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Abstract

Deepfake detection remains a pressing challenge, particularly in real-world settings
where smartphone-captured media from digital screens often introduces Moiré
artifacts that can distort detection outcomes. This study systematically evaluates
state-of-the-art (SOTA) deepfake detectors on Moiré-affected videos, an issue
that has received little attention. We collected a dataset of 12,832 videos, span-
ning 35.64 hours, from the Celeb-DF, DFD, DFDC, UADFV, and FF++ datasets,
capturing footage under diverse real-world conditions, including varying screens,
smartphones, lighting setups, and camera angles. To further examine the influence
of Moiré patterns on deepfake detection, we conducted additional experiments
using our DeepMoiréFake, referred to as (DMF) dataset and two synthetic Moiré
generation techniques. Across 15 top-performing detectors, our results show that
Moiré artifacts degrade performance by as much as 25.4%, while synthetically gen-
erated Moiré patterns lead to a 21.4% drop in accuracy. Surprisingly, demoiréing
methods, intended as a mitigation approach, instead worsened the problem, re-
ducing accuracy by up to 17.2%. These findings underscore the urgent need for
detection models that can robustly handle Moiré distortions alongside other real-
world challenges, such as compression, sharpening, and blurring. By introducing
the DMF dataset, we aim to drive future research toward closing the gap between
controlled experiments and practical deepfake detection.

1 Introduction

The rise of deepfake technology has transformed how digital media can be manipulated, presenting a
growing threat across the internet and social networking platforms. Deepfakes, which are artificially
generated or altered videos that convincingly imitate real individuals, pose significant risks to privacy,
security, and the spread of misinformation. The increasing ease with which deepfakes can be created
exacerbates this issue [1], as their realism often deceives the general public and sophisticated detection
algorithms. Advances in deepfake generation techniques, such as those using Generative Adversarial
Networks (GANs) [2] and other deep learning models [3, 4], including diffusion models [5], have
made detection an extremely challenging task [6–9] in real-world scenarios on the Internet. While
efforts have been made to develop robust detection systems [10–21], such algorithms are predomi-
nantly evaluated in controlled environments using benchmark datasets. However, real-world scenarios
introduce various challenges, including environmental factors and media-sharing distortions, which
can significantly impact detection accuracy [22]. One of the most prominent challenges arises when
deepfake content is viewed on screens and recorded using smartphone cameras. Although naive
screen capture is available, Digital Rights Management (DRM) on many platforms often disables it.
Accordingly, we focus on the prevalent smartphone screen-recapture scenario that users adopt for
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casual sharing or unauthorized reproduction. In practice, the same deepfake can exhibit drastically
different visual characteristics when viewed directly on a screen versus when captured by a camera,
adding an extra layer of complexity for detection systems (See Figure 1). This common real-world
scenario introduces visual artifacts known as Moiré patterns, which occur due to the interference
between the pixel grid of the display and the camera sensor [23]. These Moiré patterns, often
undetected by the human eye, severely disrupt deepfake detection algorithms, highlighting a critical
gap between controlled environment performance and practical, real-world conditions.

Figure 1: Original vs. Moiré pattern

In this paper, we investigate the impact of Moiré
patterns and compression on deepfake detection
systems across three scenarios: (i) Authentic
Moiré patterns, (ii) Synthetic Moiré patterns,
and (iii) Compression Attacks. Authentic Moiré
patterns are introduced when users record con-
tent displayed on the screen with smartphones,
degrading detection accuracy by distorting key
visual features [24]. For instance, a deepfake
video of President Putin was shown nationwide
on television declaring martial law, which was
captured with a smartphone, clearly showing
signs of a Moiré pattern [25, 26] shared on
X (formerly Twitter). Another example of a
smartphone-captured deepfake on social media
is creating false narratives by a broadcaster an-
nouncing President Macron rescheduling a visit
due to an assassination attempt [27]. Synthetic
Moiré patterns, on the other hand, are deliber-
ately generated either through pixel-level manip-
ulation or by capturing screen-displayed content with controlled distortions, obscuring the artifacts
that deepfake detectors rely on. Finally, Compression Attacks simulate real-world video uploads to
social networking sites (SNS), where compression artifacts combine with Moiré patterns to impair
detection systems further.

Table 1: DeepMoiréFake Details: We selected a subset of videos from
five famous deepfake datasets and manually captured them under various
conditions, which resulted in a total playback time of 35.64 hours contain-
ing Moiré patterns across 12,832 videos (802×4 (screens)×2 (phones)×2
(lightning conditions).

