate our method in two real-world settings—Xi’an, China, and Amsterdam, Netherlands—
demonstrating comparable performance to state-of-the-art Deep RL methods, with an 18-fold re-
duction in training episodes and a 12-fold reduction in CO5 emissions.

e We provide all code, datasets, and hyperparameter settings to replicate our results and enable
application to other combinatorial optimization problemﬂ

The remainder of the paper is structured as follows: First, we position our work in the context of previous
research (Section |2) and re-formulate the MDP formulation of the MNEP (Section [3)). We continue by
describing the tabular model and the proposed social-welfare reward functions (Section [4]) and the real-world
environments used in our experiments (Section . Finally, we present and discuss our results (Section @

LGithub: https://github.com/*****/ (retracted for anonymous submission)
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2 Related Work

We outline previous work on the TNDP, reinforcement learning for combinatorial optimization, and the
analysis of fairness in transportation.

2.1 Transport Network Design Problem

Traditionally, the Transport Network Design Problem (TNDP) has been approached through a combination
of integer optimization techniques and heuristic methods, including the use of pre-defined or dynamically
discovered corridors [Laporte & Pascoal| (2015); [Zarrinmehr et al.| (2016); |Gutiérrez-Jarpa et al. (2018)),
simulated annealing Fan & Machemehl (2006); |Ahern et al. (2022), bee colony optimization [Yang et al.|
(2007); [Szeto & Jiang| (2014), and genetic algorithms Owais & Osman| (2018)); Nayeem et al| (2018]).

While these approaches have produced promising results in early studies, they have notable limitations. To
make the problem tractable for solvers, they often restrict the search space by either enforcing a long list of
environment-specific constraints or by setting, or searching for, a predefined set of corridors. This restriction
provides obstacles in application in large, real-world urban environments with diverse characteristics. More
critically, narrowing the search space in this manner can exclude high-quality solutions that lie outside of
these constraints.

2.2 Reinforcement Learning for Transport Network Design

Reinforcement Learning (RL) has proven effective for making optimal long-term sequential decisions.
Through straightforward reward mechanisms, an agent learns to understand its impact on the environ-
ment via trial-and-error, making RL well-suited for tackling real-world NP-hard combinatorial optimization
tasks by leveraging demonstration and experience, without the need for expert prior knowledge
let al.| (2021); Wang & Tang| (2021)); Bengio et al.| (2021); |Jullien et al.| (2022). Although combinatorial op-
timization problems can also be approached with Supervised Learning (SL), recent studies have shown that
RL can generalize more effectively than SL in common problems such as the Travelling Salesman Problem
[Bello et al.| (2017)); Deudon et al. (2018) and Vehicle Routing [Nazari et al.| (2018]); Kool et al.| (2018).

Despite RL’s growing utility in combinatorial optimization, its use in transport network design has been
limited. Darwish et al. used a policy gradient method to design bus lines, exploring the Pareto front between
customer satisfaction and operational costs|Darwish et al.| (2020)). Wei et al. employed a pointer-based model
to solve the Transit Network Design Problem (TNDP), achieving superior performance in meeting demand
satisfaction . Additionally, Multi-objective Reinforcement Learning has been applied to the
TNDP to balance efficiency with accessibility [Zhang et al| (2024)); Michailidis et al.| (2023)).

Most work on the Transit Network Design Problem (TNDP) and the closely related Metro Network Expansion
Problem (MNEP) has focused on complex deep reinforcement learning (Deep RL) models. This paper,
however, challenges the necessity of such black-box models for problems where interpretability is crucial
for decision-makers. We reformulate the Markov Decision Process to significantly reduce the action space

without restricting the solution space, enabling a simpler, Monte Carlo-based tabular reinforcement learning
approach. Our method is then benchmarked against the state-of-the-art Deep RL approach for MNEP

(20%0).

