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Abstract
Model-based reinforcement learning (MBRL) has
been a primary approach to ameliorating the sam-
ple efficiency issue as well as to make a generalist
agent. However, there has not been much effort
toward enhancing the strategy of dreaming itself.
Therefore, it is a question whether and how an
agent can “dream better” in a more structured and
strategic way. In this paper, inspired by the obser-
vation from cognitive science suggesting that hu-
mans use a spatial divide-and-conquer strategy in
planning, we propose a new MBRL agent, called
Dr. Strategy, which is equipped with a novel
Dreaming Strategy. The proposed agent realizes
a version of divide-and-conquer-like strategy in
dreaming. This is achieved by learning a set of
latent landmarks and then utilizing these to learn
a landmark-conditioned highway policy. With the
highway policy, the agent can first learn in the
dream to move to a landmark, and from there it
tackles the exploration and achievement task in a
more focused way. In experiments, we show that
the proposed model outperforms prior pixel-based
MBRL methods in various visually complex and
partially observable navigation tasks.

1. Introduction
A crucial capability of generalist agents, such as humans,
is to explore environments and acquire the skills needed to
achieve various goals, continuously and in an open-ended
way. It is particularly important for these agents to become
efficient explorers and achievers in an unsupervised or self-
supervised manner. It enables them to survive and become
more competent in a more scalable way as well as in more
flexible open-ended environments, where future tasks aren’t
predefined but can evolve over time.

This capability is equally important for artificial generalist
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Figure 1. (Left) In the real world, humans maintain a hierarchical
spatial structure for easy navigation. (Right) Trying to memorize
all the streets on the map can lead to an overwhelming amount
of information, making it difficult to retain the information effec-
tively. (Middle) In contrast, choosing to travel by train to move
between cities and transfer to a taxi at the terminal minimizes the
complexity, allowing one to concentrate on local routes starting
from the terminal near the destination.

agents, such as Reinforcement Learning (RL) agents (Sutton
& Barto, 2018), including robots and virtual agents in games
like Minecraft (Guss et al., 2019). However, these artificial
agents currently have a significant limitation compared to
humans: low sample efficiency. They require much more
experience data than humans (Mnih et al., 2015; 2016). Con-
sidering these agents could operate in a real-time physical
world and are susceptible to physical damage, improving
sample efficiency is of top priority. It is particularly more
challenging in more realistic settings where observations
are high-dimensional (e.g., images) and partially observable
(Berner et al., 2019; Vinyals et al., 2019).

Currently, a primary approach in RL to improving sam-
ple efficiency is via model-based reinforcement learning
(MBRL) (Sutton, 1991; Ha & Schmidhuber, 2018; Hafner
et al., 2020). In this approach, the agent uses experience
data to learn both the representation of the observations and
states as well as the transition dynamics of the environment,
known as a world model. This enables the agent to learn its
policy within an internal model of the world instead of the
real world via planning (or, simulation or dreaming). An
example of such an unsupervised model-based generalist
agent is LEXA (Mendonca et al., 2021).

On the other hand, research in cognitive science suggests
that humans use structured and strategic planning, such as
spatial divide-and-conquer, when tackling complex prob-
lems (Chun & Jiang, 1998). For example, when navigating
to a specific location, humans typically break down the task
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into two stages: first, they plan to reach a familiar land-
mark near the destination, then they use a local and focused
strategy to get from that landmark to the target, as shown
in Figure 1. This divide-and-conquer-like approach is ef-
fective as it reduces the space to learn. Without this, it
would require to learn all point-to-point navigation paths
separately, requiring a lot of experience data. However, in
current MBRL agents like LEXA, the process of dreaming
or imagination is guided by a rather naive strategy such as
random i.i.d. sampling from the replay buffer.

In this paper, we raise the following questions: “Is more
structured and strategic dreaming possible?”, if so, “how
could we implement this idea in the modern MBRL frame-
works?” and “how could this improve generalist agents?”
To this end, we propose a strategic model-based generalist
agent, Dr. Strategy (short for “Dream Strategy”). Our key
idea is that a divide-and-conquer approach leveraging the
structure of latent landmarks can enhance the efficiency
of dreaming in MBRL and promote better exploration and
achievement quality of a generalist agent.

The proposed model consists of four main modules. First,
to obtain landmarks, we map each state from the replay
buffer to a discrete representation called landmarks through
VQ-VAE (Razavi et al., 2019). Second, we train a landmark-
conditioned policy called highway policy, specialized to
move only to landmarks instead of arbitrary position, unlike
goal-conditioned policy. Thirdly, we train an exploration
policy (Explorer) and a goal-conditioned policy (Achiever)
through dreaming. However, unlike LEXA, the two poli-
cies take advantage of starting from beneficial landmarks
selected from strategic dreaming and planning. Thus, they
solve the problem locally in a focused way, following the
highway policy to bring the agent to the selected landmark.
This realizes the divide-and-conquer-like approach. In ex-
periments, we show that the proposed model outperforms
prior pixel-based MBRL methods in various visually com-
plex and partially observable navigation tasks, while also
showing comparative results in robot manipulation tasks.

The main contributions of this paper are as follows. We
propose the concept of “strategic dreaming" in pixel-based
MBRL in the sense that the agent can leverage the structure
of the state space such as landmarks to enable a divide-and-
conquer-like strategy during dreaming, and then propose the
first MBRL agent to realize and demonstrate the benefits
of this concept. We also provide empirical evidence that
this approach can enhance the accuracy and efficiency of
MBRL agents in the generalist setting similar to LEXA.
Additionally, we also introduce a set of benchmarks for
visually complex navigation tasks.

2. Dr. Strategy Agent
To enable a structured divide-and-conquer approach and
thus enhance the efficiency of dreaming in world models
for goal-conditioned agents, we introduce our proposed
model, Dr. Strategy. A key change to prior model-based
goal-conditioned approaches is the use of latent landmarks.
Latent landmarks are a set of latent states representing the
experience of the agent, which enables the agent to strategi-
cally focus on essential information and thus dream struc-
turally. In our proposed model, we divide our experience
via landmarks and conquer by starting from the landmarks,
thereby guiding the agent to explore and achieve goals ef-
ficiently and with precision. We call the overall process
of training and planning to exploit the divide-and-conquer
strategy “Strategic Dreaming”.

Dr. Strategy consists of three policies: the Highway pol-
icy, which helps reach landmarks; Explorer, which explores
distant points using the world model; and Achiever, which
reaches specified goals in divided areas. Additionally, we
incorporate Focused Sampling during Achiever training to
increase accuracy. As illustrated in Figure 2, our approach
consists of two phases: (1) We construct latent landmarks
from the explored states (Section 2.2), train the three policies
in imagination through Strategic Dreaming (Section 2.3),
and then explore through curious landmark-guided explo-
ration (Section 2.4). (2) We then achieve downstream tasks
in the real environment exploiting the Highway policy and
Achiever (Section 2.5).