NAME
REAL

VIDEOS
(People)

FAKE
VIDEOS
(People)

VIDEOS
FROM

DATASET

DURATION
PER VIDEO

(secs)

TOTAL
VIDEOS

CAPTURED

CAPTURED
DURATION

(hours)
FF++ [28] 200 200 400 10 6400 17.78
DFD [29] 28 28 56 10 896 2.49
DFDC [30] 66 66 132 10 2112 5.87
CelebDF [31] 58 58 116 10 1856 5.16
UADFV [32] 49 49 98 10 1568 4.36
Total 401 401 802 - 12832 35.64

We address these chal-
lenges by introducing
the DMF dataset, the
first deepfake dataset
to incorporate Moiré
patterns into public
deepfake datasets.
It includes diverse
videos captured from
four screens under two
lighting conditions
with two smartphones,
providing a realistic
benchmark for evaluating the resilience of state-of-the-art deepfake detectors. Table 1 and Table 2
detail the dataset’s variations, and video-capturing specifications, reflecting practical challenges in
deepfake detection. Unlike our previous studies [33] and [34], this work adds details not covered
before. Specifically, we present a broader analysis of deepfake detectors, examine distortions beyond
Moiré patterns, and evaluate compression effects and mitigation strategies in depth. These differences
are discussed in Section 2, and the various angles used in our analysis are outlined in Appendix P.
To assess the effectiveness of our dataset, we performed an extensive evaluation using 15 different
deepfake generation methods. Additionally, we examine the impact of defense methods such as
demoiréing techniques on the performance of these detection algorithms as a potential mitigation
strategy. We summarize our main contributions as follows:

1. Moiré Pattern Attacks, Scenarios, and Datasets: We propose Authentic Moiré patterns and
Synthetic Moiré patterns. Constructively, we developed the first Moiré Pattern-impacted deepfake
datasets to evaluate both real-world cases. They are captured with four different computer screens
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using two different smartphone cameras under two different lighting conditions on videos from
FaceForensics++ (FF++) [28], CelebDF [31], the DeepFake Detection (DFD) [29], the DeepFake
Detection Challenge (DFDC) [30] and UADFV [32] dataset. DMF is released publicly under
DOI-based restricted terms and conditions to support further research on Moiré-induced challenges
in deepfake detection3, and our evaluation codes are publicly available here4.

2. Extensive Moiré Pattern Evaluation and Benchmarking: We conducted an extensive em-
pirical study using our DMF dataset and 15 detectors to determine how Moiré patterns from
camera-captured deepfake videos on digital screens affect detector performance. This helps in
understanding real-world application challenges and vulnerabilities with current detection methods.

3. Mitigation and Defense Approach with Demoiréing. To remove the Moiré pattern from DMF
videos, we propose the state-of-the-art defense methods and apply them using five image and
two video demoiréing methods, evaluate these demoiréd videos using the identical 15 deepfake
detectors, and present the effectiveness and implications of defense methods.

Table 2: Specifications and variations in the video-capturing setup.
NAME (VARIATIONS) DETAILS
CAMERA ANGLES (4) Center, 45° left, 45° right and Handheld
LIGHTNING CONDITIONS (2) On and Off
SCREENS (4)
(60 (Hz)

LG (LED), BenQ (LED), Samsung (QHD-
IPS), and Lenovo (UHD-IPS)

PHONES (2) iPhone 13
Samsung S22 Plus

SCREEN RESOLUTION (2) 1980x1080, 3840x2160
CAPTURE RESOLUTION (1) 1980x1080
FRAME RATE (1) 30 fps

VIDEO CAPTURE APPS (2) OBS Studio, DroidCam (iOS)
IP Webcam (Android)

Our real-world evaluation re-
vealed that the presence of Moiré
patterns caused an average per-
formance decline of 10.7% in
deepfake detectors, with reduc-
tions reaching up to 25.4% in ex-
treme cases. Additionally, imple-
menting demoiréing as a defense
further decreased detection accu-
racy, with an average decline of
6.1% and up to 17.2% in severe
cases. These findings highlight
the need for further research to understand better the interaction between demoiréing techniques and
deepfake detection algorithms.

2 Related Work

DEEPFAKE GENERATION. Deepfake video generation leverages advanced deep learning techniques
such as variational autoencoders (VAEs) [35], generative adversarial networks (GANs) [2], and diffu-
sion models [36] to produce highly realistic manipulated videos. Common deepfake manipulations
include face swapping, face reenactment, face attribute editing, and face synthesis [37, 38]. Face
swapping replaces a target face with a source face while preserving attributes such as skin color,
expressions, and the surrounding environment [3]. Face reenactment transfers expressions and move-
ments from a source face to a target, retaining the target’s appearance and identity. This technique
uses facial motion capture and deep learning to modify the target’s movements based on a driving
image, video, or pose [39–41]. Face attribute editing alters specific facial features, such as age,
expressions, or skin tone, using generative models among GANs and VAEs. It can focus on single
attributes or edit multiple attributes simultaneously [42, 43]. Finally, face synthesis employs GANs to
create hyper-realistic human faces that do not exist. While it has applications in gaming and fashion, it
also poses risks, such as enabling fake identities on social networks to spread misinformation [44, 45].

