# Evaluating VLMs for Score-Based, Multi-Probe Annotation of 3D Objects

Rishabh Kabra<sup>12</sup>, Loic Matthey<sup>1</sup>, Alexander Lerchner<sup>1</sup>, Niloy J. Mitra<sup>2</sup> <sup>1</sup>Google DeepMind, <sup>2</sup>University College London {rkabra, lmatthey, lerchner}@google.com, n.mitra@ucl.ac.uk

#### Abstract

Unlabeled 3D objects present an opportunity to leverage pretrained vision language models (VLMs) on a range of annotation tasks—from describing object semantics to physical properties. An accurate response must take into account the full appearance of the object in 3D, various ways of phrasing the question/prompt, and changes in other factors that affect the response. We present a method, to marginalize over arbitrary factors varied across VLM queries, which relies on the VLM's scores for sampled responses. We first show that this probabilistic multi-probe aggregation can outperform a language model (e.g., GPT4) for summarization, for instance avoiding hallucinations when there are contrasting details between responses. Secondly, we show that aggregated annotations are useful for prompt-chaining; they help improve downstream VLM predictions (e.g., of object material when the object's type is specified as an auxiliary input in the prompt). Such auxiliary inputs allow ablating and measuring the contribution of visual reasoning over language-only reasoning. Using these evaluations, we show that VLMs approach the quality of human-verified annotations on both type and material inference on the large-scale Objaverse dataset.

#### 1 Introduction

An abundance of text and visual paired data has powered the rise of powerful representation learning algorithms and generative models for images. In the 3D community, we are yet to see a comparable modeling revolution [1, 2] despite growing repositories of object models, character assets, and 3D scans. A key blocker is the lack of clean text annotations.

Synthetic annotation pipelines stand ready to fill the gap. 2D vision language models [3–6]–by virtue of being trained on a nontrivial fraction of human knowledge–contain rich information about the nature of all things. While we'd hope for their description prowess to translate to 3D, this comes with at least three challenges: (i) There can be discrepancies between multiple views of the same object (e.g. when viewed from the front or side). These need to be reconciled to produce an aggregate answer or description. (ii) It's unclear what to optimize to generate multipurpose annotations, and for that reason, how to tune the way we probe a VLM. This issue is compounded by the limited availability of ground truth or human annotations, which cannot be collected at the same rate at which VLMs can respond to arbitrary queries. (iii) While language is well suited to describing object semantics (i.e. type), human vocabulary is stretched when describing concepts like material or shape of particular interest in 3D. Unstructured captioning is unlikely to capture such properties consistently.

We make the case for property-specific annotations (PSAs) using structured visual question answering. In contrast to a descriptive blurb or caption, a bite-sized value can be easily compared or used for indexing/search. For that reason, such annotations are easier to aggregate across multiple occurrences (e.g. different views of an object or paraphrases of a question). With structured VQA, we have a better chance of collecting and evaluating VLM responses for less linguistic concepts. PSAs also

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

make it easier to intervene on the value of variables (e.g. by specifying them in the prompt) to probe VLMs in a causally driven manner.

To address the challenges of evaluating a VLM annotation pipeline, we explore two evaluation strategies: In Sec 3, we study the variation in VLM responses under changes in view or prompt, and how best to summarize responses reliably. In Sec 4, we assess the usefulness of an inferred property for the downstream task of inferring another property. We run the downstream inference in LLM and VLM modes. Besides their different evaluation focus, the two sections also focus on different object properties: semantic type and material respectively.

Our salient contributions are the following-we:

- 1. Run 55B-parameter variants of PaLI [7] to generate captions and property-specific annotations on the Objaverse [8] dataset.
- 2. Introduce a likelihood-based probabilistic aggregation of VLM responses across object views and multiple queries.
- 3. Compare our annotations and aggregation method with concurrent work based on GPT4 (CAP3D [9]) and baseline sources.
- 4. Show the value of aggregate, structured intermediate representations for downstream inference in VLMs, akin to chain-of-thought reasoning.
- 5. Plan to release our outputs at https://github.com/google-deepmind/objaverse\_ annotations.

#### 2 Background

**Dataset.** The main target of our work is Objaverse 1.0 [8], a collection of 800K diverse but poorly annotated 3D models uploaded by 100K artists to the Sketchfab platform. While the tags and descriptions uploaded by artists are noisy and unreliable, a subset of 47K objects called Objaverse-LVIS is accompanied by human-verified categories. We rely on it to validate our semantic annotations.

**Related work.** A three-stage pipeline was proposed to generate captions for Objaverse concurrently to our work. Although our objective—to produce property-specific annotations—is meaningfully different, we rely on CAP3D [9] as the primary baseline for our work. The pipeline is as follows: a VLM (BLIP-2 [3]) first produces 5 candidate captions for 8 different object views; CLIP [6] filters all but one caption per view, and GPT4 [10] performs a final detail-preserving but hallucination-prone aggregation. Our procedure is similar up to CAP3D's first stage. We show major flaws with CAP3D's aggregation step in Sec 3.

**Models.** To generate our own captions or annotations, we rely on two variants of PaLI-X fine-tuned specifically for captioning or visual question answering. Both variants consist of a ViT-22B [11] vision model and 32B UL2 [12] language backbone. For the material prediction task, we also run BLIP-2 T5 XL as a baseline. All models are run zero-shot, one input image at a time, and output an autoregressive distribution over language tokens. The likelihood of any sampled text can be computed during the VLM sampling process (e.g. beam search) without any additional cost. None of our methods or results are specific to PaLI or BLIP.

#### **3** Semantic Descriptions

To ask for the type of an object is the most language-amenable VLM query. Despite this, we illustrate the challenge of captioning a 3D object in Fig 1-A. Concurrent work (CAP3D [9]) to produce captions for Objaverse relies on GPT4 [10] to summarize annotations across multiple views of an object. This can produce deeply flawed summaries. The LLM propagates hallucinations or confusions when there's contrasting captions among views. Despite being instructed that it is given captions of the same object, the LLM tries to preserve details across views rather than reconcile them (see Fig 1-B).

To address this, we propose an alternative method of aggregating multi-view or multi-query annotations in Sec 3.1. We then compare semantic descriptions from baseline sources with annotations produced by our method in Sec 3.2. Finally, we unpack the performance of our aggregation relative to individual views or queries in 3.3.





Figure 1: **A.** Three of eight regularly spaced views of a 3D object. Each view is accompanied by the top caption produced by two different models: BLIP-2 and PaLI-X. Captions from BLIP-2 were obtained from the CAP3D baseline, whereas captions from PaLI-X were generated with accompanying scores for this work. Both models show an expected variation in responses across views. **B.** To aggregate multi-view captions, CAP3D feeds them to GPT4 and prompts it for an object-level summary. The LLM is often unable to denoise captions from contrasting views, and simply "adds up" the contents. **C.** Our aggregation helps surface more reliable responses, weighting them based on their combined scores across views.

#### 3.1 Aggregation of Responses

We introduce an aggregation for VLM outputs across multiple queries that relies on the log-likelihoods or scores of the sampled outputs. When VLM queries are correlated (e.g. views of the same object or paraphrased questions), we can expect recurring responses across queries. Say we run I queries to get J (response, score) pairs per query, for a total of IJ pairs  $\{(r_{i,j}, s_{i,j})\}$ . Let f be a map to post-process strings and reduce them to a canonical form. The following aggregation helps identify responses which occur frequently while accounting for the model's confidence in each occurrence:

$$\forall r \in \{r_{i,j}\}, \quad s_i(r) := \sup\{s_{i,j} \mid f(r_{i,j}) = r \text{ and } j = 1, 2, \dots, J\}$$
(1)

$$s_{agg}(r) := \log \sum_{i} \exp(s_i(r)) \tag{2}$$

$$p(r|\{r_{i,j}, s_{i,j}\}) := \exp(s_{agg}(r)) / \sum_{r'} \exp(s_{agg}(r'))$$
(3)

Equation 1 deduplicates responses for a given VLM query *i*. The string processor *f* determines when  $r_{i,j}$  is treated equivalent to *r*, and can be customized per VLM. This is useful when responses are identical up to punctuation, case, or uninformative tokens. Since these are undesirable duplicates, we want to avoid accumulating their scores, so we take the supremum instead. Note that  $s_i(r)$  can be  $-\infty$  if no *r* equivalent occurs in the J responses for query *i*.

Equation 2 then aggregates scores across occurrences of r in distinct queries. These are desirable duplicates (over distinct images or prompts) which merit reinforcing. Finally, equation 3 computes an aggregate probability distribution over responses by taking a softmax over the aggregate scores.

In contrast to model-based summarization (e.g., using an LLM), this aggregation requires a trivial numerical computation. There's no scoring cost in addition to generating the outputs; most VLM sampling methods can output the score simultaneously. Whereas an LLM needs a prompt specific to the aggregation task, our method can be used on arbitrary VLM responses that need aggregating. While an LLM produces a point estimate, our method outputs a distribution over all possible responses.

