
Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

Tehila Dahan 1 Kfir Y. Levy 2

Abstract
In this paper, we investigate the challenging
framework of Byzantine-robust training in dis-
tributed machine learning (ML) systems, focusing
on enhancing both efficiency and practicality. As
distributed ML systems become integral for com-
plex ML tasks, ensuring resilience against Byzan-
tine failures—where workers may contribute in-
correct updates due to malice or error—gains
paramount importance. Our first contribution is
the introduction of the Centered Trimmed Meta
Aggregator (CTMA), an efficient meta-aggregator
that upgrades baseline aggregators to optimal per-
formance levels, while requiring low computa-
tional demands. Additionally, we propose har-
nessing a recently developed gradient estimation
technique based on a double-momentum strategy
within the Byzantine context. Our paper high-
lights its theoretical and practical advantages for
Byzantine-robust training, especially in simplify-
ing the tuning process and reducing the reliance
on numerous hyperparameters. The effectiveness
of this technique is supported by theoretical in-
sights within the stochastic convex optimization
(SCO) framework and corroborated by empirical
evidence.

1. Introduction
In modern machine learning (ML), the paradigm of large-
scale distributed training systems has emerged as a corner-
stone for advancing complex ML tasks. Distributed ML
approaches enable to significantly accelerate the training
process; thus facilitating the practical use of larger, more
sophisticated models (Zhao et al., 2023). However, as these
systems grow in scale and complexity, they become increas-
ingly susceptible to a range of faults and errors. Moreover,

*Equal contribution 1Department of Data and Decision Sci-
ences, Technion, Haifa, Israel 2Department of Electrical and Com-
puter Engineering, Technion, Haifa, Israel. Correspondence to:
Tehila Dahan <t.dahan@campus.technion.ac.il>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

distributed ML also propels collaborative learning across
decentralized data sources (Bonawitz et al., 2019), which
often differ in distribution, quality, and volume (Bonawitz
et al., 2019). For example, data from different geographic
locations, devices, or organizations can exhibit consider-
able variability. This poses a critical challenge: ensuring
the training process is resilient to faults and errors in such
distributed and heterogeneous environments. Fault-tolerant
training becomes imperative to maintain the integrity, accu-
racy, and reliability of the learned models, especially when
the stakes involve critical decision-making based on ML
predictions.

The Byzantine model (Lamport et al., 2019; Guerraoui et al.,
2023) provides a robust framework for devising and ana-
lyzing fault-tolerant training in distributed ML, due to its
capability of capturing both random and adversarial failures.
It addresses the challenge posed by Byzantine workers, who
may introduce incorrect updates due to unpredictable or ma-
licious behavior, thus risking the training process. Owing to
its generality, the Byzantine setting has been widely adopted
as a framework for devising and analyzing fault-tolerant ML
approaches (Blanchard et al., 2017; Yin et al., 2018).

Addressing Byzantine failures in distributed machine learn-
ing (ML) requires robust aggregation rules to mitigate mali-
cious or faulty updates from workers. Various robust aggre-
gation rules have been developed in the past years, including
Coordinate-wise Trimmed Mean (CWTM) (Yin et al., 2018),
Krum (Blanchard et al., 2017), Geometric Median (GM)
(Chen et al., 2017), CWMed (Yin et al., 2018), and Mini-
mum Diameter Averaging (MDA) (Guerraoui et al., 2018).
Each such aggregator brings unique qualities that may better
address different types of Byzantine failures. The diversity
in aggregator designs underscores the necessity of having a
versatile toolbox, as no single method can efficiently handle
all possible Byzantine scenarios.

The efficiency and robustness of these aggregators can
be systematically characterized, as shown in Karimireddy
et al. (2020; 2021); Allouah et al. (2023); Farhadkhani
et al. (2022). These studies not only outline the worst-case
strengths of various aggregators but also set benchmarks
for optimal efficiency, providing a comprehensive analy-
sis of existing algorithms. Furthermore, they introduce the
concept of Meta-Aggregators—advanced mechanisms that

1

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

enhance the robustness of base aggregators by combining
or modifying their outputs. Meta-aggregators are devised
to bolster the system’s resilience, leveraging the strengths
of underlying methods to achieve greater fault tolerance.
Nevertheless, the application of existing meta-aggregators,
e.g. Bucketing (Karimireddy et al., 2020) and Nearest Neigh-
bor Mixing (NNM) (Allouah et al., 2023), comes with a
high computational cost, highlighting a trade-off between
enhanced robustness and efficiency. Notably, the cost of
these meta-aggregators is m folds higher compared to the
standard “average” aggregator, where m is the number of
workers. This significant increase in computational demand
hinders their practicality in high-dimensional scenarios and
in situations where the number of workers is high.

The challenge of applying robust aggregators to standard
stochastic gradients in synchronous robust training has been
a notable concern, as highlighted in the work of Karim-
ireddy et al. (2021). The core issue stems from Byzantine
workers exploiting the variance in gradient estimations to
introduce biases, potentially derailing the learning process.
To counteract this, Karimireddy et al. (2021) have proposed
to utilize momentum estimates rather than direct gradient
estimates. This approach, underpinned by rigorous theoreti-
cal analysis, advocates for each honest machine to maintain
a momentum that averages past stochastic gradients across
approximately

√
T iterations, where T is the total number

of updates. Such a strategy achieves a significant reduc-
tion in variance by a factor of

√
T , effectively minimizing

the “noise blanket” that Byzantine workers could exploit
to inject harmful bias into the system (Karimireddy et al.,
2021).

On the downside, implementing this momentum-based
method within Byzantine environments unveils a critical
limitation: the necessity for precise tuning of both the mo-
mentum parameter and the learning rate. This fine-tuning
process requires a deep understanding of several factors,
including the variance of noise, the fraction of Byzantine
workers present, and the performance (or strength) of the
chosen robust aggregator. Such prerequisites for effective
application pose practical challenges, as they demand prior
comprehensive knowledge about the system’s specific char-
acteristics and adversarial conditions. This complexity re-
stricts the straightforward applicability of momentum-based
approaches in diverse, real-world settings.

In this work, we develop new tools for Byzantine-robust
training. Our focus is on enhancing efficiency and practical-
ity. Our contributions:

• Efficient Meta-Aggregator (CTMA): We present
“Centered Trimmed Meta Aggregator (CTMA)”, a
novel meta-aggregator that upgrades baseline aggre-
gators to optimal performance levels. CTMA signif-
icantly reduces computational demands typically as-

sociated with prior meta-aggregators, aligning its effi-
ciency with that of the conventional “average” aggre-
gator. This development makes CTMA suitable for
widespread deployment in large-scale scenarios, ef-
fectively overcoming the computational challenges of
previous meta-aggregators and facilitating the imple-
mentation of robust, fault-tolerant distributed machine
learning systems.

• Advanced Gradient Estimation Technique: Build-
ing on the insight that standard stochastic gradient
methods are vulnerable to Byzantine disruptions, we
suggest incorporating a recent double-momentum tech-
nique (Levy, 2023) to enhance resilience during the
training process. Unlike traditional momentum-based
approaches that necessitate complex parameter tun-
ing, our approach simplifies the process by allowing
the learning rate to be determined solely by the objec-
tive’s smoothness parameter L. This approach not only
streamlines the setup but also achieves a more substan-
tial error reduction, further mitigating the impact of
Byzantine workers and enhancing the practicality of
synchronous robust training in distributed ML systems.
We establish theoretical guarantees for this approach
within the Stochastic-Convex-Optimization (SCO)– a
fundamental framework for the design and analysis of
machine learning algorithms (Shalev-Shwartz et al.,
2009).

We also demonstrate the usefulness of our approach in prac-
tice.

Related Work. Addressing the Byzantine problem in dis-
tributed ML has evolved significantly, with historical in-
formation playing a pivotal role. Early work by Alistarh
et al. (2018) utilizes the entire historical information to miti-
gate Byzantine faults effectively. Subsequently, momentum-
based approaches emerged as a popular and straightforward
solution to enhance robustness by leveraging a subset of

√
T

past gradients (Allen-Zhu et al., 2020; Farhadkhani et al.,
2022; El Mhamdi et al., 2021; Karimireddy et al., 2020;
2021). Karimireddy et al. (2021) further highlights the
necessity of historical information, showing that methods
without it fail when addressing strongly convex objectives.
This underscores the essential role of using historical data to
ensure the robustness and reliability of learning algorithms
in Byzantine settings.

In this context, traditional models often assume data homo-
geneity. However, data heterogeneity—where data across
workers vary in distribution—is more common and presents
significant challenges. The studies by Allouah et al. (2023)
and Karimireddy et al. (2020) are particularly relevant to
our work, demonstrating the effectiveness of incorporating
momentum and robust aggregators in heterogeneous set-

2

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

tings. These studies also pioneered the exploration of meta-
aggregators, which are specifically designed to enhance
the performance of baseline robust aggregators. Karim-
ireddy et al. (2020) introduce Bucketing, a meta-aggregator
that averages each worker’s output with those of its nearest
neighbors, identified through a random permutation, and
then sends these processed outputs to a robust aggregator.
Building on this concept, Allouah et al. (2023) propose
Nearest Neighbor Mixing (NNM), a meta-aggregator that
averages outputs based on their nearest neighbors defined by
Euclidean norms before sending them to a robust aggregator.

2. Setting
We consider a Heterogeneous distributed setting comprising
m workers, where a subset G of them are honest. Conversely
to the Homogeneous case, we assume each honest worker
i ∈ G may independently draw i.i.d. samples from a dis-
tribution D(i), and that the different data distributions may
vary between workers. We consider stochastic optimization
problems, focusing on smooth convex objective functions
given by fi : K → R for each honest worker i. Our goal
is to minimize the joint objective of all honest workers by
f : K 7→ R:

f(x) :=
1

|G|
∑
i∈G

fi(x) :=
1

|G|
∑
i∈G

Ez(i)∼D(i)fi(x; z
(i)),

where K ⊆ Rd is a compact convex set. Thus, the objec-
tive is an average of |G| functions {fi : K 7→ R}i∈G , and
each such fi(·) can be written as an expectation over losses
fi(·, z(i)) where z(i) is drawn from some distribution Di

which is unknown to the learner. For ease of notation, in
what follows, we will not explicitly denote Ez(i)∼D(i) [·] but
rather use E[·] to denote the expectation w.r.t. all randomiza-
tion.

