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Abstract
We introduce MetaICL (Meta-training for In-001
Context Learning), a new meta-training frame-002
work for few-shot learning where a pretrained003
language model is tuned to do in-context learn-004
ing on a large set of training tasks. This meta-005
training enables the model to more effectively006
learn a new task in context at test time, by sim-007
ply conditioning on a few training examples008
with no parameter updates or task-specific tem-009
plates. We experiment on a large, diverse col-010
lection of tasks consisting of 142 NLP datasets011
including classification, question answering,012
natural language inference, paraphrase detec-013
tion and more, across seven different meta-014
training/target splits. MetaICL outperforms a015
range of baselines including in-context learn-016
ing without meta-training and multi-task learn-017
ing followed by zero-shot transfer. We find018
that the gains are particularly significant for019
target tasks that have domain shifts from the020
meta-training tasks, and that using a diverse021
set of the meta-training tasks is key to im-022
provements. We also show that MetaICL ap-023
proaches (and sometimes beats) the perfor-024
mance of models fully finetuned on the target025
task training data, and outperforms much big-026
ger models with nearly 8x parameters.027

1 Introduction028

Large language models (LMs) have recently been029

shown to be able to do in-context learning (Brown030

et al., 2020), where they learn a new task simply031

by conditioning on a few training examples and032

predicting which tokens best complete a test input.033

This type of learning is attractive because the model034

learns a new task through inference alone, without035

any parameter updates. However, performance sig-036

nificantly lags behind supervised finetuning, results037

are often high variance (Zhao et al., 2021; Perez038

et al., 2021), and it can be difficult to engineer the039

templates that convert existing tasks to this format.040

In this paper, we address these challenges by in-041

troducing MetaICL: Meta-training for In-Context042

Learning. MetaICL tunes a pretrained language 043

model on a large set of tasks to learn how to in- 044

context learn, and is evaluated on strictly new un- 045

seen tasks. Each meta-training example matches 046

the test setup—it includes k + 1 training examples 047

from one task that will be presented together as 048

a single sequence to the language model, and the 049

output of the final example is used to calculate the 050

cross-entropy training loss. Simply finetuning the 051

model in this data setup directly leads to better in- 052

context learning—the model learns to recover the 053

semantics of the task from the given examples, as 054

must be done for in-context learning of a new task 055

at test time. This approach is related to recent work 056

that uses multi-task learning for better zero-shot 057

performance at test time (Khashabi et al., 2020; 058

Mishra et al., 2021b; Zhong et al., 2021; Wei et al., 059

2021; Sanh et al., 2021). However, MetaICL is dis- 060

tinct as it allows learning new tasks from k exam- 061

ples alone, without relying on a task reformatting 062

(e.g., reducing everything to question answering) 063

or task-specific templates (e.g., converting different 064

tasks to a language modeling problem). 065

We experiment on a large, diverse collection of 066

tasks taken from Ye et al. (2021) and Khashabi et al. 067

(2020), including 142 text classification, question 068

answering, natural language inference and para- 069

phrase detection datasets. We report seven different 070

settings, all with no overlap between meta-training 071

and target tasks in types of the task (e.g., classifica- 072

tion, question answering) or domains (e.g., news, 073

finance, medical). This leads to 52 unique target 074

tasks in total, which is the largest among all recent 075

related work to the best of our knowledge. 076

Experimental results show that MetaICL consis- 077

tently outperforms baselines including (1) a variety 078

of LM in-context learning baselines without meta- 079

training (Brown et al., 2020; Zhao et al., 2021; 080

Holtzman et al., 2021; Min et al., 2021), and (2) 081

multi-task learning followed by zero-shot trans- 082

fer (Zhong et al., 2021; Wei et al., 2021; Sanh 083
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et al., 2021). Gains over multi-task zero-shot trans-084

fer are particularly significant when meta-training085

tasks and target tasks are dissimilar, e.g. there086

are large differences in task formats, domains, or087

required skills. This demonstrates that MetaICL en-088

ables the model to recover the semantics of the task089

in context during inference even when the target090

does not share similarities with meta-training tasks.091

MetaICL often gets close to (and sometimes beats)092

the performance of models trained with supervised093

finetuning on the target datasets, and perform as094

well as models with 8x parameters. We also per-095

form extensive ablations to identify key ingredients096

for success of MetaICL such as the number and097

diversity of meta-training tasks. Finally, we demon-098

strate MetaICL without any templates is better than099

recent work using human-written natural instruc-100

tions, while the best performance is achieved by101

combining both approaches.102

Codes and data will be publicly released at103

anonymous/to-be-updated.104

2 Related Work105

In-context learning Brown et al. (2020) pro-106

posed to use a language model (LM) conditioned107

on a concatenation of training examples for few-108

shot learning with no parameter updates. It has109

been further improved by later work (Zhao et al.,110

2021; Holtzman et al., 2021; Min et al., 2021),111

showing promising results on a variety of tasks.112

However, in-context learning with an LM achieves113

poor performance when the target task is very dif-114

ferent from language modeling in nature or the LM115

is not large enough. Moreover, it can have high116

variance and poor worst-case accuracy (Perez et al.,117

2021; Lu et al., 2021).118

Our paper is based on the core idea of in-context119

learning by conditioning on training examples. We120

show that, by explicitly training on an in-context121

learning objective, MetaICL achieves substantial122

improvements even with smaller LMs.123

Meta-training via multi-task learning Our124

work is broadly inspired by a large body of work125

in meta-learning (Vilalta and Drissi, 2002; Finn126

et al., 2017) and multi-task learning (Evgeniou127

and Pontil, 2004; Ruder, 2017). Prior work has128

shown that multi-task learning on a large collec-129

tion of tasks leads to better performance on a new130

task, either when tested zero-shot (Khashabi et al.,131

2020; Mishra et al., 2021b; Zhong et al., 2021; Wei132

et al., 2021) or when further finetuned (Aghajanyan 133

et al., 2021; Ye et al., 2021). In particular, the for- 134

mer is closely related to our work, as it eliminates 135

the need for parameter updates on a target task. 136

However, these zero-shot models are either limited 137

to tasks sharing the same format as training tasks 138

(e.g., a question answering format) (Khashabi et al., 139

2020; Zhong et al., 2021), or rely heavily on task- 140

specific templates (Mishra et al., 2021b; Wei et al., 141

2021; Sanh et al., 2021) which are difficult to en- 142

gineer due to high variance in performance from 143

very small changes (Mishra et al., 2021a). 144

In this paper, we propose a meta-training method 145

for better in-context learning that improves few- 146

shot performance. We show that it effectively 147

learns semantics of a new task with no manual ef- 148

fort, significantly outperforming zero-shot transfer 149

methods.1 Furthermore, while Wei et al. (2021) 150

shows that meta-training helps only when the 151

model has 68B or more parameters, our exper- 152

iments demonstrate improvements with a much 153

smaller model (770M). 154

Chen et al. (2021), concurrently to our work, pro- 155

pose meta-training for in-context learning. Our ap- 156

proach differs in a number of ways: we remove re- 157

quirements of human-written templates or instruc- 158

tions, and include more diverse tasks, stronger base- 159

lines, and extensive experiments in much larger 160

scale with many meta-training/target splits. 161

3 MetaICL 162

We introduce MetaICL: Meta-training for In- 163

Context Learning. Table 1 provides an overview 164

of the approach. The key idea is to use a multi-task 165

learning scheme over a large collection of meta- 166

training tasks, in order for the model to learn how 167

to condition on a small set of training examples, re- 168

cover the semantics of a task, and predict the output 169

based on it. Following previous literature (Brown 170

et al., 2020), the training examples are concate- 171

nated and provided as an single input to the model, 172

which is feasible for k-shot learning (e.g., k = 16). 173

At test time, the model is evaluated on an unseen 174

target task that comes with k training examples, 175

and inference directly follows the same data format 176

as in meta-training. 177

1We show that MetaICL without instructions is still better
than zero-shot transfer with instructions, but by using instruc-
tions, performance of MetaICL further improves (Section 5.2).
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Meta-training Inference

Task C meta-training tasks An unseen target task

Data given Training examples Ti = {(xi
j , y

i
j)}Ni

j=1, ∀i ∈ [1, C] (Ni � k)
Training examples (x1, y1), · · · , (xk, yk),
Test input x

Objective

For each iteration,

argmaxc∈CP (c|x1, y1, · · · , xk, yk, x)
1. Sample task i ∈ [1, C]
2. Sample k + 1 examples from Ti: (x1, y1), · · · , (xk+1, yk+1)
3. Maximize P (yk+1|xk+1, x1, y1, · · · , xk, yk, xk+1)

Table 1: Overview of MetaICL (Section 3).

