
Under review as submission to TMLR

Online Test-time Adaptation for Time Series Forecasting

Anonymous authors
Paper under double-blind review

Abstract

Multivariate time series forecasting, which predicts future dynamics by analyzing histor-
ical data, has become an essential tool in modern data analysis. With the development
of deep models, batch-training based time series forecasting has made significant progress.
However, in real-world applications, time series data is often collected incrementally in a
streaming manner, with only a portion of the data available at each time step. As time
progresses, distribution shifts in the data can occur, leading to a drastic decline in model
performance. To address this challenge, online test-time adaptation and online time series
forecasting have emerged as a promising solution. However, for the former, most online
test-time adaptation methods are primarily designed for images and do not consider the
specific characteristics of time series. As for the latter, online time series forecasting typ-
ically relies on updating the model with each newly collected sample individually, which
may be problematic when the sample deviates significantly from the historical data distri-
bution and contains noise, which may lead to a worse generalization performance. In this
paper, we propose Batch Training with Transferable Online Augmentation (BTOA), which
enhances model performance through three key ideas while enabling batch training. First,
to fully leverage historical information, Transferable Historical Sample Selection (THSS) is
proposed with theoretical guarantees to select historical samples that are most similar to the
test-time distribution. Then, to mitigate the negative impact of distribution shifts through
batch training and take advantage of the unique characteristics of time series, Transferable
Online Augmentation (TOA) is proposed to augment the selected historical samples from
the perspective of amplitude and phase in the frequency domain in a two-stream manner.
Finally, a prediction module that utilizes a series decomposition module and a two-stream
forecaster is employed to extract the complex patterns in time series, boosting the predic-
tion performance. Moreover, BTOA is a general approach that is readily pluggable into
any existing batch-training based deep models. Experiments demonstrate that our method
achieves superior performance across seven benchmark datasets. Compared to state-of-the-
art approaches, our method reduces the Mean Squared Error (MSE) by up to 13.7%. The
code is available at https://anonymous.4open.science/r/BTOA/.

1 Introduction

Time series forecasting is crucial in real-world applications and is widely used across various fields, such
as weather forecasting (Zhang et al., 2022a), power demand prediction (Gasparin et al., 2022), traffic flow
analysis (Jin et al., 2021), and financial market modeling (Lai et al., 2018). In these practical applications,
time series forecasting techniques not only help decision-makers better plan and optimize resources but also
improve system efficiency and stability, driving the intelligent development of various industries. To improve
forecasting accuracy, recent research has proposed advanced forecasting methods (Zhou et al., 2022; Wu et al.,
2021; 2022). However, they typically rely on a conventional machine learning assumption that the training
and test data follow the same distribution. This assumption often does not hold in real-world applications,
where dataset shifts frequently occur (Quionero-Candela et al., 2009). Consequently, model performance can
be significantly degraded when tested with data that deviates substantially from the training distribution.
It is also worth noting that due to the inherent temporal nature, time series often arrive continuously in real-
world scenarios, which means that models are typically required to handle streaming data. Recently, online

1

https://anonymous.4open.science/r/BTOA-447B/

Under review as submission to TMLR

test-time adaptation and online time series forecasting have emerged as promising solutions to address this
issue, allowing pre-trained models to adapt to previously unseen data distributions during inference without
the need for labeled data (Wang et al., 2023; Liang et al., 2023).

Unlike traditional batch training methods, online test-time adaptation and online time series forecasting
adapt models in real-time using streaming data. Current online test-time adaptation methods can be broadly
classified into three categories (Liang et al., 2023): (1) Data-based methods (Gong et al., 2024; Wang et al.,
2022a), which focus on maximizing prediction consistency across different test datasets. (2) Model-based
methods (Jang et al., 2022; Liu et al., 2023; Shu et al., 2022a), which aim to modify the original model
architecture by adapting specific layers or mechanisms. (3) Optimization-based methods (Wang et al.,
2022b; Shu et al., 2022b; Mummadi et al., 2021), which focus on optimizing prediction results using various
optimization techniques. However, most existing online test-time adaptation methods are predominantly
designed for image-based tasks, with few approaches specifically tailored for the complex patterns inherent
in time series data. Current online time series forecasting methods typically utilize traditional Bayesian
theory or add additional adapter modules to achieve adaptation (Pham et al., 2022; Zhang et al., 2023).
These methods often rely on updating the model individually with each newly collected sample. When a
sample deviates significantly from the historical data distribution and may contain substantial noise, these
approaches can lead to reduced generalization performance.

In this paper, Batch training with Transferable Online Augmentation (BTOA) framework is proposed to
address online test-time adaptation in time series in three aspects: Firstly, to fully leverage the information
from the historical distribution, Transferable Historical Sample Selection (THSS) module is introduced to
select the historical samples that are most similar to the test-time distribution from the memory bank.
Secondly, to address distributional shift, we implement batch training through the Transferable Online
Augmentation (TOA) module. Unlike traditional data augmentation methods in the time domain, such
as Linear-Mixup (Zhang et al., 2017), Cut-Mixup (Yun et al., 2019), which tend to disrupt the frequency
information of time series data (Verma et al., 2021; Demirel & Holz, 2024), TOA augments the selected
samples in a two-stream manner from both the amplitude and phase perspectives in the frequency domain.
This two-stream augmentation approach preserves the critical frequency information which is essential for
accurate predictions. Finally, the prediction is produced through a prediction block, which consists of a
series decomposition module and a two-stream forecaster. This design improves the model’s prediction
performance by extracting complex patterns in time series data.

Our main contributions are summarized as follows:

• Transferable Batch Training with Transferable Online Augmentation (BTOA) framework is proposed
to address the distribution shift in online learning from three key perspectives. First, to fully
leverage historical distribution information, Transferable Historical Sample Selection (THSS) module
is proposed to select historical samples that have a smaller distribution discrepancy to the test-time
distribution. Next, Transferable Online Augmentation (TOA) module is proposed to augment the
selected samples in two-stream manner from the perspectives of frequency domain amplitude and
phase, which preserves essential frequency domain information and enables batch training to alleviate
distribution shift. Finally, a prediction block is employed to extract the complex temporal patterns
and boost performance.

• BTOA is a general approach that is readily pluggable into any online time series forecasting model.
This approach effectively mitigates the negative impact of noise in test-time samples, alleviates
distribution shift, and enhances the effectiveness and robustness of the online learning model.

• We conduct experiments on seven popular real-world datasets, and our method achieves superior
performance across all benchmark datasets. Compared to state-of-the-art approaches, our method
reduces the Mean Squared Error (MSE) by up to 13.7%.

2

Under review as submission to TMLR

2 Related work

2.1 Online Test-time Adaptation

Online test-time adaptation (OTTA) continuously updates the model in real-time as it encounters new data
during inference. This ensures swift adaptation to evolving data distributions without altering the original
training procedure (Chen et al., 2022; Nguyen et al., 2023; Zhang et al., 2022b). Notably, TENT (Wang
et al., 2020) addresses distributional shift by dynamically adjusting batch normalization parameters through
entropy loss minimization during inference. Similarly, EATA (Niu et al., 2022) introduces a selective approach
to optimizing unsupervised surrogate losses akin to TENT, focusing solely on reliable and informative data
points. ViDA (Liu et al., 2023) employs supervision of the student output by leveraging predictions from
the teacher with augmented input. Additionally, it introduces high/low-rank adapters that are updated
to accommodate continual online test-time adaptation. ECL (Zeng et al., 2024) marks a departure from
traditional methods by integrating a memory bank containing output distributions to establish thresholds
for complementary labels. This innovative approach ensures the memory bank’s continual relevance and
effectiveness through periodic updates with the latest model parameters. Although these methods have
shown promising results in the fields of computer vision and natural language processing (Wang et al., 2023;
Liang et al., 2023), they do not take advantage of the unique characteristics of time series.