#### 3.2 Comparative Evaluation

We collect four sets of semantic descriptions for Objaverse :



Figure 2: **Comparison of captions and type annotations generated from different sources/models.** The bars show cosine similarity scores (↑) computed in an independent text-embedding space and averaged over the Objaverse-LVIS subset. We show an example caption/type annotation beneath each bar; these correspond to a fixed object shown in the top-left corner from two different views.

- 1. **Objaverse tags**: these were uploaded by the creator of each 3D asset and are available as part of the original dataset. They are inherently noisy and inconsistent between objects. We comma-separate the tags to produce a concatenated string for each object.
- 2. **CAP3D captions**: these were generated and released by [9]. A post-processed version of the captions removes the frequent prefix, "3D model of." We compare both versions.
- 3. **PaLI captions**: using a captioning-specific variant of PaLI and simple prompt ("A picture of "), we generated descriptive captions similar to CAP3D's first stage. We then applied our aggregation to summarize J = 5 responses across I = 8 views per object. We compare results with and without a post-processing map f (Eq 1) to ignore suffixes of the form "on/against a white background."
- 4. **PaLI VQA annotations**: we used 4 VQA prompts to probe for the type of each object: (i) What is this? (ii) What type of object is this? (iii) What is in the image? (iv) Describe the object in the image. This produced 4 sets of top-5 responses per view. The responses are typically WordNet [13] entities that group synonyms or related terms in a comma-separated list. We deduplicate responses by taking the first such term per response. This post-processing map is also ablated.

We compare outputs from these sources to human-verified object categories from the Objaverse-LVIS subset. For sources that use our aggregation method, we take the likeliest output from each aggregate distribution. We proceed to embed all text using an independent language encoder, namely the Universal Sentence Encoder (v4) [14] from TensorFlow-Hub. Then, we compute cosine similarities between the embedded outputs and human-verified categories.

Fig 2 shows that all VLM pipelines outperform the tags from the original dataset. PaLI captions, with our likelihood-based aggregation, are slightly better than (the three-stage) CAP3D captions. Our PaLI VQA annotations perform significantly better. We will unpack the role of aggregating across multiple questions and object views in the following subsection.

#### 3.3 Why Aggregate

To show why our aggregation works, we look at the individual views and queries that comprised our PaLI VQA annotations. Fig 3 shows the effect of aggregating across various slices of the views and questions presented to the VLM. We also compare our default log-sum-exp (LSE) aggregation (Eq 2) with the simpler choice of taking the maximum-score response across all views/questions.

There's a small but significant gap between the LSE and maximum-score aggregations. The latter performs worse than several views individually, because overconfident responses might dominate the aggregate. The LSE aggregation performs better than any individual view.

Comparing different questions, there is in fact a particular question which serves as the best VLM prompt for our current evaluation metric (cosine similarity with respect to LVIS categories). Including less optimal questions in our aggregation does not improve the score. Nevertheless it smoothens the aggregate response distribution and widens the support. We show this qualitatively in Fig 4. Aggregating across questions helps avoid mode collapse in bimodal cases (such as the bee on the



Figure 3: Likelihood-based aggregation across views and across questions. Each bar computes an aggregate output distribution from a different subset of responses. The mode of each aggregate output distribution is scored using cosine similarity on Objaverse-LVIS as before. The left plot scores 8 individual views versus the aggregate of all views, while highlighting the gap between asking a default question or multiple question variants. The right plot scores 4 individual questions versus the aggregate of all questions, while highlighting the gap between using a fixed object view or all views.



Figure 4: **Histograms showing PaLI VQA responses per question and after aggregation** for fixed views of a selection of objects. To reduce visual clutter, we filtered responses with scores below a fixed threshold (-1.2). Each subplot legend lists the possible responses sorted by aggregate probabilities. For comparison, we show the object's LVIS category where available.

wall), or smoothen over question-specific biases (e.g., questions that include the word "object" make the VLM likelier to say "toy," while remaining questions are likelier to elicit "statue" or "lion.")

With robustness in mind, we include all questions and object views when aggregating PaLI VQA annotations. Ultimately the goal is to produce an intermediate representation suitable for multiple tasks. To that end, we will test these annotations on downstream inference of properties in the next section. We will show that the performance advantage of PaLI VQA annotations is not limited to our type-specific metric, but extends to the inference of physical properties.

#### **4** Physical Properties

What an object is made of has immediate implications for how it behaves physically. Whether it will sink, bounce, stretch, or crack is largely determined by its material composition. There is limited prior work to study whether VLMs can infer such properties of an object.

We expect material to be less amenable to description in language than type; this raises the question whether we should prompt a VLM to reason deeper about material. One way to do this is to equip the VLM with previous inferences about the object. Concretely, we can ask the VLM what material something is made of while including the object's type as part of the question/prompt. Thus, the VLM can make its prediction on the basis of two factors: object type and appearance.

We ablate the influence of each factor on the VLM as follows: we pose questions including or excluding the object type (e.g. "what material is the spoon made of" vs "what material is this made of"). We also pose the former question (mentioning the object's type) without a visual input and

Table 1: Accuracy of material inference using two different VLMs. The models are provided either an object type annotation or image as inputs or both. We report the top-3 accuracy (whether the correct material is in the top 3 predictions,  $\uparrow$ ) as well as the soft accuracy (probability of the correct material in the output distribution,  $\uparrow$ ) averaged over our curated material test set. Whenever we use appearance as an input (i.e., VLM mode), we aggregate responses across object views. Thus the predicted distributions contain up to J=5 alternatives in LLM mode or up to IJ=40 in VLM mode.

| -       |            | Type only       |               | Appearance only | Type and Appearance          |                              |
|---------|------------|-----------------|---------------|-----------------|------------------------------|------------------------------|
|         |            | (LLM mode)      |               | (VLM mode)      | (VLM mode)                   |                              |
|         |            | CAP3D           | PaLI-VQA      | No caption/type | CAP3D                        | PaLI-VQA                     |
|         |            | captions        | types         | information     | captions                     | types                        |
| PaLI-X  | Top-3 acc. | $0.84 \pm 0.36$ | $0.66\pm0.47$ | $0.84 \pm 0.36$ | $0.90 \pm 0.30$              | $\boldsymbol{0.90 \pm 0.30}$ |
| 55B VQA | Soft acc.  | $0.42\pm0.27$   | $0.31\pm0.30$ | $0.40 \pm 0.28$ | $0.46 \pm 0.27$              | $0.49 \pm 0.31$              |
| BLIP-2  | Top-3 acc. | $0.28\pm0.45$   | $0.26\pm0.44$ | $0.66 \pm 0.47$ | $\boldsymbol{0.70 \pm 0.46}$ | $\boldsymbol{0.70 \pm 0.46}$ |
| T5 XL   | Soft acc.  | $0.22\pm0.37$   | $0.20\pm0.36$ | $0.51 \pm 0.43$ | $0.48 \pm 0.41$              | $0.53 \pm 0.42$              |

definite article (e.g. "what material is a spoon made of"). This makes the model operate as an LLM, with the same model weights, and helps measure the accuracy of language-only reasoning.

When specifying the object's type as part of a question, we have the choice of using rich detailed captions like CAP3D's, or succinct type annotations as produced by our VQA pipeline (see Sec 3.2). We study which of these performs better (but refer to them as "type annotations" collectively).

To ensure our results are not specific to a model class or size, we run these evaluations on two VLMs: PaLI-X VQA as before, and the smaller BLIP-2 T5 XL (used in CAP3D).

#### 4.1 Results

To measure the accuracy of material prediction, we curate a test set of objects spanning 13 material classes (see Appendix B.2 for details). We then compare different ways of probing the VLM on the test set. Unlike in Sec 3.2, we cannot rely on similarity in text embedding space because materials can be close even if they are not exactly the same (e.g. "wood" and "metal" have a cosine similarity score of 0.408). So we look for an exact string match in the VLM responses.

Table 1 reveals that using type annotations (CAP3D or PaLI-VQA) and object appearance simultaneously consistently outperforms using one or the other. This reasoning advantage is reminiscent of zero-shot chain-of-thought prompting [15] or iterative inference [16, 17]. Having access to previous computations can help the VLM avoid redundant processing. This holds regardless of whether the previous inference came from the same VLM, and even for a smaller VLM like BLIP-2 T5 XL.

Although CAP3D captions contain more material information than PaLI-VQA type annotations (see "Type only" sub-columns), they are less useful as an auxiliary input when also using the object's appearance (see soft accuracies under "Type and Appearance"). This could be explained by possible hallucinations or specious details in the captions which hinder VLM reasoning. It goes to suggest that property-specific annotations serve as more robust intermediate representations for downstream tasks.

#### 5 Conclusions

We generated property-specific annotations for 3D objects using VLMs which take in a single image and text-based prompt. We attempted to probe for properties which are increasingly inaccessible to language-based reasoning, from semantic type to material composition.

Along the way, we evaluated what VLMs are sensitive to, including changes in object view, question wording, prior inferences specified in the prompt, and access to the object's appearance. We highlighted the value of marginalizing over some of these factors to produce an aggregate response, akin to how humans might arrive at an inference by examining an object from multiple angles.

We hope our outputs serve a variety of downstream 3D applications (from generation to retrieval, from physical simulation to neuro-symbolic processing); and that our evaluations and insights may help shape VLM annotation pipelines in other contexts.