3.1 Meta-training178

The model is meta-trained on a collection of tasks179

which we call meta-training tasks. For every itera-180

tion, one meta-training task is sampled, and k + 1181

training examples (x1, y1), · · · , (xk+1, yk+1) are182

sampled from the training examples of the cho-183

sen task. We then supervise the model by feed-184

ing the concatenation of x1, y1, · · · , xk, yk, xk+1185

to the model as an input and train the model to gen-186

erate yk+1 using a negative log likelihood objec-187

tive. This simulates in-context learning at inference188

where the first k examples serve as training exam-189

ples and the last (k + 1)-th example is regarded as190

the test example.191

3.2 Inference192

For a new target task, the model is given k train-193

ing examples (x1, y1), · · · , (xk, yk) as well as a194

test input x. It is also given a set of candidates195

C which is either a set of labels (in classification)196

or answer options (in question answering). As in197

meta-training, the model takes a concatenation of198

x1, y1, · · · , xk, yk, x as the input, and compute the199

conditional probability of each label ci ∈ C. The200

label with the maximum conditional probability is201

returned as a prediction.202

3.3 Channel MetaICL203

We introduce a noisy channel variant of MetaICL204

called Channel MetaICL, following Min et al.205

(2021). In the noisy channel model, P (y|x) is206

reparameterized to P (x|y)P (y)
P (x) ∝ P (x|y)P (y). We207

follow Min et al. (2021) in using P (y) = 1
|C| and208

modeling P (x|y) which allows us to use the chan-209

nel approach by simply flipping xi and yi. Specif-210

ically, at meta-training time, the model is given211

a concatenation of y1, x1, · · · , yk, xk, yk+1 and is212

trained to generate xk+1. At inference, the model213

computes argmaxc∈CP (x|y1, x1, · · · , yk, xk, c).214

Meta-train Target

Setting # tasks # examples Setting # tasks

HR 61 819,200 LR 26

Classification 43 384,022 Classification 20Non-Classification 37 368,768

QA 37 486,143 QA 22Non-QA 33 521,342

Non-NLI 55 463,579 NLI 8

Non-Paraphrase 59 496,106 Paraphrase 4

Table 2: Statistics of seven different settings. Each row
indicates meta-training/target tasks for each setting. ‘#
tasks’ in meta-training is equivalent to C in Table 1.
‘HR’ and ‘LR’ indicate high resource and low resource,
respectively. Full datasets for each split are provided in
Appendix A.

4 Experimental Setup 215

4.1 Datasets 216

We use a large collection of tasks taken 217

from CROSSFIT (Ye et al., 2021) and UNI- 218

FIEDQA (Khashabi et al., 2020). We have 142 219

unique tasks in total, covering a variety of prob- 220

lems including text classification, question answer- 221

ing (QA), natural language inference (NLI) and 222

paraphrase detection. 223

We experiment with seven distinct settings as 224

shown in Table 2, where there is no overlap be- 225

tween the meta-training and target tasks. The num- 226

ber of unique target tasks in total is 52, which is sig- 227

nificantly larger than other relevant work (Khashabi 228

et al., 2020; Mishra et al., 2021b; Zhong et al., 229

2021; Wei et al., 2021; Sanh et al., 2021). 230

HR→LR (High resource to low resource): We 231

experiment with a main setting where datasets with 232

10,000 or more training examples are used as meta- 233

training tasks and the rest are used as target tasks. 234

We think using high resource datasets for meta- 235

training and low resource datasets as targets is a 236

realistic and practical setting for few-shot learning. 237
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Method Meta Target

train train # samples

LMs
0-shot 7 7 0
PMI 0-shot 7 7 0
Channel 0-shot 7 7 0
In-context 7 7 k
PMI In-context 7 7 k
Channel In-context 7 7 k

Meta-trained
Multi-task 0-shot 3 7 0
Channel Multi-task 0-shot 3 7 0
MetaICL (Ours) 3 7 k
Channel MetaICL (Ours) 3 7 k

Oracle
Oracle 7 3 k
Oracle w/ meta-train 3 3 k

Table 3: Summary of the baselines and MetaICL. ‘train’
indicates whether the model is trained with parameter
updates, and ‘# samples’ indicates the number of train-
ing examples used on a target task. Our baselines in-
clude a range of recently introduced methods (Holtz-
man et al., 2021; Zhao et al., 2021; Min et al., 2021;
Wei et al., 2021) as described in Section 4.2.

X→X (X={Classification, QA}): We also experi-238

ment with two settings with meta-training and tar-239

get tasks sharing the task format, although with no240

overlap in tasks.241

Non-X→X (X={Classification, QA, NLI, Para-242

phase}): Lastly, we experiment with four settings243

where meta-training tasks do not overlap with tar-244

get tasks in task format and required capabilities.245

These settings require the most challenging gener-246

alization capacities.247

Each setting has a subset of target tasks with no248

domain overlap with any meta-training tasks (e.g.,249

finance, poem, climate or medical). We evaluate250

both on all target tasks or on target tasks with no251

domain overlap only. Full details of the settings and252

datasets with citations are provided in Appendix A.253

4.2 Baselines254

We compare MetaICL and Channel MetaICL with255

a range of baselines, as summarized in Table 3.256

0-shot: We use a pretrained LM as it is and run257

zero-shot inference, following Brown et al. (2020).258

In-context: We use the pretrained LM as it is and259

use in-context learning by conditioning on a con-260

catenation of k training examples, following Brown261

et al. (2020).262

PMI 0-shot, PMI In-context: We use the PMI263

method from Holtzman et al. (2021); Zhao et al.264

[P]: Time Warner is the world’s largest media and Internet
company.
[H]: Time Warner is the world’s largest company.
Labels: entailment, not_entailment

Holtzman et al. (2021)
Input [P] question: [H] true or false? answer:
Output {true, false}
Wei et al. (2021)
Input [P] Based on the paragraph above, can we

conclude that [H]?
Output {yes, no}
Ours
Input [P] [H]
Output {entailment, not_entailment}

Table 4: Example input-output pairs for an NLI task.
We show human-authored templates taken from prior
work as references.

