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Abstract

In this paper, we tackle an emerging com-
puter vision task, open-vocabulary universal im-
age segmentation, that aims to perform seman-
tic/instance/panoptic segmentation (background
semantic labeling + foreground instance segmen-
tation) for arbitrary categories of text-based de-
scriptions in inference time. We first build a base-
line method by directly adopting pre-trained CLIP
models without finetuning or distillation. We
then develop MaskCLIP, a Transformer-based ap-
proach with a MaskCLIP Visual Encoder, which
is an encoder-only module that seamlessly inte-
grates mask tokens with a pre-trained ViT CLIP
model for semantic/instance segmentation and
class prediction. MaskCLIP learns to efficiently
and effectively utilize pre-trained partial/dense
CLIP features within the MaskCLIP Visual En-
coder that avoids the time-consuming student-
teacher training process. MaskCLIP outperforms
previous methods for semantic/instance/panoptic
segmentation on ADE20K and PASCAL datasets.
We show qualitative illustrations for MaskCLIP
with online custom categories. Project website:
https://maskclip.github.io.

1. Introduction
Panoptic segmentation (Kirillov et al., 2019b) or image pars-
ing (Tu et al., 2005) integrates the task of semantic segmen-
tation (Tu, 2008) for background regions (e.g. “stuff” like
“road”, “sky”) and instance segmentation (He et al., 2017)
for foreground objects (e.g. “things” such as “person”, “ta-
ble”). Existing panoptic segmentation methods (Kirillov
et al., 2019b;a; Li et al., 2019; Xiong et al., 2019; Lazarow
et al., 2020) and instance segmentation approach (He et al.,
2017) deal with a fixed set of category definitions, which
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are essentially represented by categorical labels without se-
mantic relations. DETR (Carion et al., 2020) is a pioneering
work that builds a Transformer-based architecture for both
object detection and panoptic segmentation. Under a more
general setting, the tasks of semantic (Tu, 2008), instance
(He et al., 2017), and panoptic (Kirillov et al., 2019b) can
be unified under a universal image segmentation paradigm
(Cheng et al., 2022).

The deep learning field is moving rapidly towards the open-
world/zero-shot settings (Bendale & Boult, 2015) where
computer vision tasks such as classification (Radford et al.,
2021), object detection (Li et al., 2022b; Zareian et al.,
2021; Zang et al., 2022; Gu et al., 2022; Cai et al., 2022),
semantic labeling (Li et al., 2022a; Ghiasi et al., 2022), and
image retrieval (Bendale & Boult, 2015; Hinami & Satoh,
2018; Zareian et al., 2021; Hinami & Satoh, 2018; Kamath
et al., 2021) perform recognition and detection for categories
beyond those in the training set.

In this paper, we take advantage of the existence of pre-
trained CLIP image and text embedding models (Rad-
ford et al., 2021), that are mapped to the same space.
We first build a baseline method for open-vocabulary
panoptic segmentation using CLIP models without train-
ing. We then develop a new algorithm, MaskCLIP, that is a
Transformer-based approach efficiently and effectively uti-
lizing pre-trained partial/dense CLIP features without heavy
re-training. The key component of MaskCLIP is a Relative
Mask Attention (RMA) module that seamlessly integrates
the mask tokens with a pre-trained ViT-based CLIP back-
bone. MaskCLIP is distinct and advantageous compared
with previous approaches in three aspects: 1) A canonical
background and instance segmentation representation by
the mask token representation with a unique encoder-only
strategy that tightly couples a pre-trained CLIP image fea-
ture encoder with the mask token encoder. 2) MaskCLIP
avoids the challenging student-teacher distillation processes
such as OVR-CNN (Zareian et al., 2021) and ViLD (Gu
et al., 2022) that face a limited number of teacher objects
to train; 3) MaskCLIP also learns to refine masks beyond
simple pooling in e.g. OpenSeg (Ghiasi et al., 2022).

The contributions of our work are listed as follows.

• We develop a new algorithm, MaskCLIP, to perform
open-vocabulary universal image segmentation building
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on top of canonical background and instance mask repre-
sentation with a cascade mask proposal and refinement
process.

• We device the MaskCLIP Visual Encoder under an
encoder-only strategy by tightly coupling a pre-trained
CLIP image feature encoder with the mask token en-
coder, to allow for the direct formulation of the mask
feature representation for semantic/instance segmen-
tation+refinement, and class prediction. Within the
MaskCLIP Visual Encoder, there is a new module called
Relative Mask Attention (RMA) that performs mask
refinement.

• MaskCLIP expands the scope of the CLIP models
to open-vocabulary universal image segmentation by
demonstrating encouraging and competitive results for
open-vocabulary semantic, instance, and panoptic seg-
mentation.