#### References

- Zifan Shi, Sida Peng, Yinghao Xu, Yiyi Liao, and Yujun Shen. Deep generative models on 3d representations: A survey. arXiv preprint arXiv:2210.15663, 2022.
- [2] Qun-Ce Xu, Tai-Jiang Mu, and Yong-Liang Yang. A survey of deep learning-based 3d shape generation. *Computational Visual Media*, 9(3):407–442, 2023.
- [3] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. *arXiv preprint arXiv:2301.12597*, 2023.
- [4] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. *NeurIPS*, 35:23716–23736, 2022.
- [5] Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal, Owais Khan Mohammed, Saksham Singhal, Subhojit Som, et al. Image as a foreign language: Beit pretraining for vision and vision-language tasks. In *CVPR*, pages 19175–19186, 2023.
- [6] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pages 8748–8763. PMLR, 2021.
- [7] Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu, Carlos Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, et al. Pali-x: On scaling up a multilingual vision and language model. arXiv preprint arXiv:2305.18565, 2023.
- [8] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of annotated 3d objects. In *CVPR*, pages 13142–13153, 2023.
- [9] Tiange Luo, Chris Rockwell, Honglak Lee, and Justin Johnson. Scalable 3d captioning with pretrained models. *arXiv preprint arXiv:2306.07279*, 2023.
- [10] OpenAI. Gpt-4 technical report, 2023.
- [11] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling vision transformers to 22 billion parameters. In *International Conference on Machine Learning*, pages 7480–7512. PMLR, 2023.
- [12] Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, and Donald Metzler. Unifying language learning paradigms. *arXiv preprint arXiv:2205.05131*, 2022.
- [13] George A Miller. Wordnet: a lexical database for english. *Communications of the ACM*, 38(11):39–41, 1995.
- [14] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Universal sentence encoder. arXiv preprint arXiv:1803.11175, 2018.
- [15] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. *NeurIPS*, 35:22199–22213, 2022.
- [16] Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reasoning. In Proceedings of the annual meeting of the cognitive science society, volume 36, 2014.
- [17] Joe Marino, Yisong Yue, and Stephan Mandt. Iterative amortized inference. In International Conference on Machine Learning, pages 3403–3412. PMLR, 2018.
- [18] Zhizhong Han, Chao Chen, Yu-Shen Liu, and Matthias Zwicker. Shapecaptioner: Generative caption network for 3d shapes by learning a mapping from parts detected in multiple views to sentences. In *Proceedings of the 28th ACM International Conference on Multimedia*, pages 1018–1027, 2020.
- [19] Juil Koo, Ian Huang, Panos Achlioptas, Leonidas J Guibas, and Minhyuk Sung. Partglot: Learning shape part segmentation from language reference games. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 16505–16514, 2022.

- [20] Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-Fu Chang. Open-vocabulary object detection using captions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 14393–14402, 2021.
- [21] Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 14953–14962, June 2023.
- [22] Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for reasoning. *arXiv preprint arXiv:2303.08128*, 2023.
- [23] Deyao Zhu, Jun Chen, Kilichbek Haydarov, Xiaoqian Shen, Wenxuan Zhang, and Mohamed Elhoseiny. Chatgpt asks, blip-2 answers: Automatic questioning towards enriched visual descriptions. arXiv preprint arXiv:2303.06594, 2023.
- [24] Jensen Gao, Bidipta Sarkar, Fei Xia, Ted Xiao, Jiajun Wu, Brian Ichter, Anirudha Majumdar, and Dorsa Sadigh. Physically grounded vision-language models for robotic manipulation. arXiv preprint arXiv:2309.02561, 2023.
- [25] Huy Ha and Shuran Song. Semantic abstraction: Open-world 3d scene understanding from 2d visionlanguage models. In 6th Annual Conference on Robot Learning, 2022.
- [26] Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang Gan. 3d-llm: Injecting the 3d world into large language models. arXiv preprint arXiv:2307.12981, 2023.
- [27] Qiao Gu, Alihusein Kuwajerwala, Sacha Morin, Krishna Murthy Jatavallabhula, Bipasha Sen, Aditya Agarwal, Corban Rivera, William Paul, Kirsty Ellis, Rama Chellappa, Chuang Gan, Celso Miguel de Melo, Joshua B. Tenenbaum, Antonio Torralba, Florian Shkurti, and Liam Paull. Conceptgraphs: Open-vocabulary 3d scene graphs for perception and planning, 2023.

### **A** Supplementary Material

#### A.1 The Case for Property-Specific Annotations

As a human would make inferences about an object—by examining it, making higher-order inferences before more specific ones—we propose an inference scheme for VLMs to annotate an arbitrary 3D object (Fig 5). Higher-level properties (such as type, material, shape, count, and composition) are ones that require access to the object's appearance, but might subsequently facilitate lower-level inferences using associative or symbolic reasoning. If the higher-level results are categorical, we could implement the lower-level inferences as lookups from a precomputed table.

Since language is our primary mode of probing for these properties, our inference scheme does not reflect a *causal* view of how the properties arose. Rather, it presents a suite of object-centric inference tasks to evaluate VLMs on.



Figure 5: A potential inference scheme to sequence property-specific annotations for 3D objects. The arrows suggest where a VLM might benefit from having access to previous inferences. Properties toward the right require reasoning skills beyond language (e.g. spatial or counting). Lower-level inferences may not require access to the object's appearance.

#### A.2 Prior Work

Before VLMs, one approach [18] to caption 3D shapes focused on detecting parts of an object across multiple views, then translating a sequence of view-aggregated part features into a caption. Another work [19] showed that part segmentation was possible using human text-based annotations to discriminate between related shapes.

Foreshadowing the possibilities for semantic annotation of 2D images, [20] explored novel object detection using sparse bounding box annotations but extensive image-caption data. With the advent of VLMs, more image processing and reasoning tasks came within reach: VISPROG [21] used in-context VLM learning to produce Python code to invoke off-the-shelf computer vision models and image processing APIs. ViperGPT [22] also showed gains in reasoning spatially or at the level of object attributes by decomposing such queries into executable subroutines. Even closer to our work, [23] explored an interactive VQA approach using an LLM (ChatGPT) to ask questions about image contents, a VLM (BLIP-2) to answer them, and finally an LLM to produce a summary caption. [24] recently explored the inference of physical properties such as object material in images and collected a custom dataset to fine-tune VLMs.

Applying VLMs to 3D domains remains under-explored. [25] propose using object category labels to extract relevancy maps from 2D VLMs. These can be turned into 3D occupancies, and then utilized for scene completion or object localization tasks. [26] propose training 3D VLMs by projecting 3D feature maps into 2D and bootstrapping from a pretrained 2D VLM. The only method that contends with aggregating outputs from multiple VLM probes is ConceptGraphs [27], released when



Figure 6: Sweep over the rendering parameter  $\theta_{camera}$  which determines the camera's height. We render and caption all objects in Objaverse-LVIS for different values of  $\theta_{camera}$ . All other camera parameters are held constant (we use a single viewpoint: view 7). Finally we score the captions using cosine similarity as before.

this work was submitted. Their focus is on building open-vocabulary scene graphs to help with navigation-related tasks in larger environments, which is different from our objective of generating object-centric, property-specific annotations.

### **B** Dataset Details

#### **B.1** Objaverse Rendering

We placed each object at the origin and scaled its maximum dimension to 1. We then rotated the camera at a fixed height and distance to the origin, rendering images at azimuthal intervals of 45 degrees. To determine the camera height, we swept over a few values of the angle  $\theta$  w.r.t. the z-axis (Fig 6). We captioned each set of rendered images and used the cosine similarity metric on Objaverse-LVIS to choose the final camera height ( $\theta = 68$ ).

#### B.2 Material Test Set

We search through tags in the original Objaverse dataset for 12 material keywords: 'glass', 'porcelain', 'leather', 'oak', 'metal', 'marble', 'wood', 'ceramic', 'gold', 'rubber', 'cardboard', and 'plastic'. The matches are noisy because the tags often contain spurious materials, likely to optimize search engine visibility. So we handpick a set of diverse objects for each material from the initial matches. The final test set contains 152 objects. See Appendix C.2 for examples along with our prediction results.

### C Extended Results

#### C.1 Detailed Comparison with CAP3D

CAP3D uses a distinct image rendering pipeline, so this becomes an immediate point of difference with our work. While we render images at a fixed camera height, CAP3D images include top-down and bottom views of the object. Although we did not have access to their original images, we were able to compare rendered images from Fig 23 in the CAP3D paper. Only views 1, 3, 5, and 7 (zero-indexed) from our pipeline are comparable to 4, 3, 5, and 2 from the CAP3D pipeline.

We use 10 objects to illustrate the difference between our captioning results and those from CAP3D (Fig 7). We present images we rendered from the four views which are comparable between the two pipelines.

### C.2 Detailed Comparison of Material Inference Results



Figure 7: Comparison of captions from our pipeline versus the baseline CAP3D. We also show view-specific captions from the underlying VLMs (PaLI-X and BLIP-2).



Figure 7: Comparison of captions from our pipeline versus the baseline CAP3D (contd). The last two rows were described as failure cases for CAP3D in that paper.

