
Evaluating VLMs for Score-Based, Multi-Probe
Annotation of 3D Objects

Rishabh Kabra12, Loic Matthey1, Alexander Lerchner1, Niloy J. Mitra2
1Google DeepMind, 2University College London

{rkabra, lmatthey, lerchner}@google.com, n.mitra@ucl.ac.uk

Abstract

Unlabeled 3D objects present an opportunity to leverage pretrained vision language
models (VLMs) on a range of annotation tasks—from describing object seman-
tics to physical properties. An accurate response must take into account the full
appearance of the object in 3D, various ways of phrasing the question/prompt,
and changes in other factors that affect the response. We present a method, to
marginalize over arbitrary factors varied across VLM queries, which relies on
the VLM’s scores for sampled responses. We first show that this probabilistic
multi-probe aggregation can outperform a language model (e.g., GPT4) for sum-
marization, for instance avoiding hallucinations when there are contrasting details
between responses. Secondly, we show that aggregated annotations are useful
for prompt-chaining; they help improve downstream VLM predictions (e.g., of
object material when the object’s type is specified as an auxiliary input in the
prompt). Such auxiliary inputs allow ablating and measuring the contribution of
visual reasoning over language-only reasoning. Using these evaluations, we show
that VLMs approach the quality of human-verified annotations on both type and
material inference on the large-scale Objaverse dataset.

1 Introduction

An abundance of text and visual paired data has powered the rise of powerful representation learning
algorithms and generative models for images. In the 3D community, we are yet to see a comparable
modeling revolution [1, 2] despite growing repositories of object models, character assets, and 3D
scans. A key blocker is the lack of clean text annotations.

Synthetic annotation pipelines stand ready to fill the gap. 2D vision language models [3–6]–by virtue
of being trained on a nontrivial fraction of human knowledge–contain rich information about the
nature of all things. While we’d hope for their description prowess to translate to 3D, this comes with
at least three challenges: (i) There can be discrepancies between multiple views of the same object
(e.g. when viewed from the front or side). These need to be reconciled to produce an aggregate answer
or description. (ii) It’s unclear what to optimize to generate multipurpose annotations, and for that
reason, how to tune the way we probe a VLM. This issue is compounded by the limited availability
of ground truth or human annotations, which cannot be collected at the same rate at which VLMs can
respond to arbitrary queries. (iii) While language is well suited to describing object semantics (i.e.
type), human vocabulary is stretched when describing concepts like material or shape of particular
interest in 3D. Unstructured captioning is unlikely to capture such properties consistently.

We make the case for property-specific annotations (PSAs) using structured visual question answering.
In contrast to a descriptive blurb or caption, a bite-sized value can be easily compared or used for
indexing/search. For that reason, such annotations are easier to aggregate across multiple occurrences
(e.g. different views of an object or paraphrases of a question). With structured VQA, we have a
better chance of collecting and evaluating VLM responses for less linguistic concepts. PSAs also

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



make it easier to intervene on the value of variables (e.g. by specifying them in the prompt) to probe
VLMs in a causally driven manner.

To address the challenges of evaluating a VLM annotation pipeline, we explore two evaluation
strategies: In Sec 3, we study the variation in VLM responses under changes in view or prompt, and
how best to summarize responses reliably. In Sec 4, we assess the usefulness of an inferred property
for the downstream task of inferring another property. We run the downstream inference in LLM and
VLM modes. Besides their different evaluation focus, the two sections also focus on different object
properties: semantic type and material respectively.

Our salient contributions are the following–we:

1. Run 55B-parameter variants of PaLI [7] to generate captions and property-specific annota-
tions on the Objaverse [8] dataset.

2. Introduce a likelihood-based probabilistic aggregation of VLM responses across object
views and multiple queries.

3. Compare our annotations and aggregation method with concurrent work based on GPT4
(CAP3D [9]) and baseline sources.

4. Show the value of aggregate, structured intermediate representations for downstream infer-
ence in VLMs, akin to chain-of-thought reasoning.

5. Plan to release our outputs at https://github.com/google-deepmind/objaverse_
annotations.

2 Background

Dataset. The main target of our work is Objaverse 1.0 [8], a collection of 800K diverse but poorly
annotated 3D models uploaded by 100K artists to the Sketchfab platform. While the tags and
descriptions uploaded by artists are noisy and unreliable, a subset of 47K objects called Objaverse-
LVIS is accompanied by human-verified categories. We rely on it to validate our semantic annotations.

Related work. A three-stage pipeline was proposed to generate captions for Objaverse concurrently
to our work. Although our objective—to produce property-specific annotations—is meaningfully
different, we rely on CAP3D [9] as the primary baseline for our work. The pipeline is as follows: a
VLM (BLIP-2 [3]) first produces 5 candidate captions for 8 different object views; CLIP [6] filters all
but one caption per view, and GPT4 [10] performs a final detail-preserving but hallucination-prone
aggregation. Our procedure is similar up to CAP3D’s first stage. We show major flaws with CAP3D’s
aggregation step in Sec 3.

Models. To generate our own captions or annotations, we rely on two variants of PaLI-X fine-tuned
specifically for captioning or visual question answering. Both variants consist of a ViT-22B [11]
vision model and 32B UL2 [12] language backbone. For the material prediction task, we also run
BLIP-2 T5 XL as a baseline. All models are run zero-shot, one input image at a time, and output an
autoregressive distribution over language tokens. The likelihood of any sampled text can be computed
during the VLM sampling process (e.g. beam search) without any additional cost. None of our
methods or results are specific to PaLI or BLIP.

3 Semantic Descriptions

To ask for the type of an object is the most language-amenable VLM query. Despite this, we illustrate
the challenge of captioning a 3D object in Fig 1-A. Concurrent work (CAP3D [9]) to produce captions
for Objaverse relies on GPT4 [10] to summarize annotations across multiple views of an object. This
can produce deeply flawed summaries. The LLM propagates hallucinations or confusions when
there’s contrasting captions among views. Despite being instructed that it is given captions of the
same object, the LLM tries to preserve details across views rather than reconcile them (see Fig 1-B).

To address this, we propose an alternative method of aggregating multi-view or multi-query anno-
tations in Sec 3.1. We then compare semantic descriptions from baseline sources with annotations
produced by our method in Sec 3.2. Finally, we unpack the performance of our aggregation relative
to individual views or queries in 3.3.