(2021) for 0-shot and In-context learning. 265

Channel 0-shot, Channel In-context: We use the 266

noisy channel model from Min et al. (2021) for 267

0-shot and In-context learning. 268

Multi-task 0-shot: We train the LM on meta- 269

training tasks and use zero-shot transfer on a target 270

task, as done in Khashabi et al. (2020); Zhong et al. 271

(2021); Wei et al. (2021). 272

Channel Multi-task 0-shot: We have a noisy 273

channel variant of Multi-task 0-shot. 274

Oracle: We train the LM on a given target task. 275

This is not directly comparable to other methods 276

as parameter updates are required for every target 277

task. 278

Oracle w/ meta-train: We train the LM on meta- 279

training tasks first and then further finetuned on a 280

target task. This is not directly comparable to other 281

methods for the same reason as above. 282

4.3 Evaluation 283

We use Macro-F12 and Accuracy as evaluation met- 284

rics for classification tasks and non-classification 285

tasks, respectively. 286

For a target task, we use k = 16 training exam- 287

ples, sampled uniformly at random. We relax the 288

assumption of perfect balance between labels on 289

k training examples, following Min et al. (2021). 290

Because in-context learning is known to have high 291

variance (Zhao et al., 2021; Perez et al., 2021; Lu 292

et al., 2021), we use 5 different sets of k training 293

examples. We first compute the average and the 294

worst-case performance over seeds for every target 295

2More suitable than accuracy for imbalanced classification.
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Method HR→LR Class
→Class

non-Class
→Class

QA
→QA

non-QA
→QA

non-NLI
→NLI

non-Para
→Para

All target tasks
0-shot 34.9 34.2 34.2 40.4 40.4 25.5 34.2
PMI 0-shot 34.8 33.2 33.2 40.4 40.4 27.9 39.2
Channel 0-shot 36.8 37.2 37.2 39.2 39.2 33.9 39.5
In-context 38.2/35.4 37.4/33.9 37.4/33.9 40.2/38.8 40.2/38.8 34.0/28.3 33.7/33.1
PMI In-context 38.9/33.3 38.3/29.3 38.3/29.3 40.5/38.9 40.5/38.9 33.0/28.0 38.6/33.4
Channel In-context 42.9/38.5 46.3/40.6 46.3/40.6 40.5/37.9 40.5/37.9 39.9/34.8 45.4/40.9

Multi-task 0-shot 35.4 37.3 36.2 45.7 35.8 40.7 30.6
Channel Multi-task 0-shot 38.6 40.8 42.2 42.1 36.5 36.8 35.1
MetaICL 43.2/41.6 43.4/39.9 38.2/31.8 45.9/44.8 38.7/36.9 49.0/44.8 33.1/33.1
Channel MetaICL 48.7/46.4 50.5/47.7 49.9/47.5 45.0/43.6 42.1/40.8 54.6/51.9 52.2/50.3

Oracle 46.4/40.0 50.7/44.0 50.7/44.0 41.8/39.1 41.8/39.1 44.3/32.8 54.7/48.9
Oracle w/ meta-train 52.0/47.9 53.5/48.5 51.2/44.9 46.7/44.5 41.8/39.5 57.0/44.6 53.7/46.9

Target tasks in unseen domains
0-shot 32.7 32.7 32.7 45.9 45.9 33.4 38.3
PMI 0-shot 25.8 25.8 25.8 44.4 44.4 33.4 32.9
Channel 0-shot 28.5 28.5 28.5 41.6 41.6 33.1 32.6
In-context 30.4/27.5 30.4/27.5 30.4/27.5 45.6/44.7 45.6/44.7 52.0/41.3 35.8/34.1
PMI In-context 32.0/24.3 32.0/24.3 32.0/24.3 45.4/44.7 45.4/44.7 47.8/35.2 38.5/33.3
Channel In-context 39.4/35.0 39.4/35.0 39.4/35.0 44.7/40.6 44.7/40.6 40.4/35.7 44.1/36.8

Multi-task 0-shot 35.6 28.0 25.5 71.2 40.3 33.5 35.0
Channel Multi-task 0-shot 35.1 30.7 34.2 54.4 39.4 50.8 34.1
MetaICL 35.7/32.7 32.3/29.3 28.7/25.1 69.9/68.1 48.2/47.2 80.1/77.2 34.0/34.0
Channel MetaICL 44.8/41.8 40.9/36.3 44.5/42.2 57.9/56.6 47.2/45.0 62.0/57.3 51.0/49.9

Oracle 44.9/37.6 44.9/37.6 44.9/37.6 43.6/39.1 43.6/39.1 56.3/33.4 56.6/51.6
Oracle w/ meta-train 53.3/43.2 53.2/43.7 46.1/36.9 67.9/66.2 44.5/42.8 71.8/58.2 65.6/61.4

Table 5: Main results, using GPT-2 Large. Two numbers indicate the average and the worst-case performance over
different seeds used for k target training examples. Bold indicates the best average result except oracle. ‘Class’
indicates ‘Classification’.

task, and then report the macro-average of them296

over all target tasks.297

4.4 Experiment Details298

As a base LM, we use GPT-2 Large (Radford299

et al., 2019) which consists of 770M parameters.3300

For baselines without meta-training (raw LMs), we301

also compare with GPT-J (Wang and Komatsuzaki,302

2021), which is the largest public causal LM at the303

time of writing, consisting of 6B parameters.304

Elimination of templates Prior work uses305

human-authored templates to transform the input-306

output pair to a natural language sentence (Mishra307

et al., 2021b; Zhong et al., 2021; Wei et al., 2021;308

Chen et al., 2021). They require expensive manual309

effort (as 136 different templates are required for310

136 tasks in this paper) and cause unstable model311

performance due to many different ways of writ-312

ing (Mishra et al., 2021a). We eliminate templates,313

using the given input (or a concatenation of in-314

puts if there are multiple) and label words provided315

in the original datasets. A comparison of input-316

3Appendix C.2 reports performance for other LM sizes.

output schemes from prior work and our approach 317

is shown in Table 4. 318

More details about preprocessing and training 319

can be found in Appendix B. 320

5 Experimental Results 321

5.1 Main Results 322

Table 5 reports the full results using GPT-2 Large, 323

where we compute the average and the worst-case 324

performance of every target task and report the 325

macro-average over them. The top and the bottom 326

respectively evaluate on all target tasks and target 327

tasks in unseen domains only. 328

Our baselines are strong We first discuss the 329

results of ours baselines. Among raw LMs without 330

meta-training (the first six rows of Table 5), we 331

observe that channel in-context baselines are the 332

most competitive, consistent with findings from 333

Min et al. (2021). Multi-task 0-shot baselines do 334

not outperform the best raw LM baseline in most 335

settings, despite being supervised on a large set 336

of meta-training tasks. This somewhat contradicts 337
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Method HR→LR Class
→Class

non-Class
→Class

QA
→QA

non-QA
→QA

non-NLI
→NLI

non-Para
→Para

All target tasks
Channel In-context 42.9/38.5 46.3/40.6 46.3/40.6 40.5/37.9 40.5/37.9 39.9/34.8 45.4/40.9
MetaICL 43.2/41.6 43.4/39.9 38.2/31.8 45.9/44.8 38.7/36.9 49.0/44.8 33.1/33.1
Channel MetaICL 48.7/46.4 50.5/47.7 49.9/47.5 45.0/43.6 42.1/40.8 54.6/51.9 52.2/50.3

Channel In-context 48.0/44.0 50.9/46.4 50.9/46.4 47.0/45.2 47.0/45.2 47.2/41.7 51.0/47.5

Target tasks in unseen domains
Channel In-context 39.4/35.0 39.4/35.0 39.4/35.0 44.7/40.6 44.7/40.6 40.4/35.7 44.1/36.8
MetaICL 35.7/32.7 32.3/29.3 28.7/25.1 69.9/68.1 48.2/47.2 80.1/77.2 34.0/34.0
Channel MetaICL 44.8/41.8 40.9/36.3 44.5/42.2 57.9/56.6 47.2/45.0 62.0/57.3 51.0/49.9

Channel In-context 39.7/35.5 39.7/35.5 39.7/35.5 55.8/54.4 55.8/54.4 51.1/40.4 52.0/46.5

Table 6: Comparison between raw LM in-context learning (based on GPT-2 Large and GPT-J) and MetaICL
(based on GPT-2 Large). GPT-2 Large used unless otherwise specified. Two numbers indicate the average and the
worst-case performance over different seeds used for k target training examples. For raw LM baselines, Channel
In-context is reported because it is the best raw LM baseline overall across the settings; full results based on GPT-J
are provided in Appendix C.1.