We consider iterative first-order optimization algorithms that
leverage the gradients of f(·) to generate a series of query
points. The final point in this series, denoted as xT , serves
as an estimation of the optimal solution. The performance of
these algorithms is evaluated based on the expected excess
loss, defined as:

ExcessLoss := E[f(xT)− f(x∗)] ,

where x∗ ∈ argminx∈K f(x). The goal of the workers is
to collaboratively ensure a small excess loss w.r.t. common
objective f(·).

We consider a distributed environment, where each worker
i has the ability to compute a stochastic gradient oracle
g ∈ Rd, given by: g(i) := ∇fi(x; z(i)) , for some z(i) ∼
D(i), implying unbiasedness, i.e., E[g(i)|x] = ∇fi(x). We
focus on a centralized framework characterized by a central
Parameter Server (PS). In this setup, thePS communicates

with all the workers in the network. Specifically, our main
focus is on synchronous systems, where the PS waits for
outputs from all workers before updating its global vector
and then distributes this updated vector to the workers for
their next step; in the spirit of minibatch-SGD (Dekel et al.,
2012).

Lastly, we consider scenarios where up to a fraction of δ <
1/2 are Byzantine workers exhibiting problematic behaviors,
such as sending arbitrary or malicious information during
the training process. These ”Byzantine” workers may even
collude to disrupt the training process. The identities of
these workers are unknown. We denote G ⊆ [m] as the set of
honest workers, with a size of |G| ≥ (1− δ)m. Conversely,
B ⊆ [m] represents the set of Byzantine workers, whose
size is |B| ≤ δm.

Notation. Throughout, ∥·∥ represents the L2-norm, and
for any natural N , we define [N] := {1, . . . , N}. We use a
compressed sum notation, where α1:t :=

∑t
k=1 αk. In addi-

tion, for every x ∈ Rd, we denote the orthogonal projection
of x onto a set K by ΠK(x) := argminy∈K ∥y − x∥2.

Assumptions. ∀i ∈ G, we use the following assumptions:
Bounded Diameter: we assume there exists D > 0 such,

max
x,y∈K

∥x− y∥ ≤ D . (1)

Bounded Variance: there exists σ > 0 such that,

E∥∇fi(x; z(i))−∇fi(x)∥2 ≤ σ2 ; ∀x ∈ K . (2)

Heterogeneity: there exists ξ > 0 such that for any x ∈ K,

1

|G|
∑
i∈G
∥∇fi(x)−∇f(x)∥2 ≤ ξ2 . (3)

Expectation over Smooth Functions: we assume that
fi(·) is an expectation of smooth functions, i.e. ∀x,y ∈
K , z(i) ∈ Support{D(i)} there exist L > 0 such that,

∥∇fi(x; z(i))−∇fi(y; z(i))∥ ≤ L∥x− y∥ , (4)

The above assumption also implies that the expected loss
fi(·) and the averaged loss f(·) are L smooth.
Bounded Smoothness Variance (Levy, 2023): note that
the assumption that we make in Eq. (4) implies that, ∀x,y ∈
K there exists σ2

L ∈ [0, L2] such,

E ∥(∇fi(x; z)−∇fi(x))− (∇fi(y; z)−∇fi(y))∥2

≤ σ2
L∥x− y∥2 .

(5)

In Appendix A we show that Eq. (4) implies Eq. (5).

3

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

3. Robust Aggregation and Meta-Aggregators
In Byzantine-free distributed environments, the server
typically employs gradient averaging as an aggregation
rule (Dekel et al., 2012). This approach is particularly ef-
fective due to its ability to execute gradient computations in
parallel and efficiently reduce the variance of noisy gradi-
ents. However, in Byzantine settings, such averaging may
completely fail the training process, even in the face of a
single Byzantine worker. Thus, it is crucial for the server
to employ a robust aggregation rule; which leads to the
following update,

wt+1 = ΠK

(
wt − ηA

(
g
(1)
t , . . . ,g

(m)
t

))
.

Here A represents a robust aggregation function applied to
the gradients g(1)

t , . . . ,g
(m)
t from the m workers at time t,

and η is the learning rate.

In the context of robust methods, several works (Allouah
et al., 2023; Karimireddy et al., 2021; 2020; Farhadkhani
et al., 2022) have developed and characterized a range of
robust aggregation rules. The key property of such aggrega-
tors is their ability to limit the variance between the output
of a robust aggregator and the average output of honest
workers. In our discussion, we adopt the robust definition
of Karimireddy et al. (2021) with a few modifications. This
refined definition, detailed in Definition 3.1, guarantees that
the expected deviation of an aggregation rule from the aver-
age output of honest workers is limited to cδ ≥ 0 times the
variance of these workers’ outputs.

Definition 3.1. (cδ, δ)-robust. Assume we have m random
vectors x1, . . . ,xm ∈ Rd. Also assume we have an ”honest”
subset G ⊆ [m], implying {xi}∈ G are independent of each
other. Finally, assume that there exists δ ∈ [0, 1/2) such
that |G| ≥ (1− δ)m. Moreover, assume that for any i ∈ G
there exist ρi ≥ 0 such that,

E∥xi − x̄G∥2 ≤ ρ2i ,

where x̄G := 1
|G|
∑

i∈G xi. Then an aggregation rule A is
called (cδ, δ)-robust is for any such m random vectors it
outputs x̂← A(x1, . . . ,xn) such that,

E∥x̂− x̄G∥2 ≤ cδρ
2 ,

where ρ2 := 1
|G|
∑

i∈G ρ2i , and the expectation
w.r.t. {xi}mi=1 and (possible) randomization in A.

Note that Allouah et al. (2023) provides a different definition
that encompasses a broad family of robust aggregators (see
Definition 2 in Allouah et al. (2023)). In Lemma C.2, we
demonstrate that any aggregator satisfying their definition
will also meet our definition outlined above. Consequently,
the upper bounds of cδ for various aggregation rules are de-
rived from the findings in Allouah et al. (2023) and detailed

Table 1. Summary of aggregation rules (CWTM (Yin et al., 2018),
Krum (Blanchard et al., 2017), GM* (ϵ-approximate GM) (Chen
et al., 2017; Acharya et al., 2022), CWMed (Yin et al., 2018)) with
respective cδ values and computational costs.

AGG. cδ COMPUTATIONAL COST

AVG - O(dm)

CWTM δ
1−2δ

(
1 + δ

1−2δ

)
O(dm logm)

KRUM 1 + δ
1−2δ

O(dm2)

GM*
(
1 + δ

1−2δ

)2

O(dm+ dϵ−2)

CWMED
(
1 + δ

1−2δ

)2

O(dm logm)

in Table 1. Furthermore, Allouah et al. (2023) establishes
that the optimal value for cδ is δ

1−2δ . As shown in Table
1, this optimal rate is achieved by the CWTM aggregator
when δ ≤ 1/3. The performance of the other aggregators
listed in Table 1 is suboptimal.

3.1. Centered Trimmed Meta Aggregator (CTMA)

To address the suboptimal performance of (cδ, δ)-
robust aggregators, previous works have proposed ”meta-
aggregators,” which enhance the performance of baseline
suboptimal aggregators. Concretely, such meta-aggregators
employ a baseline (cδ, δ)-robust aggregators in a black box
manner to yield an improved robust aggregator with a factor
of O(δ(1+cδ)) instead of cδ . Thus, even if cδ = O(1) (and
therefore suboptimal); then after meta-aggregation we re-
ceive an order optimal factor of O(δ). This, in turn, enables
the crafting of a wide class of optimal aggregators, which
can be highly beneficial in practice.

Currently, two approaches exist for meta-aggregation: the
Nearest Neighbor Mixing (NNM) method (Allouah et al.,
2023) and the Bucketing technique (Karimireddy et al.,
2020). Both have proven to be useful in theory as well
as in practice. Unfortunately, the computational complexity
of NNM and Bucketing is quite high and requires O(dm2)
computations in the worst case. This is substantially higher
compared to the computational cost of most robust aggre-
gators, as shown in Table 1. This issue severely limits
the practicality of existing meta-aggregators in large-scale
(large d) and massively parallel (large m) scenarios.

To mend the above issue, we propose an alternative meta-
aggregator in Algorithm 1, named Centered Trimmed Meta
Aggregator (CTMA). CTMA achieves performance com-
parable to NNM and Bucketing while requiring a computa-
tional cost of O(dm+m logm), which is similar (up to a
logarithmic factor) to that of the standard average aggrega-
tor.

As outlined in Algorithm 1, the CTMA process begins by

4

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

Algorithm 1 Centered Trimmed Meta Aggregator (CTMA)
Input: Sequence of vectors x1,x2, . . . ,xm, a (cδ, δ)-
robust aggregator A, δ ∈ [0, 1/2).
Initialize: x0 ← A(x1, . . . ,xm).
Sort the sequence {∥xi − x0∥}mi=1 in non-decreasing
order.
Define S ← set of indices corresponding to the first (1−
δ)m elements in the sorted sequence.
Compute x̂ = 1

|S|
∑

i∈S xi.
return x̂

sorting the sequence {∥xi − x0∥}mi=1 in non-decreasing
order. It then computes the average of the first (1 − δ)m
vectors in this ordered sequence, selecting those based on
their minimal deviation from the robust aggregator x0. The
idea behind this approach is to redefine the role of the robust
aggregator x0. Instead of using x0 directly, it serves as an
anchor point representing a robust reference. By averaging
its nearest neighbors, this method leverages the strength
of the collective while preserving robustness, leading to
enhanced performance.

It is immediate to see that Algorithm 1 requires O(dm +
m logm) computations, in addition to computing x0. Fur-
thermore, as a post-processing approach, CTMA can be
effectively combined with either NNM or Bucketing with-
out any additional cost, offering a versatile solution in opti-
mizing robust aggregation processes. Note that the CTMA
can be applied to a wide range of optimization problems,
including non-convex problems.

Lemma 3.2. Under the assumptions outlined in Definition
3.1, if CTMA receives a (cδ, δ)-robust aggregator, A; then
the output of CTMA, x̂, is (16δ(1 + cδ), δ)-robust.

Proof. For simplicity lets assume w.l.o.g. that |G| = (1−
δ)m = |S|. At Remark 3.3, we describe how to extend to
the general case where |G| ≥ (1− δ)m = |S|.

