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ABSTRACT

Machine unlearning seeks to remove a set of forget samples from a pre-trained
model to comply with emerging privacy regulations. While existing machine un-
learning algorithms focus on effectiveness by either achieving indistinguishability
from a re-trained model or closely matching its accuracy, they often overlook the
vulnerability of unlearned models to slight perturbations of forget samples. In
this paper, we identify a novel privacy vulnerability in unlearning, which we term
residual knowledge. We find that even when an unlearned model no longer rec-
ognizes a forget sample—effectively removing direct knowledge of the sample—
residual knowledge often persists in its vicinity, which a re-trained model does not
recognize at all. Addressing residual knowledge should become a key considera-
tion in the design of future unlearning algorithms.

1 INTRODUCTION

The extensive use of user data in training machine learning (ML) models has raised significant
privacy concerns, especially when users invoke their “Right to be Forgotten,” as highlighted in
recent regulations such as the EU’s General Data Protection Regulation (GDPR) (Voigt & Von dem
Bussche, 2017). This right mandates that a ML-driven system must completely erase user data not
only from databases but also from the models themselves upon a user’s request (Shastri et al., 2019).
Consequently, simply deleting user data from databases is often inadequate, as the data can still
be extracted (Carlini et al., 2023) or reconstructed (Li et al., 2024) from the models themselves,
particularly from Deep Neural Networks (DNNs). Ideally, a machine learning model may “exactly”
eliminate the influence of user data by re-training from scratch with a new dataset that excludes
the specified data for each removal request. However, this re-training approach is computationally
expensive and time-consuming, making it impractical for real-time or large-scale implementation.

To address this challenge, a more scalable approach known as machine unlearning has been pro-
posed (Cao & Yang, 2015). This technique attempts to selectively forget specific data (referred to
as forget samples) from a trained model without requiring complete re-training. Although machine
unlearning methods cannot achieve exact unlearning, they are capable of achieving “approximate”
unlearning. The criteria for approximate unlearning stem from the concept of Differential Privacy
(DP) (Dwork et al., 2014), which requires that the model, after unlearning, remains statistically in-
distinguishable from a model that has been fully re-trained without the forget samples. Here, the
model obtained through re-training serves as the gold standard for evaluating the effectiveness of
machine unlearning algorithms.

Although the concept of approximate unlearning provides a theoretical foundation for the effective-
ness of unlearning, its evaluation remains challenging since the exact distributions of model weights
are generally infeasible to determine1. In practice, unlearning algorithms are evaluated by compar-
ing an unlearned model’s accuracy on forget samples to that of a re-trained model. However, even if
the accuracy of the unlearned model matches that of the re-trained model, there is no guarantee that
this agreement in accuracy is stable under slight, imperceptible perturbations to the forget samples.
If a forget sample, when modified by a barely perceptible perturbation, can be re-identified by the
unlearned model, it introduces an additional layer of privacy risk.

1Approximate unlearning and its variants have primarily been evaluated on linear models; see, e.g., Guo
et al. (2019); Chourasia & Shah (2023); Chien et al. (2024).
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Figure 1: Residual knowledge in machine unlearning is illustrated by comparing the prediction consistency
of the re-trained and unlearned models. Solid check or cross marks indicate the correctness of predictions
from the re-trained model, while hollow ones represent the unlearned model. For forget sample 1, both models
exhibit the same predictions (left); however, the unlearned model often correctly predicts more of the perturbed
samples (four images on the right, which are perturbed by the imperceptible noise in the middle). Ideally, as
seen with forget sample 2, both the re-trained and unlearned models should consistently predict correctly across
the original and all perturbed samples.

In this paper, we draw attention to this new privacy risk, which we term the residual knowledge
of machine unlearning. We observe that even for a forget sample that the unlearned model no
longer recognizes, it is often possible to apply an imperceptible perturbation on the sample such
that the unlearned model correctly identifies while a re-trained model does not recognize it at all.
See Figure 1 for an illustration. This phenomenon suggests that although unlearning algorithms
remove direct knowledge of the forget sample itself, there may still be residual knowledge about the
sample remains in its vicinity—identifiable information that would not have existed had the model
been re-trained from scratch. We provide empirical evidence demonstrating the existence of this
phenomenon across several existing unlearning algorithms.