Table 3: A comparison of publicly available Deepfake datasets.

DATASET
REAL

VIDEOS
FAKE

VIDEOS
TOTAL
VIDEOS

ENCODING
ARTIFACTS

ACQUISITION
ARTIFACTS

UADFV [32] 49 49 98 ✗ ✗
DeepfakeTIMIT [46] 640 320 960 ✓ (Compress.) ✗
FF++ [28] 1,000 4,000 5,000 ✓ (Compress.) ✗
CelebDF [31] 590 5,639 6,229 ✗ ✗
DFD [29] 363 3,000 3,363 ✗ ✗
DeeperForensics [47] 50,000 10,000 60,000 ✗ ✗
DFDC [48] 23,654 104,500 128,154 ✓ (Compress.) ✓ (Lighting)
KoDF [49] 62,166 175,776 237,942 ✗ ✗
FakeAVCeleb [50] 500 19,500 20,000 ✗ ✗
Ours 401 401 802 ✗ ✓ (Moiré)

DEEPFAKE DETEC-
TION. As deepfake
generation technology
advances, effective de-
tection methods be-
come increasingly crit-
ical to prevent misuse.
Deepfake detection re-
lies on deep learning
models that identify
subtle artifacts often

3https://doi.org/10.7910/DVN/XYOSYW
4https://github.com/Razaib-Tariq/DeepMoireFake
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imperceptible to the human eye. Techniques include convolutional neural networks [51–56], temporal
analysis [57], frequency domain analysis [19], and attention mechanisms using transformers [58–60].
Detection methods are typically developed and evaluated using datasets such as FaceForensics++
(FF++) [28], CelebDF [31], UADFV [32], and FakeAVCeleb [50]. A comparative analysis of existing
datasets is presented in Table 3.

Our work evaluates deepfake detection systems under three distinct real-world scenarios. Captured
Moiré Pattern Attack (CMPA) simulates authentic Moiré patterns generated when users record
deepfake videos from screens, causing distortions that obscure critical visual features and degrade
detection accuracy. Synthetic Moiré Pattern Attacks (SMPA) investigate the effects of artificial Moiré
patterns using methods such as SMPA-MA [61] and SMPA-SPS [62]. Finally, Compression Attack
(CA) explores how video compression artifacts from SNS uploads interact with Moiré patterns,
further degrading deepfake detection performance.

MOIRÉ PATTERNS IN DEEPFAKE DETECTION. While deepfake detection has seen significant
advancements, the impact of Moiré patterns on detection performance remains an underexplored
challenge. Prior studies, including our previous works [33] and [34], have investigated deepfake
detection under various conditions; however, these efforts were limited in scope. The former employed
a restricted set of detection methods, offering only preliminary insights on a constrained dataset,
whereas the latter expanded the evaluation to more detectors but lacked real-world scenarios where
Moiré patterns could be actively exploited. Furthermore, these studies did not systematically assess
critical factors such as image distortion, compression effects, and mitigation strategies, essential for
improving robustness in practical applications.

In contrast, our study extensively explores these missing aspects and introduces the novel DMF
dataset to fill these gaps. The dataset comprises videos captured from four screens under two
lighting conditions using two smartphones, enabling robust and practical evaluations. By capturing
real-world interference patterns under controlled variations, the DMF dataset enables robust and
practical evaluations, providing a more comprehensive benchmark for deepfake detection. Moreover,
we analyze both authentic and synthetic Moiré patterns, extending prior research [33] and [34].
Beyond this, we systematically investigate mitigation strategies, including demoiréing, denoising, and
deblurring, revealing significant trade-offs where removing Moiré patterns may inadvertently reduce
detection accuracy. Our empirical analysis spans 15 deepfake detectors and rigorously evaluates the
interplay between Moiré patterns and compression artifacts, providing a robust real-world assessment.

3 Dataset Collection and Generation

FF++

DFD

DFDC

CelebDF

UADFV

Video Capturing Setup

Videos with
Moiré Patterns

Public Deepfake
Datasets

Subsampled
Set

DeepMoiréFake
Dataset

Variations
Devices
Screens
Lighting
Angles

Videos

Figure 2: Our manual Moiré pattern collection pipeline.