2. Related Work
Open vocabulary. The open vocabulary setting is gaining
increasing popularity lately as traditional fully supervised
settings cannot handle unseen classes during testing, while
real-world vision applications like scene understanding, self-
driving and robotics are commonly required to predict un-
seen classes. Previous open-vocabulary attempts have been
primarily made for object detection. ViLD (Gu et al., 2022)
trains a student model to distill the knowledge of CLIP. Re-
gionCLIP (Zhong et al., 2022) finetunes the pretrained CLIP
model to match the image areas with corresponding texts.
OV-DETR (Zang et al., 2022) uses CLIP as an external
model to obtain the query embedding from CLIP model. Re-
cently there is also work made for open-vocabulary semantic
segmentation (Ghiasi et al., 2022).

Universal segmentation. Previously seman-
tic/instance/panoptic segmentation tasks have been
treated as different tasks using different methods. With
the recent trends in computer vision, the formulation and
methods of the three segmentation tasks have gradually
been uniformed (Cheng et al., 2021; 2022). Instead of
separately dealing with the stuff/instance, those methods
treat them as the same one and output masks for each
stuff/instance and do a post-process on the output masks for
different segmentation tasks.

Open-vocabulary universal segmentation: an emerg-
ing task. As open-set, open-world, zero-shot, and open-
vocabulary are relatively new concepts that have no com-
monly accepted definitions, thus, different algorithms are
often not directly comparable with differences in problem
definition/setting, training data, and testing scope. Table
1 gives a summary for the recent open-vocabulary applica-
tions. XPM (Huynh et al., 2022) utilizes vision-language

cross-modal data to generate pseudo-mask supervision to
train a student model for instance segmentation, and thus,
it may not be fully open-vocabulary to allow for arbi-
trary object specifications in the inference time. LSeg (Li
et al., 2022a) also has a limited open-vocabulary aspect as
the learned CNN image features in LSeg are not exposed
to representations beyond the training labeling categories.
OpenSeg (Ghiasi et al., 2022) is potentially applicable for
instance/panoptic segmentation, but OpenSeg is formulated
to be trained on captions that lack instance-level information
that is fundamental for panoptic segmentation. The direct
image feature pooling strategy in OpenSeg is potentially an-
other limiting factor towards the open-vocabulary universal
segmentation. Nevertheless, no results for open-vocabulary
panoptic/instance segmentation are reported in (Ghiasi et al.,
2022).

Class-agnostic segmentation. Most closed-vocabulary seg-
mentation methods are class-ware i.e. predicting the classes
along with the corresponding labels (He et al., 2017; Cheng
et al., 2021; 2022). However, in tasks involving open-
vocabulary or open-world scenarios where novel classes
may appear during testing, it is common to use class-
agnostic segmentation methods for generating masks(Jia
et al., 2021; Qi et al., 2022; Xu et al., 2022). The difference
in methodology between class-aware and class-agnostic
segmentation methods is typically not substantial. Class-
aware methods often incorporate a class-prediction head,
whereas class-agnostic methods do not. In our method, we
adopt a class-agnostic segmentation model by removing the
class-prediction head from previous class-aware class-aware
segmentation methods.

CLIP model distillation/reuse. After its initial release, the
CLIP model (Radford et al., 2021) that is learned from large-
scale image-text paired captioning datasets has received a
tremendous amount of attention. Some other similar vision-
language models have also been proposed later e.g. ALIGN
(Jia et al., 2021), GLIP (Li et al., 2022b). Many algorithms
have been developed lately (Zang et al., 2022; Wang et al.,
2022; Zhong et al., 2022; Luo et al., 2021; Patashnik et al.,
2021; Shen et al., 2022) trying knowledge distillation from
the CLIP model to benefit the down-stream tasks one way
or the other by leveraging the rich semantic language infor-
mation paired in the images. Here, we directly adopt the
backbone of CLIP image model to train for open-vocabulary
panoptic segmentation. There have been attempts (Rao et al.,
2022; Zhou et al., 2022) that use the partial/dense CLIP fea-
tures to represent pixel-wise features as teacher model to
train student model for semantic segmentation.

3. Method
Our pipeline, shown in Figure 1, contains two stages. The
first stage is a class-agnostic mask proposal network. The
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Table 1: Comparison for recent open-vocabulary approaches for object detection, semantic segmentation, instance segmentation, and
panoptic segmentation. GLIP (Li et al., 2022b); OVR-CNN (Zareian et al., 2021); ViLD (Gu et al., 2022); RegionCLIP (Zhong et al.,
2022); OV-DETR (Zang et al., 2022); LSeg (Li et al., 2022a); OPenSeg (Ghiasi et al., 2022); DenseCLIP (Rao et al., 2022); XPM (Huynh
et al., 2022). ✓✗ indicates that the corresponding method is loosely following the definition. Dense Clip features refer to the use of
pixel-wise/local features. Note that OpenSeg uses its ALIGN (Jia et al., 2021), which is an alternative to CLIP.