We denote yi := xi − x0.

x̂− x̄G =
1

|S|
∑
i∈S

xi − x̄G

= x0 − x̄G +
1

|G|
∑
i∈S

(xi − x0) (|S| = |G|)

= − 1

|G|
∑
i∈G

yi +
1

|G|
∑
i∈S

yi

= − 1

|G|
∑
i∈G

yi +
1

|G|
∑
i∈G

yi −
1

|G|
∑

i∈G\S

yi +
1

|G|
∑

i∈S\G

yi

= − 1

|G|
∑

i∈G\S

(xi − x0) +
1

|G|
∑

i∈S\G

(xi − x0).

Taking the squared norm of both sides and applying the

Jensen’s inequality, we obtain:

∥x̂− x̄G∥2 =

∥∥∥∥∥∥− 1

|G|
∑

i∈G\S

(xi − x0) +
1

|G|
∑

i∈S\G

(xi − x0)

∥∥∥∥∥∥
2

≤ 2|S\G|
|G|2

∑
i∈S\G

∥xi − x0∥2 +
2|G\S|
|G|2

∑
i∈G\S

∥xi − x0∥2 .

Note that |G\S| = |G ∪ S| − |S| ≤ m− |G| = |B| and in a
similar way |S\G| ≤ |B|. Therefore,

∥x̂− x̄G∥2 ≤
4δ

|G|
∑

i∈S\G

∥xi − x0∥2 +
4δ

|G|
∑

i∈G\S

∥xi − x0∥2 .

Next, we show that there exists an injective function Φ :
S\G → G ∩ S̄. To achieve this, we first denote |B ∩ S| = q.
It is important to note that B ∩ S = S \ G, which leads us
to derive the bound for |G ∩ S̄|:

|S̄ ∩ G| = |S̄| − |S̄ ∩ B| = |B| − |B \ (S ∩ B)|
= |B| − (|B| − |S ∩ B|) = q .

Consequently, it implies that |G ∩ S̄| = |S \ G| = q. There-
fore, we can assert the existence of an injective function
Φ : S \ G → G ∩ S̄. Further, by the definition of the set S,
∀i ∈ G∩S̄, ∀j ∈ S\G we have that ∥xi−x0∥ ≥ ∥xj−x0∥.
Thus,

∥x̂− x̄G∥2 ≤
4δ

|G|
(
∑

i∈S\G

∥xΦ(i) − x0∥2 +
∑

i∈G\S

∥xi − x0∥2)

≤ 8δ

|G|
∑
i∈G
∥xi − x0∥2 .

Taking the expectations of both sides gives us the following:

E∥x̂− x̄G∥2 ≤
8δ

|G|
∑
i∈G

E∥xi − x0∥2

≤ 16δ

|G|
∑
i∈G

E∥xi − x̄G∥2 +
16δ

|G|
∑
i∈G

E∥x̄G − x0∥2

≤ 16δρ2 + 16δcδρ
2 = 16δ(1 + cδ)ρ

2 ,

where the second inequality uses ∥a + b∥2 ≤ 2∥a∥2 +
2∥b∥2, which holds ∀a,b ∈ Rd. The last inequality stems
from the assumption in Def. 3.1.

Remark 3.3. CTMA can also receive an upper bound es-
timate of δ and adjust the size of S to (1 − δ)m. In our
analysis, we assume, without loss of generality, that this
estimate matches the true size of B. Should this not be the
case, our proof can alternatively rely on a subset of G of size
(1− δ)m without affecting the validity of our conclusions.

5

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

4. Synchronous Robust Training
Previous works have shown that applying a robust-
aggregator to the standard stochastic gradients is bound
to fail (Karimireddy et al., 2020). This is due to the fact that
Byzantine workers may make use of the “noise blanket” of
standard gradient estimators in order to inject harmful bias,
which may totally fail the learning process. Nevertheless,
Karimireddy et al. (2020); Allouah et al. (2023) have de-
vised an elegant and simple solution to this issue in the form
of aggregating momentum estimates rather than gradient
estimates. Concretely, the theoretical analysis in this work
suggests that each (honest) worker maintains a momentum
that effectively averages the past≈

√
T stochastic gradients,

which leads to a variance reduction by a factor of
√
T . This

shrinking of the “noise blanket” limits the harmful bias that
may be injected by Byzantine workers. Here we take a simi-
lar approach. Nevertheless, instead of using the momentum,
we make use of a recent approach called µ2-SGD (Levy,
2023), which enables a more aggressive error reduction of
factor t compared to standard gradient estimates. One bene-
fit of this approach over utilizing momentum, is that it will
allow us to pick the momentum parameter in a completely
parameter-free manner, and pick the learning rate only based
on the smoothness L; Conversely, previous methods that
rely on momentum require picking both the momentum and
the learning rate based on L, on cδ and on the variance of
stochastic gradients (Karimireddy et al., 2020; Allouah et al.,
2023). Next, we overview this approach and describe and
analyze it in the context of Synchronous Robust training.

4.1. µ2-SGD

The µ2-SGD is a variant of standard SGD with several
modifications. Its update rule is of the following form,
w1 = x1 ∈ K, and ∀t > 1,

wt+1 = ΠK (wt − ηαtdt) , xt+1 =
1

α1:t+1

∑
k∈[t+1]

αkwk .

Here, {αt > 0}t are importance weights that may unequally
emphasize different update steps; concretely we will employ
αt ∝ t, which puts more emphasis on the more recent
updates. Moreover, the {xt}t’s are a sequence of weighted
averages of the iterates {wt}t, and dt is an estimate for
the gradient at the average point, i.e. of ∇f(xt). This is
different than standard SGD, which employs estimates for
the gradients at the iterates, i.e. of∇f(wt). This approach is
related to a technique called Anytime-GD (Cutkosky, 2019),
which is strongly-connected to the notions of momentum
and acceleration (Cutkosky, 2019; Kavis et al., 2019).

While in the natural stochastic version of Anytime-GD, one
would use the estimate ∇f(xt; zt); the µ2-SGD approach
suggests to employ a variance reduction mechanism to yield
a corrected momentum estimate dt. This is done as follows:

Algorithm 2 Synchronous Robust µ2-SGD
Input: Learning rate ηt > 0, starting point x1 ∈ K, num-
ber of steps T , importance weights {αt}t, corrected mo-
mentum weights {βt}t, (cδ, δ)-robust aggregation func-
tion A.
Initialize: Set w1 = x1, draw z

(i)
1 ∼ D, set d(i)

1 =

∇f(x1; z
(i)
1), ∀i ∈ [m].

for t = 1 to T do
▷ server update:
wt+1 = ΠK(wt − ηtαtA(d(1)

t , . . . ,d
(m)
t))

xt+1 = 1
α1:t+1

∑t+1
k=1 αkwk

for i = 1 to m do
▷ worker update:
if i ∈ G then

Draw z
(i)
t+1 ∼ D

Compute g
(i)
t+1 = ∇fi(xt+1; z

(i)
t+1)

Compute g̃
(i)
t = ∇fi(xt; z

(i)
t+1)

Update d
(i)
t+1 = g

(i)
t+1 + (1− βt+1)(d

(i)
t − g̃

(i)
t)

else
Return *

end if
end for

end for
Output: xT

d1 := ∇f(x1; z1), and ∀t > 2,

dt = ∇f(xt; zt) + (1− βt)(dt−1 −∇f(xt−1; zt)) ,

where βt ∈ [0, 1] are called corrected momentum weights.
It can be shown by induction that E[dt] = E[∇f(xt)];
however, in general, E[dt | xt] ̸= ∇f(xt) (in contrast
to standard SGD estimators). Nevertheless, Levy (2023)
demonstrated that by choosing corrected momentum weights
βt := 1/t, the above estimate enjoys an aggressive error
reduction. Specifically, E∥εt∥2 := E∥dt − ∇f(xt)∥2 ≤
O(σ̃2/t) at step t, where σ̃2 ≤ O(σ2 +D2σ2

L). Implying
that the variance decreases with t, contrasting with standard
SGD where the variance E∥εSGD

t ∥2 := E∥gt −∇f(xt)∥2
remains uniformly bounded.

4.2. Synchronous Robust µ2-SGD

We consider a synchronous training approach in the spirit of
Minibatch-SGD (Dekel et al., 2012), where the PS updates
its global vector by aggregating information from all work-
ers. This aggregation occurs only after receiving outputs
from all workers. Afterward, the PS sends the updated
global vector back to each worker, allowing them to com-
pute their next output.

Algorithm 2 describes the adapted µ2-SGD algorithm for
the synchronous Byzantine setting. In this approach, each

6

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

worker computes its own corrected momentum d
(i)
t inde-

pendently using its own data samples:

d
(i)
t = ∇fi(xt; z

(i)
t) + (1− βt)(d

(i)
t−1−∇fi(xt−1; z

(i)
t)) .

Once the outputs from all workers are received, the PS then
proceeds to update the new query point xt+1:

wt+1 = ΠK

(
wt − ηαtA

(
d
(1)
t . . . ,d

(m)
t

))
,

xt+1 =
1

α1:t+1

∑
k∈[t+1]

αkwk ,

where we are assumed that A
(
d
(1)
t , . . . ,d

(m)
t

)
is a (cδ, δ)-

robust aggregator (Def. 3.1).

The motivation for utilizing the µ2-SGD algorithm in the
Byzantine setting lies in its dual mechanism, which incor-
porates weighted averaging over the entire history of both
query points and gradients. This allows the µ2-SGD algo-
rithm to perform careful gradient steps with small changes,
thereby enhancing the stability of the gradient descent pro-
cess. This stability leads to aggressive stochastic variance
reduction, which can be valuable for identifying Byzantine
noise (or malicious workers) over time.
Theorem 4.1. For each worker i ∈ G, assume a convex
function fi : K 7→ R on a convex set K with bounded diam-
eter D. Under the assumptions given in Equations (2), (4),
and (5), the implementation of Algorithm 2 with parameters
{αt = t}t and {βt = 1/t}t guarantees the following for
every t ∈ [T] and each honest worker i ∈ G:

E
∥∥∥ε(i)t

∥∥∥2 = E
∥∥∥d(i)

t −∇fi(xt)
∥∥∥2 ≤ σ̃2/t ,

E

∥∥∥∥∥ 1

|G|
∑
i∈G

ε
(i)
t

∥∥∥∥∥
2

≤ σ̃2/t|G| ,

where ε
(i)
t = d

(i)
t −∇fi(x

(i)
t) and σ̃2 := 2σ2 + 8D2σ2

L.