2 BACKGROUND AND RELATED WORK

We start by defining the notations and providing a brief overview of existing machine unlearning
algorithms, along with the metrics commonly used to evaluate their effectiveness.

Let S ≜ {si = (xi, yi)}ni=1 be a training dataset with n sample points si, where xi ∈ X ⊆ Rd

represents the feature vector and yi ∈ Y denotes the target. The hypothesis space, denoted as H,
consists of functions parameterized2 by w ∈ W that map from X to Y , i.e., H ≜ {hw : X →
Y;w ∈ W}. Additionally, let ∥z∥p denote the ℓp-norm of a vector z for a scalar p ≥ 1.

Existing unlearning algorithms. Consider a randomized learning algorithm A : S → H, such as
Stochastic Gradient Descent (SGD). Machine unlearning is a mechanism M(hw,S,Sf ), applied to
a trained model hw = A(S), that aims to remove the influence of certain samples within a subset
Sf ⊆ S (Xu et al., 2023). Here, the subset Sf is commonly referred to as the forget set. The
simplest mechanism for machine unlearning involves obfuscating model weights (Golatkar et al.,
2020a), such as M(A(S),S,Sf ) = w+ σn, where n ∼ N(0, I|w|) is the isotropic Gaussian noise.
However, as σ increases, this approach can lead to poor overall model performance by making w
independent of S. It is therefore essential to define a retain set Sr ≜ S\Sf and design the unlearning
mechanism to preserve the model’s performance (e.g., accuracy) on Sr.

Besides re-training, in which we have M(A(S),S,Sf ) = A(Sr), numerous algorithms3 have been
developed to achieve the goal of unlearning. For instance, Guo et al. (2019) leverages influence
functions to assess the impact of forget samples and directly update model weights using a one-
step Newton method. This Newton-based approach was later extended by Golatkar et al. (2020b),
which linearizes neural networks using the Neural Tangent Kernel (NTK). Kodge et al. (2024) pro-

2We consider a parameterized H since machine unlearning for non-parametric methods, such as a nearest-
neighbor classifier, can be trivially achieved by simply removing the training sample in constant time.

3Due to space limitations, we cannot cover all existing unlearning methods. For a more comprehensive
survey, please refer to Nguyen et al. (2022); Xu et al. (2023).
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pose removing the influence of forget samples from activation spaces by applying singular value
decomposition to layer-wise activations. Fine-tuning is also a widely adopted approach. For exam-
ple, Gradient Descent (GD) fine-tunes the model exclusively on retain samples (Neel et al., 2021),
whereas Gradient Ascent (GA) reverses the gradient updates associated with forget samples (Graves
et al., 2021; Jang et al., 2022). More recently, Kurmanji et al. (2024) propose NegGrad+, an ap-
proach that fine-tunes a model by simultaneously applying GD on the retain set and GA on the
forget set, effectively balancing learning and unlearning in a single optimization step.

Approximate unlearning and its variants. The certification of approximate unlearning was first
introduced in Guo et al. (2019), where an unlearning algorithm M is said to satisfy (ϵ, δ)-certified
removal if it is (ϵ, δ)-DP (Dwork et al., 2014). The concept of statistical indistinguishability in DP
has further inspired Rényi unlearning (Chourasia & Shah, 2023; Chien et al., 2024), an alternative
certification of approximate unlearning that extends Rényi DP (Mironov, 2017). An unlearning
algorithm M is said to satisfy (α, ϵ)-Rényi unlearning if for all S and Sr that differ by only a single
sample (i.e., there is exactly one forget sample), the α-Rényi divergence Dα(·∥·) (Rényi, 1961)
satisfies Dα(ν∥ν′) ≤ ϵ, where M(A(S),S,Sf ) ∼ ν and A(Sr) ∼ ν′. Both (ϵ, δ)-certified removal
and (α, ϵ)-Rényi unlearning rely on comparing the distributions of the unlearned and re-trained
models. However, when H is complex, these distributions are generally infeasible to compute. A
more practical approach to certified unlearning leverages a readout function, r : H×S → R, which
extracts data-specific information from a model h, such as accuracy on the retain or forget samples.
This approach enables an information-theoretic perspective on unlearning, as proposed by Nguyen
et al. (2020) and Golatkar et al. (2020a), where unlearning can be quantified via the Kullback-Leibler
divergence DKL(·∥·) (Kullback & Leibler, 1951): DKL(Pr[r(M(h,S,Sf ), T )]∥Pr[r(A(Sr), T )] ≤
ϵ, where T ⊆ S can be any dataset such as the retain or forget sets. By shifting the focus from model
distributions to measurable performance indicators, this perspective makes certified unlearning more
practical and extends its applicability to non-convex settings (Zhang et al., 2024).