2.3 Social Equity in Transport Network Design

Adopting notions of social equity in transport network design is challenging to optimize due to its multi-
dimensional nature [Behbahani et al| (2019) and the inherent moral judgments involved (2011).
Drawing on prior research in urban transportation, we identify three key decisions necessary to incorporate
fairness: utility measure, dimension, and fairness theory.

Utility measure: This is commonly achieved by establishing accessibility metrics, such as the number of
reachable opportunities [Pereira et al.| (2019)); [van der Veen et al.| (2020)); [Hernandez| (2018]), the affordability
of accessing them [Farber et al. (2014), or a combination of both [El-Geneidy et al.| (2016]).
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Dimension: Fairness can be assessed along spatial dimensions, where disparities are evaluated across differ-
ent geographic or administrative units Pereira et al.|(2019); [Delmelle & Casas| (2012)), or through group-based
measures, where groups are defined by socio-economic characteristics (e.g., income, race) van der Veen et al.|
(2020); [Pyrialakou et al|(2016]); |Cheng et al.| (2021).

Fairness theory: Multiple theories of fairness and equity inform transport network design Behbahani et al.|
(2019). Most approaches fall under horizontal fairness—aiming for equal utility across all units or groups—or

vertical fairness, which prioritizes groups or areas in greater need van Wee| (2011)).

Despite these theoretical analyses, comprehensive application of fairness frameworks within machine learning
for TNDP remains limited. Nonetheless, prior work has made initial attempts to integrate equity consid-
erations. For example, Ramachandran et al.| explore the efficiency-equity trade-off in graph augmentation
using RL, applying their approach to Chicago’s transportation network [Ramachandran et al.| (2021)). Ted-|
[jopurnomo et al.| compare bus line designs for advantaged and disadvantaged groups, though not using RL
[Tedjopurnomo et al| (2022). [Wei et al| account for equity by designing a weighted reward that balances
travel demand with an area’s development index, though this measure is implemented within the reward
function and analyzed only minimally for its impact. The same approach is used by who add
one more component to the reward function.

Our paper presents the first attempt to bridge the gap between transportation fairness research and RL-
based transport network design in a comprehensive framework. We design fairness-based rewards based on
[Behbahani et al.| definition, which targets an equitable distribution of benefits introduced by new transport
lines. This framework is adaptable to various utility measures; in this study, we focus on Origin-Destination
flows due to their relevance for mobility demand, rather than accessibility. Our analysis is done on a socio-
economic group dimension, and we provide diverse reward functions that cover different fairness notions.
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Figure 1: Two real-world case studies where the Metro Network Expansion Problem (MNEP) can be applied.
The left side features Amsterdam, Netherlands, with each grid cell representing aggregate origin-destination
demand (visualized using a blue colormap in panel A), along with the city’s existing metro lines and housing
price quintiles (panel B). On the right, similar data is displayed for Xi’an, China.

3 The Metro Network Expansion Problem

The Metro Network Expansion Problem (MNEP) is a subproblem of the Transport Network Design Prob-
lem (TNDP). Within the TNDP framework, the primary objective is to expand the transport network by
constructing a new line that maximizes captured travel demand, considering unmet demand and connections
to the existing network.

In traditional formulations of TNDP and MNEP, the city is modeled as a two-dimensional grid environment
with n rows and m columns, H"*"™. The aim is to identify a set of adjacent cells Z = {z1,29,...,27 | 2; €
H,Vi=1,2,...,T}, which sequentially connect to form a new metro line, in order to maximize the total
captured demand. This demand is represented by an Origin-Destination (OD) matrix, OD!HIxIH|
[& Hao| (2008); [Farahani et al.| (2013). Here, OD]i, j] denotes the travel demand from grid cell i to grid cell j.
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In the MNEP, the OD matrix is assumed to be symmetric and deterministic, remaining constant throughout
the optimization process.