Theorem 4.1 shows that this method is consistent with
the guarantees of the non-distributed µ2-SGD (Levy,
2023), preserving the same stochastic error E

∥∥∥ε(i)t

∥∥∥ :=

E
∥∥∥d(i)

t −∇fi(xt)
∥∥∥ for each honest worker. Furthermore,

the collective error across honest workers results in a vari-
ance reduction proportional to the number of workers, align-
ing with the principles of mini-batch SGD (Dekel et al.,
2012).

As previously discussed, the double mechanism of the µ2-
SGD method offers significant variance reduction over the
standard mini-batch SGD by minimizing stochastic variance
at each step t. Consequently, integrating the µ2-SGD algo-
rithm with a (cδ, δ)-robust aggregator ensures a consistent
reduction in variance between the filter’s output and the
actual gradient, as demonstrated in Lemma 4.2.

Lemma 4.2. Under the Byzantine assumption where δ <
1/2, let A be a (cδ, δ)-robust aggregation rule, and let f :
K 7→ R be a convex function, where K is a convex set with
bounded diameter D. Presuming that the assumptions in
Equations (2), (3), (4), and (5) hold, invoking Algorithm 2
with {αt = t}t and {βt = 1/t}t ensures for any t ∈ [T]:

E
∥∥∥d̂t −∇f(xt)

∥∥∥2 ≤ 4σ̃2

tm
+

12cδσ̃
2

t
+ 6cδξ

2 ,

where d̂t = A
(
d
(1)
t , . . . ,d

(m)
t

)
and σ̃2 := 2σ2 + 8D2σ2

L.

Proof. We start by determining the appropriate value for ρ
as outlined in Definition 3.1, where d̄G := 1

|G|
∑

i∈G d
(i)
t :

E
∥∥∥d(i)

t − d̄G

∥∥∥2
≤ 3E

∥∥∥d(i)
t −∇fi(xt)

∥∥∥2 + 3E
∥∥∇f(xt)− d̄G

∥∥2
+ 3E ∥∇fi(xt)−∇f(xt)∥2

≤ 3σ̃2

t
+

3σ̃2

t|G|
+ 3E ∥∇fi(xt)−∇f(xt)∥2

≤ 6σ̃2

t
+ 3E ∥∇fi(xt)−∇f(xt)∥2 .

The first and inequality uses ∥a + b + c∥2 ≤ 3∥a∥2 +
3∥b∥2 + 3∥c∥2, which holds ∀a,b, c ∈ Rd. The second
inequality follows Theorem 4.1 and the assumption in Eq.
(3). The third inequality is due to the fact that |G| ≥ 1.
Thus,

1

|G|
∑
i∈G

E
∥∥∥d(i)

t − d̄G

∥∥∥2
≤ 6σ̃2

t
+

3

|G|
∑
i∈G

E ∥∇fi(xt)−∇f(xt)∥2

≤ 6σ̃2

t
+ 3ξ2 .

Accordingly, we set ρ2 := 6σ̃2

t + 3ξ2. Following Definition
3.1, we have,

E
∥∥∥d̂t −∇f(xt)

∥∥∥2 ≤ 2E
∥∥∥d̂t − d̄G

∥∥∥2 + 2E
∥∥d̄G −∇f(xt)

∥∥2
≤ 2cδ

(
6σ̃2

t
+ 3ξ2

)
+ 2E

∥∥∥∥∥ 1

|G|
∑
i∈G

ε
(i)
t

∥∥∥∥∥
2

≤ 12cδσ̃
2

t
+

2σ̃2

t|G|
+ 6cδξ

2

≤ 12cδσ̃
2

t
+

4σ̃2

tm
+ 6cδξ

2 ,

where the first inequality uses ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2,
which holds ∀a,b ∈ Rd. The third follows Theorem 4.1.
The last inequality utilizes the fact that |G| ≥ (1− δ)m ≥
m/2 since δ < 1/2.

7

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

This lemma breaks down the error between the filter’s output
and the actual gradient into three components: the collec-
tive stochastic error across all honest workers, cδ times the
stochastic error for an individual honest worker, and cδ
times the heterogeneity variance. In the absence of Byzan-
tine workers (δ = 0), cδ can be reduced to zero if cδ ≤ O(δ).
This condition can be met by using an appropriate robust
aggregator (see Table 1) or by applying a meta-aggregator
like CTMA with a suitable robust aggregator. This aligns
with the ideal µ2-SGD analysis in a Byzantine-free setting
(Levy, 2023).

Theorem 4.3 (Synchronous Byzantine µ2-SGD). Assume
f is convex. Also, let us make the same assumptions as
in Thm. 4.1 and Lemma 4.2, and let us denote G∗ :=
∥∇f(x∗)∥, where x∗ ∈ argminx∈K f(x). Then invoking
Algorithm 2 with {αt = t}t and {βt = 1/t}t, and using a
learning rate η ≤ 1

4LT guarantees,

E[∆T] ≤ O

(
G∗D + LD2

T
+

Dσ̃√
T

√
cδ +

1

m
+
√
cδDξ

)

where ∆T := f(xT)− f(x∗) and σ̃2 := 2σ2 + 8D2σ2
L.

Remark 4.4. Theorem 4.3 provides optimal excess loss
bound when cδ ≤ O(δ) (Karimireddy et al., 2021). Addi-
tionally, this bound is consistent with the optimal analysis in
a Byzantine-free setting (δ = 0) (Levy, 2023; Dekel et al.,
2012).
Remark 4.5. Theorem 4.3 indicates that the learning rate
solely relies on the smoothness parameter L. This is in con-
trast to the standard momentum approach (e.g., Karimireddy
et al. (2020); Allouah et al. (2023)), which necessitates prior
knowledge of L, σ, and cδ to set the learning rate and mo-
mentum parameter.
Remark 4.6. In Appendix B.2, we demonstrate that our
approach can derive a wide range of learning rates η ∈
[ηmin, ηmax] that ensure optimal convergence. Unlike the
standard momentum method, which requires a low-range
of learning rates such that ηmax/ηmin = O(1) (Karim-
ireddy et al., 2020) to achieve an order optimal bound, our
method allows for a broader range of learning rates with
ηmax/ηmin = O(

√
T). This provides significantly greater

flexibility in fine-tuning the learning rate parameter.

5. Experiments
In this section, we present the numerical performance of the
CTMA and µ2-SGD algorithms. We assess their robustness
against sign-flipping and label-flipping attacks (Allen-Zhu
et al., 2020), as well as state-of-the-art (SOTA) attacks,
including the empire attack (Xie et al., 2020) and the lit-
tle attack (Baruch et al., 2019). Additionally, we perform
a comparative analysis of CTMA alongside two existing
methods: Bucketing and NNM. Furthermore, we explore

the effectiveness of employing a double meta-aggregator
approach, where NNM serves as the initial meta-aggregator
before passing through a robust aggregation phase, followed
by the application of CTMA.

Our experiments also measure the performance of the
µ2-SGD algorithm compared to the standard momentum
(Karimireddy et al., 2021), extending the evaluation to ex-
amine their resilience across a wide range of learning rates.

We conducted our experiments in a homogeneous setting.
Specifically, we utilized the MNIST (LeCun et al., 2010)
dataset, which contains 28x28 pixel grayscale images of
handwritten digits, and the CIFAR-10 (Krizhevsky et al.,
2014) dataset, which includes 32x32 color images span-
ning 10 classes. The detailed experimental setup and the
complete results are provided in Appendix E. Our results
demonstrate consistent outcomes across both the CIFAR-10
and MNIST datasets.

For the code, please visit our GitHub repository1.

CTMA Versus Existing Meta Aggregators. Our results
of CTMA show that it often performed as well as, and in
some cases even better than, existing meta-aggregators such
as Bucketing and NNM for both the momentum and µ2-
SGD algorithms. As illustrated in Figures 1(a) and 1(b),
and demonstrated in Appendix E, CTMA enhances the per-
formance of baseline robust-aggregators, exhibiting excep-
tional robustness and accuracy under challenging condi-
tions. However, Figure 5 indicates that CTMA may struggle
with heavy low-variance attacks, such as little and empire,
which fall under the stochastic ”noise blanket” and com-
plicate the identification of adversarial workers, leading to
performance degradation. Despite this, its computational
efficiency and effectiveness against other realistic attacks,
such as sign-flipping and label-flipping, as well as under
weaker low-variance attacks (see Figures 6 and 9), make
CTMA a valuable tool in the field of meta-aggregation.

Additionally, integrating NNM with CTMA can even further
improve performance. For instance, Figure 1(a) shows that
in the case of the sign-flipping attack with Robust Aggrega-
tion for Federated Learning (RFA) (Pillutla et al., 2022) (an
approximation of the GM aggregator), the combination of
NNM and CTMA significantly improved both robustness
and accuracy for both momentum and µ2-SGD.

µ2-SGD Versus Momentum. We compared the perfor-
mance of the µ2-SGD algorithm against the standard mo-
mentum across a wide range of learning rates and various
attacks. The results in Figures 2(a) and 1(a) show that µ2-
SGD outperformed momentum under severe attacks when

1https://github.com/dahan198/
synchronous-fault-tolerant-ml

8

https://github.com/dahan198/synchronous-fault-tolerant-ml
https://github.com/dahan198/synchronous-fault-tolerant-ml

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

(a) Performance comparison of CTMA with existing meta-
aggregators under sign-flipping and label-flipping attacks.

(b) Performance comparison of CTMA with existing meta-
aggregators under empire and little attacks.

Figure 1. Performance comparison of CTMA with existing meta-aggregators (Conf. 1 in Table 2).

(a) Performance comparison of µ2-SGD with standard momen-
tum under empire and little attacks (Conf. 1 in Table 2).

(b) Performance comparison of µ2-SGD with standard momen-
tum for a wide range of learning rates, under sign-flipping and
label-flipping attacks (Conf. 4 in Table 2).