2.2 Online Time Series Forecasting

Online time forecasting focuses on streaming data, that is, for each N variates sample xi received, the model
constructs a L-length look-back window X and outputs a H-length prediction window Y, and then the
true values are used to improve the model’s performance in predicting the next sample. Online time series
forecasting has a wide range of real-world applications due to the sequential nature of the data (Anava et al.,
2013; Gultekin & Paisley, 2018; Aydore et al., 2019).

Previous methods have attempted to solve the online time series forecasting problem using Bayesian con-
tinuous learning theory, however, they are unable to quickly utilize information from historical samples.
Inspired by Complementary Learning Systems (CLS) theory, FsNet (Pham et al., 2022) achieves great online
time series forecasting by quickly adapting to historical data using the adapter module and slowly learning
the newly collected sample with the Temporal Convolutional Network architecture. OneNet (Zhang et al.,
2023) builds on FsNet by exploring the need for inter-channel dependencies, using the Online Convex Pro-
gramming module to balance cross-time dependencies with cross-variate dependencies. This allows OneNet
to achieve significant performance gains on some datasets with multiple variates such as the ECL dataset.
Current models update based on a single received sample when processing streaming data. However, if a
single sample is noisy, it can disrupt the optimal update path and significantly degrade model performance.
To mitigate this issue, our BTOA implements batch training, which enhances the model’s robustness against
noisy data while maintaining effective online test-time adaptation.

3 Method

Problem Formulation. Given a well-trained time series forecasting model f on the training set and
a sequence of unlabeled time series segments. Online test-time adaptation aims to leverage the labeled
knowledge embedded in prediction model f to infer the future values of samples under distribution shift, in
an online manner. In this problem, the learning process takes place over a sequence of rounds, where the
model receives a L-length look-back window X = {x1, . . . , xL} ∈ RN×L and predicts the forecast window
Y = {y1, . . . , yH} ∈ RN×H . The true values are then revealed to improve the model’s performance in the
next rounds. Our goal is to continuously optimize the prediction model f , which can mitigate the negative
impact of distribution shifts.

Structure overview. Figure 1 illustrates the comprehensive workflow of Batch Training with Transferable
Online Augmentation (BTOA). BTOA is meticulously structured into three principal modules: a transferable
historical sample selection module that fully leverages historical distribution information, a transferable

3

Under review as submission to TMLR

Input

mapping

latent space

rfft
Phase
Mixup

Magnitude
Mixup

concatirfft

index

THSS

…

Series
Decomposition

Avg
Pool

Forecaster

Forecaster Output

memory bank

TOA Block

Prediction Block

THSS Block

SD Block

Figure 1: Overall architecture of Batch training with Transferable Online Augmentation (BTOA). The
THSS block is used to select historical samples, the TOA block implements batch training through data
augmentation, and the Prediction block generates the final output.

online augmentation module that enables batch training to alleviate the negative effects of distribution shift,
and a prediction block that extracts complex temporal patterns and produces predictions.

3.1 Transferable Historical Sample Selection

The distribution of the data stream changes dynamically over time, which can adversely affect time series
forecasting accuracy. To mitigate this issue, Transferable Historical Sample Selection is proposed to ef-
fectively utilize historical data. Firstly, we aim to select historical samples that have smaller distribution
discrepancy to the test-time distribution.

Specifically, we establish a memory bank, which is a set and denoted as M. M stores historical samples and is
updated using a First-In-First-Out (FIFO) policy to maintain a fixed size. Upon receiving test-time sample,
we use the THSS module to select historical samples that are semantically similar to the test-time sample
and most closely align with test-time distribution. This selection is achieved through a mapping model,
where intuitively, any model that can preserve semantic consistency between the original and mapped data
can be used. Due to the inherent ability of the Variational Autoencoder (VAE) (Higgins et al., 2017) to
maintain semantic consistency between input and output, we choose VAE model as our mapping model.
Initially, the VAE model is pre-trained in an unsupervised manner on the training set, and during online
test-time adaptation, its parameters are frozen to remain unchanged. Once the test-time sample Xtest is
introduced, both the test-time sample and the historical samples stored in M are projected into a latent
space. We then calculate the distances between these samples in the latent space and select those historical
samples that have smaller distribution discrepancy to the test-time distribution. These selected samples
are semantically similar to the test-time sample, forming the selected historical sample set Xh. The above
procedure can be formulated as follows:

ztest = E(Xtest), zi = E(mi), ∀mi ∈ M

di = cosine_similarity(ztest, zi) = ztest · zi

∥ztest∥∥zi∥
(1)

Xh = {mi}i∈Sn where Sn = arg sorti(di)[: n],

where E(·) represents the encoder of the VAE model, and n is a hyperparameter indicating the number of
historical samples we need to utilize. By effectively utilizing historical samples that have a smaller distri-
bution discrepancy to the test-time distribution, we alleviate the distribution shift and boost the prediction
performance.

4

Under review as submission to TMLR

3.2 Transferable Online Augmentation

We mitigate the negative impact of distribution shift during online test-time adaptation by introducing batch
training, which can be achieved through data augmentation techniques. However, existing data augmentation
methods, such as Linear-Mixup (Zhang et al., 2017) and Cut-Mixup (Yun et al., 2019), primarily mix time
series in the time domain, which can affect the frequency domain information that is crucial for accurate
prediction (Demirel & Holz, 2024; Ullrich et al., 2020; Zhang et al., 2022c). Since distribution shift is
more pronounced in online test-time adaptation, preserving the frequency domain information of time series
becomes particularly important.

To preserve the frequency domain information, we propose a two-stream augmentation approach that focuses
on both the amplitude and phase in the frequency domain, and we select the aforementioned set of selected
historical samples Xh, which are closer to the test-time distribution, as the source for augmentation. By doing
so, we ensure that the augmented instances’ phase and amplitude are properly interpolated based on the
test-time sample, avoiding destructive interference in the frequency domain. We first apply the Fast Fourier
Transform (FFT) to both the test-time sample and historical samples stored in the set Xh, decomposing
them into amplitude and phase components, which can be formulated as:

A(Xi)ejP(Xi) = F(Xi), Xi ∈ {Xtest} ∪ Xh, (2)

where F denotes the Fast Fourier Transform, A(·), P(·) means the amplitude and phase. Then, we combine
the amplitude and phase of the test-time sample with those of the historical samples. This process ensures
that the frequency domain information remains intact while enhancing the data with relevant historical pat-
terns. To ensure more appropriate historical samples, we perform aggressive data augmentation primarily
using historical samples when their distance from the test-time sample in the latent space is small, indi-
cating similar distributions. Conversely, when the distance between the historical and test-time sample is
large, implying a significant distributional shift, we prioritize the test-time sample for data augmentation.
Specifically, the process of mixup is:

A(Xaug) = {Xj |λAA(Xtest) + (1 − λA)A(Xj), Xj ∈ Xh} (3)
P(Xaug) = {Xj |λP P(Xtest) + (1 − λP)P(Xj), Xj ∈ Xh}, (4)

where Xaug means the augmented sample set. λA, λP are hyperparameters representing the mixing coeffi-
cients for amplitude and phase, respectively. When the distance between latent vectors is below a distance
threshold, we sample the mixing coefficients for amplitude and phase from a uniform distribution, denoted
as λA, λP ∼ U(β, 1.0), prioritizing data augmentation on the historical samples, with β being a lower value.
Conversely, if the distance exceeds the threshold, we focus on augmenting the test-time sample. In this case,
the coefficients are drawn from a truncated normal distribution, λA, λP ∼ N (µ, θ), characterized by a high
mean and low standard deviation. The process for determining the sampling distribution of λA and λP is
as follows:

λA, λP ∈

{
U(β, 1.0), if di ≤ τ

N (µ, θ), if di > τ,
(5)

where di represents the distance between latent vectors, and τ denotes a predefined distance threshold.
Finally, the augmented sample set Xaug is obtained by applying the inverse FFT to the mixed components.
For ease of understanding, we use Xaug to represent an element of Xaug hereafter. As shown below:

Xaug = F−1
(

A(Xaug)ejP (Xaug)
)

, (6)

where F−1 denotes the inverse Fast Fourier Transform. After obtaining the augmented set Xaug, we con-
catenate these augmented samples with the test-time sample and input them as a batch into the next module
for training. Compared to the previous approach, which only used the test-time sample to update the model,
this method significantly reduces the negative impact of noise in the test-time sample on model optimization.

5

Under review as submission to TMLR

3.3 Prediction Model and Training Objective

Prediction Model. To effectively learn complex temporal patterns in time series forecasting, we use series
decomposition (RB, 1990; Anderson, 1976). This technique simplifies complex raw data, allowing the model
to make better predictions. Specifically, we extract the trend component of the time series by applying a
moving average kernel to the input series. The difference between the trend component and the original
series is regarded as the seasonal component. These components reflect the long-term trend and cyclical
relationship of the time series, respectively. The series decomposition is handled as follows:

Xt = AvgPool(padding(Xaug)) (7)
Xs = Xaug − Xt, (8)

where Xt, Xs denote the extracted long-term trend and seasonal terms, respectively. We use padding to
maintain the original series length, and then apply the AvgPool layer for moving average calculations.

After decomposition, the trend component Xt and the seasonal component Xs will be fed into two-stream
forecaster with identical structures. The outputs from two-stream forecaster are combined to generate the
final prediction Y. As shown below:

Y = Forecasters(Xs) + Forecastert(Xt). (9)

Training Objective. We use the L2 loss to optimize the parameters of the BTOA model, with the loss
function defined as:

L = 1
N

N∑
j=1

∥∥∥Ŷj
1:H − Yj

1:H

∥∥∥ , (10)

where N represents the number of channels in the time series. During the test-time adaptation process, we
use the mean MSE and MAE between the ground truth Ŷ and the model’s predicted output Y across all
samples as the final evaluation metrics to compare model performance.

It is worth noting that BTOA is a general module designed to mitigate the distributional shift that occur
during the learning process. This adaptability makes it applicable to any online time series forecasting model.
The inherent flexibility of BTOA allows it to be integrated seamlessly with a variety of models, enhancing
their robustness against changes in data distribution. Moreover, BTOA is not limited to a specific algorithm
or framework. This means that as more advanced deep models are developed, BTOA can be incorporated
into these advanced deep models to further improve performance.

3.4 Theoretical Insights

In the Transferable Historical Sample Selection module, we need to select a mapping model that
can reflect the semantic consistency of samples before and after mapping. Proposition 3.1 theoretically
demonstrates the rationale for using the VAE model as a mapping model.

Proposition 3.1 (Consistency in Latent Space (Li et al., 2022)) Given a well-trained unconditional
VAE with the encoder E(·) that produces distribution pE(z|x), the decoder D(·) that produces distribution
qD(x|z) while the prior for z is p(z), let z1 and z2 be two latent vectors of two different real samples x1
and x2, i.e., E(x1) = z1 and E(x2) = z2. If the distance d(z1, z2) ≤ δ, then D(z1) and D(z2) will have a
similar semantic label as in Equation equation 11.

|I(D(z1); y) − I(D(z2); y)| ≤ ϵ, (11)

where ϵ stands for tolerable semantic difference, δ is the maximum distance to maintain semantic consistency,
and d(·) is a distance measure such as cosine similarity between two vectors.

Let the historical sample set P be the set that includes the training set and all samples received prior to
the test-time sample. The test-time sample set Q refers to the samples being received at present. Due to

6

Under review as submission to TMLR

distribution shift, the data distributions of P and Q may differ. In the Transferable online augmentation
module, the augmented set Xaug derived from the selected historical sample set Xh, has a data distribution
that is closer to the historical sample set P compared to using the test-time sample alone. Proposition
3.2 provides theoretical support for the performance advantages of using Xaug as input, suggesting that it
can lead to a smaller upper bound on the generalization error. Moreover, our choice of L2 loss as the loss
function aligns with the requirements of the proposition.

Proposition 3.2 (Generalization Error Upper Bound (Mansour et al., 2009)) Let f∗
Q ∈

arg minf∈F LQ(f, GQ) and similarly let f∗
P be a minimizer of LP(f, GP). Note that these minimizers may

not be unique. For adaptation to succeed, it is natural to assume that the average loss LQ(f∗
Q, f∗

P) between
the best-in-class hypotheses is small. Under that assumption and for a small discrepancy distance, there is a
useful bound on the error of a hypothesis with respect to the test-time sample set as in Equation equation 12.

LQ(f, GQ) ≤ LQ(f∗
Q, GQ) + LP(f, f∗

P) + discL(Q, P)
+ min{LP(f∗

P , f∗
Q), LQ(f∗

P , f∗
Q)}, (12)

where G represents the ideal prediction model and the loss function L is symmetric and obeys the triangle
inequality.

4 Experiments

In this section, we evaluated BTOA across a range of online time series forecasting applications, demonstrat-
ing its effectiveness in diverse scenarios. In addition to the primary evaluation, we conducted comprehensive
ablation studies to investigate the contribution of each individual component of BTOA.

Table 1: Statistics of popular datasets for benchmark.

Datasets ETTh1 ETTh2 ETTm1 ETTm2 WTH Electricity Traffic
Features 7 7 7 7 11 321 862

Timesteps 17420 17420 69680 69680 35065 26304 17544
ADF -5.90 -4.13 -14.98 -5.66 -12.52 -8.44 -15.02

Dataset. We evaluate the performance of BTOA on seven real-world datasets, including ETT (with 4
subsets), ECL, Traffic used in iTransformer (Liu et al., 2024), and WTH used in FsNet (Pham et al., 2022).
The presence and severity of distributional shifts in these datasets can be measured using the Augmented
Dickey-Fuller (ADF) test statistic (Liu et al., 2022). Basic information about these datasets is provided in
Table 1, where it can be observed that they exhibit varying degrees of distributional shift. Detailed dataset
descriptions are available in appendix A.1.