3 THE RESIDUAL KNOWLEDGE AFTER UNLEARNING

Although approximate unlearning certifications, such as Rényi unlearning, ensure that the weight
distributions of the unlearned and re-trained models are similar, they do not guarantee robustness
against adversarial perturbations. In fact, several prior studies have explored the impact of adver-
sarial attacks on unlearning. For example, Marchant et al. (2022) propose an adversarial attack
designed to increase the computational cost of data removal. Pawelczyk et al. (2024) demonstrate
that existing unlearning methods fail to completely remove forget samples after a carefully crafted
poisoning attack. Additionally, Zhao et al. (2024) reveal that a small fraction of malicious unlearning
requests can significantly reduce the adversarial robustness of the unlearned model.

The objective of this paper differs fundamentally from those previous works. The proposed phe-
nomenon of residual knowledge explores yet another dimension of how adversarial examples im-
pact unlearning. Specifically, a forget sample can be easily modified so that the unlearned model
correctly classifies it even when a re-trained model fails to do so. This suggests that the unlearning
process is vulnerable, is susceptible to manipulation, and introduces new privacy risks. In other
words, residual knowledge is closely related to the transferability of adversarial examples (Tramèr
et al., 2017) between the unlearned and re-trained models.

We formalize the mathematical definition of residual knowledge in the context of unlearning. For
a forget sample xf , let Bp(xf , τ) ≜ {x ∈ Rd; ∥x − xf∥p ≤ τ} represent the set of all possible
perturbations of xf within an ℓp-ball of radius τ ≥ 0. Let m ∼ M(h,S,Sf ) denote an unlearned
model and a ∼ A(Sr) a re-trained model. We define the following non-negative ratio to quantify
the residual knowledge around xf :

k((xf , yf ),m, a, τ) ≜
Pr[m(x′

f ) = yf ;x
′
f ∈ Bp(xf , τ)]

Pr[a(x′
f ) = yf ;x′

f ∈ Bp(xf , τ)]
. (1)

If k((xf , yf ),m, a, τ) > 1, we say that the unlearned model m suffers from residual knowledge
of a forget sample xf , as it is more likely to correctly classify the vicinity Bp(xf , τ) of the for-
get sample than a re-trained model. Conversely, if k((xf , yf ),m, a, τ) < 1, it indicates that
m excessively unlearn the forget sample, potentially leaking information about the training sam-
ple that was removed. We consider the unlearned model to have τ∗-robust unlearning if there
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Table 1: The accuracy and ℓ2-distance of unlearned models. The ℓ2-distance between the re-trained model and
each unlearning baseline implies that these unlearned models are similar to the re-trained model.

Metrics Original Re-train NTK Kodge GA GD NegGrad+

Forget Accuracy 0.9800 0.8000 0.8400 0.4100 0.5800 0.9200 0.7700
Retain Accuracy 0.9989 0.9989 1.0000 0.9100 0.9244 1.0000 0.9344
Test Accuracy 0.9350 0.9350 0.9360 0.8550 0.9020 0.9510 0.9260
ℓ2-distance - - 0.1628 0.1749 0.1612 0.1428 0.1608

Figure 2: Residual knowledge in unlearned models varies significantly. NTK and GD exhibit substantial residual
knowledge, while Kodge and GA excessively unlearn the forgotten samples. NegGrad+ is the most effective,
consistently achieving K(Sf ,m, a, τ) ≈ 1 across different τ values under PGD.

exists τ∗ = infτ≥0 k((xf , yf ),m, a, τ) = 1, as this indicates that the unlearned and re-trained
models perform similarly not only on the forget sample but also in its vicinity of τ∗. The def-
inition in equation 1 can be readily generalized to a whole forget set Sf by K(Sf ,m, a, τ) ≜
1/|Sf |

∑
(xf ,yf )∈Sf

k((xf , yf ),m, a, τ).