2

https://github.com/google-deepmind/objaverse_annotations
https://github.com/google-deepmind/objaverse_annotations


A. Multi-view differences can produce varying object descriptions

B. Aggregation in text space using an LLM
and engineered prompt (CAP3D)

C. Aggregation using scores associated with each description
(ours)

Figure 1: A. Three of eight regularly spaced views of a 3D object. Each view is accompanied
by the top caption produced by two different models: BLIP-2 and PaLI-X. Captions from BLIP-
2 were obtained from the CAP3D baseline, whereas captions from PaLI-X were generated with
accompanying scores for this work. Both models show an expected variation in responses across
views. B. To aggregate multi-view captions, CAP3D feeds them to GPT4 and prompts it for an
object-level summary. The LLM is often unable to denoise captions from contrasting views, and
simply "adds up" the contents. C. Our aggregation helps surface more reliable responses, weighting
them based on their combined scores across views.

3.1 Aggregation of Responses

We introduce an aggregation for VLM outputs across multiple queries that relies on the log-likelihoods
or scores of the sampled outputs. When VLM queries are correlated (e.g. views of the same object or
paraphrased questions), we can expect recurring responses across queries. Say we run I queries to get
J (response, score) pairs per query, for a total of IJ pairs {(ri,j , si,j)}. Let f be a map to post-process
strings and reduce them to a canonical form. The following aggregation helps identify responses
which occur frequently while accounting for the model’s confidence in each occurrence:

∀r ∈ {ri,j}, si(r) := sup{si,j | f(ri,j) = r and j = 1, 2, ..., J} (1)

sagg(r) := log
∑
i

exp(si(r)) (2)

p(r|{ri,j , si,j}) := exp(sagg(r))/
∑
r′

exp(sagg(r
′)) (3)

Equation 1 deduplicates responses for a given VLM query i. The string processor f determines when
ri,j is treated equivalent to r, and can be customized per VLM. This is useful when responses are
identical up to punctuation, case, or uninformative tokens. Since these are undesirable duplicates, we
want to avoid accumulating their scores, so we take the supremum instead. Note that si(r) can be
−∞ if no r equivalent occurs in the J responses for query i.

Equation 2 then aggregates scores across occurrences of r in distinct queries. These are desirable
duplicates (over distinct images or prompts) which merit reinforcing. Finally, equation 3 computes
an aggregate probability distribution over responses by taking a softmax over the aggregate scores.

In contrast to model-based summarization (e.g., using an LLM), this aggregation requires a trivial
numerical computation. There’s no scoring cost in addition to generating the outputs; most VLM
sampling methods can output the score simultaneously. Whereas an LLM needs a prompt specific
to the aggregation task, our method can be used on arbitrary VLM responses that need aggregating.
While an LLM produces a point estimate, our method outputs a distribution over all possible responses.

3.2 Comparative Evaluation

We collect four sets of semantic descriptions for Objaverse :

3



Figure 2: Comparison of captions and type annotations generated from different sources/models.
The bars show cosine similarity scores (↑) computed in an independent text-embedding space and
averaged over the Objaverse-LVIS subset. We show an example caption/type annotation beneath each
bar; these correspond to a fixed object shown in the top-left corner from two different views.

1. Objaverse tags: these were uploaded by the creator of each 3D asset and are available as part of the
original dataset. They are inherently noisy and inconsistent between objects. We comma-separate
the tags to produce a concatenated string for each object.

2. CAP3D captions: these were generated and released by [9]. A post-processed version of the
captions removes the frequent prefix, “3D model of.” We compare both versions.

3. PaLI captions: using a captioning-specific variant of PaLI and simple prompt (“A picture of ”), we
generated descriptive captions similar to CAP3D’s first stage. We then applied our aggregation to
summarize J = 5 responses across I = 8 views per object. We compare results with and without
a post-processing map f (Eq 1) to ignore suffixes of the form “on/against a white background.”

4. PaLI VQA annotations: we used 4 VQA prompts to probe for the type of each object: (i) What
is this? (ii) What type of object is this? (iii) What is in the image? (iv) Describe the object in the
image. This produced 4 sets of top-5 responses per view. The responses are typically WordNet
[13] entities that group synonyms or related terms in a comma-separated list. We deduplicate
responses by taking the first such term per response. This post-processing map is also ablated.

We compare outputs from these sources to human-verified object categories from the Objaverse-LVIS
subset. For sources that use our aggregation method, we take the likeliest output from each aggregate
distribution. We proceed to embed all text using an independent language encoder, namely the
Universal Sentence Encoder (v4) [14] from TensorFlow-Hub. Then, we compute cosine similarities
between the embedded outputs and human-verified categories.

Fig 2 shows that all VLM pipelines outperform the tags from the original dataset. PaLI captions,
with our likelihood-based aggregation, are slightly better than (the three-stage) CAP3D captions. Our
PaLI VQA annotations perform significantly better. We will unpack the role of aggregating across
multiple questions and object views in the following subsection.

3.3 Why Aggregate

To show why our aggregation works, we look at the individual views and queries that comprised our
PaLI VQA annotations. Fig 3 shows the effect of aggregating across various slices of the views and
questions presented to the VLM. We also compare our default log-sum-exp (LSE) aggregation (Eq 2)
with the simpler choice of taking the maximum-score response across all views/questions.

There’s a small but significant gap between the LSE and maximum-score aggregations. The latter
performs worse than several views individually, because overconfident responses might dominate the
aggregate. The LSE aggregation performs better than any individual view.

Comparing different questions, there is in fact a particular question which serves as the best VLM
prompt for our current evaluation metric (cosine similarity with respect to LVIS categories). Including
less optimal questions in our aggregation does not improve the score. Nevertheless it smoothens
the aggregate response distribution and widens the support. We show this qualitatively in Fig 4.
Aggregating across questions helps avoid mode collapse in bimodal cases (such as the bee on the

4



Figure 3: Likelihood-based aggregation across views and across questions. Each bar computes
an aggregate output distribution from a different subset of responses. The mode of each aggregate
output distribution is scored using cosine similarity on Objaverse-LVIS as before. The left plot scores
8 individual views versus the aggregate of all views, while highlighting the gap between asking a
default question or multiple question variants. The right plot scores 4 individual questions versus the
aggregate of all questions, while highlighting the gap between using a fixed object view or all views.

Figure 4: Histograms showing PaLI VQA responses per question and after aggregation for
fixed views of a selection of objects. To reduce visual clutter, we filtered responses with scores
below a fixed threshold (-1.2). Each subplot legend lists the possible responses sorted by aggregate
probabilities. For comparison, we show the object’s LVIS category where available.

wall), or smoothen over question-specific biases (e.g., questions that include the word “object” make
the VLM likelier to say “toy,” while remaining questions are likelier to elicit “statue” or “lion.”)