Baseline. We evaluate multiple baselines in our experiments, incorporating methods from continual learn-
ing, time series forecasting, and online learning. (1) The Experience Replay (ER) (Chaudhry et al., 2019)
and its three recent advanced variants. ER deploy a buffer that store previous data and interleave with
newer samples during learning. The first variant is TFCL (Aljundi et al., 2019b), which introduces a
task-boundary detection mechanism and a knowledge consolidation strategy. The second variant is MIR
(Aljundi et al., 2019a), which selects samples that cause the most forgetting. The final variant is DER++
(Buzzega et al., 2020), which Adds a knowledge distillation module compared with the standard ER. (2)
Stationary (Liu et al., 2022) focuses on modeling non-stationary time series through the De-stationary
Attention module. (3) Revin (Kim et al., 2022) dynamically normalizes the time series to mitigate the
negative impact of non-stationarity. (4) PatchTST (Nie et al., 2022) is a traditional time series forecasting
method that models time series through channel independence and patch. (5)iTransformer (Liu et al.,
2024) is a traditional time series forecasting method that models time series by transforming the role of
the attention mechanism and feed-forward networks. (6) FsNet (Pham et al., 2022) avoids catastrophic

7

Under review as submission to TMLR

forgetting of historical samples through the use of TCN structures and Adapter modules, and can be quickly
adapted for new samples. (7) OneNet (Zhang et al., 2023), which is the previous state-of-the-art online
time series forecasting method.

Table 2: Full results of the online time-series forecasting task. We compare extensive competitive models
under different prediction lengths following the setting of FsNet. The best results are in bold, and the
second best are underlined.

Models BTOA OneNet FsNet iTransformer PatchTST Revin Stationary DER++ MIR TFCL ER

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1 1 0.223 0.301 0.235 0.303 0.286 0.343 0.223 0.294 0.246 0.311 0.238 0.304 0.383 0.395 0.239 0.305 0.239 0.304 0.241 0.310 0.240 0.316

24 0.271 0.325 0.400 0.442 0.411 0.436 0.703 0.524 0.810 0.570 0.672 0.510 0.759 0.565 0.648 0.534 0.662 0.539 0.670 0.542 0.673 0.547
48 0.265 0.356 0.447 0.454 0.402 0.452 0.828 0.570 0.831 0.575 0.792 0.557 0.747 0.570 0.606 0.525 0.677 0.524 0.679 0.540 0.634 0.538

E
T

T
h2 1 0.390 0.362 0.383 0.351 0.467 0.371 0.418 0.352 0.362 0.351 0.383 0.344 0.770 0.383 0.508 0.375 0.486 0.410 0.557 0.472 0.508 0.376

24 0.505 0.397 0.538 0.414 0.693 0.473 1.716 0.587 1.622 0.577 1.741 0.581 2.090 0.659 0.828 0.540 0.812 0.541 0.846 0.548 0.808 0.543
48 0.587 0.436 0.604 0.445 0.867 0.516 2.781 0.676 2.716 0.672 2.762 0.664 2.938 0.722 1.157 0.577 1.103 0.565 1.208 0.592 1.136 0.571

E
T

T
m

1 1 0.106 0.187 0.117 0.202 0.104 0.187 0.106 0.192 0.116 0.186 0.122 0.208 0.111 0.197 0.110 0.192 0.112 0.197 0.109 0.195 0.114 0.197
24 0.114 0.222 0.134 0.243 0.137 0.249 0.777 0.529 0.427 0.471 1.531 0.704 0.536 0.449 0.196 0.326 0.192 0.325 0.211 0.329 0.202 0.333
48 0.118 0.227 0.118 0.228 0.124 0.240 0.783 0.545 0.553 0.549 1.018 0.614 1.433 0.721 0.208 0.340 0.210 0.342 0.236 0.350 0.220 0.351

E
T

T
m

2 1 0.174 0.226 0.191 0.233 0.179 0.229 0.168 0.221 0.184 0.228 0.173 0.226 0.194 0.228 0.190 0.231 0.192 0.230 0.191 0.235 0.191 0.233
24 0.206 0.259 0.267 0.261 0.233 0.276 0.639 0.430 0.547 0.412 0.652 0.435 0.954 0.579 0.307 0.345 0.309 0.341 0.311 0.346 0.310 0.347
48 0.204 0.267 0.273 0.284 0.299 0.313 0.987 0.502 0.608 0.427 1.083 0.502 1.209 0.592 0.329 0.359 0.330 0.360 0.339 0.364 0.331 0.363

W
T

H 1 0.156 0.197 0.158 0.201 0.161 0.215 0.160 0.205 0.162 0.200 0.165 0.211 0.152 0.196 0.208 0.235 0.179 0.244 0.177 0.240 0.180 0.244
24 0.161 0.241 0.189 0.273 0.189 0.276 0.375 0.399 0.372 0.393 0.370 0.394 0.428 0.446 0.270 0.351 0.291 0.355 0.301 0.363 0.293 0.356
48 0.173 0.255 0.197 0.278 0.223 0.303 0.472 0.467 0.465 0.459 0.453 0.452 0.487 0.484 0.294 0.359 0.297 0.361 0.323 0.382 0.297 0.363

E
C

L 1 2.430 0.266 2.590 0.258 3.317 0.542 1.897 0.218 2.022 0.341 3.873 0.331 2.613 0.508 2.657 0.421 2.575 0.504 2.732 0.273 2.579 0.506
24 2.493 0.346 2.700 0.366 6.071 1.024 4.009 0.313 4.325 0.375 4.862 0.332 3.469 0.579 8.996 1.035 9.265 1.066 12.094 0.383 9.327 1.057
48 2.423 0.462 3.261 0.400 7.234 1.089 4.787 0.346 5.030 0.399 6.583 0.379 4.987 0.789 9.009 1.048 9.411 1.079 12.110 0.410 9.685 1.074

Tr
affi

c 1 0.232 0.205 0.233 0.215 0.295 0.253 0.298 0.321 0.322 0.307 0.257 0.295 0.418 0.325 0.280 0.241 0.290 0.251 0.323 0.524 0.286 0.247
24 0.310 0.261 0.348 0.269 0.360 0.287 1.097 0.519 0.913 0.508 1.097 0.502 1.275 0.575 0.384 0.289 0.390 0.302 0.553 1.256 0.383 0.299
48 0.351 0.293 0.384 0.302 0.378 0.297 1.615 0.568 1.519 0.571 1.678 0.573 1.765 0.617 0.398 0.295 0.391 0.310 0.564 1.303 0.394 0.307

AVG 0.567 0.285 0.656 0.306 1.068 0.395 1.183 0.418 1.160 0.423 1.452 0.434 1.320 0.504 1.325 0.425 1.353 0.436 1.656 0.474 1.371 0.437

Implementation details. We follow the experimental setup of FsNet (Pham et al., 2022), setting the
look-back window length to 60 across all benchmarks, with the prediction horizon varying from H = 1, 24,
to 48. Since learning is conducted in sequential rounds, the model receives a look-back window in each round
and predicts the forecast window. All models are evaluated based on their cumulative Mean Squared Error
(MSE) and Mean Absolute Error (MAE), which assess the models’ performance over the entire learning
process. We use the AdamW optimizer (Loshchilov & Hutter, 2017) to minimize the L2 loss. The data is
split into two phases: warm-up and online training, with a 25:75 ratio. To simulate streaming data, we set
the batch size to 1, reflecting the arrival of data in a streaming fashion. Our method is a general-purpose
module, and here we instantiate it using OneNet as the forecaster. More details about the implementation,
architectures, and hyperparameters with the trained VAE model are given in Appendix A.5.