findings from Wei et al. (2021); Sanh et al. (2021).338

This is likely for two reasons. First, our models are339

much smaller than theirs (770M vs. 11B–137B);340

in fact, Wei et al. (2021) reports Multi-task 0-shot341

starts to be better than raw LMs only when the342

model size is 68B or larger. Second, we compare343

with much stronger channel baselines which they344

did not; Multi-task 0-shot outperforms non-channel345

LM baselines but not channel LM baselines.346

MetaICL outperforms baselines MetaICL and347

Channel MetaICL consistently outperform a range348

of strong baselines. In particular, Channel MetaICL349

achieves the best performance in 6 out of 7 set-350

tings. Gains are particularly significant in the351

HR→LR, non-NLI→NLI and non-Para→Para set-352

tings (6–14% absolute). This is noteworthy be-353

cause HR→LR targets the common low-resource354

case where new tasks have very few labeled ex-355

amples, and the other two represent large data dis-356

tribution shifts where the test tasks are relatively357

different from the meta-training tasks. This demon-358

strates that MetaICL can infer the semantics of new359

tasks in context even when there are no closely360

related training tasks.361

While MetaICL significantly outperforms base-362

lines in most settings, it is comparable to Multi-task363

0-shot in the QA→QA setting, as an exception.364

This is likely because the meta-training and target365

tasks are relatively similar, allowing the Multi-task366

0-shot baseline to achieve very strong performance.367

Nonetheless, performance of Multi-task 0-shot in368

QA significantly drops when the model is trained369

on non-QA tasks, while performance of MetaICL370

drops substantially less.371

Gains are larger on unseen domains Gains 372

over Multi-task 0-shot are more significant on tar- 373

get tasks in unseen domains. In particular, Multi- 374

task 0-shot is generally less competitive compared 375

to raw LM baselines, likely because they require 376

more challenging generalization. MetaICL suffers 377

less from this problem and is consistently better or 378

comparable to raw LM baselines across all settings. 379

Comparison to oracle MetaICL matches or 380

sometimes even outperforms performance of or- 381

acle without meta-training. This is a promising 382

signal, given that no prior work has shown models 383

with no parameter updates on the target can match 384

or outperform supervised models. Nonetheless, or- 385

acle with meta-training outperforms oracle without 386

meta-training—so meta-training also helps in su- 387

pervised learning—as well as MetaICL. This hints 388

that there is still room for improvement in methods 389

that allow learning without parameter updates . 390

Comparison to GPT-J In Table 6, we compare 391

GPT-2 Large based models with raw LM baselines 392

based on GPT-J which consists of 6B parameters. 393

MetaICL, despite being 8x smaller, outperforms or 394

matches GPT-J baselines. 395

5.2 Ablations 396

Varying number of training examples We vary 397

the number of training examples (k) from 0, 4, 8, 398

16 to 32. In-context learning with k = 0 is equiv- 399

alent to the zero-shot method. Results are shown 400

in Figure 1. Increasing k generally helps across all 401

models, and Channel MetaICL outperforms the raw 402

in-context learning over all values of k. We addi- 403

tionally find that the performance tends to saturate 404
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Figure 1: Ablation on the number of training examples
(k) in the HR→LR setting. k = 0 is equivalent to the
zero-shot methods.

when k is closer to 16, likely because the sequence405

length limit of the language model makes it hard to406

encode many training examples.407

Number of meta-training tasks To see the im-408

pact of the number of meta-training tasks, we sub-409

sample {7, 15, 30} meta-training tasks out of 61 in410

the HR→LR setting. For each, we use ten different411

random seeds to additionally see the impact of the412

choice of meta-training tasks.413

Figure 2 reports the results. On average, perfor-414

mance generally increases as the number of tasks415

increase, which is consistent with results in Mishra416

et al. (2021b); Wei et al. (2021). Across different417

numbers of meta-training tasks, Channel MetaICL418

consistently outperforms other models. Nonethe-419

less, there is nonnegligible variance across different420

choices of meta-training (the bottom of Figure 2),421

indicating that a choice of meta-training gives sub-422

stantial impact in performance.423

Diversity in meta-training tasks We hypothe-424

size that the diversity in meta-training tasks may425

impact performance of MetaICL. To verify this hy-426

pothesis, we create two settings by subsampling 13427

out of 61 meta-training datasets in the HR→LR set-428

ting. One setting is diverse in their task formats and429

required capacities: QA, NLI, relation extraction,430

sentiment analysis, topic classification, hate speech431

detection and more. The other setting is less di-432

verse, including tasks related to sentiment analysis,433

topic classification and hate speech detection only.434

A full list of datasets is reported in Appendix A.435

Using these two settings, we compare multi-task436

zero-shot transfer baselines and MetaICL.437

Results are reported in Table 7. We find that438

MetaICL with a diverse set outperforms MetaICL439

with a non-diverse set by a substantial margin. This440

shows that diversity among meta-training tasks441

30

35

40

45

50

7 15 30 61
# meta-training tasks

Multi-task 0-shot Channel Multi-task 0-shot
MetaICL Channel MetaICL

50

45

40

35

30

# meta-training tasks
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30

35

40

45

5050

45
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35
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Figure 2: Ablation on the number of meta-training
tasks ({7, 15, 30, 61}). The graph of the average (top)
and the box chart (bottom) over different meta-training
sets using 10 different random seeds (except for 61).

Method Diverse No Diverse

0-shot 34.9
PMI 0-shot 34.8
Channel 0-shot 36.8
In-context 38.2/35.4
PMI In-context 38.9/33.3
Channel In-context 42.9/38.5

Multi-task 0-shot 35.2 29.9
Channel Multi-task 0-shot 41.6 38.3
MetaICL 45.6/43.4 38.8/35.4
Channel MetaICL 47.2/44.7 45.3/42.6

Table 7: Ablation on the diversity of meta-training
tasks in the HR→LR setting. For both settings, the
number of meta-training tasks is 13, and the number of
target tasks is 26 as in the original HR→LR setting. A
full list of meta-training tasks is shown in Appendix A.

is one of substantial factors for the success of 442

MetaICL. In Appendix C.3, we include ablations 443

that provide more insights on the choice of meta- 444

training tasks. 445

Are instructions necessary? Most recent work 446

has used human-written natural instructions for 447

zero- or few-shot learning (Mishra et al., 2021b; 448

Wei et al., 2021; Sanh et al., 2021). While we argue 449

for not using instructions to avoid manual engineer- 450

ing and high variance, we also ask: are instructions 451

still useful with MetaICL? On one hand, learning to 452
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Method w/o Instruct w/ Instruct

# instruct/task 0 1 8.3

0-shot 33.4 34.2
PMI 0-shot 33.6 27.8
Channel 0-shot 32.3 30.6
In-context 34.4/31.5 45.2/42.3
PMI In-context 36.7/31.6 41.9/37.6
Channel In-context 39.0/35.9 39.6/35.3

MT 0-shot 35.7 32.6 37.1
Channel MT 0-shot 36.6 30.6 36.0
MetaICL 40.6/38.0 42.6/41.0 43.2/41.0
Channel MetaICL 41.3/39.4 45.3/43.9 46.9/44.2

Table 8: Ablation on the impact of natural instruc-
tions. ‘w/ Instruct’ uses instructions from Sanh et al.
(2021), either one per meta-training task or all avail-
able ones; ‘w/o Instruct’ does not use instructions, as
in all of our other experiments. ‘# instruct/task’ indi-
cates the number of instructions per meta-training task
on average. ‘MT 0-shot’ indicates ‘Multi-task 0-shot’
baselines. Both settings have the same meta-training
and target tasks, 32 and 12, respectively. A full list of
tasks is shown in Appendix A.