SELECTION AND COLLECTION. We selected five public deepfake datasets, UADFV [32], Face-
Forensics++ [28], DFD [29], DFDC [30], and CelebDF [31] as a representative set, covering a variety
of settings detailed in Table 3. The overall process of generating our DeepMoiréFake dataset from
these source datasets is illustrated in Figure 2, which shows the pipeline of subsampling videos and
capturing them under various screen and device conditions to induce Moiré patterns. UADFV [32]
dataset was created using the FakeApp tool and contains 49 real YouTube videos, each paired with
a corresponding deepfake video. Videos are approximately 11 seconds long, with a resolution of
294×500 pixels. FaceForensics++ (FF++) [28] dataset includes 1,000 real YouTube videos and 1,000
deepfake videos generated using four techniques: Deepfake [4], Face2Face [40], Faceswap [3], and
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NeuralTexture [39]. It provides 4,000 manipulated videos in three quality levels uncompressed (raw),
lightly compressed (C23), and highly compressed (C40), enabling evaluations across varying com-
pression levels. DFD [29] dataset by Google/Jigsaw consists of 3,068 deepfake videos generated from
363 original videos of 28 consented individuals representing diverse genders, ages, and ethnicities.
DFDC [30] dataset is the largest public faceswap dataset, featuring over 100,000 videos from 3,426
paid actors. Most videos are in 1080p resolution and include a mix of deepfake, GAN-based, and
non-learned techniques, with an average of 14.4 videos per individual. CelebDF [31] dataset contains
590 real and 5,639 deepfake videos, sourced from over two million frames of YouTube interviews
with 59 celebrities of diverse genders, ages, and ethnicities.

DATASET SUBSET SELECTION. We initially selected a subset of videos from five public deepfake
datasets for dataset generation, ensuring a balanced representation across gender and ethnicity. Firstly,
from the FaceForensics++ (FF++) dataset, we randomly chose 50 real and 50 fake videos from each
of the four sub-datasets, totaling 400 videos. For the DFD, DFDC5, CelebDF, and UADFV datasets,
we selected one real and one fake video for each unique individual, resulting in 56, 132, 116, and 98
videos, respectively (see Table 1), resulting in a carefully selected 802 videos from these datasets. Our
main objective was to ensure a diverse representation from these deepfake datasets while maintaining
a manageable number of manual videos for manual handling when creating Moiré pattern videos for
our DMF dataset.

GENERATION OF DEEPMOIRÉFAKE (DMF) DATASET. The DMF dataset addresses the limita-
tions of existing deepfake datasets by replicating real-world conditions, where videos are captured on
monitor screens using mobile devices. This approach introduces distortions, such as Moiré patterns
and screen-specific characteristics, which are captured through mobile device cameras, thereby
facilitating the evaluation of deepfake detection methods in practical scenarios. The dataset includes
real and deepfake content recordings displayed on four monitors using two smartphone cameras
(iPhone 13 and Samsung S22 Plus). Each smartphone was positioned on a stand 35 cm from the
screen at various angles. Videos were captured under varied lighting conditions, with specifications
detailed in Table 2. This carefully designed setup ensures a diverse range of screen types, lighting
conditions, and device configurations, making the dataset valuable for advancing deepfake detection
in real-world applications. During this stage, we ensured label accuracy via an automated process
followed by manual verification and enforced consistency across screen camera setups. We also
categorized each sample by device type, display screen, viewing angle, and lighting environment.
These attributes are recorded in the dataset metadata to support reproducibility and downstream
analysis.

DEEPFAKE DETECTION. To evaluate deepfake detection performance across different datasets,
we utilized 15 deepfake detectors. Specifically, we employed 10 image-based detectors, including
SelfBlended [63], Rossler [28], ForgeryNet [64], Capsule-Forensics (Capsule) [65], MAT [66],
CADDM [67], CCViT [58], and ADD [19] to assess detection results on the original dataset, Moiré
pattern dataset, and demoiréd dataset. For the Rossler [28], we used pre-trained weights from three
variations of the FaceForensics++ dataset: raw, C23, and C40, referred to as Rossler, Rossler C23,
and Rossler C40, respectively. In our deepfake video detection experiments, we employed 5 detectors:
AltFreezing [68], FTCN [69], LRNet [70], and LipForensics [71]. For LRNet, we used the BlazeFace
(LRNet BF) and RetinaFace (LRNet RF) variants.

4 Experimental Scenarios and Settings

Authentic Moiré Patterns or Captured Moiré Pattern Attack (CMPA). To simulate and eval-
uate a user-generated distortion, we propose a Captured Moiré Pattern Attack (CMPA). Moiré
patterns, caused by interference between the pixel grids of the camera and monitor display [72], are
more intense with more significant resolution mismatches and are particularly pronounced on older
technologies such as LCD, LED, and IPS displays compared to OLEDs. This effect diminishes as
the distance between the camera and monitor increases [73]. These distortions degrade deepfake
detection accuracy by introducing artifacts that interfere with identifying critical visual features,
especially over multiple frames. Deepfakes were generated using a range of monitors with varying
resolutions, such as 1080p LED, 1440p QHD IPS, and 4K UHD IPS displays, to simulate real-world

5For DFDC, we selected videos from the preview version, containing 5000 videos of 66 unique individuals.
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conditions. Future datasets should include OLED displays and 8K monitors to improve the robustness
of detection algorithms against these evolving challenges [74].