Table 2: Material prediction examples on each category from our curated test set. We show predicted distributions from both VLMs (PaLI-X and BLIP-2) and all five sets of inputs described in Sec 4. For brevity, each distribution is represented by the top two outputs along with their probabilities. We use  $t_{cap3d}$  or  $t_{pali}$  to denote the type annotations, A to denote all object views,  $p_{vlm}(\hat{m}|.)$  to denote a predicted distribution, and m to denote the true material.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m                                                                  | "glass"                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $t_{cap3d}$                                                        | "hat and a jar, both with ropes tied around them"                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $t_{pali}$                                                         | "potion"                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{pali}(\hat{m} t_{can3d})$                                      | "cotton" (0.64), "can't tell" (0.36)                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{nali}(\hat{m} t_{nali})$                                       | "potion" (0.35), "glass" (0.27)                                                                                                               |
| y and the second s | $p_{pall}(\hat{m} A)$                                              | "cork" (0.45), "glass" (0.19)                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{ral}(\hat{m} t_{ran}, A)$                                      | "burlap" $(0.44)$ "canvas" $(0.30)$                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{pati}(\hat{m} t_{1},A)$                                        | "glass" $(0.67)$ "cork" $(0.17)$                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{pali}(m t_{pali}, 11)$                                         | "straw" $(0.49)$ "nlastic" $(0.33)$                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{blip}(m c_{cap3d})$<br>$p_{111}(\hat{m} t_{cap3d})$            | "a tainted potion made of a tainted potion and a tainted                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{blip}(m v_{pali})$                                             | notion" (0.77) "a tainted notion made of a tainted                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    | potion $(0.77)$ , a tainted potion made of a tainted potion,                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $( \land   A)$                                                     | and a tainted poir $(0.14)$                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{blip}(m A)$                                                    | Wood (0.83), "rope" (0.10)                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{blip}(m t_{cap3d},A)$                                          | "wood" $(0.68)$ , "leather" $(0.13)$                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{blip}(m t_{pali},A)$                                           | "wood" (0.95), "stone" (0.04)                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m                                                                  | "glass"                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $t_{cap3d}$                                                        | "light bulb"                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $t_{pali}$                                                         | "light"                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{pali}(\hat{m} t_{cap3d})$                                      | "glass" (0.77), "filament" (0.11)                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{pali}(\hat{m} t_{pali})$                                       | "glass" (0.58), "light-emitting diode,LED" (0.13)                                                                                             |
| 177 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $p_{pali}(\hat{m} A)$                                              | "glass" (0.41), "brass" (0.19)                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{pali}(\hat{m} t_{cap3d},A)$                                    | "glass" (0.60), "porcelain" (0.13)                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{pali}(\hat{m} t_{pali},A)$                                     | "glass" (0.51), "filament" (0.14)                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\hat{p_{blip}}(\hat{m} \hat{t_{cap3d}})$                          | "glass" (0.52), "filament" (0.29)                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{blip}(\hat{m} t_{pali})$                                       | "light-emitting diodes" (0.73), "light-emitting diodes                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    | (LEDs)" (0.20)                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{blip}(\hat{m} A)$                                              | "metal" (0.30), "3ds max" (0.22)                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{blin}(\hat{m} t_{can3d},A)$                                    | "metal" (0.84), "gold" (0.13)                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{blip}(\hat{m} t_{pali},A)$                                     | "metal" (0.78), "gold" (0.14)                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m                                                                  | "porcelain"                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $t_{can3d}$                                                        | "blue and white vase featuring a dragon design"                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $t_{pali}$                                                         | "vase"                                                                                                                                        |
| And the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $p_{nali}(\hat{m} t_{can3d})$                                      | "ceramic" (0.38), "porcelain" (0.34)                                                                                                          |
| from the form of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $p_{pali}(\hat{m} t_{pali})$                                       | "ceramic" (0.35), "glass" (0.31)                                                                                                              |
| Sat 1 and in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $p_{pari}(\hat{m} A)$                                              | "faience" (0.62) "porcelain" (0.14)                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{pall}(\hat{m} 1)$<br>$p_{mall}(\hat{m} 1) = A$                 | "ceramic" $(0.38)$ "porcelain" $(0.17)$                                                                                                       |
| a contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $p_{pati}(\hat{m} t_{apsa}, 1)$<br>$n_{apsa}(\hat{m} t_{apsa}, A)$ | "faience" (0.44) "ceramic" (0.24)                                                                                                             |
| the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $p_{pali}(m t_{pali}, m)$                                          | "norcelain" $(0.65)$ "Chinese celadon" $(0.32)$                                                                                               |
| And the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $p_{0iip}(m v_{cap3a})$<br>$p_{11}(\hat{m} t_{11})$                | "Porcelain" $(0.86)$ , "terracotta" $(0.09)$                                                                                                  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $p_{olip}(m opali)$<br>$p_{uv}(\hat{m} A)$                         | "norcelain" $(0.83)$ "ceramic" $(0.08)$                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{0lip}(m 1)$<br>$p_{li}(\hat{m} 1) = (\hat{m} 1)$               | "norcelain" $(0.88)$ "china" $(0.12)$                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{blip}(m c_{cap3d}, 1)$<br>$p_{11}(\hat{m} t_{11}, A)$          | "porcelain" $(0.00)$ , "china" $(0.12)$                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{blip}(m v_{pali}, m)$                                          | "porcelain" (0.00), ennia (0.07)                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 111<br>t                                                           | "small white porcelain yese with colorful floral designs                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\iota_{cap3d}$                                                    | sinan white porcerain vase with colorful horal designs                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>t</i>                                                           | on n<br>"inkwell"                                                                                                                             |
| State State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $v_{pali}$                                                         | "noraclein" (0.20) "feience" (0.28)                                                                                                           |
| Sing the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $P_{pali}(m \iota_{cap3d})$                                        | "alass" $(0.28)$ "porcelain" $(0.24)$                                                                                                         |
| Last all all a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $P_{pali}(m \iota_{pali})$                                         | (0.20), policialli (0.24)<br>"faionce" (0.88) "norcelain" (0.06)                                                                              |
| THE SHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $p_{pali}(m A)$                                                    | $\begin{array}{c} \text{faience}  (0.00),  \text{polectalli}  (0.00) \\ \text{"faience"}  (0.68),  \text{"poreclain"}  (0.15) \\ \end{array}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{pali}(m \iota_{cap3d}, A)$                                     | Tatenet $(0.00)$ , policialli $(0.15)$<br>"faionoo" $(0.71)$ "noreolain" $(0.16)$                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{pali}(m \ell_{pali}, A)$                                       | Talence $(0.71)$ , porcerani $(0.10)$<br>"Chine" $(0.59)$ "commis" $(0.24)$                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{blip}(m t_{cap3d})$                                            | China (0.58), Ceramic (0.24)<br>" $(0.02)$ "motol on place (0.24)                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{blip}(m t_{pali})$                                             | metal $(0.93)$ , "metal or plastic" $(0.06)$                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{blip}(\hat{m} A)$                                              | "porcelain" (0.99), "white porcelain" (0.01)                                                                                                  |