Task Method Arbitrary Online Segmentation Dense CLIP Training Annotation

Inference semantic instance features data type

Object Det.

GLIP ✔ FourODs, GoldG, Cap24M labels + bbox + captions
OVR-CNN ✔ COCO base, CC3M bbox + captions

ViLD ✔ COCO labels + bbox
RegionCLIP ✔ CC3M, COCO captions

Semantic Seg.
LSeg ✓✗ ✔ COCO + others labels + segmentations

OpenSeg ✔ ✔ ✓✗ ✔ COCO, LocalizedNarratives masks + captions
DenseCLIP ✔ ✔ COCO labels + segmentations

Instance Seg. XPM ✓✗ ✔ COCO, CC3M labels + masks + captions

Panoptic Seg. MaskCLIP (ours) ✔ ✔ ✔ ✔ COCO labels + masks
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Figure 1: Illustration of the pipeline. Our pipeline contains two stages. The first stage is a class-agnostic mask proposal network and
the second stage is built on the pretrained CLIP ViT model. All the weights of the CLIP ViT model during training are fixed. Arrows in
orange denote weight sharing. The embeddings’ weights of Mask Class Tokens are shared by Class Tokens in the CLIP ViT model and
are fixed. RMA represents Relative Mask Attention which is built based on the CLIP ViT attention layer. RMA contains all the weights
from CLIP ViT attention layer which are all fixed during training. Additional weights are added in RMA for further mask information
utilization and mask refinement. The demo image we use here is from ADE20K (Zhou et al., 2019).

second stage is MaskCLIP Visual Encoder which is built on
the CLIP (Radford et al., 2021) ViT architecture. It takes the
images and the coarse masks from the first stage as the input
and outputs refined masks along with the corresponding
partial/dense image features for further classification.

3.1. Class-Agnostic Mask Proposal Network

Our Class-Agnostic Mask Proposal Network is built on
instance/segmentation models such as MaskRCNN(He et al.,
2017) and Mask2Former(Cheng et al., 2022). To make
the model class-agnostic, we remove the class supervision
during training. The classification head thus becomes a
binary classification for either positive or negative in these
models.

3.2. MaskCLIP Visual Encoder

Similar to CLIP, our MaskCLIP Visual Encoder also pre-
dicts the image features. Unlike the CLIP Visual Encoder
which only uses one class token to output the feature of the
whole image. Our MaskCLIP Visual Encoder uses another
M Mask Class Tokens to output the partial/dense features
for each corresponding area of the image given the masks.
The Mask Class Tokens use attention masks and Relative
Mask Attention to obtain the partial/dense features which
we discuss in the following two parts.

Mask Class Tokens. In order to obtain partial/dense im-
age features for the corresponding masks or bounding boxes
for further recognition or distillation, an easy way to do this
is simply masking or cropping the image and then sending
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the obtained image to the pretrained image encoder. This
method has been widely used in several open vocabulary de-
tection/segmentation methods (Zhong et al., 2022; Gu et al.,
2022; Xu et al., 2022). The problem is that it’s not compu-
tation efficient (N masks/boxes will lead to N images and
they will be computed through the image encoder indepen-
dently) and also loses the ability to see the global image
context information which is very important for recognizing
some objects and stuff. For masking, another problem is
that masks are in different shapes and simply masking the
image will cause the resulting image to have a transparent
background which usually doesn’t exist in real images that
are used for training in large language-vision models e.g.,
CLIP.

To solve this, we propose Mask Class Tokens for efficient
feature extraction from images without losing the global
image context information. In the original CLIP ViT-based
visual encoder framework, the input of the network is N
image tokens and 1 class token. The final output of the class
token will be used for the relation computation with the text
embeddings. Our newly introduced M Mask Class Tokens
will be alongside the image tokens and the class token. The
embeddings’ weights of the Mask Class Token are provided
by the class token in the pretrained CLIP ViT model and are
fixed. Each Mask Class Token will output a corresponding
partial/dense image feature similar to the class token which
outputs the feature of the whole image. To achieve this, we
design an attention mask as follows

M =

[
F(N+1)×(N+1) T(N+1)×M

M′

M×N FM×1 TM×M

]
(1)

in which M is the number of Mask Class Tokens, N is
the number of image tokens, Tm×n is an m × n True ma-
trix, Fm×n is an m× n False matrix and M′ is defined as
following:

M′
i,j =

{
False if maski contains at least one pixel in patchj
True otherwise.

(2)

where True means that this position is masked out i.e. not
allowed to attend and False otherwise.