The size of set Z is limited by a construction budget B , and a maximum number of stations 7. We define
a function U(Z) that calculates the total added benefit of the generated line Z. In the traditional MNEP,
U(Z) is defined as the total sum of satisfied demand. The optimization problem is then defined as follows.
Find the set of connected cells Z, such that:

max U(Z)= ZZOD[Zqu]’i #J
g

s.t. cost(Z) < B ()
|Z|<T

Here, the constraints B and T are strict, meaning that the new metro line must not exceed the specified
budget or the total number of allowable stations.

The structural configuration of the metro line depends on the type of transport, which can be directed, as
observed in bus or tram networks, or undirected, as is typical in metro or subway systems. The focus of our
study is the design of metro networks, hence we tackle the Metro Network Expansion Problem (MNEP) [Wei
et al.| (2020)).

3.1 Social Equity in the Metro Network Expansion Problem

The traditional MNEP primarily seeks to maximize total demand coverage, often overlooking the equitable
distribution of benefits across various communities within the city. Prior work on reinforcement learning
(RL) in this context also tends to prioritize efficiency and adopt a predominantly wutilitarian approach Wei
et al. (2020). Here, we demonstrate that RL can effectively optimize for a wider array of objectives that
encompass essential principles of social equity, as defined in transport planning literature. In addition to
utilitarianism (Equation ), we emphasize two additional equity principles: equal sharing of benefits and
Rawlsian justice as articulated by Rawls’ theory of justice Behbahani et al.| (2019).

Our focus centers on ensuring fairness in the allocation of satisfied Origin-Destination demand facilitated by
the new line, paying particular attention to its distribution across different socioeconomic groups.

We first define a set of groups G, based on socioeconomic indicators such as income, development index,
and education. Each cell h € H™*™ in the environment is associated with a group g € G. We adjust the
objective function for each fairness notion accordingly, defining a utility function U(Z,g) for each group
g € G, which returns the satisfied OD demand of line Z for group g.

Each cell h € H™*™ of the environment is associated with a group g € G. We adjust the objective function
for each fairness notion accordingly. We define a utility function U(Z, g), g € G, which returns the satisfied
OD demand of line Z for group g.

Equal Sharing: This egalitarian objective aims to equalize the added benefits of the transport line among
groups in a city, commonly referred to as horizontal equity. In theory, equal sharing is achieved by minimizing
the absolute differences between group utilities:

manZ|U(Zag1)7U(Zagj)‘7gzvgj €G7Z7éj (2)
i g

To implement fairness objectives in practice, we need to also incorporate total reward as, theoretically,
Equation could be minimized when all group utilities are 0. To address this, we encapsulate the equal-
sharing notion using the Generalized Gini Index (GGI) |Siddique et al.| (2020)).

|G|
U(Z)=GGI(Z,W)=> W;,U(Z0o(G)i), (3)
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where ¢ is a permutation that sorts the groups in G in descending order based on their utility prior to line
creation, and W; are non-increasing weights (i.e., Wq > Wy > --- > W/|G|) normalized to sum to 1.

Rawls’ Theory of Justice: This approach aims to maximize benefits for the most disadvantaged group.
max(U(Z, gmin)), (4)

where g, represents the most disadvantaged group within G. In this paper, we define groups based on a
house-price index as a proxy for area development, with g,,;» as the group with the lowest house price index.
Lower house price indexes are used as a proxy to identify the poorer areas of a city.

To apply this notion as a reward in RL, we set the reward function as U(Z) = U(Z, gmin). In Figure |1} we
illustrate the real-world environments of Amsterdam and Xi’an where we apply the TNDP. We detail the
environments in Section
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Figure 2: In the Metro Network Expansion Problem (MNEP), a reinforcement learning (RL) agent se-
quentially adds transport segments to the network. Each action represents the addition of a segment at a
specific location, with rewards based on the demand met by that segment. The objective is to maximize the
cumulative reward from all added segments.

4 Methods

We define the Metro Network Expansion Problem (MNEP) as a Markov Decision Process (Section and
describe the Tabular Q-Learning algorithm we use to solve it (Section .