|      | $p_{blip}(\hat{m} t_{cap3d},A)$                                               | "porcelain" (0.80), "china" (0.12)<br>"porcelain" (0.94), "china" (0.04)                                               |
|------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|      | $\frac{p_{blip}(m v_{pali}, 21)}{m}$                                          | "leather"                                                                                                              |
|      | t                                                                             | "armored leather gloves and a brown leather boot"                                                                      |
|      | $t_{mali}$                                                                    | "glove"                                                                                                                |
|      | $p_{all}(\hat{m} t,\dots,t)$                                                  | "leather" (0.83) "cowhide" (0.08)                                                                                      |
|      | $p_{pali}(\hat{m} t_{cap3a})$                                                 | "leather" $(0.34)$ "cotton" $(0.21)$                                                                                   |
|      | $p_{pali}(m v_{pali})$<br>$n_{pali}(\hat{m} \Delta)$                          | "leather" (0.69) "armor plate armour plate armor plat-                                                                 |
|      | Ppali(m 1)                                                                    | ing plate armor plate armour" (0.08)                                                                                   |
|      | $m_{\rm ev}(\hat{m} t_{\rm ev},A)$                                            | "leather" $(0.80)$ "cowhide" $(0.07)$                                                                                  |
|      | $p_{pali}(m t_{cap3d}, 1)$<br>$n_{m}(\hat{m} t_{m}, A)$                       | "leather" $(0.84)$ "nylon" $(0.07)$                                                                                    |
|      | $p_{pali}(m \iota_{pali},\Lambda)$                                            | "leather" $(1.00)$                                                                                                     |
|      | $p_{blip}(m c_{cap3d})$                                                       | "leather" $(0.08)$ "neoprene" $(0.02)$                                                                                 |
|      | $p_{blip}(m v_{pali})$<br>$p_{vir}(\hat{m} A)$                                | "leather" $(1.00)$                                                                                                     |
|      | $p_{blip}(m 1)$<br>$p_{blip}(\hat{m} 1)$                                      | "leather" $(1.00)$ "neoprene" $(0.00)$                                                                                 |
|      | $p_{blip}(m \iota_{cap3d},\Lambda)$<br>$p_{cap3d}(\hat{m} t_{cap3d},\Lambda)$ | "leather" $(1.00)$ , "neoprene" $(0.00)$                                                                               |
|      | $p_{blip}(m \iota_{pali},\Lambda)$                                            | "leather"                                                                                                              |
|      | 111<br>+                                                                      | "round ton leather sofe style dog had with huttons"                                                                    |
|      | $\iota_{cap3d}$                                                               | "dog had"                                                                                                              |
|      | $v_{pali}$                                                                    | (0.16)                                                                                                                 |
|      | $p_{pali}(m \iota_{cap3d})$                                                   | "feam" $(0.20)$ , "setter" $(0.27)$                                                                                    |
|      | $p_{pali}(m \iota_{pali})$                                                    | ( $(0.59)$ , $(0.01)$ ( $(0.57)$ )                                                                                     |
|      | $p_{pali}(m A)$                                                               | "leather" $(0.87)$ , "four leather" $(0.06)$                                                                           |
| A    | $p_{pali}(m \iota_{cap3d}, A)$                                                | "leather" $(0.80)$ "faux leather" $(0.04)$                                                                             |
|      | $p_{pali}(m \iota_{pali}, A)$                                                 | "four loother" $(0.09)$ , faux leather $(0.04)$                                                                        |
|      | $p_{blip}(m \iota_{cap3d})$                                                   | "a soft fabric such as actten weel linen or a combi                                                                    |
|      | $p_{blip}(m \iota_{pali})$                                                    | a soft fabric, such as could, wool, fillen, of a comple-<br>nation of the two" $(1,00)$ "e soft fabric, such as action |
|      |                                                                               | hation of the two (1.00), a soft fabric, such as cotton,                                                               |
|      |                                                                               | wool, mien, of a symmetric material, such as acetate of polypropylono? (0.00)                                          |
|      |                                                                               | (0.00)                                                                                                                 |
|      | $p_{blip}(m A)$                                                               | (1.00)                                                                                                                 |
|      | $p_{blip}(m t_{cap3d}, A)$                                                    | "leather" $(0.79)$ , "3d model" $(0.12)$                                                                               |
|      | $p_{blip}(m t_{pali}, A)$                                                     | leainer (1.00)                                                                                                         |
|      | $m_{\star}$                                                                   | Oak<br>"wooden steineese with motel milings"                                                                           |
|      | $t_{cap3d}$                                                                   | wooden starrcase with metal rainings                                                                                   |
|      | $t_{pali}$                                                                    | $\frac{1}{10000000000000000000000000000000000$                                                                         |
|      | $p_{pali}(m t_{cap3d})$                                                       | $Wood^{-}(0.46)$ , steel $(0.19)$                                                                                      |
|      | $p_{pali}(m t_{pali})$                                                        | Wood $(0.80)$ , marble $(0.07)$                                                                                        |
|      | $p_{pali}(m A)$                                                               | wood $(0.78)$ , timber $(0.00)$                                                                                        |
|      | $p_{pali}(m t_{cap3d}, A)$                                                    | $Wood^{-}(0.46), \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                |
|      | $p_{pali}(m t_{pali}, A)$                                                     | wood $(0.50)$ , metal $(0.20)$                                                                                         |
| 5.00 | $p_{blip}(m \iota_{cap3d})$                                                   | a wooden stancase with metal railings (1.00), a wooden                                                                 |
|      | $m$ $(\hat{m} t)$                                                             | starrcase with metal rannings is caned a balustrade (0.00)                                                             |
|      | $p_{blip}(m \iota_{pali})$                                                    | "wood" $(0.73)$ , wooden $(0.27)$                                                                                      |
|      | $p_{blip}(m A)$<br>$p_{blip}(\hat{m} t) = A$                                  | "wood" (0.98), "wooden staircase with metal railings"                                                                  |
|      | $p_{blip}(m \iota_{cap3d},A)$                                                 | wood $(0.98)$ , wooden standase with metal rannings $(0.02)$                                                           |
|      | $m (\hat{m} t = 1)$                                                           | (0.02)<br>"wood" (0.07) "wooden" (0.03)                                                                                |
|      | $p_{blip}(m \iota_{pali}, A)$                                                 | "ools"                                                                                                                 |
|      | 111<br>+                                                                      | Uan<br>"small wooden table with two lags and a slanted top"                                                            |
|      | $\iota_{cap3d}$                                                               | "trastla table"                                                                                                        |
|      | $v_{pali}$                                                                    | "wood" (0.65) "ook" (0.24)                                                                                             |
|      | $p_{pali}(m \iota_{cap3d})$                                                   | "wood" $(0.03)$ , $0 dK (0.24)$                                                                                        |
|      | Ppali(m tpali)<br>$n = p(\hat{m} A)$                                          | "wood" $(0.63)$ , "moot" $(0.05)$                                                                                      |
|      | $\frac{Ppali(III A)}{p_{m}}$                                                  | "wood" $(0.03)$ , Oak $(0.13)$                                                                                         |
|      | $Ppali(m \iota_{cap3d}, A)$<br>$p = u(\hat{m} t = A)$                         | "wood" $(0.75)$ , Oak $(0.72)$                                                                                         |
|      | Ppali(m tpali, A)                                                             | "trastle table" $(0.80)$ "a trastle table" $(0.20)$                                                                    |
|      | $p_{blip}(m \iota_{cap3d})$                                                   | "wood" (0.08) "wooden trestle" (0.02)                                                                                  |
|      | $Pblip(m \iota_{pali})$                                                       | wood $(0.70)$ , wooden uesue $(0.02)$                                                                                  |