4.1 Online Forecasting Results

Cumulative performance. Table 2 fully demonstrates the advantages of BTOA in terms of both MSE
and MAE metrics. Compared to the previous state-of-the-art model, OneNet, BTOA achieves superior per-
formance. Notably, BTOA exhibits outstanding results on multivariate datasets such as ECL and Traffic,
significantly improving forecasting performance. This highlights BTOA’s critical role in addressing distribu-
tion shift issues that arise during online test-time adaptation. By rationally leveraging historical samples,
BTOA effectively mitigates distribution shift, reduces the impact of potential noise in test-time samples on
the model, and markedly enhances model robustness. Furthermore, compared to specialized methods for
non-stationary time series data like Revin and Stationary, BTOA still demonstrates superior performance.

8

Under review as submission to TMLR

This may stem from the fact that Revin and Stationary are fundamentally designed for batch-training sce-
narios, leading to suboptimal performance under online learning experimental settings where models are
updated with individual samples.

0 2000 4000 6000 8000 10000

instances
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
SE

Revin
PatchTST
iTransformer
FsNet
OneNet
Ours

(a) ETTh1

0 2000 4000 6000 8000 10000

instances
0

1

2

3

4

5

6

M
SE

Revin
PatchTST
iTransformer
FsNet
OneNet
Ours

(b) ETTh2

0 10000 20000 30000 40000

instances

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
SE

Revin
PatchTST
iTransformer
FsNet
OneNet
Ours

(c) ETTm1

0 10000 20000 30000 40000

instances

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
SE

Revin
PatchTST
iTransformer
FsNet
OneNet
Ours

(d) ETTm2

0 5000 10000 15000 20000 25000

instances

0.2

0.4

0.6

0.8

1.0

M
SE

Revin
PatchTST
iTransformer
FsNet
OneNet
Ours

(e) WTH

0 2500 5000 7500 10000 12500 15000 17500 20000

instances
0

2

4

6

8

10

M
SE

Revin
PatchTST
iTransformer
FsNet
OneNet
Ours

(f) ECL

Figure 2: Evolution of the cumulative MSE loss during training with forecasting window H = 48. The
horizontal axis represents instances.

Convergence of different deep models. Figure 2 illustrates the convergence behavior of BTOA com-
pared to baselines across six datasets. It is evident that the peaks in the loss curve tend to occur during the
early and middle stages of learning, indicating that changes in data distribution significantly impair model
performance. Such shifts in distribution are particularly challenging for time series models, as they disrupt
the model’s learned patterns, causing a temporary performance degradation. Traditional batch learning
settings typically evaluate performance only on a small portion of data at the end, often neglecting the dis-
tributional shifts that occur during training, which leads to suboptimal adaptation to real-world scenarios.
From Figure 2, we observe that when a distribution shift occurs, the increase in MSE for BTOA is noticeably
smaller than that of all baselines. This demonstrates BTOA’s superior ability to detect and rapidly adapt
to distributional changes, thereby maintaining more stable performance. The key to this adaptability lies
in the integration of our data augmentation module, which enhances the model’s robustness by leveraging
historical data and two-stream augmentation to account for shifts in both the amplitude and phase of the
data. This capability allows BTOA to make effective adjustments without compromising critical frequency
domain information, setting it apart from other models that struggle with such changes.In summary, these
results underscore the effectiveness of BTOA in quickly adapting to distributional shifts, ensuring more sta-
ble and reliable performance. The ability to mitigate the impact of these shifts highlights the potential of
BTOA as a versatile and robust solution for real-world time series forecasting challenges.

The batch size at the online test-time adaptation. In Table 3, we also investigated the impact of
the batch size hyperparameter, which determines the number of historical samples to be augmented during
batch training. Our experiments revealed that optimal performance is achieved with batch sizes of either
16 or 32. Considering both performance and computational efficiency, we selected a batch size of 16 as
the optimal choice. This decision strikes a balance between ensuring high model performance and reducing
training time, thus improving the model’s practicality for real-world applications, especially when handling

9

Under review as submission to TMLR

Table 3: Performance metrics for different batch sizes.

Dataset ETTh1 ETTm2 WTH ECL Traffic

batch-size 1 24 48 1 24 48 1 24 48 1 24 48 1 24 48

8 0.278 0.321 0.323 0.119 0.130 0.119 0.159 0.170 0.192 2.678 3.386 4.313 0.241 0.379 0.389
16 0.231 0.276 0.269 0.107 0.124 0.116 0.156 0.160 0.173 2.430 2.493 2.423 0.232 0.310 0.351
32 0.235 0.281 0.268 0.118 0.127 0.116 0.157 0.168 0.180 2.001 2.511 2.343 0.241 0.470 0.511
64 0.281 0.331 0.336 0.119 0.128 0.118 0.163 0.192 0.215 2.509 2.981 3.324 0.237 0.336 0.439

large-scale streaming data. By optimizing this hyperparameter, we can significantly accelerate the training
process without sacrificing accuracy, making our approach better suited for time-sensitive tasks.

0 10 20 30 40

4

3

2

1

0

Va
lu

e

Ground Truth
OneNet
Ours

(a) ETTh1

0 10 20 30 40

6

4

2

0

2

4

Va
lu

e

Ground Truth
OneNet
Ours

(b) ETTh2

0 10 20 30 40
2.5

2.0

1.5

1.0

0.5

0.0

0.5

Va
lu

e

Ground Truth
OneNet
Ours

(c) ETTm1

0 10 20 30 40

2

1

0

1

2

Va
lu

e

Ground Truth
OneNet
Ours

(d) ETTm2

0 10 20 30 40

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Ground Truth
OneNet
Ours

(e) WTH

0 10 20 30 40

1.0

0.5

0.0

0.5

1.0
Va

lu
e

Ground Truth
OneNet
Ours

(f) ECL

Figure 3: forecast results when distribution shift occur, with forecasting window H = 48.

Visualization. Figure 3 presents sample instances from six datasets during the phase where the loss curves
increase, representing the comparison between BTOA, OneNet, and the ground truth under distributional
shifts. It is clear that at the onset of the shift, all models experience a decline in performance due to the
sudden change in data distribution. However, BTOA recovers more quickly and aligns more closely with
the ground truth compared to OneNet, demonstrating its robustness in handling distributional shifts. As
training progresses, BTOA not only adapts more rapidly but also captures complex temporal patterns more
effectively, resulting in superior predictions. This highlights BTOA’s advantage in mitigating the negative
impacts of distributional shifts and underscores its ability to maintain, and even improve, predictive accuracy
over time, making it a more reliable solution for online scenarios.

4.2 Ablation Study

In this section, we will examine the contribution of each module in BTOA individually. The first module
is Transferable Historical Sample Selection module, which selects historical samples that are close to the
information of the test-time sample, a critical factor in fully leveraging historical information. The second
module is the Transferable Online Augmentation module, which performs batch training to help mitigate

10

Under review as submission to TMLR

noise present in the test-time sample and reduce distribution shifts. More ablation results are provided in
Appendix A.4.

Table 4: Comparison of Historical Sample Selection Methods.

Dataset ETTh1 ETTm2 WTH ECL Traffic

Methods 1 24 48 1 24 48 1 24 48 1 24 48 1 24 48

closest-16 0.237 0.391 0.410 0.220 0.256 0.279 0.192 0.232 0.241 2.859 2.988 2.713 0.269 0.458 0.469
L2-distance 0.292 0.320 0.276 0.194 0.232 0.227 0.158 0.215 0.226 3.285 3.128 2.923 0.238 0.412 0.470
THSS (ours) 0.223 0.271 0.265 0.174 0.206 0.204 0.156 0.161 0.174 2.430 2.493 2.432 0.232 0.310 0.351

The Components of BTOA. First, we examine the THSS module. We conducted a comparison between
three methods: (1) directly selecting the 16 most recent samples in time closest to the test-time sample for
data augmentation, without choosing from the memory bank; (2) using L2 distance as a representative naive
distance metric for the selection criterion; and (3) using the THSS module as the selection standard. As
shown in Table 4, the THSS module outperforms the other two methods in selecting historical samples. This
result demonstrates that the VAE successfully captures the semantic information of time series in the latent
space, confirming the effectiveness of the latent space.