We demonstrate the presence of residual knowledge using a smaller subset of the CIFAR-10 dataset
(Krizhevsky et al., 2009), following a setup similar to that of Golatkar et al. (2020a). Specifically,
we randomly sample 250 training images and 200 test images from each of the first five classes in
CIFAR-10, with the validation set comprising 20% of the training data. We select 100 samples from
class 0 to form the forget set Sf . For our experiments, we use ResNet-18 (He et al., 2016) as the
hypothesis space. As baselines, we adopt widely used unlearning methods that represent different
unlearning strategies (cf. §2): NTK (Golatkar et al., 2020b), Kodge (Kodge et al., 2024), GA (Graves
et al., 2021), GD (Neel et al., 2021), and NegGrad+ (Kurmanji et al., 2024).

Table 1 summarizes the performance of the original model (prior to unlearning), the re-trained
model, and the unlearning baselines. We assess the accuracy of these models on the forget set,
the retain set, and a hold-out test set not used during training. Most baselines demonstrate competi-
tive accuracy on the retain and test sets compared to the re-trained model. However, some baselines,
such as Kodge and GA, show reduced performance on the forget set.

Importantly, we find that some unlearning algorithms are highly susceptible to residual knowledge,
where information in the vicinity of a forget sample can be exploited by adversarial perturbations
(Kim, 2020). In Figure 2, we present K(Sf ,m, a, τ) of residual knowledge across varying attack
norm τ . We empirically approximate the probability Pr[m(x′

f ) = yf ;x
′
f ∈ Bp(xf , τ)] using 100

adversarial examples x′
f generated by three different methods: injecting Gaussian noise (p = 2),

FGSM (p = ∞) (Goodfellow et al., 2014), and PGD (p = ∞) (Madry et al., 2017). NTK achieves
accuracy levels that closely match those of the re-trained model, as shown in Table 1. However, it
retains a significant amount of residual knowledge, especially when x′

f is generated using Gaussian
noise or FGSM. Similarly, GD preserves residual knowledge because it fails to effectively unlearn
the forgotten sample initially. In contrast, Kodge and GA excessively unlearn the forgotten samples,
achieving K(Sf ,m, a, τ∗) = 1 only at τ∗ = 0.03 and τ∗ = 0.02, respectively. The most ideal case
of unlearning is demonstrated by NegGrad+, which maintains a nearly stable K(Sf ,m, a, τ) ≈ 1
across varying attack strengths τ with PGD, effectively achieving τ∗ ≈ 0.

Final remark. Residual knowledge in unlearning poses a potential privacy risk, warranting fur-
ther research in several directions. First, the presence and extent of residual knowledge should be
validated across a broader range of datasets and existing unlearning algorithms. Second, it would
be valuable to define and measure residual knowledge in a manner analogous to differential pri-
vacy, along with conducting a theoretical analysis of this concept. Finally, developing an unlearning
algorithm that ensures τ -robust unlearning remains an important challenge to address.
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Disclaimer. This paper was prepared for informational purposes by the Global Technology Ap-
plied Research center of JPMorgan Chase & Co. This paper is not a product of the Research De-
partment of JPMorgan Chase & Co. or its affiliates. Neither JPMorgan Chase & Co. nor any of its
affiliates makes any explicit or implied representation or warranty and none of them accept any lia-
bility in connection with this paper, including, without limitation, with respect to the completeness,
accuracy, or reliability of the information contained herein and the potential legal, compliance, tax,
or accounting effects thereof. This document is not intended as investment research or investment
advice, or as a recommendation, offer, or solicitation for the purchase or sale of any security, finan-
cial instrument, financial product or service, or to be used in any way for evaluating the merits of
participating in any transaction.
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