Figure 2. Performance comparison of µ2-SGD with standard momentum.

nearly half of the workers were Byzantine. Figure 2(a)
highlights µ2-SGD’s strong resilience against heavy SOTA
attacks like little and empire. In these cases, µ2-SGD exhib-
ited superior convergence speed and stability during training
iterations by considering the entire history of gradients and
query points, which aligns well with our theory. However,
in cases of weaker attacks, as shown in Figure 1(a) for the
label-flipping attack with 4 out of 17 Byzantine workers, or
when a meta-aggregator is used to enhance performance, as
depicted in Figure 1(b), the high stability of µ2-SGD is not
necessary. In fact, in these scenarios, the noisier momentum
achieved faster convergence. This is because µ2-SGD, with
its double momentum mechanism and parameters that ac-
count for the entire history, takes very small and cautious
steps, potentially slowing its convergence compared to a
single momentum mechanism with a larger parameter.

Furthermore, Figure 2(b) shows that µ2-SGD exhibited
greater stability across a wide range of learning rates for
label-flipping and sign-flipping attacks, whereas momentum
tended to be more sensitive to this parameter. This provides
a broader range of options for hyper-parameter optimization
of µ2-SGD.

Conclusions and Future Work
We introduce two complementary techniques to enhance
the efficiency and practicality of Byzantine-robust training.
First, we present a novel meta-aggregator that substantially
improves efficiency compared to previous methods. Second,
we incorporate a recent novel gradient estimation technique
into Byzantine-robust training. We substantiate the theoreti-
cal benefits of our new approaches and corroborate them in
practice, demonstrating an advantage over momentum, the
standard workhorse of Byzantine-robust training.

Future directions: (i) extending our investigation to the chal-
lenging setting of decentralized Byzantine-robust training
(He et al., 2022); (ii) understand whether we can further
develop estimates that incorporate (stochastic) second order
information in the spirit of Antonakopoulos et al. (2022); in
order to yield an even more aggressive variance reduction,
which will give rise to easier mitigation of faulty updates.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning, and especially the aspect of fault-
tolerant and reliable training. There are many potential

9

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

societal consequences of our work, none of which we feel
must be specifically highlighted here.

Acknowledgement
This research was partially supported by Israel PBC-VATAT,
by the Technion Artificial Intelligent Hub (Tech.AI) and by
the Israel Science Foundation (grant No. 447/20).

References
Acharya, A., Hashemi, A., Jain, P., Sanghavi, S., Dhillon,

I. S., and Topcu, U. Robust training in high dimensions
via block coordinate geometric median descent. In Inter-
national Conference on Artificial Intelligence and Statis-
tics, pp. 11145–11168. PMLR, 2022.

Alistarh, D., Allen-Zhu, Z., and Li, J. Byzantine stochas-
tic gradient descent. Advances in Neural Information
Processing Systems, 31, 2018.

Allen-Zhu, Z., Ebrahimian, F., Li, J., and Alistarh, D.
Byzantine-resilient non-convex stochastic gradient de-
scent. arXiv preprint arXiv:2012.14368, 2020.

Allouah, Y., Farhadkhani, S., Guerraoui, R., Gupta, N.,
Pinot, R., and Stephan, J. Fixing by mixing: A recipe
for optimal byzantine ml under heterogeneity. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 1232–1300. PMLR, 2023.

Antonakopoulos, K., Kavis, A., and Cevher, V. Extra-
newton: A first approach to noise-adaptive accelerated
second-order methods. Advances in Neural Information
Processing Systems, 35:29859–29872, 2022.

Baruch, G., Baruch, M., and Goldberg, Y. A little is enough:
Circumventing defenses for distributed learning. Ad-
vances in Neural Information Processing Systems, 32,
2019.

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and Stainer,
J. Machine learning with adversaries: Byzantine toler-
ant gradient descent. Advances in neural information
processing systems, 30, 2017.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Inger-
man, A., Ivanov, V., Kiddon, C., Konečnỳ, J., Mazzocchi,
S., McMahan, B., et al. Towards federated learning at
scale: System design. Proceedings of machine learning
and systems, 1:374–388, 2019.

Chen, Y., Su, L., and Xu, J. Distributed statistical machine
learning in adversarial settings: Byzantine gradient de-
scent. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 1(2):1–25, 2017.

Cutkosky, A. Anytime online-to-batch, optimism and accel-
eration. In International conference on machine learning,
pp. 1446–1454. PMLR, 2019.

Cutkosky, A. and Orabona, F. Momentum-based variance
reduction in non-convex sgd. Advances in neural infor-
mation processing systems, 32, 2019.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao, L.
Optimal distributed online prediction using mini-batches.
Journal of Machine Learning Research, 13(1), 2012.

El Mhamdi, E. M., Guerraoui, R., and Rouault, S. L. A.
Distributed momentum for byzantine-resilient stochastic
gradient descent. In 9th International Conference on
Learning Representations (ICLR), number CONF, 2021.

Farhadkhani, S., Guerraoui, R., Gupta, N., Pinot, R., and
Stephan, J. Byzantine machine learning made easy by
resilient averaging of momentums. In International Con-
ference on Machine Learning, pp. 6246–6283. PMLR,
2022.

Guerraoui, R., Rouault, S., et al. The hidden vulnerability of
distributed learning in byzantium. In International Con-
ference on Machine Learning, pp. 3521–3530. PMLR,
2018.

Guerraoui, R., Gupta, N., and Pinot, R. Byzantine machine
learning: A primer. ACM Computing Surveys, 2023.

Hazan, E. et al. Introduction to online convex optimization.
Foundations and Trends® in Optimization, 2(3-4):157–
325, 2016.

He, L., Karimireddy, S. P., and Jaggi, M. Byzantine-robust
decentralized learning via clippedgossip. arXiv preprint
arXiv:2202.01545, 2022.

Karimireddy, S. P., He, L., and Jaggi, M. Byzantine-robust
learning on heterogeneous datasets via bucketing. arXiv
preprint arXiv:2006.09365, 2020.

Karimireddy, S. P., He, L., and Jaggi, M. Learning from
history for byzantine robust optimization. In Interna-
tional Conference on Machine Learning, pp. 5311–5319.
PMLR, 2021.

Kavis, A., Levy, K. Y., Bach, F., and Cevher, V. Unixgrad: A
universal, adaptive algorithm with optimal guarantees for
constrained optimization. Advances in neural information
processing systems, 32, 2019.

Krizhevsky, A., Nair, V., and Hinton, G. The cifar-10 dataset.
online: http://www. cs. toronto. edu/kriz/cifar. html, 55
(5), 2014.

10

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

Lamport, L., Shostak, R., and Pease, M. The byzantine
generals problem. In Concurrency: the works of leslie
lamport, pp. 203–226. 2019.

LeCun, Y., Cortes, C., Burges, C., et al. Mnist handwritten
digit database, 2010.

Levy, K. Y. µ2-sgd: Stable stochastic optimization
via a double momentum mechanism. arXiv preprint
arXiv:2304.04172, 2023.

Pillutla, K., Kakade, S. M., and Harchaoui, Z. Robust
aggregation for federated learning. IEEE Transactions
on Signal Processing, 70:1142–1154, 2022.

Shalev-Shwartz, S., Shamir, O., Srebro, N., and Sridharan,
K. Stochastic convex optimization. In COLT, volume 2,
pp. 5, 2009.

Xie, C., Koyejo, O., and Gupta, I. Fall of empires: Breaking
byzantine-tolerant sgd by inner product manipulation.
In Uncertainty in Artificial Intelligence, pp. 261–270.
PMLR, 2020.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P. Byzantine-
robust distributed learning: Towards optimal statistical
rates. In International Conference on Machine Learning,
pp. 5650–5659. PMLR, 2018.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., et al. A survey of
large language models. arXiv preprint arXiv:2303.18223,
2023.

11

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

A. Bounded Smoothness Variance Assumption
We show that Eq. (4) implies that Eq. (5) holds for some σ2

L ∈ [0, L2].

E∥(∇fi(x; z)−∇fi(x))− (∇fi(y; z)−∇fi(y))∥2 = E∥∇fi(x; z)−∇fi(y; z)∥2 − ∥∇fi(x)−∇fi(y))∥2

≤ L2∥x− y∥2 .

Here, we also used E(∇fi(x; z)−∇fi(y; z)) = (∇fi(x)−∇fi(y)), and followed Eq. (4). Therefore, we establish that
σ2
L ∈ [0, L2].

B. Synchronous µ2-SGD Analysis
B.1. Proof of Thm. 4.1

Proof of Thm. 4.1. We follow similar steps as in he proof of Theorem 4.1 of Levy (2023). First, we consider the definition
of xt, which leads us to the following relationship:

α1:t−1(xt − xt−1) = αt(wt − xt) ,

which further yields to,
∥xt − xt−1∥ = (αt/α1:t−1)∥wt − xt∥ .

Given that wt belongs to K by its definition, and xt is a weighted average of {wt}t, the convexity of K ensures that xt ∈ K.
Furthermore, ∥wt − xt∥ ≤ D in accordance with the assumption in Eq. (1). Assigning αt = t, leads us to establish the
ratio αt

α1:t−1
= 2

t−1 . Consequently, for any t ≥ 1,

∥xt − xt−1∥ ≤
2

t− 1
D . (6)

We proceed to analyze the recursive dynamics of ε(i)t for each i ∈ G. Based on the definitions of d(i)
t and ε

(i)
t , we can

present the recursive relationship in the following way:

ε
(i)
t = βt(g

(i)
t −∇fi(xt)) + (1− βt)Z

(i)
t + (1− βt)ε

(i)
t−1 ,

where Z
(i)
t := (g

(i)
t − ∇fi(xt)) − (g̃

(i)
t−1 − ∇fi(xt−1)). Upon choosing βt = 1

t , we can reformulate the equation as
follows:

tε
(i)
t = (g

(i)
t −∇fi(xt)) + (t− 1)Z

(i)
t + (t− 1)ε

(i)
t−1 =M(i)

t + (t− 1)ε
(i)
t−1 ,

whereM(i)
t := (g

(i)
t −∇fi(xt)) + (t− 1)Z

(i)
t . Unrolling this recursion yields an explicit expression for any t ∈ [T]:

tε
(i)
t =

∑
τ∈[t]

M(i)
τ .