2.1. World Model

To enhance the accurate prediction by high-dimensional
pixel-level inputs, we employ a Recurrent State Space
Model (RSSM) (Hafner et al., 2019b). The world model
works as a virtual simulator, predicting the transition dynam-
ics of the real environment. The policy interacts with the
imagined trajectories generated in parallel by sampling from
the world model. We refer to this as “Dreaming". Thus,
we can train policies using the imagined trajectories instead
of interacting directly with the real environment (refer to
Appendix B for more details). The components comprising
the world model include:

Dynamics : ŝt = dynθ(st−1, at−1) (1)
Representation : st = reprθ(st−1, at−1, xt) (2)

Encoder : et = encθ(xt) (3)
Decoder : x̂t = decθ(st), (4)

where st is the model state which is constructed as a con-
catenation of a deterministic state from GRU (Cho et al.,
2014) and a discrete stochastic state (Hafner et al., 2020). at
and xt are action and observation, respectively. The world
model is trained by optimizing the evidence lower bound
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Figure 2. Comparison between Dr. Strategy and LEXA. a. We construct latent landmarks and train Highway policy πl(at|st, l),
Explorer πe(at|st), and Achiever πg(at|st, eg) in imagination. The Achiever is trained by Focused Sampling, which is conditioning
goals within a small number of steps instead of random sampling. All three policies are purely trained with imagined trajectories from
the world model. b. During exploration, we only evaluate the landmarks, and call the landmark with the highest exploration potential
“Curious Landmark" (C-Landmark). In a real environment, the Highway policy moves to the curious landmark, and the Explorer resumes
exploration. The agent iterates training and exploration with a certain frequency TF . c. During test time, we find the landmark that is
nearest to the given pixel-level goal (G-Landmark). The Highway policy reaches G-Landmark, and the Achiever proceeds to achieve the
goal immediately after. The blue boxes in the bottom half of the figure indicate the modules of LEXA, which are Explorer and Achiever
without focused sampling and landmarks.

(ELBO) through stochastic backpropagation (Kingma &
Welling, 2013; Rezende et al., 2014) using the Adam opti-
mizer (Kingma & Ba, 2014).

2.2. Building Latent Landmarks

We project the model states onto discrete N codes in
the codebook we call landmarks using the VQ-VAE (Van
Den Oord et al., 2017). Landmarks can be seen as cluster
centers partitioning the state space into a number of codes in
the codebook. To exploit these landmarks, we train the latent
landmark-conditioned policy Highway policy that works as
an express train for the agent to go to the landmarks.

To find landmarks that can represent an area of the given
distribution over states, we learn the landmark encoder
encϕ(s) and decoder decϕ(l) through VQ-VAE. We aim
to encode model states s into the N learnable codes which
we call landmark l of a codebook, and vice versa.

We encode the model states into embeddings using land-
mark encoder encϕ(s). For quantization, the embedding
encϕ(s) is assigned to the closest code in the codebook lk
where k = argminj ∥encϕ(s) − lj∥2, k ∈ 1 · · ·N . With
the landmark decoder decϕ(lk) , lk can be decoded back to
state s. The training objective is

Ll = ∥s− decϕ(lk)∥22 + β∥sg(lk)− encϕ(s)∥22, (5)

where sg(·) denotes stop gradient. The loss is composed
of reconstruction error of the decoder and commitment loss,
which is the difference between embedded vectors and the
codes in the codebook. The balance in the loss is managed
by the hyperparameter β. We assign only a single code in
the codebook to each model state. Thus, landmarks can be
seen as cluster centers partitioning the model states into the
number of codes in the codebook (Mazzaglia et al., 2022b;
Campos et al., 2020).
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2.3. Building Blocks for Strategy

Highway policy. We train a landmark-conditioned policy
πl(at|st, l) called Highway policy through imagined trajec-
tories. Given a target landmark l, the objective of this policy
is to reach the state of the target landmark ŝl = decϕ(l).
To train the Highway policy, we design the reward with two
terms:

rl(st, l) = −∥decϕ(l)− st∥22 +
K∑
i=1

log∥st − sK-NN
i ∥2 (6)

The first term calculates the distance in the state space
between the visited state st and the decoded state from the
conditioned landmark code l. This encourages the agent to
reach the decoded state of l. The second term is estimated
using a K-NN particle-based estimator (Singh et al., 2003),
which motivates the agent to visit diverse states within one
trajectory.

Explorer and Achiever. We follow prior approaches based
on goal-conditioned MBRL framework (Mendonca et al.,
2021). Explorer is an exploration policy πe(at|st) trained
by receiving exploration reward re(st). re(st) encourages
the policy to maximize the disagreement among an ensem-
ble of 1-step dynamics models (Pathak et al., 2019; Sekar
et al., 2020). As the explorer trains in imagination, we
start the imagined trajectories not only from sampled data
from the replay buffer but also from landmarks. We call the
goal-conditioned policy πg(at|st, eg) Achiever that receives
current model state and goal embedding eg = encθ(xg) as
inputs, where xg is the goal image. The reward for reaching
a goal rg(êt, eg) is based on a self-supervised objective that
focuses on the temporal distance that follows prior works
(Mendonca et al., 2021), where it encourages the policy
to reduce the number of actions needed to move from the
current state to the goal state. êt = emb(st) ≈ et is the
predicted image embedding at step t (refer to Appendix D
for more details).

2.4. Strategy to Explore

How can the generalist agent strategically dream to explore
during training time so that it can achieve diverse goals?
Prior works leverage the world model for planning from
randomly sampled candidate states (Mendonca et al., 2021).
However, in large or complex search spaces, chances of
stumbling upon good solutions by random sampling are
typically low (Ecoffet et al., 2021). This leads to a lot of
computational resources wasted on exploring sub-optimal
areas. Instead, we propose to plan strategically through
dreaming by only evaluating the landmarks. By constructing
the landmarks to represent the agent’s experience (divide)
and evaluating (conquer) only the representations of the
explored space, we can gain a comprehensive approximation
with efficiency. We also refer to this strategy as “strategic
exploration."

We call the landmark with the highest exploration potential
“Curious Landmark". We then move to the curious landmark
via Highway policy, then resume to explore immediately
with Explorer.