SYNTHETIC MOIRÉ PATTERN ATTACKS (SMPA). To evaluate the impact of interference patterns
on deep learning models, we propose Synthetic Moiré Pattern Attacks (SMPA), which replicate
noise artifacts commonly observed in screen recordings (see Figure 3). These patterns degrade model
performance by introducing complex distortions that are difficult to detect and eliminate. The SMPA
approach we used incorporates two methods: (1) SMPA-MA, which simulates real-world capture
conditions by applying scaling, resampling, and random rotations to input images, as proposed
by [61], and (2) SMPA-SPS, which modulates parameters such as skew, contrast, and deviation while
introducing non-linear distortions such as sine waves to replicate complex Moiré patterns [62]. By
mimicking real-world Moiré artifacts, the SMPA demonstrates an efficient and effective adversarial
approach, emphasizing the importance of designing robust detection algorithms to counter such
attacks.

Figure 3: Synthetic Moiré Generation

COMPRESSION ATTACK WITH CMPA AND
SMPA. Uploading videos to Social Network-
ing Sites (SNS) often introduces compression
and quality degradation, adding new artifacts to
the content. To replicate real-world scenarios,
we propose the Compression Attack (CA) on
Moiré Patterns, which combines Moiré distor-
tions with compression artifacts to simulate the
impact of social media uploads. This approach
leverages the widely used H.264 compression
algorithm, adopted by platforms such as Tik-
Tok and YouTube [75], and standard techniques
from FaceForensics++ [28]. By mirroring these
real-world compression methods, we provide a
realistic evaluation of how compression affects
deepfake detection performance. We generated
two compressed versions of our dataset, C23 and
C40, to simulate the quality degradation caused
by SNS uploads [76, 77]. Compression reduces
high-frequency information, introducing noise
that interacts with existing Moiré patterns to
create more complex distortions. These com-
bined artifacts significantly degrade deepfake
detection systems’ performance, with increasing
compression noise leading to further reductions
in detection accuracy. This attack reveals a critical vulnerability in current detection systems, which
often overlook the combined effects of Moiré patterns and compression artifacts. By exploiting
compression, attackers can obscure signs of manipulation, enabling altered videos to evade detection
on SNS platforms.

PREPROCESSING AND PRETRAINED WEIGHTS. Our dataset comprised videos from various
sources, including CelebDF [31], DFD [29], DFDC [30], and FaceForensics++ [28]. Each dataset
was preprocessed according to the specific requirements of the respective deepfake detectors. For the
demoiré experiments, an additional preprocessing step was applied to remove the Moiré pattern using
state-of-the-art demoiréing methods [78–81]. We used the pretrained weights for each detector during
the evaluation. We selected the top five performers on CMPA from the image detectors Rossler C23,
MAT, CADDM, SelfBlended, and CCViT for SMPA, CA, demoiréing, fine-tuning, and retraining
experiments. However, SelfBlended and CCViT did not exhibit any performance improvement during
training, remaining at a static accuracy of 50%. As a result, we excluded them from further analysis
and focused on Rossler C23, MAT, and CADDM.

MOIRÉ REMOVAL METHODS. We employed state-of-the-art demoiréing methods such as DM-
CNN [78], MBCNN [79], and ESDNet [80] (under two settings) alongside DDA [81], which is
tailored for mobile devices, to remove the Moiré pattern from DMF videos: Firstly, (i) DMCNN
utilizes groups of convolutional layers for downsampling and deconvolutional layers to restore reso-
lution. The final output image is produced by summing feature maps from all branches; Secondly,
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(ii) MBCNN features a learnable bandpass filter (LBF) for effective Moiré texture removal and
employs a two-step tone mapping strategy for color restoration. This includes global tone mapping
to correct color shifts and local fine-tuning for per-pixel accuracy. Thirdly, (iii) ESDNet integrates
a Semantic-Aligned Scale-Aware Module (SAM) to handle scale variations of Moiré patterns. It
enhances model effectiveness by extracting and dynamically fusing multi-scale features within the
same semantic level, maintaining a lightweight network structure. and Lastly, (iv) DDA is optimized
for real-time deployment on mobile devices. This method employs a parameter-shared supernet
paradigm, ensuring resource efficiency without adding an extra parameter burden. It was selected
because our data collection was performed using mobile devices. The demoiréing experiments were
conducted on image and video-based techniques, which are provided in the Appendix Table 11
and Table 12.

METRICS. We evaluated the performance of deepfake detectors in our experiments using accuracy,
AUC score, precision, recall, and F1-score. The main text reports the results based on the AUC score.
For the CA, fine-tuning, and retraining settings, we report the best Accuracy. The results for the other
metrics are available in the Appendix H.