Following this, we derive an upper bound for the expected square norm ofM(i)
τ as follows:

E∥M(i)
τ ∥2 = E∥(g(i)

τ −∇fi(xτ)) + (τ − 1)Z(i)
τ ∥2

≤ 2E∥g(i)
τ −∇fi(xτ)∥2 + 2E∥(τ − 1)Z(i)

τ ∥2

= 2E∥g(i)
τ −∇fi(xτ)∥2 + 2(τ − 1)2E∥(g(i)

τ −∇fi(xτ))− (g̃
(i)
τ−1 −∇fi(xτ−1))∥2

≤ 2σ2 + 2σ2
L(τ − 1)2E∥xτ − xτ−1∥2

≤ 2σ2 + 8D2σ2
L = σ̃2 ,

where the first inequality uses ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, which holds ∀a,b ∈ Rd. The second inequality employs the
assumptions outlined in Equations (2) and (5). The third inequality follows Eq. (6).

Note that for each i ∈ G, the sequence {M(i)
t }t constitutes a martingale difference sequence relative to a natural filtration

{F (i)
t }t. Furthermore, the sequence {M(i)

t }t,i forms |G| independent martingale difference {M(i)
t }t sequences relative to a

natural filtration Ft.

12

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

Lemma B.1. Consider {M (i)
t }t,i, a collection of m martingale difference sequences {M (i)

t }t with a respect to a natural
filtration Ft. These sequences are independent for each i ∈ [m] with a respect to natural filtration {F (i)

t }t. Then, for any
t ≥ 1, the following holds:

E

∥∥∥∥∥∥
∑
i∈[m]

∑
τ∈[t]

M (i)
τ

∥∥∥∥∥∥
2

=
∑
i∈[m]

∑
τ∈[t]

E
∥∥∥M (i)

τ

∥∥∥2 .

Leveraging Lemma B.1, we get the following relationship:

E

∥∥∥∥∥t∑
i∈G

ε
(i)
t

∥∥∥∥∥
2

= E

∥∥∥∥∥∥
∑
i∈G

∑
τ∈[t]

M(i)
τ

∥∥∥∥∥∥
2

=
∑
i∈G

∑
τ∈[t]

E
∥∥∥M(i)

τ

∥∥∥2≤σ̃2t|G| .

In a similar way, for the individual error, we have:

E
∥∥∥tε(i)t

∥∥∥2 = E

∥∥∥∥∥∥
∑
τ∈[t]

M(i)
τ

∥∥∥∥∥∥
2

=
∑
τ∈[t]

E
∥∥∥M(i)

τ

∥∥∥2 ≤ σ̃2t .

B.1.1. PROOF OF LEMMA B.1

Proof of Lemma B.1.

Lemma B.2 (Borrowed from Lemma B.1 in Levy (2023)). Let {Mt}t be a martingale difference sequence with respect to a
filtration {Ft}t, then the following holds for any t,

E

∥∥∥∥∥∥
∑
τ∈[t]

Mτ

∥∥∥∥∥∥
2

=
∑
τ∈[t]

E ∥Mτ∥2 .

For any τ ∈ [t], we have that,

E

∥∥∥∥∥∥
∑
i∈[m]

M (i)
τ

∥∥∥∥∥∥
2

=
∑
i∈[m]

E
∥∥∥M (i)

τ

∥∥∥2 + ∑
i ̸=j; i,j∈[m]

E⟨M (i)
τ ,M (j)

τ ⟩

=
∑
i∈[m]

E
∥∥∥M (i)

τ

∥∥∥2 + ∑
i ̸=j; i,j∈[m]

E

E [⟨M (i)
τ ,M (j)

τ ⟩|Fτ−1

]
︸ ︷︷ ︸

=0

=
∑
i∈[m]

E
∥∥∥M (i)

τ

∥∥∥2 , (7)

where the second equality is obtained by applying the law of total expectation. For the third equality, we rely on the
independence of M (i)

τ and M
(j)
τ for each i, j ∈ [m], i ̸= j and the fact that {M (i)

τ }τ constitutes a martingale difference
sequence, which implies E

[
M

(i)
τ

∣∣∣Fτ−1

]
= 0.

Therefore,

E

∥∥∥∥∥∥
∑
i∈[m]

∑
τ∈[t]

M (i)
τ

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥
∑
τ∈[t]

∑
i∈[m]

M (i)
τ

∥∥∥∥∥∥
2

=
∑
τ∈[t]

E

∥∥∥∥∥∥
∑
i∈[m]

M (i)
τ

∥∥∥∥∥∥
2

=
∑
τ∈[t]

∑
i∈[m]

E
∥∥∥M (i)

τ

∥∥∥2 ,

where the second equality is a result of applying Lemma B.2, which is appropriate since the sequence
{∑

i∈[m] M
(i)
t

}
t

forms a martingale difference sequence. The third equality follows the result in Eq. (7).

13

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

B.2. Proof of Thm. 4.3

Proof of Thm. 4.3. We begin by revisiting the AnyTime guarantee as outlined in Cutkosky (2019) and adapt the standard
regret analysis of the update rule, as detailed in Hazan et al. (2016), to our context.

Theorem B.3 (Rephrased from Theorem 1 in Cutkosky (2019)). Let f : K → R be a convex function with a minimum
x∗ ∈ argminw∈K f(w). Also let {αt ≥ 0}t, and {wt ∈ K}t, {xt ∈ K}t, such that {xt}t is an {αt}t weighted averaged
of {wt}t, i.e. such that x1 = w1, and for any t ≥ 1,

xt+1 =
1

α1:t+1

∑
τ∈[t+1]

ατwτ .

Then the following holds for any t ≥ 1:

α1:t(f(xt)− f(x∗)) ≤
∑
τ∈[t]

ατ∇f(xτ)(wτ − x∗) .

Lemma B.4. Let f : K → R be a convex function with a minimum x∗ ∈ argminw∈K f(w), and assume that the assumption
in Eq. (1) holds. Also let {αt ≥ 0}t, and {wt ∈ K}t. Then, for any t ≥ 1, an arbitrary vector d̂t ∈ Rd, and the update
rule:

wt+1 = ΠK

(
wt − ηαtd̂t

)
,

we have,

t∑
τ=1

ατ ⟨d̂τ ,wτ+1 − x∗⟩ ≤ D2

2η
− 1

2η

t∑
τ=1

∥wτ −wτ+1∥2 .

Lemma B.5. let f : K → R be an L-smooth and convex function, and let x∗ ∈ argminx∈K f(x), then for any x ∈ Rd we
have,

∥∇f(x)−∇f(x∗)∥2 ≤ 2L(f(x)− f(x∗)) .

Next, for every iteration t ≤ T , we define:

d̂t := A
(
d
(1)
t , . . . ,d

(m)
t

)
,

εt := d̂t −∇f(xt) .

Thus, combininh Theorem B.3 with Lemma B.4, we have that,

α1:t(f(xt)− f(x∗)) ≤
∑
τ∈[t]

ατ ⟨∇f(xτ),wτ − x∗⟩

=
∑
τ∈[t]

ατ ⟨d̂τ ,wτ+1 − x∗⟩+
∑
τ∈[t]

ατ ⟨d̂τ ,wτ −wτ+1⟩ −
∑
τ∈[t]

ατ ⟨ετ ,wτ − x∗⟩

≤ D2

2η
− 1

2η

∑
τ∈[t]

∥wτ −wτ+1∥2 +
∑
τ∈[t]

ατ ⟨d̂τ ,wτ −wτ+1⟩ −
∑
τ∈[t]

ατ ⟨ετ ,wτ − x∗⟩

=
D2

2η
− 1

2η

∑
τ∈[t]

∥wτ −wτ+1∥2 +
∑
τ∈[t]

ατ ⟨∇f(xτ),wτ −wτ+1⟩ −
∑
τ∈[t]

ατ ⟨ετ ,wτ+1 − x∗⟩

≤ D2

2η
− 1

2η

∑
τ∈[t]

∥wτ −wτ+1∥2 +
∑
τ∈[t]

ατ ⟨∇f(xτ),wτ −wτ+1⟩︸ ︷︷ ︸
(A)

+D
∑
τ∈[t]

ατ∥ετ∥ , (8)

14

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

where the first inequality is derived from the Anytime guarantee, as outlined in Theorem B.3. The second inequality follows
Lemma B.4. The third inequality is a result of applying the Cauchy-Schwarz inequality and the assumption in Eq. (1).

(A) := − 1

2η

∑
τ∈[t]

∥wτ −wτ+1∥2 +
∑
τ∈[t]

ατ ⟨∇f(xτ),wτ −wτ+1⟩

= − 1

2η

∑
τ∈[t]

∥wτ −wτ+1∥2 +
∑
τ∈[t]

ατ ⟨∇f(xτ)−∇f(x∗),wτ −wτ+1⟩+
∑
τ∈[t]

ατ ⟨∇f(x∗),wτ −wτ+1⟩

≤ η

2

∑
τ∈[t]

α2
τ∥∇f(xτ)−∇f(x∗)∥2 +

∑
τ∈[t]

ατ ⟨∇f(x∗),wτ −wτ+1⟩

≤ 2ηL
∑
τ∈[t]

α1:τ∆τ +
∑
τ∈[t]

(ατ − ατ−1)⟨∇f(x∗),wτ ⟩ − αt⟨∇f(x∗),wt+1⟩

= 2ηL
∑
τ∈[t]

α1:τ∆τ +
∑
τ∈[t]

(ατ − ατ−1)⟨∇f(x∗),wτ −wt+1⟩

≤ 2ηL
∑
τ∈[t]

α1:τ∆τ +
∑
τ∈[t]

(ατ − ατ−1)∥∇f(x∗)∥∥wτ −wt+1∥

≤ 1

2T

∑
τ∈[T]

α1:T∆τ + αtG
∗D .

Here, the first inequality employs the Young’s inequality. For the second inequality, we introduce the notation ∆t :=
f(xt) − f(x∗), and we follow Lemma B.5, which relates to the smoothness of the function f . In this step, we also set
α0 = 0 and utilizes the property α2

τ ≤ 2α1:t, given that ατ = τ . The third inequality uses the Cauchy-Schwarz inequality.
The last inequality follows the assumption in Eq. (1). It uses the fact that t ≤ T and ∆t ≥ 0, ∀t. This step also incorporates
the choice of an appropriate learning rate parameter η ≤ 1/4LT .