4.1 Metro Network Expansion MDP

Recent approaches to the MNEP apply reinforcement learning (RL) by encoding each city grid cell as a
potential action for the agent, resulting in a fixed action space of size |H| at each timestep ;
. This setup increases the search space as grid size grows. While physical constraints mask
certain actions to limit selectable cells at each timestep, this masking occurs only after the forward pass,
immediately before the softmax layer Wei et al.| (2020); |Su et al. (2024)). As a result, the policy network
must still process all potential cells in every state.

We argue that this complexity is unnecessary. Instead, we propose a two-stage solution: first, the agent
selects a starting cell—the initial location for placing the first station on a metro line. The agent then
navigates the grid by choosing among eight possible movement directions (north, south, east, west, and the
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four diagonal directions). Each movement forms a segment of the metro line, with the newly entered cell
designated as the next station location.

This adjustment substantially reduces the action space to always be of size 8, for all timesteps except for the
first one, regardless of the size of the grid. Furthermore, we simplify the state representation to the agent’s
current location, which can be efficiently encoded in a table with rows corresponding to the total number of
cells in the city grid.

The MNEP is defined as an MDP M = (S, A,P,R,~, 1), where S is the agent’s current location, A
represents the next movement direction, R : S x A x & — R? indicates the demand satisfied by the last
action. P : S x A xS — [0,1] is a deterministic state transition functionand. Finally, u: S — [0,1] is a
probability distribution over the starting state, which can be learned, kept constant, or randomized.

Given the discrete and episodic nature of the problem, we set the discount factor v = 1, and the transition
function P remains deterministic. Figure [2]illustrates this formulation.

The actions the agent can take at any timestep are further constrained by feasibility rules F'(Z;), expressed
by directional constraints, as in previous works Wei et al| (2020). These constraints include prohibitions
on revisiting cells, preventing movement beyond grid boundaries, and restricting the agent to a singular
directional movement, thereby avoiding cyclical paths (resembling a large-distance metro line). Detailed
information on the feasibility rules can be found in Appendix [A] the accompanying code and in prior
literature Wei et al.| (2020); |Zhang et al.| (2024).

4.2 Tabular Q-Learning for MNEP

We propose a tabular Q-learning algorithm for metro network expansion, using the MDP formulation outlined
above. A single reinforcement learning (RL) agent (a) selects an initial cell and (b) extends the metro line
by connecting adjacent cells in all possible directions. We apply a Monte Carlo-based method to iteratively
update a Q-table through repeated environment interactions.

Selecting the Initial Cell At the start of each episode, the agent selects the initial state Sy (starting point
for the metro line) using an e-greedy approach. In exploration, it picks a random cell; in exploitation, it
selects the cell maximizing the expected return. The value of each cell as a starting point is represented
by Qs, € R giving one Q value for each grid cell. The exploration rate begins high (e = 1) and decays
linearly until it reaches a minimum value (e = 0.01).

Action Selection and Transition At each timestep ¢, the agent selects an action A; using e-greedy
selection based on values Q € RIF1*8. Out-of-bound movements and other invalid actions are masked. After
selecting an action A;, the agent observes a reward R; and deterministically transitions to a new state S’.
This transition (S;, A;, R;) is stored in an episodic list, tracking the agent’s path, which is later used to
perform Monte Carlo updates. Episodes end when one of three terminal conditions is met: (a) no available
directions remain, (b) the budget is exhausted, or (c¢) the maximum number of allowed stations is reached.

Reward Calculation The reward at each timestep t reflects the additional demand met by the new metro
segment, calculated in two steps. First, the direct demand between the new station and all previously
existing stations on the line is computed. Next, if connections between the new metro line and existing
lines are identified, the reward is increased by the additional transfer demand between each station of the
existing line and each station of the extended line [Wei et al. (2020)). The total reward is the sum of these
two components.