Curious landmark should lead us to effective exploration
in the future, entailing high future exploration reward po-
tential. To select a curious landmark, we get the decoded
model state s

(i)
0 ∼ decϕ(li), i ∈ 1 . . . N of each landmark

via landmark decoder. We then imagine H steps trajectories
with the Explorer through world model from each landmark,
τi = {s(i)0 , s

(i)
1 , . . . , s

(i)
H }. We calculate the curiosity Ci of

landmark li as the expected exploration reward of τi:

Ci = Eτi [re(s
(i)
t )], τi = {s(i)0 , s

(i)
1 , . . . , s

(i)
H } (7)

Such that re represents the exploration reward, as previously
mentioned. We then sample the Curious Landmark lC with
the probability of Ci. The curiosities of the landmarks are
updated during the explorer’s training.

Note that we are evaluating discrete states (landmarks), each
playing a role as cluster centers dividing the model states
into N partitions. This enables us to have a comprehen-
sive evaluation of the covered space efficiently, and Dream
Strategically takes advantage of the divide-and-conquer-like
approach.

Landmark-guided Exploration. During exploration, we
iterate over three phases: Every iteration starts with select-
ing a Curious Landmark lC . Then, we exploit the Highway
policy πl(at|st, lC) in the environment to reach lC . If the
Highway policy has been running for more than TL steps,
Explorer takes over immediately and starts to explore. How-
ever, if the current state st is near enough slC ∼ decϕ(lC)
where the difference is under a certain threshold before TL,
the agent switches to Explorer as well.

Explorer can start from a position with high exploration
potential right away, reducing the time to visit previously
well-known places and collecting high exploration value
trajectories. The iteration is repeated every TF step, main-
taining a hierarchical structure.

2.5. Strategy to Achieve

How can the agent efficiently train to reach numerous user-
defined goals at test time? Is there a way to exploit the
divide-and-conquer manner of strategically dreaming at
test time? We introduce the divide-and-conquer strategy
once again, by finding the landmark that is nearest to the
given goal and utilizing the Highway policy to reach the
area closest to the goal (divide). Only then we exploit
a local goal-conditioned policy trained to reach between
close states (conquer). We call this goal-conditioned policy
“Achiever with Focused Sampling", where it is trained to
move between nearby states, thereby precisely mastering
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local areas. We demonstrate that by leveraging the divide-
and-conquer strategy, we can achieve increased accuracy.
We also refer to this strategy as “strategic achievement."

Focused Sampling. Through the divide-and-conquer strat-
egy, the Achiever πg(at|st, eg) is expected to be positioned
very close to the goal when the policy is triggered. Thus,
it only needs to cover a very short distance to reach its
destination. Instead of sampling random states from past
trajectories like prior work (Mendonca et al., 2021), we sam-
ple two different observations xt, xt+k within the range TS

in the same trajectory from the replay buffer. We use them
as a starting state and goal state to train the Achiever, where
st is estimated through the world model from xt and eg is
computed through the world model encoder encθ(xt+k).

Through this sampling, the policy is trained for the agent to
navigate between states that are in close proximity, thereby
improved sample efficiency is expected while exploiting the
divide-and-conquer strategy to the full extent. We empiri-
cally investigate the efficacy of the focused sampling in our
ablation study in Section 3.5.

Landmark-guided Achievement. At test time, we receive
the user-defined pixel-level goal xg and estimate sg through
the world model. The agent estimates the landmark lG near-
est to the goal state sg , where lG = argminj ∥encϕ(sg)−
lj∥2. We then utilize Highway policy πg(at|st, lG) condi-
tioned on lG. We switch to the Achiever πg(at|st, eg) to
reach the final goal when the highway policy has been run-
ning for more than TL steps, or when the current state is
near enough to the landmark similar to landmark-guided
exploration in Section 2.4).

We exploit Highway policy to move long distances condi-
tioned on a small number of discrete landmarks, then utilize
Achiever specialized to achieve nearby destinations, thereby
achieving precision and scalability at the same time.

3. Experiments
This section aims to evaluate the proposed agent by address-
ing the following questions: (1) Does Dr. Strategy demon-
strate improved performance than prior goal-conditioned
MBRL works in zero-shot adaptation? (2) What is the role
of the “Strategy to Explore” in enhancing exploration? (3)
How does “Strategy to Achieve” contribute to improving
zero-shot performance? (4) Does “focused sampling” for
training the Achiever improve zero-shot performance?

3.1. Environments and Tasks

To empirically investigate the proposed agent, we evaluate it
in two types of navigation environments and a robot manip-
ulation environment. One type of navigation environment
is 2D navigation, in which the agent observes a partially

Figure 3. Environments. We evaluate our agent across three dif-
ferent environments: 2D Navigation, 3D-Maze Navigation, and
RoboKitchen. In these navigation environments, the agent’s views
are partially observable and visualized on the left. The top-left
and bottom-left images represent the agent’s initial view in the 2D
and 3D Navigation settings, respectively. The second and third
columns depict the top-down views of the 2D and 3D Navigation
environments, respectively.

observable limited top-down view as shown in Figure 3.
We introduce three layouts: 9-room, 25-room, and spiral
9-room. The first two intend to test the agent’s exploration
capabilities in large spaces (Pertsch et al., 2020). The spi-
ral 9-room layout (illustrated in Figure 7) is specifically
designed to challenge our agent’s strategic exploration. It
provides such a scenario where the exploration from the
starting point can be inefficient due to the longer path to the
farthest room (Ecoffet et al., 2021).

We have designed a 3D-Maze navigation to evaluate the
agent in a visually more complex environment, by modify-
ing the Memory Maze environment (Pasukonis et al., 2022).
This provides the first-person view observation. We evaluate
the agent’s performance on two maze sizes: Maze-7x7 and
Maze-15x15.

Additionally, our evaluation extends to a robot manipulation
environment, the RoboKitchen benchmark introduced in
a prior work (Mendonca et al., 2021). It features a third-
person view of a 7-DoF Franka Emika Panda robotic arm
equipped with a gripper. We note that it is a fully observable
environment. The RoboKitchen environment requires the
agent to interact with various objects, including microwave,
kettle, light switch, burner, sliding cabinet, and hinge cabi-
net. More details are discussed in Appendix A.

3.2. Baselines

We mainly compare Dr. Strategy with LEXA (Mendonca
et al., 2021) because it is the closest model to ours but
without the concept of strategic dreaming. It is also the
state-of-the-art unsupervised model-based generalist agent
for pixel-based observation tasks. In LEXA, the dreaming or
imagination is guided by a rather naive strategy, i.e., random
sampling from the replay buffer.