|                | $p_{blip}(\hat{m} A)$                                       | "wood" (0.97), "wooden" (0.03)                                                                                                             |
|----------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                | $p_{blin}(\hat{m} t_{can3d},A)$                             | "wood" (0.90), "solid wood" (0.09)                                                                                                         |
|                | $n_{blin}(\hat{m} t_{mali}, A)$                             | "wood" (0.99), "solid wood" (0.01)                                                                                                         |
|                | $\frac{polip(\cdots   opali}{pall}, 12)}{m}$                | "metal"                                                                                                                                    |
|                | 110<br>t                                                    | "three tier metal shelving unit"                                                                                                           |
|                | $L_{cap3d}$                                                 | "hoolshalf"                                                                                                                                |
|                | $\iota_{pali}$                                              | 000KSHEII                                                                                                                                  |
|                | $p_{pali}(m t_{cap3d})$                                     | steel $(0.41)$ , metal $(0.29)$                                                                                                            |
|                | $p_{pali}(m t_{pali})$                                      | (0.91), (0.91), (0.03)                                                                                                                     |
|                | $p_{pali}(m A)$                                             | " $metal" (0.42), "steel" (0.36)$                                                                                                          |
|                | $p_{pali}(\hat{m} t_{cap3d},A)$                             | "steel" (0.49), "metal" (0.29)                                                                                                             |
|                | $p_{pali}(\hat{m} t_{pali},A)$                              | "metal" (0.59), "steel" (0.20)                                                                                                             |
|                | $p_{blip}(\hat{m} t_{cap3d})$                               | "steel" (0.99), "steel or stainless steel" (0.01)                                                                                          |
|                | $p_{blip}(\hat{m} t_{pali})$                                | "wood" (0.98), "reclaimed wood" (0.02)                                                                                                     |
| l              | $p_{blip}(\hat{m} \hat{A})$                                 | "metal" (0.72), "steel" (0.21)                                                                                                             |
|                | $p_{blin}(\hat{m} t_{can3d},A)$                             | "black metal" (0.43), "steel" (0.32)                                                                                                       |
|                | $p_{blin}(\hat{m} t_{nali},A)$                              | "metal" (0.68), "steel" (0.20)                                                                                                             |
|                | $\frac{1}{m}$                                               | "metal"                                                                                                                                    |
|                | t                                                           | "vellow fire hydrant"                                                                                                                      |
|                | $t_{1}$                                                     | "fire hydrant"                                                                                                                             |
|                | $p_{ali}^{v_{pali}}$                                        | "metal" $(0.37)$ "steel" $(0.24)$                                                                                                          |
|                | $p_{pali}(m t_{cap3d})$                                     | " $(0.27)$ , steel (0.27)                                                                                                                  |
|                | $p_{pali}(m \iota_{pali})$                                  | $\begin{array}{c} \text{inetal} & (0.52), & \text{sitel} & (0.23) \\ \text{``iron''} & (0.21), & \text{``matal''} & (0.17) \\ \end{array}$ |
|                | $p_{pali}(m A)$                                             | $\begin{array}{c} \text{Iron} (0.51),  \text{inetal}  (0.17) \\ \text{"materix"}  (0.27),  \text{"materix"}  (0.10) \end{array}$           |
|                | $p_{pali}(m t_{cap3d}, A)$                                  | metal (0.37), steel (0.19)                                                                                                                 |
|                | $p_{pali}(m t_{pali},A)$                                    | metal''(0.32), "iron"(0.21)                                                                                                                |
|                | $p_{blip}(m t_{cap3d})$                                     | "cast iron" (0.91), "cast-aluminum" (0.09)                                                                                                 |
|                | $p_{blip}(\hat{m} t_{pali})$                                | "a fire hydrant is a device used to extinguish a fire." (0.98),                                                                            |
|                |                                                             | "a fire hydrant is a device used to extinguish a fire by means                                                                             |
|                |                                                             | of a pressurized stream of water" (0.01)                                                                                                   |
|                | $p_{blip}(\hat{m} A)$                                       | "plastic" (0.35), "3ds max" (0.24)                                                                                                         |
|                | $p_{blip}(\hat{m} t_{cap3d},A)$                             | "metal" (0.79), "plastic" (0.20)                                                                                                           |
|                | $p_{blip}(\hat{m} t_{pali},A)$                              | "metal" (0.70), "plastic" (0.17)                                                                                                           |
|                | $\overline{m}$                                              | "marble"                                                                                                                                   |
|                | $t_{cap3d}$                                                 | "white marble column"                                                                                                                      |
|                | $t_{pali}$                                                  | "pedestal"                                                                                                                                 |
|                | $n_{\text{mali}}(\hat{m} t_{\text{mared}})$                 | "marble" (0.75), "limestone" (0.09)                                                                                                        |
|                | $p_{pali}(\hat{m} t_{capsa})$<br>$n_{cap}(\hat{m} t_{cap})$ | "marble" $(0.44)$ "stone" $(0.31)$                                                                                                         |
|                | $p_{pali}(\hat{m} o_{pali})$<br>$n_{d}(\hat{m} A)$          | "marble" $(0.69)$ "stone" $(0.37)$                                                                                                         |
| 201            | $p_{pali}(m 1)$<br>$n_{1}(\hat{m} 1)$ $(\hat{m} 1)$         | "marble" $(0.73)$ , "carrara" $(0.17)$                                                                                                     |
|                | $p_{pali}(m(c_{cap3d}, 1))$                                 | "marble" $(0.75)$ , "carrata" $(0.10)$                                                                                                     |
|                | $p_{pali}(m \iota_{pali},A)$                                | "marble" $(0.07)$ , stolle $(0.21)$                                                                                                        |
|                | $p_{blip}(m \iota_{cap3d})$                                 | "marble" (1.00)                                                                                                                            |
|                | $p_{blip}(m \iota_{pali})$                                  | $\begin{array}{l} \text{Inarole} & (1.00) \\ \text{"un arble"} & (0.06) & \text{"un arble"} & (0.04) \\ \end{array}$                       |
|                | $p_{blip}(m A)$                                             | marble $(0.90)$ , wood $(0.04)$                                                                                                            |
|                | $p_{blip}(m t_{cap3d},A)$                                   | marble $(0.73)$ , white marble $(0.27)$                                                                                                    |
|                | $p_{blip}(m t_{pali},A)$                                    | marble (0.95), wood (0.04)                                                                                                                 |
|                | m                                                           | "marble"                                                                                                                                   |
|                | $t_{cap3d}$                                                 | "white marble skull"                                                                                                                       |
|                | $t_{pali}$                                                  | "skull"                                                                                                                                    |
|                | $p_{pali}(\hat{m} t_{cap3d})$                               | "marble" (0.79), "porcelain" (0.09)                                                                                                        |
| and the stand  | $p_{pali}(\hat{m} t_{pali})$                                | "bone" (0.75), "bones" (0.09)                                                                                                              |
| and the second | $\hat{p_{pali}}(\hat{m} \hat{A})$                           | "clay" (0.35), "marble" (0.22)                                                                                                             |
|                | $p_{pali}(\hat{m} t_{cap3d},A)$                             | "marble" (0.55), "clay" (0.20)                                                                                                             |
|                | $p_{pali}(\hat{m} t_{pali},A)$                              | "clay" (0.33), "marble" (0.27)                                                                                                             |
|                | $p_{blin}(\hat{m} t_{can2d})$                               | "limestone" (0.68), "marble" (0.32)                                                                                                        |
|                | $p_{blin}(\hat{m} t_{mali})$                                | "calcium phosphate" (0.83), "calcareous limestone" (0.08)                                                                                  |
|                | $p_{n_{1}i_{rr}}(\hat{m} A)$                                | "marble" $(0.81)$ "white marble" $(0.10)$                                                                                                  |
|                | $\frac{Polip(m^{21})}{m_{122}}(\hat{m} t  a.t. A)$          | "white marble" (0.85) "marble" (0.07)                                                                                                      |
|                | $p_{blip}(m \iota_{cap3d}, A)$                              | white mature $(0.03)$ , mature $(0.07)$<br>"morble" $(0.42)$ "limesters" $(0.26)$                                                          |