5 Results
Table 4: Performance on different playback screens.

DETECTORS
(Type and Name)

ORIGINAL
PERFORMANCE

Videos captured from screens
LG BenQ Lenovo Samsung

V
ID

E
O

LRNet BF 61.7 54.9 55.3 55.9 53.2
LRNet RF 62.2 58.8 60.5 58.7 58.8
FTCN 90.2 65.9 65.3 70.6 68.9
LipForensics 90.6 80.3 80.8 84.4 79.8
AltFreezing 92.5 80.4 81.3 83.7 82.9

IM
A

G
E

Rossler 67.7 56.2 54.5 59.4 56.9
ADD 69.7 65.4 64.3 66.3 63.4
Capsule 71.3 71.2 69.6 69.0 66.6
ForgeryNet 76.9 61.5 61.8 66.5 63.6
Rossler C40 77.0 67.7 66.9 67.3 67.8
Rossler C23 86.5 68.6 67.4 74.5 70.9
MAT 87.0 72.4 74.9 80.1 76.6
CADDM 87.1 71.3 71.8 80.9 79.5
SelfBlended 88.8 73.7 75.5 80.9 76.4
CCViT 95.0 81.9 83.7 86.4 86.0

Avg. Performance loss
(Moiré vs. Original) -11.6 -11.4 -8.0 -10.2

CMPA – PERFORMANCE
UNDER VARIOUS PLAYBACK
SCREEN SETTINGS.

In Table 4, the most significant
visual Moiré artifacts were ob-
served when videos were cap-
tured from the LG and BenQ
screens, both of which use
backlit LED technology with
low pixel density and tradi-
tional RGB stripe subpixel lay-
outs. These structural character-
istics tend to amplify aliasing ef-
fects, particularly when captured
through camera sensors, result-
ing in severe Moiré distortions.
Correspondingly, the most substantial performance degradation in detection was also recorded for
these two screens. This indicates that certain display technologies might amplify Moiré artifacts
more than others. The variations in pixel arrangements, refresh rates, and anti-aliasing techniques
across different screens likely contribute to the severity of these distortions. CCViT [58] demon-
strated the best detection performance across all screen environments, with an average AUC of
84.5%. Meanwhile, Capsule [65] and LRNet showed robustness in this with the different capturing
devices scenarios, and performance dropping by only 2-3 percentage points, for instance, on average,
Rossler C23 [28] performance dropped to 16.1%, whereas Capsule experienced only a 2.2% drop.
The performance from Capsule and LRNet is significantly low (around the mid-60s), making them
impractical in the real world. Overall, we observed a similar trend in performance results across
different screen configurations. In addition, we include performance results on videos captured at
±45° viewing angles in the Appendix Table 15, further examining how angled perspectives affect
detection robustness under Moiré interference.

CMPA – PERFORMANCE WITH DIFFERENT CAPTURING DEVICES. In Figure 4, we illustrate
the performance of detectors with original and Moiré pattern captured videos using iPhone and
Samsung devices, showing a significant performance drop, highlighting the impact of Moiré artifacts
on deepfake detection. The detection performance on videos captured using the Samsung S22 Plus
was slightly worse on average than that captured with the iPhone. CCViT [58] achieved the best
performance across all scenarios, with 95% on the original, 85% on iPhone-captured, and 83%
on Samsung-captured images. The worst performance was observed with the LRNet models and
Rossler model [28], where Rossler scored 68% on the original, 58% on iPhone-captured, and 55%
on Samsung-captured images, suggesting that the severity of Moiré interference may vary across
different smartphone camera sensors and image processing pipelines. Overall, all detectors have a
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Figure 4: DIFFERENT CAPTURING DEVICES: AUC performance of detectors dropped by 9.5 and
12.0 percentage points on average for videos with Moiré patterns captured by iPhone 13 and Samsung
S22 Plus, with a maximum drop of 25.4 percentage points in the worst case.

significant drop in performance, regardless of the capturing device used. This consistent degradation
raises concerns about the generalizability of deepfake detectors in real-world scenarios where Moiré
artifacts are commonly introduced during video playback or screen recording.

Table 5: Lighting Conditions

DETECTORS On Off
LipForensics 81.3 78.7
AltFreezing 82.1 80.6
CCViT 84.5 83.5

CMPA – PERFORMANCE UNDER DIFFERENT LIGHTING CON-
DITIONS. Table 5 shows the performance of the (top-3) detectors
when videos are captured by the camera on different screens that
are exposed to different lighting conditions. In this scenario, we
observed a very minimal performance change (around 1%), which
shows that the impact of the Moiré pattern remained the same ir-
respective of the lighting conditions (see Appendix Figure 14 for
results of all detectors).

Table 6: Comparison of deepfake detector performance in
the presence and absence of Moiré Attacks.