Regarding LEXA, it has been shown that only using the
Explorer for the interaction can be better in a prior work
(Hu et al., 2023). Thus, we also test this baseline named
LEXA-Explore. LEXA, LEXA-Explore, and our model
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Figure 4. Zero-shot evaluation of the baselines across different environments. Each baseline is evaluated given a goal image from the
environment’s test set. Dr. Strategy significantly outperforms other baselines in most of the navigation tasks, while achieving comparable
results in RoboKitchen. The success rate is reported with the mean and standard deviation across 3 different random seeds.

all share a similar high-level component structure in imple-
mentation. For fair comparison to minimize the effect of
implementation engineering, we implemented LEXA and
LEXA-Explore based on our Dr. Strategy codebase. The
comparison with the original code can still be found in
Appendix B and Appendix C.3.

Director (Hafner et al., 2022) is a hierarchical model-based
agent where a high-level policy (known as the manager) pro-
vides sub-goals to a low-level policy (known as the worker)
to achieve a task defined by a reward function. We chose Di-
rector due to its hierarchical structure and use of sub-goals,
which is similar to exploiting landmarks in Dr. Strategy.
However, since Director is a task-specific agent and not a
goal-conditioned agent, it lacks the ability to generalize to
diverse goals not given during training. Thus, we develop a
goal-conditioned version of Director, named GC-Director.
GC-Director utilizes a form of structure in the state space
to achieve the given goal. The implementation details are
discussed in Appendix B.

3.3. Main Results

We conduct comparative analyses of our proposed agent
with baselines across the three environments. The zero-shot
evaluation performance is illustrated in Figure 4. These re-
sults are quantified based on the agent’s success rate, which
is determined by the distance to the goal. It is considered
successful when the distance falls below a certain threshold
(refer to Appendix D for more details). We note that the
goal images are unseen during training and are user-defined
during test time, and the agent has to reach there.

2D Navigation In Table 1, Dr. Strategy shows an almost
100% success rate in 9-room and spiral 9-room after 2M

interaction steps with a clear performance gap compared to
other baselines. It is notable that our agent maintains a high
success rate in spiral 9-room where the map is complicated
and requires a longer range of exploration to achieve the
goals in the farthest room. A similar trend is observed in
the 25-room layout, where the performance decreased to
67.11%, as shown in Table 1. However, the performance gap
here is over 40% compared to other baselines. Interestingly,
as the layout size increases, the agents with non-strategic
achievement, LEXA and LEXA-Explore show a more signif-
icant performance deterioration. Conversely, GC-Director
shows less performance decrease than others. This result
suggests that our strategic dreaming is more effective com-
pared to the naive dreaming of LEXA or LEXA-Explore.

3D-Maze Navigation For the Maze-7x7 environment pro-
viding visually more complex first-person observation, our
agent achieves above 80% success rate (refer to Table 2) and
significantly outperforms the baselines. Interestingly, all
baselines, LEXA, LEXA-Explore, and GC-Director show
better performances than they did for the 2D navigation
environments. This may be due to the fact that the size of
3D-Maze Navigation maps is smaller than 2D Navigation
maps: Maze-7x7 is about the size of four rooms in 2D Navi-
gation maps and also has narrower corridors (as shown in

Method 9-Room Spiral 9-Room 25-Room

LEXA 19.75% 21.19% 9.62%
LEXA-Explore 16.04% 20.16% 0.14%
GC-Director 28.08% 30.45% 27.11%

Dr. Strategy (Ours) 94.03% 96.50% 67.11%

Table 1. Final success rate in 2D Navigation tasks.
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Method Maze-7x7 Maze-15x15 RoboKitchen

LEXA 51.11% 41.20% 24.30%
LEXA-Explore 43.70% 18.05% 20.07%
GC-Director 40.55% 21.87% 1.45%

Dr. Strategy (Ours) 86.66% 44.44% 19.44%

Table 2. Final success rate in 3D-Maze navigation and RoboK-
itchen tasks.
Figure 3). This reduces the number of places the agent has
to visit. With a smaller exploration space, this could be
beneficial for baselines without strategic dreaming, leading
to a smaller performance gap with Dr. Strategy. However,
despite such factors, Dr. Strategy outperforms the baselines.
In Maze-15x15, our proposed agent outperforms the base-
lines yet, but the performance gap is reduced. It is because
larger regions are identified with the same colors (illustrated
in Figure 7), which causes confusion for the highway policy
to identify the landmark positions.

RoboKitchen The results are shown in Figure 4 and Table 2.
Dr. Strategy shows comparable performance with LEXA
and LEXA-Explore, while GC-Director shows much worse
performance than other agents. This is likely because of
the environment’s stationary view given in the third-person
point, which decreases the visual distinctions between time
steps. This can be critical in forming diverse and distinguish-
able landmarks based on reconstruction rewards. Further-
more, RoboKitchen tasks requires a short span of actions
to achieve the goals compared to navigation tasks, which
may reduce the need for strategic dreaming compared to
other tasks. This is also supported by the low success rate
of GC-Director, which also utilizes a hierarchical structure
which is beneficial for long-horizon tasks.

3.4. Qualitative Results

To investigate more details of the improvement through the
strategic imagination, we visualize the trajectories of our
proposed agent and LEXA on the 25-room layout in the 2D
Navigation environment in Figure 5. We find that our agent
can reach more diverse, further goals with higher success
rates. Moreover, we can examine the failures of LEXA:
Both trajectories (A) and (C), highlighted as green boxes,
aim to acquire goal 1. However, while trajectory (C) is
able to reach the goal with high accuracy, trajectory (A)
fumbles around the goal in close but not precise positions. It
is because Dr. Strategy learns to achieve with high precision
through focused sampling. This highlights the benefit of
localizing the scope of the Achiever via the divide-and-
conquer strategy. Meanwhile, where both trajectories (B)
and (D) aim to reach goal 2. However, trajectory (B) cannot
even go near the desired goal 2. This shows the benefit of
strategic dreaming, where the agent can find and move to
the nearby area of goals, while flat models cannot plan such
structured navigation and cannot locate near areas once it is
lost.

Figure 5. Evaluation trajectories visualization in 25-room for
Dr. Strategy and LEXA. (Top) Ten evaluation trajectories per
goal are visualized. All trajectories start from the top-left cell and
head towards the desired goals positioned in the middle of each
room. The red and blue lines indicate failed and successful trajec-
tories, respectively. (Bottom) Trajectories (A), (C) aim to reach
Goal 1 while (B), (D) aim to reach Goal 2. Dr. Strategy’s trajec-
tory (C) successfully reaches Goal 1 with precision due to focused
sampling, unlike LEXA’s trajectory (A). For Goal 2, trajectory
(D) demonstrates the advantages of exploiting highway policy by
finding the goal’s vicinity, a capability lacking in trajectory (B)
with flat models.