With robustness in mind, we include all questions and object views when aggregating PaLI VQA
annotations. Ultimately the goal is to produce an intermediate representation suitable for multiple
tasks. To that end, we will test these annotations on downstream inference of properties in the next
section. We will show that the performance advantage of PaLI VQA annotations is not limited to our
type-specific metric, but extends to the inference of physical properties.

4 Physical Properties

What an object is made of has immediate implications for how it behaves physically. Whether it will
sink, bounce, stretch, or crack is largely determined by its material composition. There is limited
prior work to study whether VLMs can infer such properties of an object.

We expect material to be less amenable to description in language than type; this raises the question
whether we should prompt a VLM to reason deeper about material. One way to do this is to equip
the VLM with previous inferences about the object. Concretely, we can ask the VLM what material
something is made of while including the object’s type as part of the question/prompt. Thus, the
VLM can make its prediction on the basis of two factors: object type and appearance.

We ablate the influence of each factor on the VLM as follows: we pose questions including or
excluding the object type (e.g. "what material is the spoon made of" vs "what material is this made
of"). We also pose the former question (mentioning the object’s type) without a visual input and

5



Table 1: Accuracy of material inference using two different VLMs. The models are provided
either an object type annotation or image as inputs or both. We report the top-3 accuracy (whether the
correct material is in the top 3 predictions, ↑) as well as the soft accuracy (probability of the correct
material in the output distribution, ↑) averaged over our curated material test set. Whenever we use
appearance as an input (i.e., VLM mode), we aggregate responses across object views. Thus the
predicted distributions contain up to J=5 alternatives in LLM mode or up to IJ=40 in VLM mode.

Type only
(LLM mode)

Appearance only
(VLM mode)

Type and Appearance
(VLM mode)

CAP3D
captions

PaLI-VQA
types

No caption/type
information

CAP3D
captions

PaLI-VQA
types

PaLI-X
55B VQA

Top-3 acc. 0.84± 0.36 0.66± 0.47 0.84± 0.36 0.90± 0.30 0.90± 0.30
Soft acc. 0.42± 0.27 0.31± 0.30 0.40± 0.28 0.46± 0.27 0.49± 0.31

BLIP-2
T5 XL

Top-3 acc. 0.28± 0.45 0.26± 0.44 0.66± 0.47 0.70± 0.46 0.70± 0.46
Soft acc. 0.22± 0.37 0.20± 0.36 0.51± 0.43 0.48± 0.41 0.53± 0.42

definite article (e.g. "what material is a spoon made of"). This makes the model operate as an LLM,
with the same model weights, and helps measure the accuracy of language-only reasoning.

When specifying the object’s type as part of a question, we have the choice of using rich detailed
captions like CAP3D’s, or succinct type annotations as produced by our VQA pipeline (see Sec 3.2).
We study which of these performs better (but refer to them as "type annotations" collectively).

To ensure our results are not specific to a model class or size, we run these evaluations on two VLMs:
PaLI-X VQA as before, and the smaller BLIP-2 T5 XL (used in CAP3D).

4.1 Results

To measure the accuracy of material prediction, we curate a test set of objects spanning 13 material
classes (see Appendix B.2 for details). We then compare different ways of probing the VLM on the
test set. Unlike in Sec 3.2, we cannot rely on similarity in text embedding space because materials
can be close even if they are not exactly the same (e.g. "wood" and "metal" have a cosine similarity
score of 0.408). So we look for an exact string match in the VLM responses.

Table 1 reveals that using type annotations (CAP3D or PaLI-VQA) and object appearance simultane-
ously consistently outperforms using one or the other. This reasoning advantage is reminiscent of
zero-shot chain-of-thought prompting [15] or iterative inference [16, 17]. Having access to previous
computations can help the VLM avoid redundant processing. This holds regardless of whether the
previous inference came from the same VLM, and even for a smaller VLM like BLIP-2 T5 XL.

Although CAP3D captions contain more material information than PaLI-VQA type annotations (see
"Type only" sub-columns), they are less useful as an auxiliary input when also using the object’s
appearance (see soft accuracies under "Type and Appearance"). This could be explained by possible
hallucinations or specious details in the captions which hinder VLM reasoning. It goes to suggest that
property-specific annotations serve as more robust intermediate representations for downstream tasks.

5 Conclusions

We generated property-specific annotations for 3D objects using VLMs which take in a single image
and text-based prompt. We attempted to probe for properties which are increasingly inaccessible to
language-based reasoning, from semantic type to material composition.

Along the way, we evaluated what VLMs are sensitive to, including changes in object view, question
wording, prior inferences specified in the prompt, and access to the object’s appearance. We
highlighted the value of marginalizing over some of these factors to produce an aggregate response,
akin to how humans might arrive at an inference by examining an object from multiple angles.

We hope our outputs serve a variety of downstream 3D applications (from generation to retrieval,
from physical simulation to neuro-symbolic processing); and that our evaluations and insights may
help shape VLM annotation pipelines in other contexts.

6



References
[1] Zifan Shi, Sida Peng, Yinghao Xu, Yiyi Liao, and Yujun Shen. Deep generative models on 3d representa-

tions: A survey. arXiv preprint arXiv:2210.15663, 2022.

[2] Qun-Ce Xu, Tai-Jiang Mu, and Yong-Liang Yang. A survey of deep learning-based 3d shape generation.
Computational Visual Media, 9(3):407–442, 2023.

[3] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training
with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597, 2023.

[4] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for
few-shot learning. NeurIPS, 35:23716–23736, 2022.

[5] Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
Owais Khan Mohammed, Saksham Singhal, Subhojit Som, et al. Image as a foreign language: Beit
pretraining for vision and vision-language tasks. In CVPR, pages 19175–19186, 2023.

[6] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748–8763. PMLR,
2021.

[7] Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu, Carlos Riquelme
Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, et al. Pali-x: On scaling up a multilingual vision and
language model. arXiv preprint arXiv:2305.18565, 2023.

[8] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt,
Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of annotated 3d objects. In
CVPR, pages 13142–13153, 2023.

[9] Tiange Luo, Chris Rockwell, Honglak Lee, and Justin Johnson. Scalable 3d captioning with pretrained
models. arXiv preprint arXiv:2306.07279, 2023.

[10] OpenAI. Gpt-4 technical report, 2023.