Plugging (A) into Eq. (8), gives us,

α1:t∆ ≤
1

2T

∑
τ∈[T]

α1:T∆τ +
D2

2η
+ αtG

∗D +D
∑
τ∈[t]

ατ∥ετ∥ . (9)

Lemma B.6 (Lemma C.2 in Levy (2023)). let {At}t∈[T], {Bt}t∈[T] be sequences of non-negative elements, and assume
that for any t ≤ T ,

At ≤ BT +
1

2T

∑
t∈[T]

At .

Then the following bound holds,
AT ≤ 2BT .

In the next step, let us define two terms: At := α1:tE [f(xt)− f(x∗)] and Bt := D2

2η + αtG
∗D + D

∑
τ∈[t] ατE∥ετ∥.

Note that the series {Bt}t forms a non-decreasing series of non-negative values, implying Bt ≤ BT for any t ∈ [T]. As a
result of Eq. (9), we have that At ≤ BT + 1

2T

∑
τ∈[T] Aτ .

By employing Lemma 4.2, we have,

∑
τ∈[T]

α2
τE∥ετ∥2 ≤

∑
τ∈[T]

α2
τ

(
4σ̃2

τm
+

12cδσ̃
2

τ
+ 6cδξ

2

)

=

(
4σ̃2

m
+ 12cδσ̃

2

) ∑
τ∈[T]

τ + 6cδξ
2
∑
τ∈[T]

τ2

≤ T 2

(
4σ̃2

m
+ 12cδσ̃

2

)
+ T 36cδξ

2. (10)

15

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

Utilizing Jensen’s inequality, enables us to establish,∑
τ∈[T]

ατE∥ετ∥ =
∑
τ∈[T]

√
(ατE∥ετ∥)2 ≤

√
T

√∑
τ∈[T]

α2
τE∥ετ∥2

≤
√
T

√
T 2

(
4σ̃2

m
+ 12cδσ̃2

)
+ T 36cδξ2

≤ T 1.5σ̃

√
4

m
+ 12cδ + 6T 2ξ

√
cδ. (11)

where the first inequality employs Eq. (10) and the second inequality uses
√
a+ b ≤

√
a+
√
b for non-negative a, b ∈ R.

The explanation behind this can be seen through the following steps:
(√

a+
√
b
)2

= a + 2
√
ab + b ≥ a + b, whereby

taking the square root of both sides of this equation, we obtain the desired inequality.

Leveraging Lemma B.6 and Eq. (11), and acknowledging that α1:T = Θ(T 2), as αt = t, it follows that:

E[f(xT)− f(x∗)] ≤ 1

T 2
BT

=
D2

2T 2η
+

G∗D

T
+

D

T 2

∑
τ∈[T]

ατE∥ετ∥

≤ D2

2T 2η
+

G∗D

T
+

Dσ̃√
T

√
12cδ +

4

m
+ 6Dξ

√
cδ . (12)

Finally, choosing the optimal η ≤ 1
4TL gives us:

E[f(xT)− f(x∗)] ≤ O

(
G∗D + LD2

T
+

Dσ̃√
T

√
cδ +

1

m
+
√
cδDξ

)
.

Learning Rate Range for Optimal Convergence To simplify our analysis, we assume G∗ is negligible, which is a
reasonable assumption. For example, if x∗ = argminx∈K f(x) = argminx∈Rd f(x), then ∇f(x∗) = 0, resulting in
G∗ = 0. Considering that G∗ is negligible and using Eq. (12), we derive the range for the learning rate η to maintain
optimal convergence:

D2

2T 2η
≤ Dσ̃√

T

√
12cδ +

4

m
+ 6Dξ

√
cδ .

Thus, the lower bound for η is:

η ≥ D2

2T 2
· 1

Dσ̃√
T

√
12cδ +

4
m + 6Dξ

√
cδ

=
D

2σ̃T 1.5
√
12cδ +

4
m + 12ξT 2

.

Given that η ≤ 1
4TL , the range for η is:

η ∈

 D

2σ̃T 1.5
√
12cδ +

4
m + 12ξT 2

,
1

4TL

 . (13)

This approach allows us to employ a broad spectrum of learning rates η ∈ [ηmin, ηmax], such that ηmax/ηmin = O(
√
T).

In contrast, the standard momentum method (Karimireddy et al., 2020) requires a low-range of learning rates such
that ηmax/ηmin = O(1) to achieve an order optimal bound. Specifically, for a starting point x0 ∈ Rd and x∗ :=
argminx∈Rd f(x), the learning rate for momentum with adaptation to our notations is given by:

ηmomentum ≃ min

{
O

(√
L(f(x0)− f(x∗)) + cδ(ξ2 + σ2)

TL2σ2(1
m + cδ)

)
,
1

8L

}
.

16

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

B.2.1. PROOF OF LEMMA B.4

Proof of Lemma B.4. The update rule wτ+1 = ΠK(wτ − ηατ d̂τ) can be expressed as a convex optimization problem
within the set K:

wτ+1 = ΠK

(
wτ − ηατ d̂τ

)
= arg min

w∈K
∥wτ − ηατ d̂τ −w∥2 = arg min

w∈K
{ατ ⟨d̂τ ,w −wτ ⟩+

1

2η
∥w −wτ∥2} .

Here, the first equality is derived from the definition of the update rule, the second stems from the property of projection, and
the final equality is obtained by reformulating the optimization problem in a way that does not affect the minimum value.

Given that wτ+1 is the optimal solution of the above convex problem, by the optimality conditions, we have that:〈
ατ d̂τ +

1

η
(wτ+1 −wτ),w −wτ+1

〉
≥ 0, ∀w ∈ K .

Rearranging this, summing over t ≥ 1 iterations, and taking w = x∗, we derive:∑
τ∈[t]

ατ ⟨d̂τ ,wτ+1 − x∗⟩ ≤ 1

η

∑
τ∈[t]

⟨wτ −wτ+1,wτ+1 − x∗⟩

=
1

2η

∑
τ∈[t]

(
∥wτ − x∗∥2 − ∥wτ+1 − x∗∥2 − ∥wτ −wτ+1∥2

)

=
1

2η

∥w1 − x∗∥2 − ∥wt+1 − x∗∥2 −
∑
τ∈[t]

∥wτ −wτ+1∥2

≤ D2

2η
− 1

2η

t∑
τ=1

∥wτ −wτ+1∥2 .

The first equality equality is achieved through algebraic manipulation, and the last inequality follows the assumption in Eq.
(1).

B.2.2. PROOF OF LEMMA B.5

Proof of Lemma B.5.

Lemma B.7 (Lemma C.1 in Levy (2023)). let f : Rd → R be an L-smooth function with a global minimum w∗, then for
any w ∈ Rd we have,

∥∇f(x)∥2 ≤ 2L(f(x)− f(w∗)) .

Let us define the function h(x) = f(x)−f(x∗)−⟨∇f(x∗),x−x∗⟩. Given the convexity of f(x), we have f(x)−f(x∗) ≥
⟨∇f(x∗),x− x∗⟩, leading to h(x) ≥ 0. As h(x∗) = 0, this implies that x∗ is the global minimum of h. Applying Lemma
B.7, gives us,

∥∇f(x)−∇f(x∗)∥2 = ∥∇h(x)∥2 ≤ 2L(f(x)− f(x∗)) .

C. Robust Aggregators Analysis

Definition C.1 (Rephrased from Allouah et al. (2023)). (κ, δ)-robustness. Let |B|
m = δ < 1/2 and κ ≥ 0. An aggregation

rule A is called (κ, δ)-robustness if for any m vectors x1, . . . ,xm, and any set S ⊆ [m] such that |S| = |G|, we have,

∥x̂− x̄S∥2 ≤
κ

|S|
∑
i∈S

∥xi − x̄S∥2 ,

where x̄S := 1
|S|
∑

i∈S xi.

17

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

Lemma C.2. Let x̂ be (κ, δ)-robustness where δ = |B|
m . We define (κ, δ)-robustness as a rephrased version of the robust

concept originally introduced in Allouah et al. (2023) and outlined in Definition C.1. Then, x̂ is (κ, δ)-robust.

Proof. Given that x̂ is (κ, δ)-robustness, by choosing S = G, we can deduce that:

E∥x̂− x̄G∥2 ≤
κ

|G|
∑
i∈G

E∥xi − x̄G∥2 ≤
κ

|G|
∑
i∈G

ρ2i = κρ2 ,

where the second inequality follows the notations in Definition 3.1.

D. µ2-SGD Overview
Our approach adopts the µ2-SGD algorithm (Levy, 2023), a novel method that combines two distinct momentum-based
mechanisms for enhancing variance reduction.

AnyTime-SGD. The first mechanism originates from the AnyTime-SGD algorithm (Cutkosky, 2019). This algorithm
employs a learning rate η > 0 and a series of non-negative weights {αt}t. It operates by maintaining two series of query
points, {wt}t and {xt}t, and initializes x1 = w1. At each step t, the algorithm first updates wt+1 in a manner akin to the
standard SGD, but adjusted by a factor of αt for the gradient gt := ∇f(xt; zt). Subsequently, it calculates the next query
point xt+1 through a weighted average of the accumulated query points up to step t+ 1, as shown in the following equation:

wt+1 = ΠK (wt − ηαtgt) , xt+1 =
1

α1:t+1

∑
k∈[t+1]

αkwk .

A fundamental characteristic of the AnyTime-SGD is that the query point xT also serves as the algorithm’s output. This
contrasts with standard SGD, which typically outputs the average of all query points or randomly selects one. Thus, at any
given iteration t, AnyTime-SGD consistently offers a potential solution for the optimization problem.

STORM. While the first mechanism employs weighted averaging of query points, the second leverages weighted averaging
of the stochastic gradient estimators. This second mechanism is derived from the Stochastic Recursive Momentum (STORM)
approach (Cutkosky & Orabona, 2019). It utilizes a corrected momentum technique, which serves as an estimator for the
actual gradient. This correction is implemented by adding a bias to the standard momentum equation, thereby refining the
gradient estimates from previous iterations. This method is defined as follows:

dt = ∇f(xt; zt) + (1− βt)(dt−1 −∇f(xt−1; zt)) .

A key feature of this approach is its ability to achieve implicit variance reduction through the use of the corrected momentum.
This method not only adjusts the gradient estimations but also enhances the overall stability.