DETECTORS
WITHOUT
ATTACK

MOIRÉ ATTACK
CMPA SMPA-MA SMPA-SPS

Rossler C23 78.1 81.9 83.1 75.4
MAT 76.8 68.8 55.4 61.8
CADDM 73.0 73.1 86.8 80.7

SMPA – SYNTHETIC MOIRÉ PAT-
TERN ATTACKS RESULTS. We ex-
amined two types of Synthetic Moiré
Attacks. One is SMPA-MA, and the
other is SMPA-SPS. Each Synthetic
Moiré Attack framework is shown
in (Figure 3). By using a subset of
one variation of the camera-captured
videos. MAT shows the most severe
performance degradation by synthetic Moiré attack among three detector models, with a performance
drop of 21.4 percentage points (see Table 6). Unlike MAT, which shows performance degradation
after the Synthetic Moiré Attack, Rossler and CADDM show improved performance after SMPA-MA.

Table 7: CA baseline results under C23 and C40, evaluated with each detector’s pretrained weights.

DETECTORS
C23 C40

OG CMPA SMPA-MA SMPA-SPS OG CMPA SMPA-MA SMPA-SPS
Rosseler C23 98.4 96.5 87.7 80.5 87.5 99.3 83.2 98.7
MAT 86.7 66.1 55.4 56.5 75.3 66.5 52.2 60.8
CADDM 97.7 96.4 86.7 90.3 80.1 99.0 84.8 96.8

Table 8: Performance of fine-tuned and retrained models on C23 and C40 compression attacks.

DETECTORS
FINE-TUNE RETRAIN

OG CMPA SMPA-MA SMPA-SPS OG CMPA SMPA-MA SMPA-SPS

C
23

Rossler C23 98.0 96.5 88.6 91.0 97.8 96.1 87.8 91.5
MAT 99.2 91.8 94.8 98.5 99.3 92.1 95.8 97.5
CADDM 99.8 96.3 95.0 92.0 99.4 96.2 90.0 91.8

C
40

Rossler C23 82.5 99.6 85.7 97.0 86.7 99.5 85.7 95.7
MAT 98.0 90.6 94.4 97.9 99.1 84.2 94.4 98.1
CADDM 90.9 99.3 90.8 99.2 96.0 99.7 90.71 99.3

COMPRESSION ATTACKS (CA). In Table 7 we observe that for the CA baseline, methods such
as Rossler C23, MAT, and CADDM show distinct accuracy ranges, with Rossler C23 and CADDM
achieving around 80.1–99.0% and MAT lagging behind at 55.2–86.7%. Following fine-tuning and
retraining, however, the overall trend is upward, as detailed in Table 8. Most notably, the MAT model’s
accuracy surged to 99.2% in the best case, effectively closing the gap and becoming competitive with
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the other methods. This indicates that fine-tuning or retraining models on specific datasets or with
targeted adjustments can enhance their ability to adapt to Moiré patterns and compression artifacts,
ultimately improving detection accuracy. This improvement suggests that models benefit from being
updated to handle new types of distortions or patterns, which may not have been fully accounted for
in the original training process.

IMAGE DISTORTION ATTACKS. We evaluated the impact of Gaussian blurring and sharpening
on deepfake detection by applying these techniques to the original datasets. Gaussian blurring,
implemented with OpenCV’s GaussianBlur function [82], smooths images by reducing fine details,
while sharpening, using a high-pass filter via filter2D, enhances edges [83]. This systematic ap-
proach ensures consistent application, allowing direct comparison of detection performance. In
Appendix Table 10, we present AUC scores before and after applying these transformations.

Figure 5: Moiré vs. Demoiréd

MITIGATION STRATEGIES – PERFORMANCE AFTER
DEMOIRÉING. The top-performing deepfake detectors across
all demoiréing techniques were CCViT [58], CADDM [67], and
Rossler C23 [28], consistently ranking 1st, 2nd, and 3rd, respectively
(see Appendix Table 11 for detailed results). CCViT achieved the
highest average score of 79.2%, maintaining superior performance
across original, Moiré-affected, and demoiréd images. Among
demoiréing methods, ESDNet [80], trained on the FHDMi dataset,
exhibited the lowest performance loss, indicating its effectiveness
in mitigating Moiré-induced degradation. Conversely, DDA [81]
demonstrated the highest performance loss, likely due to its
optimization for mobile devices, which compromises its detection
capabilities compared to other techniques. A significant finding
from this experiment was that while demoiréing methods effectively
removed most Moiré patterns from the images (see Figure 5), they also eliminated certain deepfake
artifacts that detectors rely on for classification. As a result, performance on demoiréd images
dropped more than on images with Moiré patterns. Specifically, Moiré patterns caused an average
performance drop of 10.1 percentage points for detectors. In contrast, demoiréd images resulted in an
average drop of 14.7 percentage points. This underscores the need for advanced mitigation strategies
to address Moiré patterns without inadvertently removing critical deepfake artifacts, ensuring robust
detection performance. We conducted additional experiments by processing Moiré videos using
VD-Moiré [84] and FPANet [85] demoiréing methods are outlined in Table 12 and denoising and
deblurring from NAFNet [86], detailed results from these experiments are provided in (see Appendix
Table 13 and Table 14).