[11] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, An-
dreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling vision
transformers to 22 billion parameters. In International Conference on Machine Learning, pages 7480–7512.
PMLR, 2023.

[12] Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven
Zheng, Neil Houlsby, and Donald Metzler. Unifying language learning paradigms. arXiv preprint
arXiv:2205.05131, 2022.

[13] George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41,
1995.

[14] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Universal sentence encoder. arXiv preprint
arXiv:1803.11175, 2018.

[15] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. NeurIPS, 35:22199–22213, 2022.

[16] Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reasoning. In Proceedings of
the annual meeting of the cognitive science society, volume 36, 2014.

[17] Joe Marino, Yisong Yue, and Stephan Mandt. Iterative amortized inference. In International Conference
on Machine Learning, pages 3403–3412. PMLR, 2018.

[18] Zhizhong Han, Chao Chen, Yu-Shen Liu, and Matthias Zwicker. Shapecaptioner: Generative caption
network for 3d shapes by learning a mapping from parts detected in multiple views to sentences. In
Proceedings of the 28th ACM International Conference on Multimedia, pages 1018–1027, 2020.

[19] Juil Koo, Ian Huang, Panos Achlioptas, Leonidas J Guibas, and Minhyuk Sung. Partglot: Learning
shape part segmentation from language reference games. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16505–16514, 2022.

7



[20] Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-Fu Chang. Open-vocabulary object detection
using captions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14393–14402, 2021.

[21] Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning without
training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 14953–14962, June 2023.

[22] Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. arXiv preprint arXiv:2303.08128, 2023.

[23] Deyao Zhu, Jun Chen, Kilichbek Haydarov, Xiaoqian Shen, Wenxuan Zhang, and Mohamed Elhoseiny.
Chatgpt asks, blip-2 answers: Automatic questioning towards enriched visual descriptions. arXiv preprint
arXiv:2303.06594, 2023.

[24] Jensen Gao, Bidipta Sarkar, Fei Xia, Ted Xiao, Jiajun Wu, Brian Ichter, Anirudha Majumdar, and
Dorsa Sadigh. Physically grounded vision-language models for robotic manipulation. arXiv preprint
arXiv:2309.02561, 2023.

[25] Huy Ha and Shuran Song. Semantic abstraction: Open-world 3d scene understanding from 2d vision-
language models. In 6th Annual Conference on Robot Learning, 2022.

[26] Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang Gan.
3d-llm: Injecting the 3d world into large language models. arXiv preprint arXiv:2307.12981, 2023.

[27] Qiao Gu, Alihusein Kuwajerwala, Sacha Morin, Krishna Murthy Jatavallabhula, Bipasha Sen, Aditya
Agarwal, Corban Rivera, William Paul, Kirsty Ellis, Rama Chellappa, Chuang Gan, Celso Miguel de Melo,
Joshua B. Tenenbaum, Antonio Torralba, Florian Shkurti, and Liam Paull. Conceptgraphs: Open-vocabulary
3d scene graphs for perception and planning, 2023.

8



A Supplementary Material

A.1 The Case for Property-Specific Annotations

As a human would make inferences about an object—by examining it, making higher-order inferences
before more specific ones–we propose an inference scheme for VLMs to annotate an arbitrary 3D
object (Fig 5). Higher-level properties (such as type, material, shape, count, and composition) are
ones that require access to the object’s appearance, but might subsequently facilitate lower-level
inferences using associative or symbolic reasoning. If the higher-level results are categorical, we
could implement the lower-level inferences as lookups from a precomputed table.

Since language is our primary mode of probing for these properties, our inference scheme does not
reflect a causal view of how the properties arose. Rather, it presents a suite of object-centric inference
tasks to evaluate VLMs on.

Figure 5: A potential inference scheme to sequence property-specific annotations for 3D objects.
The arrows suggest where a VLM might benefit from having access to previous inferences. Properties
toward the right require reasoning skills beyond language (e.g. spatial or counting). Lower-level
inferences may not require access to the object’s appearance.

A.2 Prior Work

Before VLMs, one approach [18] to caption 3D shapes focused on detecting parts of an object
across multiple views, then translating a sequence of view-aggregated part features into a caption.
Another work [19] showed that part segmentation was possible using human text-based annotations
to discriminate between related shapes.

Foreshadowing the possibilities for semantic annotation of 2D images, [20] explored novel object
detection using sparse bounding box annotations but extensive image-caption data. With the advent
of VLMs, more image processing and reasoning tasks came within reach: VISPROG [21] used
in-context VLM learning to produce Python code to invoke off-the-shelf computer vision models and
image processing APIs. ViperGPT [22] also showed gains in reasoning spatially or at the level of
object attributes by decomposing such queries into executable subroutines. Even closer to our work,
[23] explored an interactive VQA approach using an LLM (ChatGPT) to ask questions about image
contents, a VLM (BLIP-2) to answer them, and finally an LLM to produce a summary caption. [24]
recently explored the inference of physical properties such as object material in images and collected
a custom dataset to fine-tune VLMs.

Applying VLMs to 3D domains remains under-explored. [25] propose using object category labels to
extract relevancy maps from 2D VLMs. These can be turned into 3D occupancies, and then utilized
for scene completion or object localization tasks. [26] propose training 3D VLMs by projecting
3D feature maps into 2D and bootstrapping from a pretrained 2D VLM. The only method that
contends with aggregating outputs from multiple VLM probes is ConceptGraphs [27], released when

9



Figure 6: Sweep over the rendering parameter θcamera which determines the camera’s height.
We render and caption all objects in Objaverse-LVIS for different values of θcamera. All other camera
parameters are held constant (we use a single viewpoint: view 7). Finally we score the captions using
cosine similarity as before.

this work was submitted. Their focus is on building open-vocabulary scene graphs to help with
navigation-related tasks in larger environments, which is different from our objective of generating
object-centric, property-specific annotations.

B Dataset Details

B.1 Objaverse Rendering

We placed each object at the origin and scaled its maximum dimension to 1. We then rotated the
camera at a fixed height and distance to the origin, rendering images at azimuthal intervals of 45
degrees. To determine the camera height, we swept over a few values of the angle θ w.r.t. the
z-axis (Fig 6). We captioned each set of rendered images and used the cosine similarity metric on
Objaverse-LVIS to choose the final camera height (θ = 68).

B.2 Material Test Set

We search through tags in the original Objaverse dataset for 12 material keywords: ’glass’, ’porcelain’,
’leather’, ’oak’, ’metal’, ’marble’, ’wood’, ’ceramic’, ’gold’, ’rubber’, ’cardboard’, and ’plastic’. The
matches are noisy because the tags often contain spurious materials, likely to optimize search engine
visibility. So we handpick a set of diverse objects for each material from the initial matches. The
final test set contains 152 objects. See Appendix C.2 for examples along with our prediction results.