In our mask attention matrix M, F(N+1)×(N+1) shows the
N Image Tokens and one Class Token are attending each
other as in the original CLIP. T(N+1)×M shows that the
N Image Tokens and one Class Token are not attending
the M Mask Class Tokens. M′

M×N shows that the Mask
Class Tokens are attending the Image Tokens given the
corresponding masks. FM×1 shows that the M Mask Class
Tokens are attending the Class Token. TM×M shows that
the M Mask Class Tokens are not interacting with each
other.

In this way, each Mask Class Token will learn from the
corresponding mask area of the images. The image tokens
are also interacting with each other which means the global
information won’t lose. And it’s also very efficient since
we don’t need to do redundant computing for each mask or
finetune the pretrained model. However, the mask informa-
tion is not fully utilized and it cannot be refined either. But
we will see in the experiments later that simply adopting
Mask Class Tokens to the pretrained CLIP model without
any finetuning will already serve as a competitive baseline.
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Figure 2: Relative Mask Attention. Our Relative Mask Attention
mechanism adds another attention matrix A′

:M,−N : to the original
attention matrix. The newly added attention matrix is computed
using the Image Tokens and the Mask Patch Tokens. The mask
patch tokens are acquired by patchifying the masks using a similar
way for the images as shown here. Moreover, the masks are refined
by using Mr in Eq. 5 which is computed by Image Tokens and
Mask Class Tokens.

Relative Mask Attention. To further utilize the mask
information and refine the coarse masks, we propose Rel-
ative Mask Attention mechanism in our transformer. Our
key design principle is to try not to change the CLIP fea-
tures directly as this would destroy the learned relationship
between the image features and text features in the CLIP
model. Therefore, we adopt a way to only change the at-
tention matrix in the transformer to learn a better linear
combination of the values in the attention layers accord-
ing to the mask information. As in Figure 2, our proposed
Relative Mask Attention Mechanism only changes the atten-
tion matrix and refines the masks. Mr is defined in Eq. 5.
A′

:M,−N : is defined in Eq. 3. fM is the class-agnostic mask
proposal network. f1 and f2 are two downsampling net-
works that encode the images/masks to image tokens/mask
patch tokens sharing the same architecture. fr is a two-layer
convolutional network that maps the attention matrix to a
mask residual.

Similar to relative positional encoding, we use a relative
attention mechanism here. Let D be the dimension of the
token embedding, for each Mask Class Token TMC

i ∈ RD
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with a corresponding mask Ki ∈ RH×W whose shape is
the same as the image, we use a similar way as for the
images to get mask patch tokens TMP ∈ RM×N×D in the
computation of the attention. In our attention matrix, the
Mask Class Tokens attending the image tokens part will
then be as follows:

A
′

:M,−N : =

D∑
c

(ϕQm
(TMP)⊙ ϕKm

(T IM))c (3)

A:M,−N : =
ϕQ(T

MC) · ϕK(T IM) +A′

:M,−N :

2
√
D

(4)

where T IM ∈ RN×D is image tokens, TMC ∈ RM×D is
Mask Class Tokens, TMP ∈ RM×N×D is Mask Patch To-
kens ϕQ, ϕK , ϕQm

, ϕKm
are linear transformations, ⊙ is

element-wise product and
∑D

c (·)c is the sum of the embed-
ding dimension. ϕKm(T IM) ∈ RN×D will first be broadcast
to RM×N×D before doing element-wise production.

The attention will also in turn be used for the refinement of
the masks. The vanilla attention can be seen as a relationship
between each mask area and all the image patches. Thus we
utilize this to help our coarse masks be more accurate. The
updating process of the masks is as following:

Mr = σ(σ−1(Mc) + fr(ϕQ(T
MC)⊙ ϕK(T IM))) (5)

where Mc,Mr ∈ RN×H×W denotes the coarse mask and
refined mask respectively, fr is a learnable non-linear func-
tion that maps the attention matrix to a mask residual, σ and
σ−1 are sigmoid and inverse sigmoid functions respectively.

The RMA method aims to leverage detailed mask informa-
tion and refine masks by utilizing CLIP’s features. Without
RMA, the method would only utilize the mask information
in the attention mask (which is just a low-resolution mask)
and cannot refine the mask using CLIP’s features. In order
to utilize the detailed information of masks, we add another
attention matrix, which is obtained from the Mask Patch
Tokens and the Image Tokens, to the original attention ma-
trix in the CLIP ViT model so that the new attention matrix
could be aware of the detailed mask information and thus
the Mask Class Tokens could attend the information more
accurately. Furthermore, we use the information from the
original attention matrix, which is obtained from the Mask
Class Tokens and the Image Tokens, to refine the mask.