Table 9: Overview of detectors with Fine-Tune and Retrain.

DETECTORS
FINE-TUNE RETRAIN

OG CMPA SMPA-MA SMPA-SPS OG CMPA SMPA-MA SMPA-SPS
Rossler C23 77.0 80.6 94.4 81.1 87.9 84.7 94.9 79.5
MAT 94.5 85.4 70.3 95.6 97.9 89.0 71.3 96.5
CADDM 86.3 84.6 94.4 95.0 85.1 81.9 92.9 95.4

MITIGATION STRATEGIES – PERFORMANCE AFTER FINE-TUNING AND RETRAINING. For
fine-tuning, we utilized pretrained weights derived from the original dataset, which were also
employed to assess the model’s performance on the same data. The test dataset for fine-tuning and
retraining comprises original data, captured Moiré data, and synthetic Moiré data. In the case of
MAT, performance after retraining exhibited an improved score (see Table 9). However, for CADDM,
fine-tuning demonstrated superior performance compared to retraining.

ADDITIONAL ANALYSIS OF MOIRÉ IMPACT AND MITIGATION. We evaluate eight image
detectors on original datasets (CelebDF, DFD, DFDC, FF++, and UADFV) and under the most severe
Moiré distortion (LED screen) with multiple variations (light on/off, iPhone 13/Samsung S22+). We
also assess the performance after demoiréing, denoising, and deblurring effects. The corresponding
ROC curves are presented in (see appendix Figure 15—Figure 25), showing varying performance
on image detectors and random guess prediction when impacted by Moiré patterns. Furthermore,
our investigation extends to evaluating the impact of Moiré patterns on frequency analysis, Ap-
pendix Figure 26, and deepfake generative models, with results provided in (see Appendix Figure 27
and Figure 28), with non-GAN and GAN showing distinct frequency patterns.
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REMARKS. These results demonstrate that just preprocessing methods (e.g., demoiréing) are
insufficient to address the challenge posed by deepfake videos containing Moiré patterns or other
artifacts. This highlights the need for more robust detection models capable of handling such
distortions. In this context, our DMF dataset provides a valuable addition to public deepfake datasets
for training these detectors.

6 Discussion

Challenges in Data Collection. Capturing Moiré patterns in real-world conditions required careful
consideration of screen types, lighting variations, angles, and smartphone camera differences. Our
dataset comprises 12,832 videos spanning 35.64 hours, sourced from CelebDF, DFD, DFDC, FF++,
and UADFV, ensuring diverse representation. Differences in screen pixel structures influenced the
intensity of Moiré artifacts. Additionally, smartphone cameras introduced variability in artifact ap-
pearance, further complicating the data collection process. These challenges highlight the complexity
of generating a dataset that accurately represents Moiré-induced distortions in deepfake detection.

Limitation and Future work. While we acknowledge that real-world Moiré-inducing conditions
span a wide range of factors, including variations in camera and display hardware, and dynamic
motion, this work focuses on analyzing the impact of Moiré patterns on deepfake detection. Our
experimental setup was intentionally designed to control these variables in a reproducible environment,
enabling a focused investigation of Moiré-related effects. Broader scenarios involving diverse
hardware configurations, motion artifacts, and platform-specific filters (e.g., beautification or AR
effects on apps like TikTok and Instagram) remain essential directions for future work.

7 Conclusion

In this paper, we investigated the impact of Moiré patterns on deepfake detection, exposing a
significant vulnerability in current methods. Our experiments showed that both Authentic and
Synthetic Moiré patterns can degrade detector performance, reducing accuracy by up to 25.4%.
This issue is further exacerbated by compression artifacts, where the combined effect leads to even
greater performance deterioration. These findings highlight that existing models, often designed
for clean, high-quality inputs, struggle with real-world artifacts introduced by screen captures and
digital processing. While demoiréing techniques can mitigate these distortions, they may also
inadvertently weaken detection performance. This underscores the need for more resilient deepfake
detection systems capable of handling practical distortions like Moiré patterns and compression
without significant accuracy loss.

SOCIAL IMPACT. Our work highlights the need for advanced deepfake detection to mitigate real-
world artifacts. The dataset we share contains the real and deepfake videos captured with different
mobile devices. The package also contains detailed documentation with all relevant metadata specified
to users. We recommend using DMF as a training dataset to enhance detector robustness, aiding
efforts to curb the spread of malicious deepfakes. To promote responsible, impactful use of the
DMF dataset and to discourage misuse aimed at bypassing detectors, we provide access through a
DOI-based request system. This process enhances security and ensures the dataset is used strictly for
legitimate academic research.
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Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

21

paperswithcode.com/datasets


Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Dataset Collection and Generation
	Experimental Scenarios and Settings
	Results
	Discussion
	Conclusion