3.5. Ablation Studies

We investigate the influence of three components of strategic
dreaming: Strategy to Explore (Section 2.4), Strategy to
Achieve, and focused sampling (Section 2.5).

Strategy to Explore. To investigate the efficacy of strategic
exploration, we compared the Dr. Strategy with and without
strategic exploration. The Dr. Strategy without strategic
exploration explores the environment similar to LEXA or
LEXA-Explore (Mendonca et al., 2021; Hu et al., 2023).

In Figure 6, we compare the variants of Dr. Strategy when
the strategic exploration is applied and not in the aspect of
the unseen goal achievement success rates. When compar-
ing the variants with and without strategic exploration, we
can find a clear performance gap regardless of equipping
the strategic achievement and focused sampling.

Strategy to Achieve. We also hypothesized that strate-
gic achievement could be crucial to improving the unseen
goal achievement performance. To study this, we compare
Dr. Strategy with and without strategic achievement. We
note that the ablation version does not utilize the focused
sampling, because the sampling is designed for strategic
achievement. The result is shown in Figure 6. The perfor-
mance gaps between with and without strategic achievement
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Figure 6. Ablation results for SE, SA, FS. showing the influence
of using Strategy to Explore (SE), Strategy to Achieve (SA), and
focused sampling (FS) to Dr. Strategy’s zero-shot success rate

are clearly shown regardless of strategic exploration. Its
performance gap is larger than the gap from the ablation
study for strategic exploration especially for 9-room, where
we can find that the major performance gain of our agent
compared to the naive dreaming versions such as LEXA
or LEXA-Explore happened through this strategic achieve-
ment. We note that we do not compare our agent with
another model-based generalist agent PEG (Hu et al., 2023)
that equips strategic exploration because it is designed for
state-based environments. However, this result suggests that
strategic exploration is not efficient enough, and the agent
with strategic exploration and achievement (our agent) out-
performs the agent only with strategic exploration such as
PEG, and the agent without the strategic approach like us
(LEXA).

Focused Sampling. To enhance achievement through the
divide-conquer approach, we utilize focused sampling (Dis-
cussed in Section 2.5) for the Achiever to achieve near goals.
It is expected to improve the sample efficiency in Achiever
training while fitting in the divide-conquer approach sce-
nario. We study the expected efficacy by comparing it with
the Dr. Strategy without focused sampling. It is shown in
Figure 6 (compared with Dr. Strategy without Focused Sam-
pling (FS)). Surprisingly, the performance gap is huge, and
without focused sampling, the agent performance is similar
to the ablation without strategic achievement and focused
sampling. This result suggests that training the Achiever
with the nearby goals from the starting point is crucial to
improve the performance and it can be available through
the strategic achievement with the latent landmarks and
highway policy.

4. Related Work
As an unsupervised model-based generalist agent, LEXA
(Mendonca et al., 2021) and PEG (Hu et al., 2023) are re-
lated to our work. However, LEXA is trained with naive
strategic dreaming, which limits its performance in small
size of state space (Hu et al., 2023). PEG extends LEXA
to apply the strategic exploration by exploring from the
samples estimated as interesting through the roll-out of the
explorer in the imagination like us, but they did not validate

their method to the pixel-based environment and extend this
strategy to the achiever like us. In the aspect of training
discrete representative states and policy in imagination, our
work is related to Choreographer (Mazzaglia et al., 2022b).
However, Chreographer fine-tuned the learned representa-
tive states and policy for the downstream task with a new
hierarchical policy while ours is the unsupervised gener-
alist agent. Director (Hafner et al., 2022), a hierarchical
model-based agent can be related in the aspect of utilizing
the intermediate state for solving the given task, but Director
is designed for solving a single task, not the unsupervised
generalist agent.

Dr. Strategy explores the environment from the interesting
spot called Curious landmark. In (Ecoffet et al., 2021; Saade
et al., 2023; Hu et al., 2023), this idea has been studied to
address the inefficiency when exploring from the starting
point (Pathak et al., 2017; Burda et al., 2019; Pathak et al.,
2019; Mazzaglia et al., 2022a), while PEG (Hu et al., 2023)
does not apply strategic achievement with this idea, and Go-
Explore (Ecoffet et al., 2021) and RECODE (Saade et al.,
2023) are model-free RL methods.

Our agent utilizes the goal-conditioned policies, the high-
way policy, and the achiever. The goal-conditioned policy
has been studied to learn the trajectories in an unsupervised
manner by sampling the goals from the data (Eysenbach
et al., 2019a; Yarats et al., 2021; Park et al., 2022; 2024;
Mazzaglia et al., 2022b; Kim et al., 2023), or train the agent
that can solve multiple tasks (Andrychowicz et al., 2017;
Eysenbach et al., 2019b; Pong et al., 2020; Pitis et al., 2020;
Mendonca et al., 2021; Hu et al., 2023; Hafner et al., 2022).
However, these methods do not utilize a goal-conditioned
policy (i.e., the highway policy) combined with the explo-
ration policy and the achiever policy to improve exploration
quality and the achievement of unseen goals.

5. Conclusion
In this paper, we propose Dr. Strategy, a novel model-based
strategic, general-purpose agent. Inspired by the structured
and strategic planning of humans, we designed this agent
to utilize strategic dreaming for efficient exploration and
goal achievement through planning. To do this, the agent
learns the latent landmarks representing their experience
and three distinct policies: navigating to the landmarks
(Highway policy), exploring from the landmarks (explorer),
and achieving the given goal from the landmarks (achiever).
Different from the previous approaches (Mendonca et al.,
2021; Hu et al., 2023), by separating the roles of the poli-
cies strategically, our agent showed better performances
in diverse complex and partial observable navigation en-
vironments. Especially, the divide-and-conquer approach
allows the achiever to learn from nearby samples, which
dramatically improves the performance of the agent.
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Limitations and future work. However, the agent has
shown limited performance in a robotic manipulation en-
vironment. The performance improvement in those envi-
ronments could be a future work. Additionally, the current
agent treats the number of landmarks as a hyperparameter,
but it would be interesting to make it gradually increase and
adapt (Kulis & Jordan, 2011). Another promising direction
could be the integration of a hierarchical framework within
the highway policy to extend the agent’s exploration and
goal-achievement capabilities.