4. Experiments
In this part, we train our proposed MaskCLIP method
using COCO (Lin et al., 2014) training data and test on
other datasets (ADE20K (Zhou et al., 2019; 2017), PAS-
CAL Context (Mottaghi et al., 2014), LVIS) under the
open vocabulary setting. We report our results on seman-
tic/instance/panoptic segmentation tasks to evaluate the per-
formance of out model’s universal segmentation.

4.1. Datasets

COCO: COCO (Lin et al., 2014) includes 133 classes where
80 classes are things and 53 classes are stuff or background.
There are 118k training images and 5k validation images.
In our experiments, we first train the class-agnostic mask
proposal network on COCO training dataset using the an-
notations of panoptic masks. Then we train our models on
COCO training images in a supervised manner.

ADE20K: ADE20K (Zhou et al., 2019; 2017) contains
20,210 images and annotations for training and 2000 images
and annotations for validation. It serves both panoptic seg-
mentation and semantic segmentation. The full version (A-
847) (Zhou et al., 2019) includes 847 classes and the short
version (A-150) (Zhou et al., 2017) includes 150 classes.
We use the validation set in ADE20K for testing without
any training on this dataset in which case we can test our
model’s capability of open vocabulary segmentation.

PASCAL Context: PASCAL Context (Mottaghi et al.,
2014) contains 10,103 per-pixel annotations for images
of PASCAL VOC 2010 (Everingham et al.), where 4998
for training and 5105 for validation. The full version (P-
459) includes 459 classes and the short version includes 59
classes. This dataset serves as another benchmark testing
our model’s open vocabulary segmentation ability.

LVIS: LVIS (Gupta et al., 2019) contains 100,170 images
for training and 19,809 images for validation. It extends
COCO (Lin et al., 2014) but contains 1,203 categories. It
is considered one of the most challenging benchmark for
instance segmentation because of its large vocabulary, long-
tailed distribution, and fine-grained classification. We report
our model’s performance of open vocabulary instance seg-
mentation on the validation dataset.

4.2. Implementation Details

Class-Agnostic Mask Proposal Network. In our first
stage, we train a class-agnostic mask proposal network us-
ing MaskRCNN (He et al., 2017) and Mask2Former (Cheng
et al., 2022) on COCO training data. The experiment setting
we use for MaskRCNN is R50-FPN-1x. The backbone we
use in Mask2Former is ResNet-50. All the training setting
follows the default in their models.

CLIP Baseline. We design our first baseline by directly
using the class-agnostic mask proposal network from the
first stage and the pretrained CLIP model. We mask the
images according to the masks from the class-agnostic mask
proposal network and send the masked images to the CLIP
model to get classification results. The pretrained CLIP
model we use is ViT-L/14@336px and the text inputs we
use are simply the category names defined by each dataset.
Those two settings keep the same with the following two
methods for a fair comparison.
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Table 2: Results on open-vocabulary semantic segmentation. A-150 and A-847 represent the ADE20K dataset with 150 classes and
847 classes respectively. P-459 and P-59 represent PASCAL Context dataset with 459 classes and 59 classes respectively. All results use
the mIoU metric. All methods presented here don’t use extra data other than COCO for training.

Method COCO Training Data A-150 ↑ A-847 ↑ P-459 ↑ P-59 ↑
ALIGN (Jia et al., 2021) None 10.7 4.1 3.7 15.7
ALIGN w/ proposals (Jia et al., 2021) Masks 12.9 5.8 4.8 22.4
LSeg+ (Li et al., 2022a) Masks + Labels 18.0 3.8 7.8 46.5
OpenSeg (Ghiasi et al., 2022) Masks + Captions 21.1 6.3 9.0 42.1
SimSeg (Xu et al., 2022) Masks + Labels 20.5 7.0 - 47.7
CLIP Baseline Masks 13.8 5.2 5.2 25.3
MaskCLIP w/o RMA Masks 14.9 5.6 5.3 26.1
MaskCLIP (MaskRCNN) Masks + Labels 22.4 6.8 9.1 41.3
MaskCLIP Masks + Labels 23.7 8.2 10.0 45.9

Image GT ALIGN++ OpenSeg MaskCLIP

house      sky       road      grass     land       tree       brick     rock      river      wall    building  plant      roof 

Figure 3: Comparison on open-vocabulary semantic segmentation. The input image and the results for GT, ALIGN++, OpenSeg are
from (Ghiasi et al., 2022).

MaskCLIP w/o RMA Baseline. Our second baseline is
based on the Mask Class Tokens which doesn’t use the
Relative Mask Attention mechanism. Instead of masking
the images and sending the resulting images directly to
the CLIP model for feature extraction, we use Mask Class
Tokens to acquire the corresponding partial/dense image
features. The obtained image features will then be used for
further open vocabulary classification.

The two baselines above don’t need any training in the sec-
ond stage and can be used to directly perform the open
vocabulary tasks. We will demonstrate that the second base-
line is better at feature extraction in both quantitative results
and qualitative results under the open vocabulary setting and
show the effectiveness and efficiency of the proposed Mask
Class Tokens.