C Extended Results

C.1 Detailed Comparison with CAP3D

CAP3D uses a distinct image rendering pipeline, so this becomes an immediate point of difference
with our work. While we render images at a fixed camera height, CAP3D images include top-down
and bottom views of the object. Although we did not have access to their original images, we were
able to compare rendered images from Fig 23 in the CAP3D paper. Only views 1, 3, 5, and 7
(zero-indexed) from our pipeline are comparable to 4, 3, 5, and 2 from the CAP3D pipeline.

We use 10 objects to illustrate the difference between our captioning results and those from CAP3D
(Fig 7). We present images we rendered from the four views which are comparable between the two
pipelines.

C.2 Detailed Comparison of Material Inference Results

10



Figure 7: Comparison of captions from our pipeline versus the baseline CAP3D. We also show
view-specific captions from the underlying VLMs (PaLI-X and BLIP-2).

11



Figure 7: Comparison of captions from our pipeline versus the baseline CAP3D (contd). The
last two rows were described as failure cases for CAP3D in that paper.

12



Table 2: Material prediction examples on each category from our curated test set. We show predicted distributions
from both VLMs (PaLI-X and BLIP-2) and all five sets of inputs described in Sec 4. For brevity, each distribution is
represented by the top two outputs along with their probabilities. We use tcap3d or tpali to denote the type annotations, A
to denote all object views, pvlm(m̂|.) to denote a predicted distribution, and m to denote the true material.

m “glass”
tcap3d “hat and a jar, both with ropes tied around them”
tpali “potion”
ppali(m̂|tcap3d) “cotton” (0.64), “can’t tell” (0.36)
ppali(m̂|tpali) “potion” (0.35), “glass” (0.27)
ppali(m̂|A) “cork” (0.45), “glass” (0.19)
ppali(m̂|tcap3d, A) “burlap” (0.44), “canvas” (0.30)
ppali(m̂|tpali, A) “glass” (0.67), “cork” (0.17)
pblip(m̂|tcap3d) “straw” (0.49), “plastic” (0.33)
pblip(m̂|tpali) “a tainted potion made of a tainted potion and a tainted

potion” (0.77), “a tainted potion made of a tainted potion,
and a tainted poti” (0.14)

pblip(m̂|A) “wood” (0.83), “rope” (0.10)
pblip(m̂|tcap3d, A) “wood” (0.68), “leather” (0.13)
pblip(m̂|tpali, A) “wood” (0.95), “stone” (0.04)
m “glass”
tcap3d “light bulb”
tpali “light”
ppali(m̂|tcap3d) “glass” (0.77), “filament” (0.11)
ppali(m̂|tpali) “glass” (0.58), “light-emitting diode,LED” (0.13)
ppali(m̂|A) “glass” (0.41), “brass” (0.19)
ppali(m̂|tcap3d, A) “glass” (0.60), “porcelain” (0.13)
ppali(m̂|tpali, A) “glass” (0.51), “filament” (0.14)
pblip(m̂|tcap3d) “glass” (0.52), “filament” (0.29)
pblip(m̂|tpali) “light-emitting diodes” (0.73), “light-emitting diodes

(LEDs)” (0.20)
pblip(m̂|A) “metal” (0.30), “3ds max” (0.22)
pblip(m̂|tcap3d, A) “metal” (0.84), “gold” (0.13)
pblip(m̂|tpali, A) “metal” (0.78), “gold” (0.14)
m “porcelain”
tcap3d “blue and white vase featuring a dragon design”
tpali “vase”
ppali(m̂|tcap3d) “ceramic” (0.38), “porcelain” (0.34)
ppali(m̂|tpali) “ceramic” (0.35), “glass” (0.31)
ppali(m̂|A) “faience” (0.62), “porcelain” (0.14)
ppali(m̂|tcap3d, A) “ceramic” (0.38), “porcelain” (0.32)
ppali(m̂|tpali, A) “faience” (0.44), “ceramic” (0.24)
pblip(m̂|tcap3d) “porcelain” (0.65), “Chinese celadon” (0.32)
pblip(m̂|tpali) “Porcelain” (0.86), “terracotta” (0.09)
pblip(m̂|A) “porcelain” (0.83), “ceramic” (0.08)
pblip(m̂|tcap3d, A) “porcelain” (0.88), “china” (0.12)
pblip(m̂|tpali, A) “porcelain” (0.80), “china” (0.07)
m “porcelain”
tcap3d “small white porcelain vase with colorful floral designs

on it”
tpali “inkwell”
ppali(m̂|tcap3d) “porcelain” (0.29), “faience” (0.28)
ppali(m̂|tpali) “glass” (0.28), “porcelain” (0.24)
ppali(m̂|A) “faience” (0.88), “porcelain” (0.06)
ppali(m̂|tcap3d, A) “faience” (0.68), “porcelain” (0.15)
ppali(m̂|tpali, A) “faience” (0.71), “porcelain” (0.16)
pblip(m̂|tcap3d) “China” (0.58), “ceramic” (0.24)
pblip(m̂|tpali) “metal” (0.93), “metal or plastic” (0.06)
pblip(m̂|A) “porcelain” (0.99), “white porcelain” (0.01)

13



Material prediction examples on each category from our curated test set (contd).

pblip(m̂|tcap3d, A) “porcelain” (0.80), “china” (0.12)
pblip(m̂|tpali, A) “porcelain” (0.94), “china” (0.04)
m “leather”
tcap3d “armored leather gloves and a brown leather boot”
tpali “glove”
ppali(m̂|tcap3d) “leather” (0.83), “cowhide” (0.08)
ppali(m̂|tpali) “leather” (0.34), “cotton” (0.21)
ppali(m̂|A) “leather” (0.69), “armor plate,armour plate,armor plat-