condition on k examples may remove the necessity453

of instructions. On the other hand, instructions may454

still be complementary and provide the model with455

extra useful infomration.456

We aim to answer this question by using 32 meta-457

training tasks and 12 target tasks from the HR→LR458

setting for which human-written instructions are459

available in Sanh et al. (2021).4 We have two vari-460

ants: (a) using one instruction per meta-training461

task, and (b) using all available instructions, which462

includes 267 instructions in total (8.3 per meta-463

training task) which Sanh et al. (2021) found to be464

better than (a). We then compare MetaICL and a465

range of baselines with and without instructions.466

Results are reported Table 8. As in Wei et al.467

(2021) and Sanh et al. (2021), Multi-task 0-shot468

outperforms the raw-LM 0-shot baseline. How-469

ever, MetaICL with no instructions is better than470

Multi-task 0-shot with instructions. Furthermore,471

MetaICL achieves further improvements when in-472

structions are jointly used, significantly outperform-473

ing all baselines. In fact, when increasing the num-474

ber of instructions per task from 0, 1 to 8.3, per-475

formance of MetaICL improves much more than476

performance of Multi-task 0-shot does. To sum-477

marize, (1) learning to in-context learn (MetaICL)478

outperforms learning to learn from instructions; (2)479

MetaICL and using instructions are largely comple-480

4github.com/bigscience-workshop/
promptsource

mentary, and (3) MetaICL actually benefits more 481

from using instructions than Multi-task 0-shot does. 482

Importantly, Channel MetaICL trained on avail- 483

able tasks and instructions still achieves lower 484

performance than Channel MetaICL without tem- 485

plates/instructions (46.9 from Table 8 vs. 48.7 486

from Table 5). This is likely because the model 487

with instructions was trained with less meta- 488

training tasks, which was unavoidable since in- 489

structions are only available on 32 out of 61 meta- 490

training tasks. This supports our earlier choice 491

of not using human-written templates/instructions, 492

since writing templates and instructions for every 493

task requires extensive effort. 494

It is worth noting that, it is nonetheless difficult 495

to make direct comparisons with Wei et al. (2021) 496

and Sanh et al. (2021) because there are many mov- 497

ing components: size of LMs, types of LMs (e.g., 498

causal LM vs. masked LM), splits between meta- 499

training and target tasks, and more. 500

6 Conclusion 501

In this paper, we introduced MetaICL, a new few- 502

shot learning method where an LM is meta-trained 503

to learn to in-context learn—condition on training 504

examples to recover the task and make predictions. 505

We experiment with a large, diverse collection of 506

tasks, consisting of 142 unique tasks in total and 52 507

unique target tasks, using seven different settings. 508

MetaICL outperforms a range of strong baselines 509

including in-context learning without meta-training 510

and multi-task learning followed by zero-shot trans- 511

fer, and outperforms or matches 8x bigger models. 512

We identify ingredients for success of MetaICL 513

such as the number and diversity of meta-training 514

tasks. We also demonstrate that, while MetaICL is 515

better than recent work using natural instructions, 516

they are complementary and the best performance 517

is achieved by combining two ideas. 518

One critical limitation of in-context learning ap- 519

proaches is that more (and longer) training exam- 520

ples are difficult to use of due to the LM input 521

length limit; we leave this challenge to future work. 522

Other avenues for future work include further im- 523

proving MetaICL to outperform supervised models 524

with meta-training, identification of which meta- 525

training tasks are helpful on target tasks, and how 526

to better combine human-written instructions and 527

MetaICL. 528
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A Dataset List1091

Table 13 and Table 14 report a list of datasets used1092

in the settings detailed in Section 4.1. The first 101093

rows are for settings described in Section 4.1; the1094

next two rows are for settings used for ablations1095

on the diversity of meta-training tasks (Table 7 of1096

Section 5.2); the last two rows are for settings used1097

for ablations on using natural instructions (Table 81098

of Section 5.2). Bold datasets are target datasets1099

with no overlap in domain with meta-training tasks.1100

All datasets are taken from CROSSFIT (Ye et al.,1101

2021) (except we exclude datasets that are unavail-1102

able from their repository5 or the scope is notably1103

different from other tasks, e.g., solving math prob-1104

lems or breaking down compositional questions)1105

and UNIFIEDQA (Khashabi et al., 2020).1106

How meta-training/target splits are determined1107

The HR→LR setting is created based on the train-1108

ing data size as described in Section 4.1. Settings1109

involving Classification, NLI and Paraphrase are1110

taken from CROSSFIT. Settings involving QA are1111

created by combining QA datasets from CROSSFIT1112

and datasets from UNIFIEDQA.1113

Statistics are reported in Table 2 and Table 9.1114

The number of tasks is the largest among recent1115

related work: we have 142 unique tasks, while1116

Khashabi et al. (2020), Mishra et al. (2021b),1117

Zhong et al. (2021), Wei et al. (2021) and Sanh1118

et al. (2021) use 32, 61, 62, 42 and 62 tasks, re-1119

spectively. References for all datasets are pro-1120

vided in Table 14. Data and splits are available1121

at anonymous/to-be-updated.1122

B Implementation Details1123

Preprocessing details For all models with meta-1124

training and the raw GPT-J, we separate the input1125

and the output with one newline (\n), and separate1126

between examples with three newlines. For the raw1127

GPT-2, we use spaces instead of newlines. This1128

choice was made in order to report the best base-1129

line performance we were able to achieve: when1130

raw LMs are used, GPT-2 is significantly better1131

with spaces than with newlines, and GPT-J is sig-1132

nificantly better with newlines than with spaces.61133

We note that MetaICL is less sensitive to these for-1134

5github.com/INK-USC/CrossFit
6In the HR→LR setting, the raw GPT-2 achieves 42.0/36.9

with spaces and 38.8/32.6 with newlines, and the raw GPT-J
achieves 43.7/38.2 with spaces and 48.0/44.0 with newlines
(all with the channel in-context learning method).

Setting Input Output

Mean Median Mean Median

Meta-training tasks
HR 81.7 73 2.8 2
Classification 45.8 41 1.1 1
Non-Classification 77.7 69 4.2 3
QA 142.6 137 2.7 2
Non-QA 68.7 56 2.3 2
Non-NLI 44.3 39 1.1 1
Non-Paraphrase 45.0 39 1.1 1

Target tasks
LR 29.7 25 1.9 1
Classification 44.9 38 1.0 1
QA 74.4 69 4.6 4
NLI 45.4 41 1.0 1
Paraphrase 42.2 41 1.0 1

Table 9: Length statistics of tasks used in different set-
tings, before any truncation. We compute the mean and
the median of each task, and report the macro-average
over all tasks for each setting.

matting differences: Channel MetaICL achieves 1135

47.0/43.0 with spaces and 48.7/46.4 with newlines. 1136

When the concatenation of k examples is too 1137

long, we truncate each example to have at most 1138

256 tokens, and truncate the earlier tokens of the 1139

concatenation so that the LM sees the recent tokens. 1140

Additionally, for extractive question answering 1141

datasets as meta-training tasks, the input passage 1142

is truncated with a guarantee that the groundtruth 1143

answer is included in the input passage. We do not 1144

do this truncation for target datasets. 1145

Training details All implementation is done in 1146

PyTorch (Paszke et al., 2019) and Transform- 1147

ers (Wolf et al., 2020). For meta-training, we use 1148

up to 16,384 training examples per task. We use 1149

a batch size of 8, learning rate of 1 × 10−5 and a 1150

sequence length of 1024. For the baselines with 1151

no in-context learning, we use a sequence length 1152

of 256. We train the model for 30, 000 steps. To 1153

save memory during meta-training, we use an 8-bit 1154

approximation (Dettmers et al., 2021) of an Adam 1155

optimizer (Kingma and Ba, 2015) and mixed preci- 1156

sion (Micikevicius et al., 2017). Training was done 1157

for 4.5 hours with eight 32GB GPUs. Note that 1158

this is drastically more efficient than recent prior 1159

work, e.g., 270 hours of a 512GB TPU in Sanh et al. 1160

(2021). 1161

Ablations in using instructions When we 1162

choose one instruction per task at meta-training 1163

tasks, we choose one by (1) first excluding the 1164

instruction if its name contains no_option, 1165
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Method HR→LR {Class,non-Class}
→Class

{QA,non-QA}
→QA

non-NLI
→NLI

non-Para
→Para

All tasks
0-shot 30.1 27.6 42.9 25.7 30.0
PMI 0-shot 35.4 30.6 41.6 30.2 37.6
Channel 0-shot 36.4 36.8 40.3 36.2 45.0
In-context 43.6/39.0 43.4/34.3 50.6/48.1 35.0/27.6 41.3/33.2
PMI In-context 42.9/37.4 44.8/36.7 48.7/46.8 31.5/26.0 38.4/33.6
Channel In-context 48.0/44.0 50.9/46.4 47.0/45.2 47.2/41.7 51.0/47.5

Target tasks in unseen domains
0-shot 18.0 18.0 47.5 33.5 34.1
PMI 0-shot 16.9 16.9 43.8 36.1 34.4
Channel 0-shot 34.3 34.3 46.9 53.4 54.7
In-context 32.4/25.4 32.4/25.4 57.4/53.1 46.7/36.1 34.1/34.1
PMI In-context 35.5/28.6 35.5/28.6 54.5/50.9 33.9/33.9 32.5/32.4
Channel In-context 39.7/35.5 39.7/35.5 55.8/54.4 51.1/40.4 52.0/46.5

Table 10: Performance of raw LM baselines using GPT-J. Two numbers indicate the average and the worst-case
accuracy over different seeds used for k target training examples. ‘Class’ indicate ‘Classification’.