Impact Statement
Strategic Dreaming, as implemented in the Dr. Strategy
agent, represents a novel structure in model-based reinforce-
ment learning, focusing on enhancing agents’ planning ca-
pabilities to "dream" in a structured manner. This approach
draws from cognitive science insights, employing a spatial
divide-and-conquer strategy for problem-solving. In practi-
cal terms, Strategic Dreaming could revolutionize tasks that
require complex spatial navigation and decision-making,
such as urban planning, logistics, and autonomous vehicle
routing. By enabling AI to efficiently learn and navigate
through simulations, Strategic Dreaming can lead to more
robust and reliable models that require less real-world data,
thereby reducing the time and cost associated with training
AI systems.

However, the implications of Strategic Dreaming extend
beyond improved efficiency. As these agents become adept
at navigating and planning in simulated environments, there
is potential for them to supplant roles currently filled by
humans, especially in fields that rely heavily on spatial and
strategic planning. While this could lead to increased effi-
ciency and safety, particularly in hazardous environments, it
also raises societal and ethical questions about the displace-
ment of jobs and the need for new frameworks to govern
AI decision-making and accountability. However, such ca-
pabilites require more investigation and does not seem to
be a near future. The development of Strategic Dreaming
thus mandates a careful consideration of its societal impact,
balancing the benefits of advanced navigation and planning
capabilities with the ethical management of automation’s
societal effects.
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Figure 7. Illustration of all the used environments. (a-c) Partially Observable 2D Navigation, (d-e) First-person view 3D maze navigation
and (f) RoboKitchen. (b) shows the spiral 9-rooms in which the closed gates are highlighted in white, (d-e) showing the 3D-Maze
environments without the floor color for easy visualizations of the walls

Figure 8. Zero-shot evaluation goals on each environment. Our agent is evaluated given unseen goals in the evaluation phase. (a) and
(b) illustrate the goals in navigation environments and (c) shows the goal images of the RoboKitchen benchmark.

A. Environment

2D navigation. We introduce three 2D navigation environments with distinct layouts: 9-room, spiral 9-room, and 25-room
to evaluate the performance of structured and strategic imagination in large environments. All environments are modeled as
egocentric views with limited visibility, represented by a 5x5 sized observation window as 64x64x3 pixel observation as
shown in Figure 3. The agent aims to navigate through rooms of size 15x15 to reach specific points within a 0.1 Manhattan
distance tolerance in 1000 steps. We calculate the agent’s success rate per goal by averaging the outcomes of three evaluation
episodes. Each goal can be found at the center of a room or in the down-left corner of the 9-rooms and spiral 9-room layout
and the center of a room in the 25-room layout as shown in Figure 8 (a). We note that these environments are non-episodic,
requiring the agent to continuously explore and adapt without restarting episodes.
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Figure 9. Qualitative results of Dr. Strategy’s zero-shot evaluation trajectories. Given the goal, the proposed agent finds the nearest
landmark. We visualize it by inferring the latent state using the world model, and then it is reconstructed. The agent starts in the initial
state and then uses the highway policy conditioned on the closest landmark. Upon meeting the termination criteria, it then switches to the
focused achiever policy, conditioned on the given goal.

3D-Maze. We introduce two 3D-Maze navigation environments to assess the proficiency of structured and strategic
imagination in navigating large and visually intricate spaces. We modified the Memory-Maze (Pasukonis et al., 2022) by
keeping the same structure of the environment during all episodes to assist the agent in localization and distinguishing
visual observation; we assign distinct colors to the walls and floors of the mazes. These mazes come in two sizes: 7x7
and 15x15, each designed with unique layouts as illustrated in Figure 7 (d) and (e). The environments are depicted from
an egocentric viewpoint, limiting visibility to a 64x64x3 pixel observation as shown in Figure 3. The agent’s objective is
to reach specific points (illustrated in Figure 8 (b)) with a 0.1 Manhattan distance tolerance and 45 degrees of orientation
tolerance, accomplishing this within 500 steps for the 7x7 maze and 1000 steps for the 15x15 maze. We measure whether
the agent reached or not by three times and take an average to calculate the success rate per goal. The target points are
strategically placed either at the dead ends of the maze or in proximity to the walls. Notably, these environments are
non-episodic, requiring the agent to continually explore and adapt without restarting episodes.

Robokitchen. To demonstrate the broad applicability of our agent, we chose the RoboKitchen environment from LEXA
(Mendonca et al., 2021) to evaluate its performance on robotic manipulation tasks requiring both structured and strategic
imagination. We adopted the same setup as LEXA, setting the episode length to 150 steps with an action repeat factor of 2
with 12 visually distinguishable goals. We measure whether the agent reached or not by ten times and take an average to
calculate the success rate per goal.

B. Baselines
A primary approach in reinforcement learning (RL) to improve sample efficiency is via model-based reinforcement learning
(MBRL) (Sutton, 1991; Ha & Schmidhuber, 2018). Dreamer (Hafner et al., 2019a; 2020) is a MBRL agent that leverages the
learning of an internal model, known as a world model (WM), to train an agent in dreaming also referred to as imagination.
The world model is trained to predict the transition dynamics of the real environment. The agent trains in imagination
via interacting with the WM instead of the real environment, facilitating faster experience collection for training. The
collected trajectories via this interactions are called imagined trajectories. Thus, the world model serves as a proxy for the
real environment. Dr. Strategy and all baseline models employ Dreamer V2 (Hafner et al., 2020), utilizing the world model
for sample-efficient training.
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LEXA LEXA is a model-based RL agent that trains both an explorer and an achiever through imagination using a world
model (Mendonca et al., 2021). The explorer discovers the environment, driven by intrinsic motivation, whereas the achiever
gathers more experience by targeting randomly explored states sampled from the replay buffer. LEXA undergoes an
unsupervised pre-training phase, after which the achiever attempts to solve tasks given by images in a zero-shot manner,
without any further learning. In comparison to the original LEXA setup, we opt for using disagreement (Pathak et al., 2019)
as the intrinsic reward instead of latent disagreement (Sekar et al., 2020). Moreover, our model incorporates a stochastic
embedding sampled from a categorical one-hot distribution, akin to DreamerV2 (Hafner et al., 2020), to modify the multi-
diagonal Gaussian distribution. This intentional variation in intrinsic rewards and sampling distributions aims to fine-tune
performance specifically for 2D navigation environments. For a fair comparison, we match LEXA’s hyperparameters with
our implementation, excluding latent landmark configurations as outlined in Appendix E. We reward the achiever policy for
reaching the target state by using a temporal distance predictor, following the approach used in LEXA (Mendonca et al.,
2021).