Table 5: Comparison of Data Augmentation Methods.

Dataset ETTh1 ETTm2 WTH ECL Traffic

Methods 1 24 48 1 24 48 1 24 48 1 24 48 1 24 48

Non-Aug 0.233 0.381 0.407 0.193 0.274 0.280 0.158 0.187 0.196 2.523 2.998 3.309 0.247 0.421 0.445
Linear-Mixup 0.388 0.460 0.336 0.180 0.234 0.227 0.174 0.228 0.292 2.987 3.091 3.112 0.302 0.398 0.422

Cut-Mixup 0.273 0.321 0.263 0.178 0.227 0.262 0.159 0.240 0.337 2.549 2.762 2.918 0.265 0.332 0.384
TOA (ours) 0.223 0.271 0.265 0.174 0.206 0.204 0.156 0.161 0.174 2.430 2.493 2.432 0.232 0.310 0.351

Second, we evaluate the effectiveness of the TOA module. We compare four methods on five datasets:
(1) without data augmentation; (2) using Linear-Mixup (Zhang et al., 2017); (3) using Cut-Mixup (Yun
et al., 2019); and (4) using our proposed TOA module. Table 5 demonstrates the superior performance
of the TOA method across all five datasets. This indicates that, for time series, simple time domain data
augmentation can easily lead to interference between different series. In contrast, the TOA method performs
data augmentation in the frequency domain, focusing on amplitude and phase, reducing the interference
between time series and achieving positive data augmentation, thereby improving prediction performance.

Table 6: The Generality of BTOA.

Dataset ETTh1 ETTm2 WTH ECL Traffic

Methods 1 24 48 1 24 48 1 24 48 1 24 48 1 24 48

Revin 0.238 0.672 0.792 0.173 0.652 1.083 0.162 0.370 0.452 3.873 4.862 6.583 0.257 1.097 1.678
Revin+BTOA 0.236 0.633 0.723 0.172 0.650 0.927 0.160 0.352 0.444 3.675 4.563 6.132 0.271 0.954 1.239

PatchTST 0.246 0.810 0.831 0.184 0.547 0.608 0.162 0.372 0.465 2.022 4.325 5.030 0.322 0.913 1.519
PatchTST+BTOA 0.239 0.711 0.745 0.173 0.513 0.592 0.156 0.331 0.397 2.329 4.154 4.958 0.276 0.621 0.686

FsNet 0.286 0.411 0.402 0.179 0.233 0.299 0.161 0.189 0.223 3.317 6.071 7.234 0.295 0.360 0.378
FsNet+BTOA 0.308 0.299 0.300 0.189 0.227 0.286 0.162 0.181 0.213 4.122 5.534 6.071 0.283 0.335 0.354

Generalisability. As a plug-and-play module, BTOA has demonstrated significant effectiveness in im-
proving model performance. In Table 6, we compare the results of adding BTOA to the Revin, PatchTST,
and FsNet models. The experimental results show that, in all models, the performance after adding BTOA
outperforms the original models without BTOA. This result fully validates the effectiveness of BTOA in en-
hancing the model’s generalization ability and overall performance. Specifically, BTOA improves the model’s
robustness against performance degradation caused by distribution shifts in online time series prediction by

11

Under review as submission to TMLR

implementing batch-training. Additionally, the inclusion of BTOA also positively impacts the stability of
model training. Therefore, BTOA, as a general-purpose module, not only improves the performance of
various models but also enhances their feasibility and stability in real-world applications.

5 Conclusion

In this paper, a general online test-time adaptation method, Batch training with Transferable Online Aug-
mentation (BTOA) for time series, is designed to effectively mitigate the performance degradation caused
by distribution shifts during the test process. Our approach incorporates a transferable historical sample
selection module, a transferable online augmentation module, and a prediction block. The THSS module
fully leverages the distributional information from historical samples. Through the TOA module, we rein-
troduce batch training in the online setting to alleviate the negative impact of distribution shifts. Finally,
the prediction block extracts complex patterns in time series, enabling more accurate outputs. Extensive
experiments demonstrate that our approach can be integrated into any online time series forecasting model
and achieves superior performance.

Broader Impact Statement

Our work proposes a plug-and-play module from the perspective of online test-time adaptation to mitigate
the negative impact of distribution shift. This is crucial for practical time series forecasting tasks. This
research can serve as a reference for future studies in machine learning and data science, promoting the
development of more complex and accurate online time series forecasting techniques. Therefore, our paper
primarily focuses on scientific research and does not have any obvious negative social impact.

References
Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin, and Lucas

Page-Caccia. Online continual learning with maximal interfered retrieval. Advances in neural information
processing systems, 32, 2019a.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 11254–11263, 2019b.

Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. Online learning for time series prediction. In
Conference on learning theory, pp. 172–184. PMLR, 2013.

Oliver D Anderson. Time-series. 2nd edn., 1976.

Sergul Aydore, Tianhao Zhu, and Dean P Foster. Dynamic local regret for non-convex online forecasting.
Advances in neural information processing systems, 32, 2019.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience for
general continual learning: a strong, simple baseline. Advances in neural information processing systems,
33:15920–15930, 2020.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K Dokania,
Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual learning. arXiv
preprint arXiv:1902.10486, 2019.

Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 295–305,
2022.

Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentanglement
in variational autoencoders. Advances in neural information processing systems, 31, 2018.

Berken Utku Demirel and Christian Holz. Finding order in chaos: A novel data augmentation method for
time series in contrastive learning. Advances in Neural Information Processing Systems, 36, 2024.

12

Under review as submission to TMLR

Alberto Gasparin, Slobodan Lukovic, and Cesare Alippi. Deep learning for time series forecasting: The
electric load case. CAAI Transactions on Intelligence Technology, 7(1):1–25, 2022.

Taesik Gong, Yewon Kim, Taeckyung Lee, Sorn Chottananurak, and Sung-Ju Lee. Sotta: Robust test-time
adaptation on noisy data streams. Advances in Neural Information Processing Systems, 36, 2024.

San Gultekin and John Paisley. Online forecasting matrix factorization. IEEE Transactions on Signal
Processing, 67(5):1223–1236, 2018.

Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. ICLR (Poster), 3, 2017.

Minguk Jang, Sae-Young Chung, and Hye Won Chung. Test-time adaptation via self-training with nearest
neighbor information. arXiv preprint arXiv:2207.10792, 2022.

KyoHoon Jin, JeongA Wi, EunJu Lee, ShinJin Kang, SooKyun Kim, and YoungBin Kim. Trafficbert: Pre-
trained model with large-scale data for long-range traffic flow forecasting. Expert Systems with Applications,
186:115738, 2021.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jangho Choi, and Jaegul Choo. Reversible instance
normalization for accurate time-series forecasting against distribution shift. In International Conference
on Learning Representations, 2022. URL https://api.semanticscholar.org/CorpusID:251647808.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal
patterns with deep neural networks. In The 41st international ACM SIGIR conference on research &
development in information retrieval, pp. 95–104, 2018.