MaskCLIP. In our MaskCLIP method, we still use the CLIP
ViT-L/14@336px pretrained model as with the previous two.
This model has 24 attention layers and we add Relative Mask
Attention in four of them which is 6, 12, 18, 24. We use
AdamW (Loshchilov & Hutter, 2019) as our optimizer and
the learning rate is set to 0.0001. We train our model on
COCO training data for 10k iterations with a batch size of
8. The training takes around 3h on 8 Nvidia A5000 GPUs.

Loss Function. The loss function is L = λceLce +
λdiceLdice + λbceLbce, where Lce is the loss for classifica-
tion, Ldice and Lbce are the losses for mask localization. In
our experiments, We set λce = 2, λdice = 5, λbce = 5.

In the next three parts, we evaluate our methods on open vo-

cabulary semantic, panoptic segmentation, and instance seg-
mentation tasks. The class-agnostic mask proposal networks
we use in those methods are trained using Mask2Former
other than noted.

4.3. Open-Vocabulary Semantic Segmentation

First, we use our method to compare with open-vocabulary
semantic segmentation as in Table 2. We train our method
on the COCO dataset and evaluate on another four different
datasets. On the four datasets we test, MaskCLIP outper-
forms the two baselines we described in the implementa-
tion details which demonstrates that our feature extraction
method is better than the vanilla way in this setting. It
extracts the features without the need to change the input
and can simultaneously extract multiple mask area features
easily. For 100 masks’ feature extraction in a single im-
age, the CLIP baseline takes ~3s on a single 3090 GPU
while the MaskCLIP w/o RMA baseline only takes ~0.6s
which is ~4x faster. Our MaskCLIP beats both baselines
significantly as it utilizes accurate mask information and
refines the masks during the feature extraction process. Fur-
thermore, our proposed method also reaches state-of-the-art
results on three of the benchmarks with only P-59 slightly
lower than LSeg+(Li et al., 2022a).

To compare with previous methods, we also provide a se-
mantic segmentation comparison in Figure 3. Results on
ALIGN++ and OpenSeg are directly from (Ghiasi et al.,
2022) and we run the same image using our MaskCLIP
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model. It can be seen that due to the open vocabulary set-
ting, some similar classes may be mistakenly classified e.g.
all three methods predict the house in this image while the
ground truth is building.

4.4. Open-Vocabulary Panoptic Segmentation

Next, we compare our MaskCLIP with the two baselines on
ADE20K validation set under the open vocabulary panoptic
segmentation setting. The results are presented in Table 3.
As can be seen from the table, the MaskCLIP w/o RMA
baseline performs better on all the metrics in panoptic seg-
mentation setting which further demonstrates our method’s
effectiveness.

We also show two sets of images to demonstrate our model
capability. The first is the qualitative results on ADE20K.
We compare our method with the two baselines in Figure 4.
It can be seen that our method performs much better than
the two baselines. The results from the first column show
that due to the lack of global information, CLIP baseline
fails to predict “floor”. Instead, it predicts “skyscraper”.
While the MaskCLIP w/o RMA baseline and MaskCLIP
model can predict the floor correctly as it does not lose the
global context information.

The second set of images we’re presenting is in Figure
5. These figures show our capability of specifying any
arbitrary classes in performing panoptic segmentation task.
The results show that though we train a new model based
on the CLIP model without any distillation methods, we
can still preserve the CLIP image features very well. Our
model doesn’t have a clear bias towards the base classes in
the training set and could tell the difference very well that
have no chance to learn in the COCO training: e.g toy vs
real and filled vs empty.

4.5. Open-Vocabulary Instance Segmentation

Cross-Dataset Setting. We present the results on open
vocabulary instance segmentation in Table 4 under the cross-
dataset setting. Since instance segmentation can be regarded
as “thing-only“ panoptic segmentation, we directly apply
our model trained on COCO panoptic dataset to the instance
segmentation task. MaskCLIP with different class-agnostic
mask proposal networks performs better than CLIP Baseline
and MaskCLIP w/o RMA in general.

Table 4: Results on open-vocabulary instance segmentation
under the cross-dataset setting.

Method ADE20K LVIS
AP ↑ AP50 ↑ AP75 ↑ AP ↑ AP50 ↑ AP75 ↑

CLIP Baseline 3.974 6.090 4.288 4.989 7.244 5.227
MaskCLIP w/o RMA 4.263 6.696 4.402 5.762 8.202 6.169
MaskCLIP (MaskRCNN) 6.164 12.072 5.775 6.431 12.753 5.777
MaskCLIP 5.989 9.739 6.209 8.404 12.190 8.810

COCO Split Setting. Besides the cross-dataset setting,
we also follow the COCO Split Setting in XPM(Huynh
et al., 2022) to perform the instance segmentation in Table
5. On the generalized setting which is a more challenging
setting, we outperform previous results in base, target, and
all categories. In the constrained setting, we also show
competitive results in both base and target categories.