Ri= U(Z) +_ Leonmeet(Ze,1)-U(l x Zy), (5)

direct demand leL

transfer demand

where Z; = z1, ..., z; is the set of all stations in the current line up to time ¢, L is the set of all existing metro
lines, S; is the set of stations in existing line I, Leonnect(2t,1) is an indicator function that equals 1 if station
z¢ connects with line ! (shares a cell), and 0 otherwise.
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Monte-Carlo Returns and Policy Update At the end of each episode, the agent updates the @)-values
using Monte Carlo estimation. First, the total discounted return, denoted by J (we use J here to avoid
confusion with the group set G, departing slightly from standard RL notation), is calculated. Using this
return J, the agent then updates the @-values accordingly. Finally, the @Q-value for the initial state Sy is
updated separately, also based on the return J.

Q(St, Ar) < Q(St, Ar) + a[J — Q(Sk, Ar)]

Qs0(S0) + Qs (So) + alJ — Qs (So)] (6)

In Algorithm [I] we show the pseudocode of the proposed method.

Algorithm 1 Tabular Metro Network Expansion with Monte-Carlo Updates

1: Parameters: B, T, a, vy > Budget, total stations, RL parameters
2: Initialize Q(s,a), Qs, for all cells s, actions a, empty Episode, TotalCost + 0, and ActionMask of ones.
3: for each episode do

4: Select Sy via e-greedy from Q)g,; add Sp to Z

5 for each step t do

6 Choose A; with e-greedy, considering ActionM ask

7 Execute A, receive reward R, observe next state S’
8
9

Append (S, A, R) to Episode, add z; to Z, update TotalCost, ActionMask, S < S’
: if SUM (ActionMask) =0 OR TotalCost > B OR ¢t > T then break
10: end if

11: end for

12: Initialize J < 0

13: for each step (St, A¢, Rt) in Episode from last to first do
14: J—~vJ + Ry

15: if (S, Ay) is first in Episode then

16: Q(St, At) + Q(St, Ar) + a(J — Q(St, Ar))

17: end if

18: end for

19: Update Qs,(So) < a(J — Qs,(50))
20: Reset TotalCost, Episode, Z, and ActionMask
21: end for

5 Experiments

We ran and evaluated the model in two real-world case study cities: Xi’an and Amsterdam. To facilitate
introducing directional constraints and to provide higher granularity, both cities are split into grids of
equally-sized cells, rather than relying on census tracts (this assumption can be relaxed).

Xi’an environment preparation

Wei et al. Wei et al.| (2020) created and publicly released the Xi’an environment ﬂ The city is organized
into a H?%*%% grid, comprising 1km? cells. An origin-destination (OD) demand matrix was generated from
GPS data collected over one month from 25 million mobile phones. Each cell is linked to an average house
price index — we categorize them to five quintiles to create groups. We selected the average house price as
a proxy for neighborhood development, as it is widely available across various cities and raises no privacy
concerns. While our group definitions rely on this metric, they could also incorporate other attributes, such
as those based on protected categories. The environment already includes two existing metro lines, and our
experiments focus on expanding the network by designing a third line. This setting provides a wealth of
mobility demand data, contrasting with the case study in Amsterdam discussed below.

2https://github.com/weiyu123112/City-Metro-Network-Expansion-with-RL
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Figure 3: We show results on the Xi’an environment. The proposed Tabular model performs on par with
the Deep RL model across four diverse objectives in Xi’an (panel a) and Amsterdam (panel b).

Amsterdam environment preparation

The Amsterdam environment is organized into a H3°*47 grid of 0.5km? cells. This cell size was chosen to
maintain similar problem complexity in all cities, taking into account the smaller size of Amsterdam. Since
GPS data are unavailable, we estimate the origin-destination (OD) demand using the recently published
universal law of human mobility, which indicates that the total mobility flow between two areas ¢ and j
is determined by their distance and visitation frequency |Schlapfer et al| (2021)). We provide details on the
estimation on Appendix[B] As in the Xi’an environment, each cell is associated with an average house price
sourced from the publicly available statistical bureau of the Netherlands El The groups are defined as five
quintiles based on this price.