ing,plate armor,plate armour” (0.08)
ppali(m̂|tcap3d, A) “leather” (0.80), “cowhide” (0.07)
ppali(m̂|tpali, A) “leather” (0.84), “nylon” (0.04)
pblip(m̂|tcap3d) “leather” (1.00)
pblip(m̂|tpali) “leather” (0.98), “neoprene” (0.02)
pblip(m̂|A) “leather” (1.00)
pblip(m̂|tcap3d, A) “leather” (1.00), “neoprene” (0.00)
pblip(m̂|tpali, A) “leather” (1.00), “neoprene” (0.00)
m “leather”
tcap3d “round tan leather sofa-style dog bed with buttons”
tpali “dog bed”
ppali(m̂|tcap3d) “leather” (0.70), “suede” (0.16)
ppali(m̂|tpali) “foam” (0.39), “cotton” (0.37)
ppali(m̂|A) “leather” (0.81), “upholstery” (0.08)
ppali(m̂|tcap3d, A) “leather” (0.87), “faux leather” (0.04)
ppali(m̂|tpali, A) “leather” (0.89), “faux leather” (0.04)
pblip(m̂|tcap3d) “faux leather” (0.87), “faux-leather” (0.13)
pblip(m̂|tpali) “a soft fabric, such as cotton, wool, linen, or a combi-

nation of the two” (1.00), “a soft fabric, such as cotton,
wool, linen, or a synthetic material, such as acetate or
polypropylene” (0.00)

pblip(m̂|A) “leather” (1.00)
pblip(m̂|tcap3d, A) “leather” (0.79), “3d model” (0.12)
pblip(m̂|tpali, A) “leather” (1.00)
m “oak”
tcap3d “wooden staircase with metal railings”
tpali “bannister”
ppali(m̂|tcap3d) “wood” (0.46), “steel” (0.19)
ppali(m̂|tpali) “wood” (0.80), “marble” (0.07)
ppali(m̂|A) “wood” (0.78), “timber” (0.06)
ppali(m̂|tcap3d, A) “wood” (0.46), “oak” (0.31)
ppali(m̂|tpali, A) “wood” (0.50), “metal” (0.26)
pblip(m̂|tcap3d) “a wooden staircase with metal railings” (1.00), “a wooden

staircase with metal railings is called a balustrade” (0.00)
pblip(m̂|tpali) “wood” (0.73), “wooden” (0.27)
pblip(m̂|A) “wood” (0.99), “wooden railings” (0.00)
pblip(m̂|tcap3d, A) “wood” (0.98), “wooden staircase with metal railings”

(0.02)
pblip(m̂|tpali, A) “wood” (0.97), “wooden” (0.03)
m “oak”
tcap3d “small wooden table with two legs and a slanted top”
tpali “trestle table”
ppali(m̂|tcap3d) “wood” (0.65), “oak” (0.24)
ppali(m̂|tpali) “wood” (0.88), “timber” (0.05)
ppali(m̂|A) “wood” (0.63), “oak” (0.15)
ppali(m̂|tcap3d, A) “wood” (0.43), “oak” (0.42)
ppali(m̂|tpali, A) “wood” (0.70), “oak” (0.20)
pblip(m̂|tcap3d) “trestle table” (0.80), “a trestle table” (0.20)
pblip(m̂|tpali) “wood” (0.98), “wooden trestle” (0.02)

14



Material prediction examples on each category from our curated test set (contd).

pblip(m̂|A) “wood” (0.97), “wooden” (0.03)
pblip(m̂|tcap3d, A) “wood” (0.90), “solid wood” (0.09)
pblip(m̂|tpali, A) “wood” (0.99), “solid wood” (0.01)
m “metal”
tcap3d “three-tier metal shelving unit”
tpali “bookshelf”
ppali(m̂|tcap3d) “steel” (0.41), “metal” (0.29)
ppali(m̂|tpali) “wood” (0.91), “metal” (0.03)
ppali(m̂|A) “metal” (0.42), “steel” (0.36)
ppali(m̂|tcap3d, A) “steel” (0.49), “metal” (0.29)
ppali(m̂|tpali, A) “metal” (0.59), “steel” (0.20)
pblip(m̂|tcap3d) “steel” (0.99), “steel or stainless steel” (0.01)
pblip(m̂|tpali) “wood” (0.98), “reclaimed wood” (0.02)
pblip(m̂|A) “metal” (0.72), “steel” (0.21)
pblip(m̂|tcap3d, A) “black metal” (0.43), “steel” (0.32)
pblip(m̂|tpali, A) “metal” (0.68), “steel” (0.20)
m “metal”
tcap3d “yellow fire hydrant”
tpali “fire hydrant”
ppali(m̂|tcap3d) “metal” (0.37), “steel” (0.24)
ppali(m̂|tpali) “metal” (0.32), “steel” (0.25)
ppali(m̂|A) “iron” (0.31), “metal” (0.17)
ppali(m̂|tcap3d, A) “metal” (0.37), “steel” (0.19)
ppali(m̂|tpali, A) “metal” (0.32), “iron” (0.21)
pblip(m̂|tcap3d) “cast iron” (0.91), “cast-aluminum” (0.09)
pblip(m̂|tpali) “a fire hydrant is a device used to extinguish a fire.” (0.98),

“a fire hydrant is a device used to extinguish a fire by means
of a pressurized stream of water” (0.01)

pblip(m̂|A) “plastic” (0.35), “3ds max” (0.24)
pblip(m̂|tcap3d, A) “metal” (0.79), “plastic” (0.20)
pblip(m̂|tpali, A) “metal” (0.70), “plastic” (0.17)
m “marble”
tcap3d “white marble column”
tpali “pedestal”
ppali(m̂|tcap3d) “marble” (0.75), “limestone” (0.09)
ppali(m̂|tpali) “marble” (0.44), “stone” (0.31)
ppali(m̂|A) “marble” (0.69), “stone” (0.17)
ppali(m̂|tcap3d, A) “marble” (0.73), “carrara” (0.10)
ppali(m̂|tpali, A) “marble” (0.67), “stone” (0.21)
pblip(m̂|tcap3d) “marble” (1.00)
pblip(m̂|tpali) “marble” (1.00)
pblip(m̂|A) “marble” (0.96), “wood” (0.04)
pblip(m̂|tcap3d, A) “marble” (0.73), “white marble” (0.27)
pblip(m̂|tpali, A) “marble” (0.95), “wood” (0.04)
m “marble”
tcap3d “white marble skull”
tpali “skull”
ppali(m̂|tcap3d) “marble” (0.79), “porcelain” (0.09)
ppali(m̂|tpali) “bone” (0.75), “bones” (0.09)
ppali(m̂|A) “clay” (0.35), “marble” (0.22)
ppali(m̂|tcap3d, A) “marble” (0.55), “clay” (0.20)
ppali(m̂|tpali, A) “clay” (0.33), “marble” (0.27)
pblip(m̂|tcap3d) “limestone” (0.68), “marble” (0.32)
pblip(m̂|tpali) “calcium phosphate” (0.83), “calcareous limestone” (0.08)
pblip(m̂|A) “marble” (0.81), “white marble” (0.10)
pblip(m̂|tcap3d, A) “white marble” (0.85), “marble” (0.07)
pblip(m̂|tpali, A) “marble” (0.43), “limestone” (0.36)