Table 5: Results on open-vocabulary instance segmentation
under the COCO split setting.

Method Constrained Generalized
Base Target Base Target All

Soft-Teacher(Xu et al., 2021) 41.8 14.8 41.5 9.6 33.2
Unbiased-Teacher(Liu et al., 2021) 41.8 15.1 41.4 9.8 33.1
XPM(Huynh et al., 2022) 42.4 24.0 41.5 21.6 36.3
MaskCLIP 42.8 23.2 42.6 21.7 37.2

4.6. Efficiency Analysis

We further provide efficiency analysis in Table 6 to demon-
strate the efficiency of our feature extraction method. Pre-
vious methods usually perform a crop/mask operation on
the input images and send the resulted images to CLIP to
obtain the partial/dense features for classification which is
rather slow. In contrast, our proposed method employs Mask
Class Tokens to obtain the partial/dense features for classifi-
cation. By doing so, our method can extract partial/dense
features more efficiently (instead of running CLIP N times,
our method only requires running CLIP one time with N
more Mask Class Tokens) and is also aware of the global
context information.

Table 6: FLOPs Comparison. We use the CLIP ViT-L/14
model in all methods for fair comparison and 640x640 as
the input resolution.

Method TFLOPs
RegionCLIP(Zhong et al., 2022) 9.5
ZegFormer(Ding et al., 2022) 10.3
SimSeg(Xu et al., 2022) 9.6
CLIP Baseline 10.5
MaskCLIP(Ours) 0.3

5. Ablation Study
5.1. Incorporating GT Masks.

Since our model can decouple the mask proposal process
and the classification process, we could also use the ground
truth mask proposals which can be regarded as a “perfect”
mask proposal network in our method. In this way, we can
eliminate the effects of the quality of the mask proposals
and inspect the method’s classification capabilities. In Table
7. We can see that the performance could gain a lot from
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Table 3: Results on open-vocabulary panoptic segmentation using the ADE20k validation dataset. th and st represent thing and stuff
classes respectively.

Method PQ ↑ PQth ↑ PQst ↑ SQ ↑ SQth ↑ SQst ↑ RQ ↑ RQth ↑ RQst ↑
CLIP Baseline 8.207 8.473 7.675 53.124 52.661 54.048 10.534 10.883 9.835
MaskCLIP w/o RMA 9.565 8.922 10.852 62.507 62.268 62.985 12.645 11.758 14.418
MaskCLIP (MaskRCNN) 12.860 11.242 16.095 64.008 64.183 63.658 16.803 14.968 20.473
MaskCLIP 15.121 13.536 18.290 70.479 70.021 71.396 19.211 17.448 22.737

In
pu

tI
m

ag
e

C
L

IP
B

as
el

in
e

M
as

kC
L

IP
w

/o
R

M
A

M
as

kC
L

IP

Figure 4: Qualitative results on ADE20K panoptic segmentation. The images are taken from the ADE20K validation set. We use the
class names directly from the ADE20K 150 classes as the text inpputs. Three images are presented here using our MaskCLIP model along
with the two baselines.
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(a) “toy rabbit”, “real rabbit”, (b) “horse”, “donkey”, (c) “empty bottle”, “filled bottle”,

“background” “sky”, “grass” “door”, “wall”, “ground”

Figure 5: User-specified class panoptic segmentation. The labels above are the text inputs we used for testing the images. Texts in bold
are novel classes i.e. don’t exist in the labels of COCO training data. (a) Our model is able to distinguish object properties of real rabbit
and toy rabbit. (b) This example shows that our model is potential for fine-grained classifications and does not have bias toward the base
classes. (c) Our results show that it can tell the difference between the filled status and empty status of bottles.

the “perfect” mask proposals. And our MaskCLIP method
also outperforms OpenSeg in this setting.

Table 7: Incorporating GT Masks. Results on using GT
masks as mask proposals for open-vocabulary panoptic seg-
mentation and semantic segmentation.

PQ ↑ mIoU ↑
OpenSeg (Ghiasi et al., 2022) - 21.1
MaskCLIP 15.1 23.7
OpenSeg + GT masks (Ghiasi et al., 2022) - 27.5
MaskCLIP + GT masks 35.8 31.7

5.2. Mask Refinement.

In our Relative Mask Attention part, the attention layer will
use the accurate mask information to learn a better attention
matrix and the mask will also use the attention information
to gradually refine itself. In this ablation study, we only let
the attention matrix learn from the mask without any mask
refinement. And we get the results in Table 8. Since the SQ
reflects the segmentation quality, we care more about SQ
here. It can be seen that MaskCLIP performs slightly better
than that without the mask refinement which demonstrates
the effectiveness of the mask refinement.