µ2-SGD. The µ2-SGD algorithm integrates the AnyTime update step with the STORM gradient estimator. Instead of
using the stochastic gradient gt, it updates query points using a corrected momentum dt. The update process is defined as
follows:

wt+1 = ΠK (wt − ηαtdt) , xt+1 =
1

α1:t+1

∑
k∈[t+1]

αkwk, x1 = w1 . (14)

A primary aspect of the µ2-SGD algorithm is achieved by setting the momentum weights {βt := 1/t}t and the AnyTime
weights {αt := t}t. This enables µ2-SGD to significantly reduce the stochastic variance E∥εt∥2 := E∥dt −∇f(xt)∥2 ≤
O(σ̃2/t) at step t, where σ̃2 ≤ O(σ2 + D2σ2

L). This means that the variance decreases with each iteration, eventually
becoming negligible, contrasting with standard SGD where the variance E∥εSGD

t ∥2 := E∥gt−∇f(xt)∥2 remains uniformly
bounded. Moreover, by choosing βt = 1/t, µ2-SGD considers the entire gradient history (Karimireddy et al., 2021),
aligning with the AnyTime update’s consideration of the entire history of query points. This approach differs from other
momentum methods (Karimireddy et al., 2021; 2020; Allouah et al., 2023), where the momentum weight βt is tied to the
learning rate ηt, thereby limiting the gradient history consideration to just

√
t gradients.

18

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

E. Experiments
E.1. Technical Details

Remark E.1. Recall that the AnyTime update step of xt is defined as:

xt :=
αtwt + α1:t−1xt−1

α1:t
.

This formulation provides an alternative representation of the update step, which can be expressed as:

xt = γtwt + (1− γt)xt−1,

where γt :=
αt

α1:t
. Furthermore, by setting αt = Cα1:t−1 for a constant C > 0, it follows that γt =

Cα1:t−1

Cα1:t−1+α1:t−1
= C

C+1

is a constant for every t ≥ 1.

E.1.1. DATASETS

We evaluated our approach on two benchmark datasets: CIFAR-10 (Krizhevsky et al., 2014) and MNIST (LeCun et al.,
2010).

• CIFAR-10: This dataset consists of 60,000 32x32 color images in 10 classes, with 6,000 images per class. The dataset
is divided into 50,000 training images and 10,000 testing images.

• MNIST: This dataset consists of 70,000 28x28 grayscale images of handwritten digits in 10 classes, with 60,000
training images and 10,000 testing images.

E.1.2. MODEL ARCHITECTURES

To demonstrate the efficiency of momentum parameters that account for the entire history, we conducted experiments using
simple convolutional networks. Our choice of simple conv networks was driven by the need to mitigate the sensitivity to
numerical errors, which is often encountered in more complex models with very small momentum parameters. Additionally,
we extended our evaluation to a more complex scenario by using the CIFAR-10 dataset with a ResNet18 model, employing
fixed momentum parameters for comparison.

• Simple Conv Network for MNIST: This model consists of two convolutional layers with batch normalization and
ReLU activation, followed by max pooling layers. The first convolutional layer has 16 filters, and the second layer has
32 filters. The output from the convolutional layers is flattened and passed through a fully connected layer with 1,568
units for classification.

• Simple Conv Network for CIFAR-10: This model also consists of two convolutional layers with batch normalization
and ReLU activation, followed by max pooling layers. The first convolutional layer has 16 filters, and the second layer
has 32 filters. The output from the convolutional layers is flattened and passed through a fully connected layer with
2,048 units for classification.

• ResNet18 for CIFAR-10: We used the standard ResNet18 architecture, which includes multiple residual blocks with
convolutional layers, batch normalization, and ReLU activation. This model is designed to handle more complex image
classification tasks.

E.1.3. ALGORITHMS AND BASELINES

We evaluate our proposed µ2-SGD algorithm by comparing it with the standard momentum method as described by
Karimireddy et al. (2021). The specific momentum parameters utilized in our experiments are detailed below:

• Standard Momentum: We employ βt = 0.9, as suggested by Karimireddy et al. (2021).

• µ2-SGD: We experiment with two distinct parameter settings:

– Dynamic parameters: αt = t and βt = 1/t, in line with our theoretical suggestion.
– Fixed parameters: γt = 0.1 and βt = 0.9, more similar to the fixed standard momentum parameter.

Detailed configurations are provided in Section E.1.5.

19

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

E.1.4. EVALUATION METRICS

To assess the performance of our algorithm, we used the following metric:

• Accuracy: The proportion of correctly classified instances over the total instances.

E.1.5. EXPERIMENTAL SETUP

We conducted a hyperparameter search to identify the optimal settings for our experiments.

Learning Rate: We experimented with a range of learning rates from 10−4 to 101. For experiments requiring a single
learning rate, we selected 0.1, which was found to be optimal within this range.

The table below summarizes the configurations used in our experiments, including the settings for αt, βt, and γt for the
µ2-SGD algorithm, as well as the dataset, model, batch size, and gradient clipping values to enhance performance, as
implemented in Allouah et al. (2023). Note that gradient clipping was not applied in the experiments involving a wide range
of learning rates due to its impact on the size of the update step.

Configuration αt βt γt Dataset Model Batch Size Gradient Clipping

1 t 1/t - MNIST Simple Conv 4 2
2 t 1/t - CIFAR-10 Simple Conv 64 5
3 - 0.9 0.1 MNIST Simple Conv 64 -
4 - 0.9 0.1 CIFAR-10 ResNet18 8 -

Table 2. Experimental Configurations

E.1.6. ATTACKS

To evaluate the robustness of our algorithms, we tested them against the following adversarial attacks:

• Label-Flipping (Allen-Zhu et al., 2020): This attack flips the original target labels to incorrect labels by subtracting
the original label from 9,

flipped label = 9− original label.

• Sign-Flipping (Allen-Zhu et al., 2020): This attack flips the signs of the momentums, in the spirit of faults that occur
when bits are transmitted incorrectly from workers to the central server.

Byzantine update = −worker momentum.

• A Little Is Enough (Baruch et al., 2019): This attack is designed to lie under the stochastic ”noise blanket.” It calculates
the maximum allowable deviation zmax based on the number of honest workers, then perturbs the honest updates by
subtracting the product of the standard deviation and zmax from the mean of the honest updates.

Byzantine update = mean(honest momentums)− std(honest momentums) · zmax.

• Empire (Xie et al., 2020): This attack scales the mean of the honest momentums by a small factor ϵ in the negative
direction,

Byzantine update = −ϵ ·mean(honest momentums).

where the mean and standard deviation are calculated coordinate-wise, and we set ϵ = 0.5.

E.1.7. IMPLEMENTATION DETAILS

The implementation was carried out using PyTorch. The code was written in Python and executed on NVIDIA A30 GPU for
MNIST and NVIDIA GeForce RTX 3090 GPU for CIFAR-10. All experiments were repeated three times with different
random seeds to ensure statistical significance, and the results reported are the averages of these runs.

20

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

E.2. Complete Experimental Results

E.2.1. MNIST

Figure 3. Performance comparison of CTMA with existing meta-aggregators, and µ2-SGD with momentum under sign-flipping and
label-flipping attacks with 8/17 Byzantine workers on the MNIST dataset (Conf. 1 in Table 2). Here, we observe that CTMA enhances the
performance of both µ2-SGD and momentum. Furthermore, CTMA performs at least as well as, if not better than, other meta-aggregators.
The integration of nnm with CTMA can further improve performance. Notably, µ2-SGD demonstrates high stability compared to
momentum, even without the assistance of any meta-aggregator. This stability is valuable for increasing resilience against heavy attacks
and boosting overall performance.

21

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

Figure 4. Performance comparison of CTMA with existing meta-aggregators, and µ2-SGD with momentum under a weaker sign-flipping
and label-flipping attack with 4/17 Byzantine workers on the MNIST dataset (Conf. 1 in Table 2). In this scenario, even though the
performance of momentum is noisier over iterations compared to µ2-SGD, it does not require additional stability to perform effectively
and outperforms µ2-SGD. CTMA enhances the performance of both µ2-SGD and momentum, maintaining consistent improvement as
observed under the heavier attacks shown in Figure 3.

22

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

Figure 5. Performance comparison of CTMA with existing meta-aggregators, and µ2-SGD with momentum under SOTA low-variance
attacks, empire and little, with 8/17 Byzantine workers on the MNIST dataset (Conf. 1 in Table 2). These low-variance attacks are harder
to detect and represent an especially severe attack scenario. In this context, CTMA performs poorly due to its strong reliance on the
variance among the workers’ outputs. In contrast, NNM performs very effectively for both momentum and µ2-SGD. The low variance in
µ2-SGD enhances the effectiveness of NNM, making µ2-SGD more robust and particularly valuable against heavy low-variance attacks
compared to momentum, with or without the addition of NNM.

23

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

Figure 6. Performance comparison of CTMA with existing meta-aggregators, and µ2-SGD with momentum under SOTA low-variance
attacks, empire and little, with 4/17 Byzantine workers on the MNIST dataset (Conf. 1 in Table 2). These are low-variance attacks in a
weaker scenario with 4 Byzantine workers. In this context, CTMA performs well and often compares favorably to other meta-aggregators,
enhancing the performance of both µ2-SGD and momentum. Furthermore, for the empire attack, the µ2-SGD outperforms momentum
without the addition of a meta-aggregator. However, when a meta-aggregator is added, the inherent stability of µ2-SGD becomes less
beneficial, and momentum tends to outperform it.

24

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

Figure 7. Performance comparison of µ2-SGD with momentum across a wider range of learning rates under label-flipping and sign-flipping
attacks with 2/9 Byzantine workers on the MNIST dataset (Conf. 3 in Table 2).

25

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

E.2.2. CIFAR-10

Figure 8. Performance comparison of CTMA with existing meta-aggregators, and µ2-SGD with momentum under sign-flipping and
label-flipping attacks with 8/17 Byzantine workers on the CIFAR-10 dataset (Conf. 2 in Table 2).

26

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

Figure 9. Performance comparison of CTMA with existing meta-aggregators, and µ2-SGD with momentum under SOTA low-variance
attacks, empire and little, with 4/17 Byzantine workers on the CIFAR-10 dataset (Conf. 2 in Table 2).

27

Fault Tolerant ML: Efficient Meta-Aggregation and Synchronous Training

Figure 10. Performance comparison of µ2-SGD with momentum across a wider range of learning rates under label-flipping and sign-
flipping attacks with 2/17 Byzantine workers on the CIFAR-10 dataset (Conf. 4 in Table 2).

28