Yinqi Li, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Optimal positive generation via
latent transformation for contrastive learning. Advances in Neural Information Processing Systems, 35:
18327–18342, 2022.

Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under distribution
shifts. arXiv preprint arXiv:2303.15361, 2023.

Jiaming Liu, Senqiao Yang, Peidong Jia, Ming Lu, Yandong Guo, Wei Xue, and Shanghang Zhang. Vida:
Homeostatic visual domain adapter for continual test time adaptation. arXiv preprint arXiv:2306.04344,
2023.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring the
stationarity in time series forecasting. Advances in Neural Information Processing Systems, 35:9881–9893,
2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. itransformer:
Inverted transformers are effective for time series forecasting. In The Twelfth International Conference on
Learning Representations, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds and
algorithms. arXiv preprint arXiv:0902.3430, 2009.

Chaithanya Kumar Mummadi, Robin Hutmacher, Kilian Rambach, Evgeny Levinkov, Thomas Brox, and
Jan Hendrik Metzen. Test-time adaptation to distribution shift by confidence maximization and input
transformation. arXiv preprint arXiv:2106.14999, 2021.

A Tuan Nguyen, Thanh Nguyen-Tang, Ser-Nam Lim, and Philip HS Torr. Tipi: Test time adaptation with
transformation invariance. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24162–24171, 2023.

13

https://api.semanticscholar.org/CorpusID:251647808

Under review as submission to TMLR

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words:
Long-term forecasting with transformers. In The Eleventh International Conference on Learning Repre-
sentations, 2022.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui Tan.
Efficient test-time model adaptation without forgetting. In International conference on machine learning,
pp. 16888–16905. PMLR, 2022.

Quang Pham, Chenghao Liu, Doyen Sahoo, and Steven Hoi. Learning fast and slow for online time series
forecasting. In The Eleventh International Conference on Learning Representations, 2022.

Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence. Dataset shift in
machine learning. 2009. URL https://api.semanticscholar.org/CorpusID:61294087.

CLEVELAND RB. Stl: A seasonal-trend decomposition procedure based on loess. J Off Stat, 6:3–73, 1990.

Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and Chaowei Xiao.
Test-time prompt tuning for zero-shot generalization in vision-language models. Advances in Neural
Information Processing Systems, 35:14274–14289, 2022a.

Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and Chaowei Xiao.
Test-time prompt tuning for zero-shot generalization in vision-language models. Advances in Neural
Information Processing Systems, 35:14274–14289, 2022b.

Martin Ullrich, Arne Küderle, Julius Hannink, Silvia Del Din, Heiko Gassner, Franz Marxreiter, Jochen
Klucken, Bjoern M Eskofier, and Felix Kluge. Detection of gait from continuous inertial sensor data using
harmonic frequencies. IEEE Journal of Biomedical and Health Informatics, 24(7):1869–1878, 2020.

Vikas Verma, Thang Luong, Kenji Kawaguchi, Hieu Pham, and Quoc Le. Towards domain-agnostic con-
trastive learning. In International Conference on Machine Learning, pp. 10530–10541. PMLR, 2021.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-time
adaptation by entropy minimization. In International Conference on Learning Representations, 2020.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7201–7211, 2022a.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7201–7211, 2022b.

Zixin Wang, Yadan Luo, Liang Zheng, Zhuoxiao Chen, Sen Wang, and Zi Huang. In search of lost online
test-time adaptation: A survey. arXiv preprint arXiv:2310.20199, 2023.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting. Advances in neural information processing systems, 34:
22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal
2d-variation modeling for general time series analysis. In The eleventh international conference on learning
representations, 2022.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:
Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 6023–6032, 2019.

Longbin Zeng, Jiayi Han, Liang Du, and Weiyang Ding. Rethinking precision of pseudo label: Test-time
adaptation via complementary learning. Pattern Recognition Letters, 177:96–102, 2024.

Gang Zhang, Dazhi Yang, George Galanis, and Emmanouil Androulakis. Solar forecasting with hourly
updated numerical weather prediction. Renewable and Sustainable Energy Reviews, 154:111768, 2022a.

14

https://api.semanticscholar.org/CorpusID:61294087

Under review as submission to TMLR

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and augmen-
tation. Advances in neural information processing systems, 35:38629–38642, 2022b.

Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised contrastive pre-
training for time series via time-frequency consistency. Advances in Neural Information Processing Sys-
tems, 35:3988–4003, 2022c.

YiFan Zhang, Qingsong Wen, Xue Wang, Weiqi Chen, Liang Sun, Zhang Zhang, Liang Wang, Rong Jin, and
Tieniu Tan. Onenet: Enhancing time series forecasting models under concept drift by online ensembling.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer:
Beyond efficient transformer for long sequence time-series forecasting. Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 11106–11115, Sep 2022.

15

Under review as submission to TMLR

A Additional experimental details

A.1 Datasets

We conduct experiments on 7 real-world datasets to evaluate the performance of our method including (1)
ETT(Electricity Transformer Temperature) (Wu et al., 2021) are collected from two electricity transformers
with 7 factors. There are four subsets where ETTh1 and ETTh2 are recorded every hour, and ETTm1 and
ETTm2 are recorded every 15 minutes. (2) ECL (Wu et al., 2021) collects 321 customers’ hourly electricity
consumption. (3) Traffic (Wu et al., 2021)collects the road occupancy rates from different sensors on San
Francisco freeways. (4) WTH (Pham et al., 2022)Collects hourly records of 11 climate features from nearly
1,600 locations in the U.S. from 2010 to 2013.

A.2 Implementation Details

All experiments are implemented in PyTorch and conducted on a single NVIDIA RTX4090 24GB GPU. The
learning rate for the experiments is set between 1e-3 and 7e-3.

A.3 Analysis of Inference Time and Memory Consumption

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Inference Time (s/sample)

0.3

0.4

0.5

0.6

0.7

0.8

M
SE

der++

Revin

Stationary

PatchTST
iTransformer

FsNet

OneNet

Ours

Model Performance Comparison
Models & Memory Footprint

der++: 0.57G
Revin: 0.88G
Stationary: 0.77G
PatchTST: 0.89G
iTransformer: 0.5G
FsNet: 0.75G
OneNet: 0.92G
Ours: 1.1G

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Inference Time (s/sample)

0.20

0.25

0.30

0.35

0.40

0.45

0.50
M

SE

der++

Revin

Stationary

PatchTSTiTransformer

FsNet

OneNet

Ours

Model Performance Comparison
Models & Memory Footprint

der++: 0.57G
Revin: 0.97G
Stationary: 0.78G
PatchTST: 1.05G
iTransformer: 0.51G
FsNet: 1.31G
OneNet: 1.75G
Ours: 2.31G

Figure 4: Comparison of inference time and memory consumption on ETTh1 and WTH.

Since online test-time adaptation deals with streaming data that arrives in a continuous and sequential
manner, Figure 4 compares the inference time for a single sample and overall memory usage between our
method and the baselines. The results show that BTOA introduces minimal increases in inference time
and memory usage, which are acceptable in an online setting, while outperforming the baseline methods.
Notably, for the VAE module during inference, BTOA only requires simple forward propagation without the
need for backpropagation. On the ETTh1 dataset, BTOA improves prediction performance by 40% while
only increasing inference time by 7%, whereas OneNet increases inference time by 13% while only improving
prediction performance by 9%. This comparison further highlights the superiority of BTOA.