15



Material prediction examples on each category from our curated test set (contd).

m “wood”
tcap3d “small metal house with a roof and legs”
tpali “birdhouse”
ppali(m̂|tcap3d) “aluminum” (0.48), “steel” (0.34)
ppali(m̂|tpali) “wood” (0.75), “clay” (0.10)
ppali(m̂|A) “wood” (0.42), “copper” (0.23)
ppali(m̂|tcap3d, A) “steel” (0.21), “iron” (0.19)
ppali(m̂|tpali, A) “wood” (0.61), “metal” (0.17)
pblip(m̂|tcap3d) “a styrofoam styrofoam styrofoam sty” (0.36), “a styro-

foam styrofoam styrofoam sandwich” (0.33)
pblip(m̂|tpali) “wood” (0.68), “Cedar” (0.31)
pblip(m̂|A) “metal” (0.86), “wood” (0.07)
pblip(m̂|tcap3d, A) “3d model” (0.59), “rusty metal” (0.21)
pblip(m̂|tpali, A) “metal” (0.61), “wood” (0.33)
m “wood”
tcap3d “wooden rocking chair”
tpali “rocking chair”
ppali(m̂|tcap3d) “wood” (0.58), “oak” (0.22)
ppali(m̂|tpali) “wood” (0.81), “wicker” (0.08)
ppali(m̂|A) “wood” (0.88), “rattan” (0.04)
ppali(m̂|tcap3d, A) “oak” (0.40), “wood” (0.22)
ppali(m̂|tpali, A) “wood” (0.93), “mahogany” (0.02)
pblip(m̂|tcap3d) “wood” (0.96), “rattan” (0.04)
pblip(m̂|tpali) “wood” (0.97), “wooden rocking chair” (0.03)
pblip(m̂|A) “wood” (0.98), “wooden” (0.01)
pblip(m̂|tcap3d, A) “wood” (0.96), “wooden rocking chair” (0.04)
pblip(m̂|tpali, A) “wood” (1.00), “wooden rocking chair” (0.00)
m “ceramic”
tcap3d “terracotta bowl with a curved top, flat bottom”
tpali “tray”
ppali(m̂|tcap3d) “ceramic” (0.40), “stoneware” (0.25)
ppali(m̂|tpali) “wood” (0.28), “ceramic” (0.24)
ppali(m̂|A) “clay” (0.33), “stoneware” (0.28)
ppali(m̂|tcap3d, A) “clay” (0.47), “ceramic” (0.18)
ppali(m̂|tpali, A) “clay” (0.41), “stoneware” (0.19)
pblip(m̂|tcap3d) “earthenware” (0.55), “terracotta” (0.31)
pblip(m̂|tpali) “stainless steel” (1.00), “stainless steel or stainless steel-

alloys” (0.00)
pblip(m̂|A) “clay” (0.92), “terracotta” (0.05)
pblip(m̂|tcap3d, A) “clay” (0.64), “terracotta” (0.35)
pblip(m̂|tpali, A) “clay” (0.94), “terracotta” (0.05)
m “ceramic”
tcap3d “vase with two handles and intricate designs”
tpali “jug”
ppali(m̂|tcap3d) “ceramic” (0.38), “porcelain” (0.27)
ppali(m̂|tpali) “glass” (0.56), “porcelain” (0.17)
ppali(m̂|A) “stoneware” (0.29), “clay” (0.23)
ppali(m̂|tcap3d, A) “clay” (0.36), “pottery” (0.27)
ppali(m̂|tpali, A) “ceramic” (0.29), “clay” (0.27)
pblip(m̂|tcap3d) “Chinese celadon” (0.97), “Chinese lacquerware” (0.02)
pblip(m̂|tpali) “clay” (0.87), “tin” (0.13)
pblip(m̂|A) “clay” (0.73), “ceramic” (0.27)
pblip(m̂|tcap3d, A) “clay” (0.76), “ceramic” (0.24)
pblip(m̂|tpali, A) “clay” (0.87), “ceramic” (0.13)

16



Material prediction examples on each category from our curated test set (contd).

m “gold”
tcap3d “gold flower ring featuring a yellow and white flower

design”
tpali “hair slide”
ppali(m̂|tcap3d) “gold” (0.74), “sterling silver” (0.09)
ppali(m̂|tpali) “plastic” (0.44), “rubber” (0.24)
ppali(m̂|A) “gold plate” (0.33), “brass” (0.31)
ppali(m̂|tcap3d, A) “gold” (0.40), “brass” (0.24)
ppali(m̂|tpali, A) “brass” (0.23), “metal” (0.23)
pblip(m̂|tcap3d) “14K yellow gold” (0.35), “18k white gold” (0.34)
pblip(m̂|tpali) “plastic” (0.88), “acetate” (0.12)
pblip(m̂|A) “gold” (0.65), “metal” (0.32)
pblip(m̂|tcap3d, A) “gold” (0.59), “3d model” (0.15)
pblip(m̂|tpali, A) “gold” (0.72), “metal” (0.22)
m “gold”
tcap3d “gold Egyptian cat ring”
tpali “ring”
ppali(m̂|tcap3d) “gold” (0.68), “gold plate” (0.11)
ppali(m̂|tpali) “gold” (0.74), “brass” (0.10)
ppali(m̂|A) “gold” (0.63), “gold plate” (0.20)
ppali(m̂|tcap3d, A) “gold” (0.78), “brass” (0.10)
ppali(m̂|tpali, A) “gold” (0.82), “brass” (0.09)
pblip(m̂|tcap3d) “gold” (1.00), “gold-plated tibetan calfskin” (0.00)
pblip(m̂|tpali) “precious metals, such as gold, silver, platinum, palladium,

and rhodium” (0.93), “precious metals, such as gold, silver,
platinum, palladium, rhodium, and tin” (0.03)