5.1 Evaluation

We evaluate our proposed TabularMNEP algorithm against the state-of-the-art Deep Reinforcement Learning
(DeepRL) method for Transport Network Design [Wei et al. (2020), as well as a Genetic Algorithm (GA)
[Owais & Osman| (2018)) and an Ant-Colony Algorithm (ACA) [Yang et al| (2007), with results for the latter

two taken from |Wei et al.| (2020)).

The methods are tested on four distinct reward functions: a utilitarian reward, maximizing total captured
travel demand (Max Efficiency); two equal-sharing rewards using the Generalized Gini Index with weights
of 1/2¢ (GGI(2)) and 1/4° (GGI(4)); and a Rawlsian reward that maximizes demand from the lowest house
price quintile. We conducted a Bayesian hyperparameter search across 100 runs, selecting the top five
configurations, running each five times, and choosing the one with the best average performance. DeepRL
was trained over 3,500 epochs (128 episodes per epoch, totaling 448,000 episodes), while TabularRL required
only 25,000 episodes—a reduction of 18-fold in total training episodes.

To estimate emissions (kg COs equivalent), we consider GPU electricity consumption (kWh), total training
hours, and the carbon emissions per kWh based on the 2024 monthly average for COUNTRYﬂ using the formula:
CO2 = Watt * TrainingHours * CarbonFactor.

Model training used two types of in-house GPUs, the RTX 6000 Ada Generation (300 Watt) and GTX
1080Ti (250 Watt), depending on availability. Although our tabular method does not require a GPU, we
report emissions based on GPU usage since a GPU-equipped node was reserved for model runs.

3https://www.cbs.nl/nl-nl/maatwerk/2019/31/kerncijfers-wijken-en-buurten-2019
4Country name retracted for anonymous submission.
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Figure 4: We demonstrate that the proposed TabularMNEP model achieves similar performance while
requiring 18 times fewer episodes (x-axis is in log-scale).

Xi’an Amsterdam
Max. Efficiency GGI(2) GGI(4) Rawls Max. Efficiency GGI(2) GGI(4) Rawls
GA (Wei et al.[(2020)) | 28.9+0.55 - - - - - - -
ACA (Wei et al.[(2020)) | 30.3+1.13 - - - - - - -
DeepRL 62.3 £ 5.66 8.7+0.62 54+133 16.6+1.46 35.7+£0.06 24+£018 0.8+£0.00 11.2+1.18
TabularMNEP (Ours) 62.6 £1.59 824046 4.6=£0.29 15.0+1.98 294+482 24+£0.18 14+044 10.5+1.80

Table 1: Results on Xi’an and Amsterdam for 5 seeds (GA and ACA are taken from [Wei et al.| (2020)).

6 Results

We ran both algorithms using 5 random seeds and provide code to replicate our resultsﬂ This section presents
three key analyses: (1) a comparison of our proposed Tabular-TNDP method against recent approaches
including Deep-RL, a Genetic Algorithm, and an Ant-Colony Algorithm (Section ; (2) a demonstration
of TabularMNEP’s versatility across multiple social-good rewards (Section [6.2)); and (3) a justification for
choosing TabularMNEP in scenarios where interpretability is crucial (Sectio

6.1 TabularMNEP performs on par with DeepRL methods

Figure [3] demonstrates that our proposed TabularMNEP method significantly outperforms both the Genetic
Algorithm [Owais & Osman| (2018) and Ant-Colony Algorithm Yang et al. (2007) (GA and ACA results
from [Wei et al| (2020)). TabularMNEP achieves comparable performance to DeepRL across both the Xi’an
and Amsterdam environments, considering both traditional and social good objectives defined in Section
Detailed averages and confidence intervals for all methods are presented in Table [I]

Notably, TabularMNEP achieves these results with substantially greater training efficiency, requiring only
25k episodes compared to DeepRL’s 450k episodes (3500 epochs x 128 episodes). This 18x reduction in
training episodes is visualized in Figure [f] using a logarithmic x-axis.