|                | $p_{blip}(m t_{pali},A)$                                    | marble (0.45), minestone (0.30)                                                                                                            |

|          | m                                                | "wood"                                                                                                                                         |
|----------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|          | <i>t</i>                                         | "small metal house with a roof and legs"                                                                                                       |
|          | $L_{cap3d}$                                      | "thin the super"                                                                                                                               |
| <b>A</b> | l <sub>pali</sub>                                | birdnouse                                                                                                                                      |
|          | $p_{pali}(m t_{cap3d})$                          | "aluminum" $(0.48)$ , "steel" $(0.34)$                                                                                                         |
|          | $p_{pali}(\hat{m} t_{pali})$                     | "wood" (0.75), "clay" (0.10)                                                                                                                   |
|          | $\hat{p_{pali}}(\hat{m} \hat{A})$                | "wood" (0.42), "copper" (0.23)                                                                                                                 |
|          | $p_{pali}(\hat{m} t_{cap3d},A)$                  | "steel" (0.21), "iron" (0.19)                                                                                                                  |
|          | $n \rightarrow (\hat{m} t \rightarrow A)$        | "wood" $(0.61)$ "metal" $(0.17)$                                                                                                               |
|          | $p_{pali}(m_{ v_{pali}, 11})$                    | "a styrofoam styrofoam styrofoam sty" (0.36) "a styro                                                                                          |
| •        | $p_{blip}(m \iota_{cap3d})$                      | a styloioani styloioani styloioani sty $(0.50)$ , a stylo-                                                                                     |
| •        |                                                  | Toam styrotoam styrotoam sandwich (0.55)                                                                                                       |
|          | $p_{blip}(m t_{pali})$                           | "wood" $(0.68)$ , "Cedar" $(0.31)$                                                                                                             |
|          | $p_{blip}(\hat{m} A)$                            | "metal" (0.86), "wood" (0.07)                                                                                                                  |
|          | $p_{blip}(\hat{m} t_{cap3d},A)$                  | "3d model" (0.59), "rusty metal" (0.21)                                                                                                        |
|          | $p_{blin}(\hat{m} t_{ngli},A)$                   | "metal" (0.61), "wood" (0.33)                                                                                                                  |
|          | m                                                | "wood"                                                                                                                                         |
|          | 111<br>+                                         | "wooden rocking chair"                                                                                                                         |
|          | $\iota_{cap3d}$                                  |                                                                                                                                                |
| 124      | $t_{pali}$                                       | rocking chair                                                                                                                                  |
| 111111   | $p_{pali}(m t_{cap3d})$                          | "wood" $(0.58)$ , "oak" $(0.22)$                                                                                                               |
| A HERE & | $p_{pali}(\hat{m} t_{pali})$                     | "wood" (0.81), "wicker" (0.08)                                                                                                                 |
|          | $p_{pali}(\hat{m} A)$                            | "wood" (0.88), "rattan" (0.04)                                                                                                                 |
|          | $p_{pali}(\hat{m} t_{can3d},A)$                  | "oak" (0.40), "wood" (0.22)                                                                                                                    |
| 1000     | $p_{\text{mali}}(\hat{m} t_{\text{mali}},A)$     | "wood" (0.93), "mahogany" (0.02)                                                                                                               |
|          | $p_{pair}(\hat{m} t_{pair}, 12)$                 | "wood" $(0.96)$ "rattan" $(0.04)$                                                                                                              |
|          | $p_{blip}(m t_{cap3d})$                          | "wood" $(0.90)$ , "attain" $(0.04)$                                                                                                            |
|          | $p_{blip}(m \iota_{pali})$                       | (0.05)                                                                                                                                         |
|          | $p_{blip}(m A)$                                  | wood (0.98), wooden (0.01)                                                                                                                     |
|          | $p_{blip}(\hat{m} t_{cap3d},A)$                  | "wood" $(0.96)$ , "wooden rocking chair" $(0.04)$                                                                                              |
|          | $p_{blip}(\hat{m} t_{pali},A)$                   | "wood" (1.00), "wooden rocking chair" (0.00)                                                                                                   |
|          | $\overline{m}$                                   | "ceramic"                                                                                                                                      |
|          | $t_{can3d}$                                      | "terracotta bowl with a curved top. flat bottom"                                                                                               |
|          | $t_{\dots 1}$                                    | "trav"                                                                                                                                         |
|          | $n \mu(\hat{m} t - \mu)$                         | "ceramic" $(0.40)$ "stoneware" $(0.25)$                                                                                                        |
|          | $p_{pali}(m c_{cap3d})$                          | "wood" $(0.28)$ "coronic" $(0.23)$                                                                                                             |
|          | $p_{pali}(m t_{pali})$                           | (0.26),  ceramic  (0.24)                                                                                                                       |
|          | $p_{pali}(m A)$                                  | (0.33), "stoneware" (0.28)                                                                                                                     |
|          | $p_{pali}(\hat{m} t_{cap3d},A)$                  | "clay" (0.47), "ceramic" (0.18)                                                                                                                |
|          | $p_{pali}(\hat{m} t_{pali},A)$                   | "clay" (0.41), "stoneware" (0.19)                                                                                                              |
|          | $p_{blip}(\hat{m} t_{cap3d})$                    | "earthenware" (0.55), "terracotta" (0.31)                                                                                                      |
|          | $p_{blin}(\hat{m} t_{nali})$                     | "stainless steel" (1.00). "stainless steel or stainless steel-                                                                                 |
|          | Toup ( ) puil)                                   | allovs" (0,00)                                                                                                                                 |
|          | $m_{U}$ $(\hat{m} A)$                            | "clav" $(0.92)$ "terracotta" $(0.05)$                                                                                                          |
|          | $\frac{Poup(m 1)}{put(\hat{m} t \dots \Lambda)}$ | (0.52), $(0.52)$ , $(0.53)$                                                                                                                    |
|          | $Pblip(m \iota_{cap3d}, A)$                      | (0.04), $(0.04)$ , $(0.05)$                                                                                                                    |
|          | $p_{blip}(m t_{pali},A)$                         | <u>clay (0.94), leffacolla (0.05)</u>                                                                                                          |
|          | m                                                | "ceramic"                                                                                                                                      |
|          | $t_{cap3d}$                                      | "vase with two handles and intricate designs"                                                                                                  |
|          | $t_{pali}$                                       | "jug"                                                                                                                                          |
|          | $\hat{p}_{pali}(\hat{m} t_{can3d})$              | "ceramic" (0.38), "porcelain" (0.27)                                                                                                           |
|          | $p_{nali}(\hat{m} t_{nali})$                     | "glass" (0.56), "porcelain" (0.17)                                                                                                             |
|          | $p_{pair}(\hat{m} opair)$                        | "stoneware" $(0.29)$ "clay" $(0.23)$                                                                                                           |
|          | $p_{n}(\hat{m} t \rightarrow A)$                 | "clay" $(0.36)$ "pottery" $(0.27)$                                                                                                             |
|          | $Ppali(m \iota_{cap3d}, A)$                      | (0.30), powery (0.27)                                                                                                                          |
|          | $p_{pali}(m t_{pali}, A)$                        | $\begin{array}{c} \text{ceranne} (0.29), \text{ cray} (0.27) \\ \text{"China and the "} (0.07), \text{"China and the "} (0.02) \\ \end{array}$ |
| 43 (2) 1 | $p_{blip}(m t_{cap3d})$                          | "Uninese celadon" $(0.97)$ , "Chinese lacquerware" $(0.02)$                                                                                    |
|          | $p_{blip}(\hat{m} t_{pali})$                     | "clay" $(0.87)$ , "tin" $(0.13)$                                                                                                               |
|          | $p_{blip}(\hat{m} A)$                            | "clay" (0.73), "ceramic" (0.27)                                                                                                                |
|          | $p_{blin}(\hat{m} t_{can3d},A)$                  | "clay" (0.76), "ceramic" (0.24)                                                                                                                |
|          | $p_{blin}(\hat{m} t_{nali},A)$                   | "clay" (0.87), "ceramic" (0.13)                                                                                                                |
|          |                                                  |                                                                                                                                                |