All tasks Target tasks in unseen domains

S M L XL S M L XL

Channel In-context 41.5/37.4 42.2/37.7 42.9/38.5 43.5/39.9 40.9/35.9 38.8/34.7 39.4/35.0 40.0/37.2
MT 0-shot 35.4 36.4 35.4 - 34.9 32.2 35.6 -
Channel MT 0-shot 40.4 37.9 38.6 - 33.8 35.9 35.1 -
MetaICL 39.7/36.2 40.3/36.4 43.2/41.6 - 36.9/32.6 38.1/35.0 35.7/32.7 -
Channel MetaICL 46.2/43.1 44.3/41.5 48.7/46.4 - 46.9/42.6 43.1/39.8 44.8/41.8 -

Table 11: Ablation on the size of the LM on the HR→LR setting. We use small, medium, large, and XL variants
of GPT-2. We only report the raw LM results for the XL variant: we were unable to meta-train the model due to
memory limit.

(2) then taking the instruction which name con-1166

tains multiple_choice, most_correct or1167

most_suitable if there are any, and (3) if not,1168

then randomly sampling one. We choose one in-1169

struction per target task at test time using the same1170

process. This is different Sanh et al. (2021) where1171

the median of the performance over all instructions1172

is reported. We think our choice better reflects the1173

real use-case scenario—choosing one instruction1174

that looks the most reasonable to human.1175

C Additional Results & Analyses1176

C.1 GPT-J results1177

Table 10 reports the full results of raw LM base-1178

lines based on GPT-J, the largest publicly available1179

causal LM at the time of writing, consisting of 6B1180

parameters. See Section 5.1 for discussions.1181

C.2 Varying LM sizes1182

We vary the size of the GPT-2 models—small,1183

medium, large, and XL—with 124M, 355M, 774M,1184

and 1.5B parameters, respectively. Results are re-1185

ported in Table 11. We find that (1) for all models,1186

increasing the model size generally helps, (2) for 1187

all model sizes, Channel MetaICL significantly out- 1188

performs other models, and (3) MetaICL enables a 1189

much smaller model to outperform a bigger model, 1190

e.g., Channel MetaICL based on GPT-2 Small out- 1191

performs the GPT-2 XL baseline (46.2 vs. 43.5). 1192

C.3 Which meta-training tasks are more 1193

helpful? 1194

Based on large variance across different choices of 1195

meta-training (Figure 2 of Section 5.2), we think 1196

certain tasks are more helpful for meta-training 1197

than other tasks. In this context, we create 50 1198

sets of seven meta-training tasks using 50 different 1199

random seeds. We then measure the correlation 1200

between tasks/task pairs/task triples and average 1201

performance of Channel MetaICL when the task is 1202

included in the meta-training tasks. 1203

Table 12 reports the result. We first find that high 1204

quality datasets with diverse domain like GLUE 1205

family (Wang et al., 2018) are often helpful. We 1206

also find that datasets that are collected adversar- 1207

ially (e.g. paws, art) or are notably dissimilar 1208

from all other tasks (e.g. wikisql that requires 1209

16



Single task
Helpful: tweet_eval-offensive, glue-sst2, glue-mnli, wino_grande, kilt_hotpotqa
Unhelpful: race-middle, cosmos_qa, dbpedia_14, gigaword, wikisql

Task pair
Helpful: (yelp_review_full, glue-mnli), (yelp_review_full, wino_grande), (hateexplain, glue-sst2), (hateexplain, glue-

mnli), (hateexplain, glue-qqp),
Unhelpful: (paws, dbpedia_14), (paws, art), (paws, cosmos_qa), (cosmos_qa, dbpedia_14), (quail, art)

Task triple
Helpful (yelp_review_full, glue-qqp, glue-mnli), (yelp_review_full, glue-sst2, glue-mnli), (yelp_review_full, hateex-

plain, glue-mnli), (yelp_review_full, hateexplain, qqp), (yelp_review_full, hate_speech_offensive, glue-mnli),
Unhelpful (paws, dbpedia_14, art), (paws, dbpedia_14, cosmos_qa), (paws, cosmos_qa, art), (dbpedia_14, cosmos_qa,

art), (quail, paws, dbpedia_14)

Table 12: Analysis of which meta-training tasks give good performance in Channel MetaICL. We report five most
helpful and the most unhelpful tasks (or task sets), respectively.

semantic parsing) are often unhelpful. Nonethe-1210

less, we were not able to find good explanations for1211

other cases, e.g., many sentiment analysis datasets1212

being particularly helpful even though only 3 out1213

of 26 target datasets are sentiment analysis, and1214

dbpedia_14/cosmos_qa/race-middle be-1215

ing unhelpful. Moreover, we think which tasks1216

are helpful largely depends on the choice of target1217

tasks, and we should not make early conclusions1218

that certain tasks are helpful/unhelpful in all cases.1219

We think future work should investigate these im-1220

pacts in a more systematic way.1221

D Potential Risks1222

MetaICL is based on the large language model that1223

is pretrained on a web corpus, which potentially1224

includes harmful and biased context, despite the1225

original authors’ best efforts to mine the text. There1226

are also potential risks in privacy and security—for1227

instance, Carlini et al. (2021) reported that it is1228

possible to design the attack algorithm to extract1229

a substantial amount of training data. We thus1230

highlight that MetaICL should be considered as a1231

research prototype rather than a deployable system1232

to real users, and continuing efforts are needed to1233

reduce potential risks of the model.1234
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Setting: HR→LR Meta-train
piqa, hate_speech_offensive, google_wellformed_query, social_i_qa, circa, quoref, glue-sst2, scitail, emo, cosmos_qa, freebase_qa, ag_news, art, paws,
kilt_ay2, glue-qnli, quail, ade_corpus_v2-classification, sciq, hatexplain, emotion, glue-qqp, kilt_fever, kilt_nq, dbpedia_14, kilt_zsre, hellaswag, squad-
with_context, hotpot_qa, glue-mnli, ropes, squad-no_context, kilt_hotpotqa, discovery, superglue-record, race-middle, race-high, lama-trex, swag, gigaword,
amazon_polarity, biomrc, tab_fact, tweet_eval-emoji, tweet_eval-offensive, tweet_eval-sentiment, tweet_qa, imdb, lama-conceptnet, liar, anli, wiki_qa, kilt_trex,
wikisql, wino_grande, wiqa, search_qa, xsum, yahoo_answers_topics, yelp_polarity, yelp_review_full

Setting: HR→LR Target
quarel, financial_phrasebank, openbookqa, codah, qasc, glue-mrpc, dream, sick, commonsense_qa, medical_questions_pairs, quartz-with_knowledge,
poem_sentiment, quartz-no_knowledge, glue-wnli, climate_fever, ethos-national_origin, ethos-race, ethos-religion, ai2_arc, hate_speech18, glue-rte, superglue-
cb, superglue-copa, tweet_eval-hate, tweet_eval-stance_atheism, tweet_eval-stance_feminist