In Table[2] we report the average CO equivalent emissions from running our models across the four proposed
reward functions. We observe that TabularMNEP requires, on average, 12x fewer emissions to achieve
performance comparable to the Deep RL baseline.

Shttps://github.com /*kek ok

Xi’an Amsterdam
Max. Efficiency GGI(2) GGI(4) Rawls | Max. Efficiency GGI(2) GGI(4) Rawls
DeepRL 1.21 1.38 1.61 1.17 1.23 1.21 1.22 1.14
TabularMNEP (Ours) 0.05 0.13 0.13 0.12 0.06 0.28 0.28 0.10

Table 2: Estimated average emissions in kg COs equivalent for each model’s training for different reward
functions.

10



Under review as submission to TMLR

1
1
5 1
I o
\ 1 >
10 S= I o
Sseaddde T o
E ©
15 ! Q
1 =
- 2
20 : HE 1st quintile (.(/?)
BN 2nd quintile
1 B 3rd quintile
25 w 1 I 4th quintile
— 5th quintile o« 50 oo
0 10 20 0 1st quint. 2nd 3rd
== Existing lines === Max Efficiency === GGI(2) GGI(4) Rawls
(a) Generated Lines and Distribution of Benefits (Xi’an)
0 1.75
5
0 - /, ° 1.50
¢
01.25
15 LN S
B ©1.00
A A =
20 \__l "IJ)
B 1st quintile \"& =N ] 0.75
25| mm 2nd quintile ) 1 ©
B 3rd quintile N n 050
30 W 4th quintile N
5th quintile 0.25
0 10 20 30 40 0.00 oo -
' 1st quint. 2nd 3rd 4th 5th
== Existing lines === Max Efficiency === GGI(2) GGI(4) Rawls

(b) Generated Lines and Distribution of Benefits (Amsterdam)

Figure 5: We present the results of applying various reward functions to design transportation lines in Xi’an
(a) and Amsterdam (b). The left column displays the generated lines for each city, while the right column
shows the distribution of satisfied demand across the five groups for the selected models.

6.2 TabularMNEP is capable of optimizing diverse rewards

Figure [5| shows the generated metro lines and the reward distribution among groups for both environments.
The Max Efficiency reward function achieves the highest overall satisfied origin-destination flows, but we can
observe that the rewards are distributed unequally among the five groups. In both Xi’an and Amsterdam,
the highest quintiles exhibit greater satisfaction than the lowest quintiles, with inequality more pronounced
in Amsterdam. This is due to the spatial distribution: in Xi’an, groups are more uniformly distributed, and
segregation is lower, while in Amsterdam, the city center is dominated by higher-priced areas.

In contrast, the equality-based reward functions result in a more balanced distribution. Both GGI with w = 2
and w = 4 effectively equalize the rewards across groups. When w = 4, the rewards are distributed even more
equally, though at the cost of overall efficiency. This allows decision-makers to control the trade-off between
efficiency and fairness. The Rawls reward function prioritizes the lowest quintile in both environments,
maximizing its satisfied demand. As intended, it directs the agent to optimize exclusively for the lowest
quintile.

An additional insight from the Rawls reward function is its ability to reveal how isolated the lowest-utility
group is. In Xi’an, maximizing for the lowest quintile creates “trickle-up” effects, benefiting other groups as
well. However, in Amsterdam, where the lowest quintile is more segregated in the southeast, the generated
line primarily benefits this group alone. This is further demonstrated in the spatial distribution of the lines,
as shown in Figure [}
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6.3 TabularMNEP leads to more interpretable policies

Tabular RL offers a key advantage in solving the Metro Network Expansion Problem (MNEP): interpretabil-
ity of the policies. As illustrated in Figure |§|, we can visualize three critical aspects: (a) the optimal policy
generating the metro line, (b) the average reward distribution across initial grid locations, and (c) the final
Q-values with their corresponding best actions, which provide a direct interpretation for the best metro
segment direction from each possible departing state. This interpretability provides decision-makers with
insights beyond the model’s output, enabling them to understand the relationship between actions and re-
wards, identify over-and under-explored areas in the city, and allowing genearting alternative routes to those
produced by black-box models.