LEXA-Explore Building on PEG’s (Hu et al., 2023) insight that excluding achiever-sampled trajectories benefits the
success rate in LEXA. Diverging from the original LEXA (Mendonca et al., 2021), we replaced latent disagreement (Sekar
et al., 2020) with disagreement (Pathak et al., 2019) as an intrinsic reward. Furthermore, we adopted a stochastic embedding
from a categorical one-hot distribution, akin to DreamerV2 (Hafner et al., 2020), modifying the multi-diagonal Gaussian
distribution. These adjustments aim to enhance performance in 2D navigation environments. Hyperparameters are matched
with our method’s implementation, excluding latent landmark configurations in line with Appendix E.

GC-Director Director (Hafner et al., 2022) is a task-specific hierarchical model-based agent. The task is specified by the
reward function. We develop GC-Director as a Goal-Conditioned version of Director, to explore the environment and learn
to achieve an unseen goal in an unsupervised manner similar to LEXA (Mendonca et al., 2021).

Director includes two policies: high-level (manager), and low-level (worker). We developed GC-Director based on the
open-source code of Director and followed the same architecture and training procedure of LEXA but using a hierarchical
policy instead of the flat one in LEXA. GC-Director has 4 policies in total: Explorer has a manager and worker, and Achiever
has another manager and worker. We found that having two separate workers leads to the best results.

The explorer’s manager is rewarded by an intrinsic reward. The intrinsic reward is the estimate of the epistemic uncertainty
using a disagreement of an ensemble of 1-step transition functions similar to LEXA’s explorer. For the achiever, the manager
πg
mgr(z | st, eg) is conditioned on the embedding of the given goal image eg and is rewarded using the latent distance (either

cosine similarity or temporal distance), as in LEXA. The worker in each is only trained using the original reward function
used in Director.

In Table 3, we show a summary of the main aspects of the baselines. We denote hierarchical exploration by methods that
have multiple policies that are used to explore sequentially and similarly for hierarchical achievement.

Goal-
Conditioned

Hierarchical
Exploration

Hierarchical
Achievement

Strategic
Dreaming

LEXA (Mendonca et al., 2021) ✓ ✗ ✗ ✗
Director (Hafner et al., 2022) ✗ ✗ ✓ ✗
GC-Director* ✓ ✓ ✓ ✗
Dr. Strategy (Ours) ✓ ✓ ✓ ✓

Table 3. A high-level comparison between Dr. Strategy and other baselines. *GC-Director is a method we developed based on the official
source code of Director
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C. Additional Experiments
C.1. Sample efficiency comparison between Dr. Strategy and other baselines

Given the same sampling budget (number of environment samples) for all baselines, Tables 1 and 2 show that Dr. Strategy
obtains higher final success rates across most environments compared to other baselines. Moreover, Dr. Strategy shows a
faster increment in the performance as shown in Figure 4. indicating greater sample efficiency relative to LEXA.

Additionally, Figure 11 shows the success rates (y-axis) of Dr. Strategy and other baselines given various sampling budgets
(x-axis), highlighting that Dr. Strategy consistently reaches higher success rates in most environments.

Figure 10. Success rate given various sampling budgets. It displays the success rate (y-axis) across various sampling budgets for the
baselines

Figure 11 further reveals that Dr. Strategy requires fewer samples to achieve the success rate (x-axis). Furthermore,
Dr. Strategy manages to achieve higher success rates, showcasing its superior performance. In contrast, other baselines fail
to achieve the success rate within the training’s sampling budget in our experiments.

Figure 11. Number of Samples required to get various success rate thresholds. It shows the number of environment samples (sampling
budget) required to achieve specific success rate thresholds (x-axis). The bar is omitted if the baseline does not achieve the indicated
success rate. This omission signifies that the baseline did not achieve the success rate within the given training sampling budget in our
experiments
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C.2. Success rate in RoboYoga Benchmark

Figure 12. Zero-shot evaluation of the baselines across RoboYoga Walker and Quadruped

To demonstrate the versatility of our method in various tasks beyond navigation, we evaluate its performance on the
RoboYoga benchmark introduced by LEXA (Mendonca et al., 2021). To mitigate randomness and noise inherent in the
measurements, we adopt the average of three episodes, considering the maximum success achieved in each episode as the
performance metric. Specifically, we define the agent’s success as achieving the desired goal at least once within an episode.
As illustrated in Figure 12, our method consistently maintains a commendable level of performance in various domains
within the RoboYoga benchmark.

C.3. Success rate of LEXA-Original and LEXA-Ours

Figure 13. Success rate of LEXA-Ours and LEXA-Original

In Figure 13, we compare our implementation of LEXA (LEXA-Ours) with the original LEXA implementation (LEXA-
Original) from (Mendonca et al., 2021) in 9-room and RoboKitchen. When we run LEXA-Original, we match the
configuration and parameters to the original code. For configurations that are not explicit in the original implementation,
we match with LEXA-Ours, which is used in Section 3. The success rate is measured in the same way as mentioned
in Appendix A. Through the success rate, we can clarify that LEXA-Original performance is very low in 9-room. In
RoboKitchen, the results of LEXA-Original are similar to the original paper (Mendonca et al., 2021). LEXA-Ours show
lower performance than LEXA-Original, and the performance gap is around 10%. This is due to the difference between
the implementation mentioned in Appendix B. To compare the model architecture without getting biased by engineering
differences, we use LEXA-Ours that uses similar intrinsic reward, world model, and configurations
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C.4. Number of Landmarks

Figure 14. Ablation results of using a different number of landmarks (16, 64, 256, 512)

Figure 14 shows that increasing the number of landmarks used does not always benefit our method. As 3D-Maze navigation
is visually more complex than 2D navigation due to its egocentric observations, it requires a greater number of landmarks to
perform the best, which is 64. In 2D navigation (9-rooms) 16 landmarks were enough to have a comparable performance
compared to using 64 landmarks. However, using 64 landmarks is able to perform better in some seeds. Using 512 landmarks
performs worse than 64 in 9-Room and 3D-Maze-7x7.

C.5. Why is the performance gap of Dr. Strategy in Maze-15x15 small compared to Maze-7x7?

Figure 4 shows that the performance gap in Maze-15x15 is smaller than that of Maze-7x7. One hypothesis to explain this
phenomenon suggests that in Maze-15x15, the larger space and the potential for encountering similar scenes can confuse the
agent’s ability to generalize from a given goal image. This confusion may arise because larger regions are identified by the
same colors. Conversely, Maze-7x7 is smaller, and fewer regions are marked with the same color, as illustrated in Figure 7.

Figure 15. Visualization of 10 trajectories in 3D-Maze-15x15 of Dr. Strategy from the initial state given the green goal in the upper
right part. The trajectories using highway policy are visualized with white lines, while the trajectories using achiever are shown with red
lines.

Figure 16. Visualization of one of the trajectories in Figure 15.