|     | m                                                                 | "gold"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $t_{can3d}$                                                       | "gold flower ring featuring a yellow and white flower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | capoa                                                             | design"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | $t_{nali}$                                                        | "hair slide"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | $p_{nali}(\hat{m} t_{can3d})$                                     | "gold" (0.74), "sterling silver" (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | $p_{pali}(\hat{m} t_{pali})$                                      | "plastic" (0.44), "rubber" (0.24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | $p_{pali}(\hat{m} pali)$<br>$p_{ral}(\hat{m} A)$                  | "gold plate" $(0.33)$ "brass" $(0.31)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | $p_{pali}(\hat{m} 1)$<br>$p_{mal}(\hat{m} 1,\dots,n,A)$           | "gold" $(0.40)$ "brass" $(0.24)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | $p_{pati}(\hat{m} t_{apsa}, 1)$<br>$p_{aut}(\hat{m} t_{apsa}, A)$ | "brass" $(0.23)$ "metal" $(0.23)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | $p_{paii}(\hat{m} t_{paii}, 11)$                                  | "14K vellow gold" (0.35) "18k white gold" (0.34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | $p_{blip}(m t_{cap3a})$<br>$p_{llin}(\hat{m} t_{cap3a})$          | "nlastic" (0.88) "acetate" (0.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | $p_{olip}(m opali)$<br>$n_{H}(\hat{m} A)$                         | "gold" $(0.65)$ , "metal" $(0.32)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | $p_{blip}(m 1)$<br>$p_{blip}(\hat{m} 1)$ $p_{blip}(\hat{m} 1)$    | "gold" $(0.59)$ , "item" $(0.52)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | $p_{blip}(m c_{cap3d}, 1)$<br>$p_{uv}(\hat{m} t_{uv}, \Delta)$    | "gold" $(0.32)$ , "metal" $(0.22)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | $p_{blip}(m v_{pali}, n)$                                         | "gold" (0.72), inclair (0.22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 110                                                               | "gold Equation cot ring"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | $\iota_{cap3d}$                                                   | "ring"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| M   | $\iota_{pali}$                                                    | mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | $p_{pali}(m \iota_{cap3d})$                                       | (0.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | $p_{pali}(m \iota_{pali})$                                        | gold (0.74), blass (0.10)<br>"gold" (0.63) "gold plate" (0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | $p_{pali}(m A)$                                                   | gold (0.05), gold plate (0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | $p_{pali}(m \iota_{cap3d}, A)$                                    | gold (0.78), blass (0.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | $p_{pali}(m \iota_{pali}, A)$                                     | gold $(0.02)$ , blass $(0.09)$<br>"cold" $(1.00)$ "cold ploted tibeton colfebra" $(0.00)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | $p_{blip}(m t_{cap3d})$                                           | "gold (1.00), gold-plated tibetall callskill (0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | $p_{blip}(m \iota_{pali})$                                        | precious metals, such as gold, silver, platinum, paradium,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                                                                   | and modulin (0.95), precious metals, such as gold, silver,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | $( \uparrow \downarrow A)$                                        | platinum, palladium, rhodium, and tin $(0.03)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | $p_{blip}(m A)$                                                   | $\frac{1}{2}$ $\frac{1}$ |
|     | $p_{blip}(m t_{cap3d},A)$                                         | "gold" $(0.90)$ , "3d printed" $(0.10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | $p_{blip}(m t_{pali},A)$                                          | "gold" (1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | m                                                                 | rubber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | $t_{cap3d}$                                                       | tire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | $t_{pali}$                                                        | tire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | $p_{pali}(m t_{cap3d})$                                           | Tubber $(0.99)$ , Tubber and steel $(0.00)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | $p_{pali}(m t_{pali})$                                            | Tubber $(0.99)$ , Tubber and steel $(0.00)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | $p_{pali}(m A)$                                                   | "rubber" (0.96), "blacktop, blacktopping" (0.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | $p_{pali}(m t_{cap3d}, A)$                                        | "rubber" $(0.97)$ , "black rubber" $(0.01)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | $p_{pali}(m t_{pali},A)$                                          | "rubber" (0.97), "black rubber" (0.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | $p_{blip}(m t_{cap3d})$                                           | "rubber" $(0.90)$ , "pneumatic tires" $(0.09)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | $p_{blip}(m t_{pali})$                                            | "rubber" $(0.73)$ , "Rubber" $(0.27)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | $p_{blip}(m A)$                                                   | "rubber" $(0.87)$ , "black rubber" $(0.10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | $p_{blip}(\hat{m} t_{cap3d},A)$                                   | "rubber" $(0.93)$ , "black rubber" $(0.06)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | $p_{blip}(\hat{m} t_{pali},A)$                                    | "rubber" (0.91), "black rubber" (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | m                                                                 | "rubber"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | $t_{cap3d}$                                                       | "green coiled cable with a white plug and attached earbud"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | t <sub>pali</sub>                                                 | "hose"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | $p_{pali}(\hat{m} t_{cap3d})$                                     | "nylon" (0.44), "plastic" (0.36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ٣   | $p_{pali}(m t_{pali})$                                            | "rubber" (0.86), "plastic" (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| l l | $p_{pali}(m A)$                                                   | "hose" (0.48), "rubber" (0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | $p_{pali}(m t_{cap3d},A)$                                         | "rubber" (0.38), "plastic" (0.19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | $p_{pali}(\hat{m} t_{pali},A)$                                    | "rubber" (0.70), "plastic" (0.15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | $p_{blip}(m t_{cap3d})$                                           | "tin-alloy" $(0.79)$ , "tin-plated copper" $(0.20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | $p_{blip}(m t_{pali})$                                            | "rubber" (0.95), "PTFE" (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | $p_{blip}(\hat{m} A)$                                             | "wire" (0.33), "metal" (0.26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | $p_{blip}(\hat{m} t_{cap3d},A)$                                   | "teflon" (0.92), "stranded copper" (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | $p_{blip}(\hat{m} t_{pali},A)$                                    | "plastic" (0.36), "pvc" (0.23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|          | m                                                                                   | "cardboard"                                                                                                       |
|----------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|          | $t_{cap3d}$                                                                         | "stack of brown cardboard boxes with white tape on them"                                                          |
|          | $t_{pali}$                                                                          | "packing box"                                                                                                     |
| 4        | $p_{pali}(\hat{m} t_{can3d})$                                                       | "cardboard" (0.64), "paper" (0.30)                                                                                |
|          | $p_{pali}(\hat{m} t_{pali})$                                                        | "cardboard" (0.74), "paper" (0.13)                                                                                |
|          | $p_{pali}(\hat{m} A)$                                                               | "cardboard" (0.52), "cellulose tape, Scotch tape, Sellotape"                                                      |
|          | r putt (***  )                                                                      | (0.17)                                                                                                            |
|          | $p_{nali}(\hat{m} t_{can3d},A)$                                                     | "cardboard" (0.67), "paper" (0.13)                                                                                |
|          | $p_{pali}(\hat{m} t_{pali},A)$                                                      | "cardboard" (0.82), "corrugated cardboard" (0.06)                                                                 |
|          | $p_{blin}(\hat{m} t_{can3d})$                                                       | "shipping cartons" (1.00), "a receptacle for the shipment                                                         |
|          | Toup (**) cupou)                                                                    | of goods" (0.00)                                                                                                  |
|          | $p_{blin}(\hat{m} t_{nali})$                                                        | "cardboard" (0.65), "paper" (0.27)                                                                                |
|          | $p_{blin}(\hat{m} A)$                                                               | "cardboard" (1.00), "styrofoam" (0.00)                                                                            |
|          | $p_{blin}(\hat{m} t_{can3d},A)$                                                     | "cardboard" (0.96), "3d model" (0.01)                                                                             |
|          | $p_{blip}(\hat{m} t_{mali}, A)$                                                     | "cardboard" (0.99), "paper" (0.01)                                                                                |
|          | m                                                                                   | "cardboard"                                                                                                       |
|          | terrad                                                                              | "cardboard Amazon robot toy with logo"                                                                            |
|          | $t_{aab}$                                                                           | "carton"                                                                                                          |
|          | $n_{m,l}(\hat{m} t_{m,2,l})$                                                        | "cardboard" $(0.57)$ "paper" $(0.32)$                                                                             |
| <u> </u> | $p_{pali}(\hat{m} t_{cap3a})$<br>$p_{mal}(\hat{m} t_{mal})$                         | "cardboard" $(0.57)$ , "paper" $(0.52)$<br>"cardboard" $(0.47)$ "paper" $(0.45)$                                  |
|          | $p_{pali}(\hat{m} p_{pali})$<br>$p_{mal}(\hat{m} A)$                                | "cardboard" $(0.17)$ , paper $(0.13)$<br>"cardboard" $(0.80)$ "carton" $(0.13)$                                   |
|          | $p_{pali}(\hat{m} 1)$<br>$p_{mal}(\hat{m} 1,\dots,n,A)$                             | "cardboard" $(0.73)$ "carton" $(0.10)$                                                                            |
| 8        | $p_{pali}(\hat{m} t_{cap3a}, n)$<br>$p_{mal}(\hat{m} t_{mal}, A)$                   | "cardboard" (0.85), "corrugated cardboard" (0.06)                                                                 |
|          | $p_{pali}(\hat{m} t_{pali}, 1)$                                                     | "cardboard" $(0.09)$ , "confugated cardboard" $(0.00)$                                                            |
|          | $p_{blip}(m t_{cap3a})$<br>$p_{1lin}(\hat{m} t_{cap3a})$                            | "paper" $(0.75)$ "paperboard" $(0.01)$                                                                            |
|          | $p_{blip}(m v_{pall})$<br>$p_{uv}(\hat{m} A)$                                       | "cardboard" (1.00)                                                                                                |
|          | $p_{blip}(m 1)$<br>$m_{lin}(\hat{m} t,\dots,t,A)$                                   | "cardboard" (1.00) "cardboard cardboard boxes card-                                                               |
|          | Polip(m) (capsa, 1)                                                                 | board boxes cardboard boxes cardboard boxes card-                                                                 |
|          |                                                                                     | board boxes, cardboard boxes, cardboard boxes, cardboard                                                          |
|          |                                                                                     | boxes, cardboard boxes, cardboard" (0.00)                                                                         |
|          | $m_{M}$ $(\hat{m} t \rightarrow A)$                                                 | "cardboard" $(0.99)$ "paper" $(0.01)$                                                                             |
|          | $\frac{p_{blip}(m v_{pali}, 1)}{m}$                                                 | "nlastic"                                                                                                         |
|          | t                                                                                   | "large silver trash hag"                                                                                          |
|          | $t_{aab}$                                                                           | "garhage hag"                                                                                                     |
|          | $n_{1}(\hat{m} t_{1}, x_{1})$                                                       | "nlastic" $(0.45)$ "aluminum" $(0.35)$                                                                            |
|          | $p_{pali}(m c_{cap3d})$<br>$n_{1}(\hat{m} t_{1}, \dots)$                            | "plastic" $(0.80)$ "polythene" $(0.07)$                                                                           |
|          | $p_{pali}(m t_{pali})$<br>$p_{pali}(\hat{m} A)$                                     | "( $(0.00)$ , polymene $(0.07)$                                                                                   |
|          | $p_{pali}(m 1)$<br>$p_{pali}(\hat{m} 1)$                                            | "plastic" $(0.66)$ , "cellophane" $(0.13)$                                                                        |
|          | $p_{pali}(m t_{cap3d}, 1)$<br>$n_{cap3d}(\hat{m} t_{cap3d}, 1)$                     | "plastic" $(0.83)$ "polythene" $(0.06)$                                                                           |
|          | $p_{pali}(m t_{pali}, m)$                                                           | "plastic" $(0.03)$ , "polymene" $(0.00)$                                                                          |
|          | $p_{blip}(m t_{cap3a})$<br>$p_{llin}(\hat{m} t_{cap3a})$                            | "nlastic" (1.00) "a polyethylene terephthalate (PET) film"                                                        |
|          | Pblip(m vpali)                                                                      | (0.00)                                                                                                            |
|          | $m_{H^{\pm}}(\hat{m} A)$                                                            | "hlack plastic" $(0.67)$ "3ds max" $(0.15)$                                                                       |
|          | $p_{0lip}(m 1)$<br>$p_{1lin}(\hat{m} 1,\dots,n A)$                                  | "nlastic" $(0.83)$ "black plastic" $(0.11)$                                                                       |
|          | $p_{blip}(m t_{cap3a}, 1)$<br>$p_{llin}(\hat{m} t_{cap3a}, A)$                      | "nlastic" $(0.60)$ , "black plastic" $(0.11)$                                                                     |
|          | $\frac{polip(m   opali, 11)}{m}$                                                    | "nlastic"                                                                                                         |
|          | terrad                                                                              | "blue plastic bowl with a lid"                                                                                    |
|          | $t_{mali}$                                                                          | "washtub"                                                                                                         |
|          | $p_{mali}(\hat{m} t_{mal}, t_{mal})$                                                | "polypropylene" (0.53) "plastic" (0.47)                                                                           |
|          | $p_{pali}(\hat{m} t_{pali})$                                                        | "porcelain" (0.56), "ceramic" (0.35)                                                                              |
|          | $p_{nali}(\hat{m} A)$                                                               | "plastic" (0.65), "polypropylene" (0.18)                                                                          |
|          | $p_{pali}(\hat{m} t_{aar2d}, A)$                                                    | "polypropylene" (0.58). "plastic" (0.24)                                                                          |
|          | $p_{pali}(\hat{m} t_{pali},A)$                                                      | "plastic" (0.78), "polypropylene" (0.10)                                                                          |
|          | $p_{blin}(\hat{m} t_{aar})$                                                         | "borosilicate glass" (0.97), "PP (Polypropylene)" (0.02)                                                          |
|          | r oup ( cupsu)                                                                      |                                                                                                                   |
|          | $p_{blin}(\hat{m} t_{nali})$                                                        | "plastic" (0.90), "tin" (0.10)                                                                                    |
|          | $p_{blip}(\hat{m} t_{pali})$<br>$p_{blip}(\hat{m} A)$                               | "plastic" (0.90), "tin" (0.10)<br>"plastic" (1.00), "polygons" (0.00)                                             |
|          | $p_{blip}(\hat{m} t_{pali})$ $p_{blip}(\hat{m} A)$ $p_{blip}(\hat{m} t_{pali})$ $A$ | "plastic" (0.90), "tin" (0.10)<br>"plastic" (1.00), "polygons" (0.00)<br>"plastic" (0.99), "polypropylene" (0.01) |

 $p_{blip}(\hat{m}|t_{pali}, A)$  "plastic" (1.00)