A.4 Ablation Study

Table 7: Performance Impact of Series Decomposition Block.
Dataset ETTh1 ETTm2 WTH

Methods 1 24 48 1 24 48 1 24 48

Non-SD 0.230 0.280 0.273 0.180 0.212 0.210 0.163 0.169 0.181
SD 0.223 0.271 0.265 0.174 0.206 0.204 0.156 0.161 0.174

we evaluate the effect of using a series decomposition module in the prediction block by comparing the
performance of models with and without series decomposition. Although OneNet suggests that series de-
composition is not a universally effective method for improving performance, Table 7 shows that for the

16

Under review as submission to TMLR

BTOA model, series decomposition can effectively extract complex temporal patterns and enhance the
model’s predictive ability.

Table 8: Performance Impact of different distance threshold.
Dataset ETTh1 WTH Traffic

distance 1 24 48 1 24 48 1 24 48

0.7 0.241 0.295 0.259 0.157 0.169 0.171 0.249 0.306 0.362
0.8 0.223 0.271 0.265 0.156 0.161 0.174 0.232 0.310 0.351
0.9 0.233 0.272 0.266 0.159 0.170 0.182 0.262 0.316 0.355

We also conduct ablation experiments regarding the distance threshold hyperparameter as shown in Table
8, which determines from which distribution λA and λP are sampled. If the distance between the historical
sample and the newly received sample is below a predefined distance threshold (set to 0.8 in our experiment),
λA, λP are sampled from a uniform distribution with a lower mean. If the distance between the historical
sample and the newly received sample exceeds the predefined distance threshold, λA, λP are sampled from
a truncated Gaussian distribution with a higher mean and lower standard deviation.

A.5 VAE Models Architecture

We use the Total Correlation Variational Autoencoder (TC-VAE) (Chen et al., 2018) to compute the distance
in latent space between the current incoming sample and the historical samples stored in the memory bank.
The model is trained for 100 epochs with a learning rate of 3e-3, using the Evidence Lower Bound (ELBO)
as the loss function, and a batch size of 128. The latent dimensions and the β parameter are set to 10 and
5, respectively. Below, we provide detailed information about the encoder and decoder architectures, which
differ across datasets due to variations in input channels.

Table 9: Encoder Network for ETT dataset

Layer Name Output size # of kernels Kernel size Stride Activation

Input N × 1 × 60 × 7

Convolution N × 32 × 26 × 5 32 9 × 3 2 × 1 ReLU

Convolution N × 32 × 10 × 3 32 7 × 3 2 × 1 ReLU

Convolution N × 64 × 2 × 1 64 5 × 3 3 × 1 ReLU

Convolution N × 128 × 1 × 1 128 2 × 1 1 × 1 ReLU

Convolution N × 128 × 1 × 1 128 1 × 1 1 × 1

Table 10: Decoder Network for ETT dataset

Layer Name Output size # of kernels Kernel size Stride Activation

Input N × 10 × 1 × 1

Transposed Convolution N × 512 × 2 × 7 512 2 × 7 1 × 1 ReLU

Transposed Convolution N × 128 × 2 × 7 128 4 × 1 6 × 1 ReLU

Transposed Convolution N × 64 × 16 × 7 64 4 × 1 2 × 1 ReLU

Transposed Convolution N × 32 × 32 × 7 32 4 × 1 2 × 1 ReLU

Transposed Convolution N × 32 × 1 × 7 1 4 × 1 2 × 1

17

Under review as submission to TMLR

Table 11: Encoder Network for WTH dataset

Layer Name Output size # of kernels Kernel size Stride Activation

Input N × 1 × 60 × 12

Convolution N × 32 × 18 × 11 32 9 × 2 3 × 1 ReLU

Convolution N × 32 × 6 × 5 32 3 × 3 3 × 2 ReLU

Convolution N × 64 × 2 × 5 64 3 × 3 3 × 2 ReLU

Convolution N × 128 × 1 × 1 128 2 × 2 2 × 1 ReLU

Convolution N × 128 × 1 × 1 128 1 × 1 1 × 1

Table 12: Decoder Network for WTH dataset

Layer Name Output size # of kernels Kernel size Stride Activation

Input N × 10 × 1 × 1

Transposed Convolution N × 512 × 2 × 12 512 2 × 7 1 × 1 ReLU

Transposed Convolution N × 128 × 2 × 12 128 4 × 1 6 × 1 ReLU

Transposed Convolution N × 64 × 16 × 12 64 4 × 1 2 × 1 ReLU

Transposed Convolution N × 32 × 32 × 12 32 4 × 1 2 × 1 ReLU

Transposed Convolution N × 32 × 1 × 12 1 4 × 1 2 × 1

Table 13: Encoder Network for ECL dataset

Layer Name Output size # of kernels Kernel size Stride Activation

Input N × 1 × 60 × 321

Convolution N × 32 × 18 × 64 32 9 × 2 3 × 5 ReLU

Convolution N × 32 × 6 × 13 32 3 × 3 3 × 5 ReLU

Convolution N × 64 × 2 × 3 64 3 × 3 3 × 5 ReLU

Convolution N × 128 × 1 × 1 128 2 × 2 2 × 3 ReLU

Convolution N × 128 × 1 × 1 128 1 × 1 1 × 1

Table 14: Decoder Network for ECL dataset

Layer Name Output size # of kernels Kernel size Stride Activation

Input N × 10 × 1 × 1

Transposed Convolution N × 512 × 2 × 321 512 2 × 321 1 × 1 ReLU

Transposed Convolution N × 128 × 2 × 321 128 4 × 1 6 × 1 ReLU

Transposed Convolution N × 64 × 16 × 321 64 4 × 1 2 × 1 ReLU

Transposed Convolution N × 32 × 32 × 321 32 4 × 1 2 × 1 ReLU

Transposed Convolution N × 32 × 1 × 321 1 4 × 1 2 × 1

18

Under review as submission to TMLR

Table 15: Encoder Network for traffic dataset

Layer Name Output size # of kernels Kernel size Stride Activation

Input N × 1 × 60 × 862

Convolution N × 32 × 18 × 173 32 9 × 2 3 × 5 ReLU

Convolution N × 32 × 6 × 35 32 3 × 3 3 × 5 ReLU

Convolution N × 64 × 2 × 7 64 3 × 3 3 × 5 ReLU

Convolution N × 128 × 1 × 1 128 2 × 2 2 × 5 ReLU

Convolution N × 128 × 1 × 1 128 1 × 1 1 × 1

Table 16: Decoder Network for traffic dataset

Layer Name Output size # of kernels Kernel size Stride Activation

Input N × 10 × 1 × 1

Transposed Convolution N × 512 × 2 × 862 512 2 × 862 1 × 1 ReLU

Transposed Convolution N × 128 × 2 × 862 128 4 × 1 6 × 1 ReLU

Transposed Convolution N × 64 × 16 × 862 64 4 × 1 2 × 1 ReLU

Transposed Convolution N × 32 × 32 × 862 32 4 × 1 2 × 1 ReLU

Transposed Convolution N × 32 × 1 × 862 1 4 × 1 2 × 1

19

	Introduction
	Related work
	Online Test-time Adaptation
	 Online Time Series Forecasting

	Method
	Transferable Historical Sample Selection
	Transferable Online Augmentation
	Prediction Model and Training Objective
	Theoretical Insights

	Experiments
	Online Forecasting Results
	Ablation Study

	Conclusion
	Additional experimental details
	Datasets
	Implementation Details
	Analysis of Inference Time and Memory Consumption
	Ablation Study
	VAE Models Architecture