Setting: Classification Meta-train
Meta-Train: superglue-rte, tweet_eval-sentiment, discovery, glue-rte, superglue-wsc, glue-mrpc, tweet_eval-stance_hillary, tweet_eval-offensive, emotion, hat-
explain, glue-cola, sick, paws, ethos-sexual_orientation, glue-qqp, tweet_eval-emotion, sms_spam, health_fact, glue-mnli, imdb, ethos-disability, glue-wnli, sc-
itail, trec-finegrained, yahoo_answers_topics, liar, glue-sst2, tweet_eval-stance_abortion, circa, tweet_eval-stance_climate, glue-qnli, tweet_eval-emoji, ethos-
directed_vs_generalized, ade_corpus_v2-classification, hate_speech_offensive, superglue-wic, google_wellformed_query, tweet_eval-irony, ethos-gender, on-
estop_english, trec, rotten_tomatoes, kilt_fever

Setting: Non-Classification Meta-train
ade_corpus_v2-dosage, art, biomrc, blimp-anaphor_number_agreement, blimp-ellipsis_n_bar_2, blimp-sentential_negation_npi_licensor_present, blimp-
sentential_negation_npi_scope, commonsense_qa, crows_pairs, dream, freebase_qa, gigaword, hellaswag, hotpot_qa, kilt_ay2, kilt_hotpotqa, kilt_trex, kilt_zsre,
lama-conceptnet, lama-google_re, lama-squad, numer_sense, openbookqa, piqa, proto_qa, qa_srl, quarel, quartz-no_knowledge, race-high, ropes, sciq, social_i_qa,
spider, superglue-multirc, wikisql, xsum, yelp_review_full

Setting: Classification Target
tweet_eval-stance_feminist, ethos-national_origin, tweet_eval-hate, ag_news, amazon_polarity, hate_speech18, poem_sentiment, climate_fever, medi-
cal_questions_pairs, tweet_eval-stance_atheism, superglue-cb, dbpedia_14, wiki_qa, emo, yelp_polarity, ethos-religion, financial_phrasebank, tab_fact, anli,
ethos-race

Setting: QA Meta-train
biomrc, boolq, freebase_qa, hotpot_qa, kilt_hotpotqa, kilt_nq, kilt_trex, kilt_zsre, lama-conceptnet, lama-google_re, lama-squad, lama-trex, mc_taco,
numer_sense, quoref, ropes, search_qa, squad-no_context, squad-with_context, superglue-multirc, superglue-record, tweet_qa, web_questions, uni-
fiedqa:squad2, unifiedqa:natural_questions_with_dpr_para, unifiedqa:race_string, unifiedqa:squad1_1, unifiedqa:drop, unifiedqa:newsqa, unifiedqa:narrativeqa,
unifiedqa:winogrande_xl, unifiedqa:social_iqa, unifiedqa:quoref, unifiedqa:physical_iqa, unifiedqa:ropes, unifiedqa:commonsenseqa, unifiedqa:boolq

Setting: Non-QA Meta-train
hate_speech_offensive, google_wellformed_query, circa, glue-sst2, scitail, emo, ag_news, art, paws, kilt_ay2, glue-qnli, ade_corpus_v2-classification, hatex-
plain, emotion, glue-qqp, kilt_fever, dbpedia_14, glue-mnli, discovery, gigaword, amazon_polarity, tab_fact, tweet_eval-emoji, tweet_eval-offensive, tweet_eval-
sentiment, imdb, liar, anli, wikisql, xsum, yahoo_answers_topics, yelp_polarity, yelp_review_full

Setting: QA Target
ai2_arc, codah, cosmos_qa, dream, hellaswag, openbookqa, qasc, quail, quarel, quartz-no_knowledge, quartz-with_knowledge, sciq, superglue-
copa, swag, wino_grande, wiqa, unifiedqa:qasc, unifiedqa:qasc_with_ir, unifiedqa:openbookqa, unifiedqa:openbookqa_with_ir, unifiedqa:mctest, uni-
fiedqa:ai2_science_middle

Setting: Non-NLI Meta-train
ade_corpus_v2-classification, ag_news, amazon_polarity, circa, climate_fever, dbpedia_14, discovery, emo, emotion, ethos-directed_vs_generalized, ethos-
disability, ethos-gender, ethos-national_origin, ethos-race, ethos-religion, ethos-sexual_orientation, financial_phrasebank, glue-cola, glue-mrpc, glue-qqp, glue-sst2,
google_wellformed_query, hate_speech18, hate_speech_offensive, hatexplain, health_fact, imdb, kilt_fever, liar,
medical_questions_pairs, onestop_english, paws, poem_sentiment, rotten_tomatoes, sick, sms_spam, superglue-wic, superglue-wsc, tab_fact, trec, trec-finegrained,
tweet_eval-emoji, tweet_eval-emotion, tweet_eval-hate, tweet_eval-irony, tweet_eval-offensive, tweet_eval-sentiment, tweet_eval-stance_abortion, tweet_eval-
stance_atheism, tweet_eval-stance_climate, tweet_eval-stance_feminist, tweet_eval-stance_hillary, wiki_qa, yahoo_answers_topics, yelp_polarity
Setting: NLI Target
anli, glue-mnli, glue-qnli, glue-rte, glue-wnli, scitail, sick, superglue-cb

Setting: Non-Paraphrase Meta-train
ade_corpus_v2-classification, ag_news, amazon_polarity, anli, circa, climate_fever, dbpedia_14, discovery, emo, emotion, ethos-directed_vs_generalized, ethos-
disability, ethos-gender, ethos-national_origin, ethos-race, ethos-religion, ethos-sexual_orientation, financial_phrasebank, glue-cola, glue-mnli, glue-qnli, glue-
rte, glue-sst2, glue-wnli, google_wellformed_query, hate_speech18, hate_speech_offensive, hatexplain, health_fact, imdb, kilt_fever, liar, onestop_english,
poem_sentiment, rotten_tomatoes, scitail, sick, sms_spam, superglue-cb, superglue-rte, superglue-wic, superglue-wsc, tab_fact, trec, trec-finegrained, tweet_eval-
emoji, tweet_eval-emotion, tweet_eval-hate, tweet_eval-irony, tweet_eval-offensive, tweet_eval-sentiment, tweet_eval-stance_abortion, tweet_eval-stance_atheism,
tweet_eval-stance_climate, tweet_eval-stance_feminist, tweet_eval-stance_hillary, wiki_qa, yahoo_answers_topics, yelp_polarity

Setting: Non-Paraphrase Target
Target: glue-mrpc, glue-qqp, medical_questions_pairs, paws

Setting: HR→LR Diverse Meta-train
glue-mnli, glue-qqp, glue-sst2, hate_speech_offensive, kilt_hotpotqa, kilt_zsre, lama-trex, race-high, scitail, tweet_eval-offensive, wino_grande, ya-
hoo_answers_topics, yelp_review_full

Setting: HR→LR No Diverse Meta-train
ag_news, amazon_polarity, dbpedia_14, emo, emotion, glue-sst2, imdb, tweet_eval-emoji, tweet_eval-offensive, tweet_eval-sentiment, yahoo_answers_topics,
yelp_polarity, yelp_review_full

Setting: HR→LR Instructions Meta-train
ag_news, amazon_polarity, anli, art, circa, cosmos_qa, dbpedia_14, discovery, emo, emotion, freebase_qa, gigaword, google_wellformed_query, hellaswag, imdb,
liar, paws, piqa, quail, quoref, ropes, sciq, scitail, social_i_qa, swag, tab_fact, wiki_qa, wiqa, xsum, yahoo_answers_topics, yelp_polarity, yelp_review_full

Setting: HR→LR Instructions Target
ai2_arc, climate_fever, codah, commonsense_qa, dream, financial_phrasebank, medical_questions_pairs, openbookqa, poem_sentiment, qasc, quarel, sick