pblip(m̂|A) “gold” (1.00), “gold 3d printed” (0.00)
pblip(m̂|tcap3d, A) “gold” (0.90), “3d printed” (0.10)
pblip(m̂|tpali, A) “gold” (1.00)
m “rubber”
tcap3d “tire”
tpali “tire”
ppali(m̂|tcap3d) “rubber” (0.99), “rubber and steel” (0.00)
ppali(m̂|tpali) “rubber” (0.99), “rubber and steel” (0.00)
ppali(m̂|A) “rubber” (0.96), “blacktop,blacktopping” (0.02)
ppali(m̂|tcap3d, A) “rubber” (0.97), “black rubber” (0.01)
ppali(m̂|tpali, A) “rubber” (0.97), “black rubber” (0.01)
pblip(m̂|tcap3d) “rubber” (0.90), “pneumatic tires” (0.09)
pblip(m̂|tpali) “rubber” (0.73), “Rubber” (0.27)
pblip(m̂|A) “rubber” (0.87), “black rubber” (0.10)
pblip(m̂|tcap3d, A) “rubber” (0.93), “black rubber” (0.06)
pblip(m̂|tpali, A) “rubber” (0.91), “black rubber” (0.09)
m “rubber”
tcap3d “green coiled cable with a white plug and attached earbud”
tpali “hose”
ppali(m̂|tcap3d) “nylon” (0.44), “plastic” (0.36)
ppali(m̂|tpali) “rubber” (0.86), “plastic” (0.05)
ppali(m̂|A) “hose” (0.48), “rubber” (0.20)
ppali(m̂|tcap3d, A) “rubber” (0.38), “plastic” (0.19)
ppali(m̂|tpali, A) “rubber” (0.70), “plastic” (0.15)
pblip(m̂|tcap3d) “tin-alloy” (0.79), “tin-plated copper” (0.20)
pblip(m̂|tpali) “rubber” (0.95), “PTFE” (0.05)
pblip(m̂|A) “wire” (0.33), “metal” (0.26)
pblip(m̂|tcap3d, A) “teflon” (0.92), “stranded copper” (0.05)
pblip(m̂|tpali, A) “plastic” (0.36), “pvc” (0.23)

17



Material prediction examples on each category from our curated test set (contd).

m “cardboard”
tcap3d “stack of brown cardboard boxes with white tape on them”
tpali “packing box”
ppali(m̂|tcap3d) “cardboard” (0.64), “paper” (0.30)
ppali(m̂|tpali) “cardboard” (0.74), “paper” (0.13)
ppali(m̂|A) “cardboard” (0.52), “cellulose tape,Scotch tape,Sellotape”

(0.17)
ppali(m̂|tcap3d, A) “cardboard” (0.67), “paper” (0.13)
ppali(m̂|tpali, A) “cardboard” (0.82), “corrugated cardboard” (0.06)
pblip(m̂|tcap3d) “shipping cartons” (1.00), “a receptacle for the shipment

of goods” (0.00)
pblip(m̂|tpali) “cardboard” (0.65), “paper” (0.27)
pblip(m̂|A) “cardboard” (1.00), “styrofoam” (0.00)
pblip(m̂|tcap3d, A) “cardboard” (0.96), “3d model” (0.01)
pblip(m̂|tpali, A) “cardboard” (0.99), “paper” (0.01)
m “cardboard”
tcap3d “cardboard Amazon robot toy with logo”
tpali “carton”
ppali(m̂|tcap3d) “cardboard” (0.57), “paper” (0.32)
ppali(m̂|tpali) “cardboard” (0.47), “paper” (0.45)
ppali(m̂|A) “cardboard” (0.80), “carton” (0.13)
ppali(m̂|tcap3d, A) “cardboard” (0.73), “carton” (0.10)
ppali(m̂|tpali, A) “cardboard” (0.85), “corrugated cardboard” (0.06)
pblip(m̂|tcap3d) “cardboard” (0.99), “acetate” (0.01)
pblip(m̂|tpali) “paper” (0.75), “paperboard” (0.25)
pblip(m̂|A) “cardboard” (1.00)
pblip(m̂|tcap3d, A) “cardboard” (1.00), “cardboard, cardboard boxes, card-

board boxes, cardboard boxes, cardboard boxes, card-
board boxes, cardboard boxes, cardboard boxes, cardboard
boxes, cardboard boxes, cardboard” (0.00)

pblip(m̂|tpali, A) “cardboard” (0.99), “paper” (0.01)
m “plastic”
tcap3d “large silver trash bag”
tpali “garbage bag”
ppali(m̂|tcap3d) “plastic” (0.45), “aluminum” (0.35)
ppali(m̂|tpali) “plastic” (0.80), “polythene” (0.07)
ppali(m̂|A) “garbage” (0.45), “plastic” (0.42)
ppali(m̂|tcap3d, A) “plastic” (0.66), “cellophane” (0.13)
ppali(m̂|tpali, A) “plastic” (0.83), “polythene” (0.06)
pblip(m̂|tcap3d) “plastic” (0.97), “woven polypropylene” (0.03)
pblip(m̂|tpali) “plastic” (1.00), “a polyethylene terephthalate (PET) film”

(0.00)
pblip(m̂|A) “black plastic” (0.67), “3ds max” (0.15)
pblip(m̂|tcap3d, A) “plastic” (0.83), “black plastic” (0.11)
pblip(m̂|tpali, A) “plastic” (0.60), “black plastic” (0.38)
m “plastic”
tcap3d “blue plastic bowl with a lid”
tpali “washtub”
ppali(m̂|tcap3d) “polypropylene” (0.53), “plastic” (0.47)
ppali(m̂|tpali) “porcelain” (0.56), “ceramic” (0.35)
ppali(m̂|A) “plastic” (0.65), “polypropylene” (0.18)
ppali(m̂|tcap3d, A) “polypropylene” (0.58), “plastic” (0.24)
ppali(m̂|tpali, A) “plastic” (0.78), “polypropylene” (0.10)
pblip(m̂|tcap3d) “borosilicate glass” (0.97), “PP (Polypropylene)” (0.02)
pblip(m̂|tpali) “plastic” (0.90), “tin” (0.10)
pblip(m̂|A) “plastic” (1.00), “polygons” (0.00)
pblip(m̂|tcap3d, A) “plastic” (0.99), “polypropylene” (0.01)

18



Material prediction examples on each category from our curated test set (contd).

pblip(m̂|tpali, A) “plastic” (1.00)

19


	Introduction
	Background
	Semantic Descriptions
	Aggregation of Responses
	Comparative Evaluation
	Why Aggregate

	Physical Properties 
	Results

	Conclusions
	Supplementary Material
	The Case for Property-Specific Annotations
	Prior Work

	Dataset Details
	Objaverse Rendering
	Material Test Set

	Extended Results
	Detailed Comparison with CAP3D
	Detailed Comparison of Material Inference Results