Transparency in this domain is particularly valuable as real-world metro planning often requires multiple
alternative policies rather than a single solution. Additionally, tabular MNEP allows for incorporating
spatial constraints after training, once the model has thoroughly explored the solution space. This post-
training constraint application enables the model’s ability to discover diverse solutions, while still capable of
accommodating practical limitations.

(a) Average Generated (b) Average Reward Starting (c) Q-Values and best actions
Line from each cell
°] "
]
50
5 | o 40
104 .‘. °
) 30
15 4 30
- 20
20 20
M 10
254 | 10
el ®

10 15 20 25 0 5 10 15 20 25
Existing lines ~ —e— Generated line

Figure 6: TabularRL not only effectively learns a diverse set of reward functions but also provides inter-
pretability. In Panel (a), the metro line of a trained model optimized for maximum efficiency is illustrated.
Panel (b) shows the average achievable reward from various starting points within the city, while Panel (c)
displays the learned Q-values for each cell when the agent selects the action associated with the highest
Q-value. Higher Q-values indicate more favorable locations for placing a metro station.

7 Conclusion

In this paper, we demonstrate that simple, tabular-based reinforcement learning methods can effectively
address complex combinatorial optimization problems with diverse objectives, such as the Transport Network
Design and Metro Network Expansion problems. Our approach involves reformulating the Markov Decision
Process to create a smaller action space and creating distinct Q-tables for different action types.

We show that well-engineered problem reformulation combined with established methods can yield compet-
itive results with significantly less computational power. Our method, which can run on standard personal
computers without a GPU, performs comparably to state-of-the-art deep reinforcement learning methods,
while using significantly less resources and training for significantly less time. Furthermore, this approach en-
hances interpretability and flexibility in policy selection. Consistent with recent research trends, our method
showcases that effective computational policy-making in real-world applications is possible without relying
on complex, black-box models. We hope this work will encourage a reevaluation of simpler models for other
challenges too.
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A Appendix — Feasibility Rules

The feasibility rules applied in this paper closely resemble those in previous studies Wei et al.| (2020); Zhang
et al.| (2024). The agent’s actions are constrained using an ActionMask, which is updated at each timestep
based on the agent’s current location and prior positions. This approach ensures that the agent moves
forward, avoids cyclical paths, and does not revisit locations where a station has already been placed.

Our method optimizes this process by maintaining a constant action mask length of 8, representing all
possible directions (including diagonals), rather than the entire grid size. The agent’s movement direction
is established by its initial longitudinal and latitudinal steps. For example, if the agent begins by moving
north, southward actions will be masked out to enforce forward progression. If the agent subsequently moves
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east, only actions corresponding to the north, east, and northeast directions remain available, with all other
actions masked. Figure [7] illustrates how these feasibility rules are applied through the action mask during
an episode.

<1

®

Zo

== Allowed actions
== Masked-out actions

@ Added stations
4 Previous actions

Figure 7: A snapshot of an episode, where the action mask created by feasibility rules constraints the next
available actions to the agent.

B Appendix — Amsterdam environment preparation

GPS data is unavailable for Amsterdam, so we estimate the origin-destination (OD) demand using the
recently published universal law of human mobility, which indicates that the total mobility flow between two
areas i and j is determined by their distance and visitation frequency [Schlipfer et al. (2021). The calculation
is as follows:

ODy; = p;Ki/d3; 0 (fimaz/ fmin) (7)

Here, K; is the total area of the origin location i, d?j is the (Manhattan) distance between ¢ and j, and p;
represents the magnitude of flows, computed as:

i =~ ppop(j)rad?fmaz (8)

Where rad? is the radius of area j. We estimate the flows over a week by setting fiin, fmaz to 1/7 and 7
respectively. The grid cells are of equal size, K; and can be omitted from the calculation.
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