6. Conclusion
In this paper, we have presented a new algorithm, MaskCLIP,
to tackle an emerging computer vision task, open-vocabulary

Table 8: Ablation Study on Mask Refinement. Results on
ADE20K validation set are reported here. Both methods are
trained on COCO and tested on ADE20K validation dataset.
MR refers to mask refinement.

PQ ↑ PQTh ↑ PQSt ↑ SQ↑ SQTh ↑ SQSt ↑
MaskCLIP w/o MR 13.624 13.253 14.368 66.361 67.715 63.653
MaskCLIP 15.121 13.536 18.290 70.479 70.021 71.396

universal image segmentation. MaskCLIP is a Transformer-
based approach using mask queries with the ViT-based CLIP
backbone to efficiently and effectively utilize pre-trained
partial/dense CLIP features. MaskCLIP consists of a Rel-
ative Mask Attention (RMA) module that is seamlessly
integrated with a pre-trained CLIP. MaskCLIP is distinct
compared with prior approaches in open-vocabulary seman-
tic segmentation/object detection by building an integrated
encoder module for segmentation mask refinement and im-
age feature extraction with a pre-trained CLIP image model.
Encouraging experimental results on open-vocabulary se-
mantic/instance/panoptic segmentation have been obtained.
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A. CLIP Baseline Details
Here we provide more details on our CLIP Baseline. Given an RGB image I ∈ RH×W×3 with height H and width W and
a list of category names with C classes, we precompute the text embedding of the category names as E ∈ RC×D. The mask
proposal network fm outputs N masks M ∈ RN×H×W . For each mask: the cropped image region is the element-wise
product between the binary mask Mi and the image I, i.e. Ri ∈ RH×W×3; the visual embedding Vi ∈ RD of the cropped
region is computed by the visual encoder where D is the hidden dimension; the final classification score Yi ∈ RC is the
softmax over the dot product between the visual embedding Vi and the text embedding T . A formal algorithm is described
as 1 and a visualization of this is shown as 6.

Algorithm 1 CLIP Baseline

Require: Mask proposal network fm, CLIP visual encoder fv , CLIP text encoder ft.
Given an image I ∈ RH×W×3 and a list T containing C category names.
E = ft(T ).
M = fm(I).
for t = 1, 2, . . . , N do

Ri = Mi ⊙ I.
Vi = fv(Ri).
Yi = softmax(E ⊗ Vi).

end for

Category Names:
[‘Person’, ‘Desk’ …]

Text EmbedCLIP 
Text 

Encoder

Classification
Results

CLIP 
Visual 

Encoder

Class-Agnostic
Mask Proposal

Network

… …

Figure 6: Illustration of the CLIP baseline.

B. Ablation on using Relative Mask Attention in Different Layers
In this part we conduct an ablation study on using different layers for relative mask attention. Since our pretrained CLIP
model is fixed during the whole training procedure, whether each layer would help the final results remains a question. We
use four different kinds of layers combination of the layers in this part and provide the results in Table 9. We can see that the
last layer is a key part of our results since the features are gradually learned through all the attention layer. Though the last
four layers’ features should the best, the performance wouldn’t be better if Relative Mask Attention is only used in the last
four layers. This is also reasonable since the network should not have the accurate mask information too late.

Table 9: Ablation Study on Relative Mask Attention Layers in different layers. All the methods are trained on COCO
and tested on ADE20K validation dataset. The pretrained CLIP ViT-L/14@336px model has 24 layers and we replace four
of them with our relative mask attention to fully utilize the accurate mask information and refine the masks.

Different Layers PQ PQTh PQSt

1, 7, 13, 19 11.241 10.519 12.686
3, 9, 15, 21 11.372 10.141 13.835
21, 22, 23, 24 14.673 14.048 15.922
6, 12, 18, 24 15.121 13.536 18.290
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C. More Visualization Results on Arbitrary Categories
In this part, we provide more visualization results on user-specified class discoveries in Figure 7. We select some very close
text prompts such as “four-leg animal" and “two-leg animal"; “car”, “truck” and “SUV” and find that our method can still
classify them. We also show another result which is “person identification” in Figure 7 (c) which shows our model preserve
the dense/local CLIP features rather well.

(a) “four-leg animal”, “two-leg animal”, (b) “car”, “truck”, “SUV” (c) “Person: Obama”, “Person: Biden”,

“background” “road”, “sky” “Person: Trump”

Figure 7: More qualitative restuls on user-specified class. The labels above are the text prompts we used for testing the images. Texts
in bold are novel classes i.e. don’t exist in the labels of COCO training data.
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