Table 13: Full datasets for all settings. The first 10 rows are for main settings described in Section 4.1; the last
four rows are settings used for ablations in Section 5.2. Splits and dataname names consistent to those in Ye et al.
(2021) and Khashabi et al. (2020). Bold indicates the test dataset with no overlap in domain with meta-training
tasks. A prefix unifiedqa: indicates that the dataset taken is from UNIFIEDQA; otherwise, from CROSSFIT.
References for all datasets are provided in Table 14.
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ade_corpus_v2-classification (Gurulingappa et al., 2012), ade_corpus_v2-dosage (Gurulingappa et al., 2012), ag_news Gulli
(link), ai2_arc (Clark et al., 2018), amazon_polarity (McAuley and Leskovec, 2013), anli (Nie et al., 2020), art (Bha-
gavatula et al., 2020), biomrc (Pappas et al., 2020), blimp-anaphor_number_agreement (Warstadt et al., 2020), blimp-
ellipsis_n_bar_2 (Warstadt et al., 2020), blimp-sentential_negation_npi_licensor_present (Warstadt et al., 2020), blimp-
sentential_negation_npi_scope (Warstadt et al., 2020), boolq (Clark et al., 2019), circa (Louis et al., 2020), climate_fever (Diggel-
mann et al., 2020), codah (Chen et al., 2019), commonsense_qa (Talmor et al., 2019), cosmos_qa (Huang et al., 2019),
crows_pairs (Nangia et al., 2020), dbpedia_14 (Lehmann et al., 2015), discovery (Sileo et al., 2019), dream (Sun
et al., 2019), emo (Chatterjee et al., 2019), emotion (Saravia et al., 2018), ethos-directed_vs_generalized (Mollas et al.,
2020), ethos-disability (Mollas et al., 2020), ethos-gender (Mollas et al., 2020), ethos-national_origin (Mollas et al.,
2020), ethos-race (Mollas et al., 2020), ethos-religion (Mollas et al., 2020), ethos-sexual_orientation (Mollas et al.,
2020), financial_phrasebank (Malo et al., 2014), freebase_qa (Jiang et al., 2019), gigaword (Napoles et al., 2012), glue-
cola (Warstadt et al., 2019), glue-mnli (Williams et al., 2018), glue-mrpc (Dolan and Brockett, 2005), glue-qnli (Ra-
jpurkar et al., 2016), glue-qqp (data.quora.com/First-Quora-Dataset-Release-Question-Pairs), glue-
rte (Dagan et al., 2005; Bar-Haim et al., 2006)(Giampiccolo et al., 2007; Bentivogli et al., 2009), glue-sst2 (Socher et al., 2013),
glue-wnli (Levesque et al., 2012), google_wellformed_query (Faruqui and Das, 2018), hate_speech18 (de Gibert et al., 2018),
hate_speech_offensive (Davidson et al., 2017), hatexplain (Mathew et al., 2020), health_fact (Kotonya and Toni, 2020),
hellaswag (Zellers et al., 2019), hotpot_qa (Yang et al., 2018), imdb (Maas et al., 2011), kilt_ay2 (Hoffart et al., 2011),
kilt_fever (Thorne et al., 2018), kilt_hotpotqa (Yang et al., 2018), kilt_nq (Kwiatkowski et al., 2019), kilt_trex (Elsahar et al.,
2018), kilt_zsre (Levy et al., 2017), lama-conceptnet (Petroni et al., 2019, 2020), lama-google_re (Petroni et al., 2019, 2020),
lama-squad (Petroni et al., 2019, 2020), lama-trex (Petroni et al., 2019, 2020), liar (Wang, 2017), mc_taco (Zhou et al.,
2019), medical_questions_pairs (McCreery et al., 2020), numer_sense (Lin et al., 2020), onestop_english (Vajjala and Lučić,
2018), openbookqa (Mihaylov et al., 2018), paws (Zhang et al., 2019), piqa (Bisk et al., 2020), poem_sentiment (Sheng
and Uthus, 2020), proto_qa (Boratko et al., 2020), qa_srl (He et al., 2015), qasc (Khot et al., 2020), quail (Rogers et al.,
2020), quarel (Tafjord et al., 2019a), quartz-no_knowledge (Tafjord et al., 2019b), quartz-with_knowledge (Tafjord et al.,
2019b), quoref (Dasigi et al., 2019), race-high (Lai et al., 2017), race-middle (Lai et al., 2017), ropes (Lin et al., 2019),
rotten_tomatoes (Pang and Lee, 2005), sciq (Welbl et al., 2017), scitail (Khot et al., 2018), search_qa (Dunn et al., 2017),
sick (Marelli et al., 2014), sms_spam (Almeida et al., 2011), social_i_qa (Sap et al., 2019a), spider (Yu et al., 2018), squad-
no_context (Rajpurkar et al., 2016), squad-with_context (Rajpurkar et al., 2016), superglue-cb (de Marneffe et al., 2019),
superglue-copa (Gordon et al., 2012), superglue-multirc (Khashabi et al., 2018), superglue-record (Zhang et al., 2018), superglue-
rte (Dagan et al., 2005; Bar-Haim et al., 2006)(Giampiccolo et al., 2007; Bentivogli et al., 2009), superglue-wic (Pilehvar and
Camacho-Collados, 2019), superglue-wsc (Levesque et al., 2012), swag (Zellers et al., 2018), tab_fact (Chen et al., 2020), trec (Li
and Roth, 2002; Hovy et al., 2001), trec-finegrained (Li and Roth, 2002; Hovy et al., 2001), tweet_eval-emoji (Barbieri et al.,
2020), tweet_eval-emotion (Barbieri et al., 2020), tweet_eval-hate (Barbieri et al., 2020), tweet_eval-irony (Barbieri et al., 2020),
tweet_eval-offensive (Barbieri et al., 2020), tweet_eval-sentiment (Barbieri et al., 2020), tweet_eval-stance_abortion (Barbieri
et al., 2020), tweet_eval-stance_atheism (Barbieri et al., 2020), tweet_eval-stance_climate (Barbieri et al., 2020), tweet_eval-
stance_feminist (Barbieri et al., 2020), tweet_eval-stance_hillary (Barbieri et al., 2020), tweet_qa (Xiong et al., 2019), uni-
fiedqa:ai2_science_middle (data.allenai.org/ai2-science-questions), unifiedqa:boolq (Clark et al., 2019),
unifiedqa:commonsenseqa (Talmor et al., 2019), unifiedqa:drop (Dua et al., 2019), unifiedqa:mctest (Richardson et al., 2013),
unifiedqa:narrativeqa (Kociský et al., 2018), unifiedqa:natural_questions (Kwiatkowski et al., 2019), unifiedqa:newsqa (Trischler
et al., 2017), unifiedqa:openbookqa (Mihaylov et al., 2018), unifiedqa:physical_iqa (Bisk et al., 2020), unifiedqa:qasc (Khot
et al., 2019), unifiedqa:quoref (Dasigi et al., 2019), unifiedqa:race_string (Lai et al., 2017), unifiedqa:ropes (Lin et al., 2019),
unifiedqa:social_iqa (Sap et al., 2019b), unifiedqa:squad1_1 (Rajpurkar et al., 2016), unifiedqa:squad2 (Rajpurkar et al., 2018),
unifiedqa:winogrande_xl (Sakaguchi et al., 2020a), web_questions (Berant et al., 2013), wiki_qa (Yang et al., 2015), wik-
isql (Zhong et al., 2017), wino_grande (Sakaguchi et al., 2020b), wiqa (Tandon et al., 2019), xsum (Narayan et al., 2018),
yahoo_answers_topics (link), yelp_polarity (Zhang et al., 2015), yelp_review_full (Zhang et al., 2015)

Table 14: References for 142 datasets used in the paper. A prefix unifiedqa: indicates that the dataset taken is
from UNIFIEDQA; otherwise, from CROSSFIT.
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http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
data.quora.com/First-Quora-Dataset-Release-Question-Pairs
data.allenai.org/ai2-science-questions
https://webscope.sandbox.yahoo.com/catalog.php?datatype=l