We found that the highway policy given a landmark may sometimes reach a state visually similar to the landmark, but
temporally far. As an empirical evidence, Figure 15 shows a top-down view of 10 trajectories for Dr. Strategy to reach the
target in the green room in the upper right part. The agent finds the landmark positioned near the goal denoted by a white
star. However, the highway policy could not reach the corresponding landmark within TL steps, instead the agent stuck at a
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green wall that is visually similar to the reconstruction of the landmark. As a result, the agent could not reach the goal which
contributes to the agent’s low success rate. Figure 16 shows the first-person view observation of a trajectory of the agent.

C.6. Visualization of Landmarks

2D Navigation

Figure 17. Left: Landmarks visualizations in 9-room, Right: Landmarks visualizations in Spiral 9-room.

Figure 18. Landmarks visualizations in 25-room

3D-Maze

Figure 19. Left: Landmarks visualizations in 3D-Maze-7x7, Right: Landmarks visualizations in 3D-Maze-15x15.
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RoboKitchen

Figure 20. Landmarks visualization in RoboKitchen
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D. Implementation details

Algorithm 1 Dr. Strategy
Initialize: World Model M, Replay buffer D, landmark auto-encoder (encϕ(s), {l1, ...., lN},decϕ(l)), Highway policy
πl(at|st, l), Explorer πe(at|st), Achiever πg(at|st, g)

// Strategy to Explore

while exploring do
Train M and landmark auto-encoder on D
Train πl in imagination of M to maximize rl(st, l) for landmarks l sampled from uniform distribution
Train πe in imagination of M to maximize exploration reward re(st)
Train πg in imagination of M to maximize rg(st, g) for g = st+H

// Curious Landmark

if t mod Pick Curious Landmark every TF steps = 0 then
Imagine landmark trajectories τi, sampling actions from πe starting from sli ∼ decϕ(li), i ∈ 1, . . . N in parallel
Compute landmark curiosity Ci based on re for each landmark trajectories τi
Choose Curious Landmark lC with p ∝ Ci

// Landmark-guided Exploration

Deploy πl(at|st, lC) in the environment for TL steps or until ∥st − slC∥ < ϵ and grow D, where slC ∼ decϕ(lC)
end
Deploy πe(at|st) in the environment to explore and grow D

end

// Strategy to Achieve

while evaluating do
Given: Evaluation goal g

// Find Landmark nearest to goal

Imagine trajectory τg = {s0, . . . sg}, using zero actions, starting from g
Find Landmark lG nearest to goal where G = argminj ∥encϕ(sg)− lj∥2
// Focused Achiever

Deploy πl(at|st, lG) in the environment for TL steps or until ∥st − slG∥ < ϵ, where slG ∼ decϕ(lG)
Deploy πg(at|st, g) in the environment to reach g.

end

World Model Following the same architecture as the world model in DreamerV2 (Hafner et al., 2020), we use the
hyperparameters as indicated in Table 4.

Latent Landmark learning The latent landmarks are learned through a VQ-VAE, a type of variational autoencoder
(VAE) that utilizes vector quantization to obtain a discrete latent representation (Van Den Oord et al., 2017; Razavi et al.,
2019). VQ-VAE comprises three components: an encoder, a codebook, and a decoder. The encoder projects the input into a
latent representation. The codebook learns a discrete set of latent representations known as codes, quantizes the encoder’s
output by finding the closest code to that output. The decoder then uses the quantized representation to reconstruct the input.
A well-known problem in VQ-VAE is code collapse (Kaiser et al., 2018). To prevent this, we employ the code resampling
method mentioned in (Mazzaglia et al., 2022b).

Highway policy is trained in imagination to reach the given landmark. The highway policy is conditioned on the current
state and the one-hot representation of the index of the selected landmark from the codebook.

Achiever To train the achiever policy, we use the temporal distance as a reward from (Mendonca et al., 2021), the temporal
distance prediction network (tdp) works in the image embedding space rg(et, eg) = −tdp(et, eg) and its training is done
similarly as in (Mendonca et al., 2021). As imagination is in the state space of the world model, we need to decode from
the state space to the embedding space, thus we train an embedding decoder network emb(êt | st) to predict the image
embedding êt ≈ et given a state st.

Evaluation and System setup For the evaluations, we trained all baselines for 3 seeds per environment. The training of
our agent took 2 to 6 days based on the environment using 24GB VRAM GPU.
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E. Hyperparameters
Like most other model-based RL methods based on RSSM world models, most of the parameters are set by default to the
same values as Dreamer V2 (Hafner et al., 2020). We made minor changes only in a few hyper-parameters such as the
learning rates of world model, actor, and critic by following the hyperparameters of Choreographer (Mazzaglia et al., 2022b)
as it is also utilizing VQ-VAE like our method. A very small number (only three) of hyperparameters are task-specific as
specified in Table 4.

Name Symbol Value

Latent Landmark

Number of latent landmarks N 64, 128
Dimension of latent landmarks - 16
Commitment loss coefficient β 10−4

Number of layers of latent landmark auto-encoder - 4
Number of hidden units - 400

World Model

Replay buffer size | D | 106

Batch size B 50
Trajectory length TS 50
Discrete latent dimensions - 32
Discrete latent classes - 32
Number of hidden unit - 200
KL loss scale - 1
KL balancing - 0.8
Learning rate - 3 · 10−4

Behavior

Imagination Horizon H 15
Discount - 0.99
λ-target parameter - 0.95
Actor learning rate - 8 · 10−5

Critic learning rate - 8 · 10−5

Slow critic update interval - 100

Common

MLP number of layers - 4
MLP number of units - 400
Gradient clipping - 100
Adam epsilon - 10−5

Weight decay - 10−6

Strategy to Explore

Max. num. of steps to reach Landmark TL 25, 100, 200
Number of steps to pick the curious landmark TF 150, 500, 1000
Reaching landmark threshold ϵ 0.07

Table 4. We use 64 latent landmarks in smaller environments such as 9-room, Spiral 9-room, 3D-Maze 7x7, and Robokitchen. We
utilize 128 latent landmarks for larger environments like 25-room and 3D-Maze 15x15. Regarding the exploration strategy, we tailor
hyperparameters to each environment. Specifically, for 2D navigation, we set the maximum steps for landmark reaching as 100 and the
number of steps to pick the curious landmark at 1000. For 3D-Maze 15x15, these values are adjusted to 200 for landmark reaching and
1000 for curious landmark picking. In the case of 3D-Maze 7x7, we use 100 for landmark reaching and 500 for curious landmark picking.
For Robokitchen, the hyperparameters are set at 25 for landmark reaching and 150 for curious landmark picking.
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