
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

The Double Edged Sword: Identifying Authentication Pages and
their Fingerprinting Behavior

Anonymous Author(s)∗

ABSTRACT
Browser fingerprinting is often associated with cross-site user track-
ing, a practice that many browsers (e.g., Safari, Brave, Edge, Firefox,
and Chrome) want to block. However, less is publicly known about
its uses to enhance online safety, where it can provide an addi-
tional security layer against service abuses (e.g., in combination
with CAPTCHAs) or during user authentication. To the best of our
knowledge, no fingerprinting defenses deployed thus far consider
this important distinction when blocking fingerprinting attempts,
so they might negatively affect website functionality and security.

To address this issue we make three main contributions. First,
we propose and evaluate a novel machine learning-based method
to automatically identify authentication pages (i.e. login and sign-
up pages). Our supervised algorithm achieves 96-98% precision
and recall on a large, manually-labelled dataset of 10,000 popu-
lar sites. Second, we compare our algorithm with other methods
from prior works on the same dataset, showing that it significantly
outperforms all of them (+83% F1-score). Third, we quantify the
prevalence of fingerprinting scripts across login and sign-up pages
(9.2%) versus those executed on other pages (8.9%); while the rates
of fingerprinting are similar, home pages and authentication pages
differ in the third-party scripts they include and how often these
scripts are labeled as tracking. We also highlight the substantial dif-
ferences in fingerprinting behavior on login and sign-up pages. Our
work sheds light on the complicated reality that fingerprinting is
used to both protect user security and invade user privacy, and that
this dual nature must be considered by fingerprinting mitigations.

1 INTRODUCTION
In today’s digital landscape, browser fingerprinting has garnered
attention for its use tracking individuals’ online activities. Doing
so involves collecting a set of attributes from a user’s web browser
and device in order to derive a unique identifier that persists across
different websites. Some of the attributes that could be used for
creating a browser fingerprint include browser features and con-
figurations (e.g. the User-Agent string, the canvas API, installed
plugins), OS features (e.g. emoji sets), and even hardware features
(e.g. battery level [28]). A 2021 study found that approximately 10%
of sites perform fingerprinting [33]. This rate may increase over
time, since the deprecation of third-party cookies [42, 50, 54] might
nudge online trackers to switch to cookieless alternatives, such as
fingerprinting.

What makes fingerprinting attractive for tracking – the ability
to uniquely identify a device – also gives it potential for enhancing
security. Consider the case of an unauthorized user logging into a
victim’s account with the correct username and password, but a dif-
ferent fingerprint. The site could send a multi-factor authentication
(MFA) prompt to the victim. This approach not only enhances secu-
rity but also minimizes user inconvenience by forgoing additional

hardware and complex authentication procedures. Beyond prevent-
ing account compromise, fingerprinting can also help web services
detect bots and thus prevent click fraud and cookie hijacking [27].
In the absence of privacy-friendly alternatives, it is important to
take into account the context in which fingerprinting occurs when
making an enforcement decision against it.

Durey et al. studied the usage of browser fingerprinting as a
means to enhance web security [27]. They manually analyzed four
page categories – login, sign-up, payment, and shopping cart –
across 1,485 pages from 446 domains. While their work provided an
important initial set of results, it suffered from two main limitations.
First, it relied solely on a manual analysis of websites, which is not
scalable nor generalizable. Second, it did not consider the impact
of any existing anti-fingerprinting tool on such websites.

To address these limitations, we developed a novel machine
learning (ML) model to identify login and sign-up pages, and we
present a large-scale empirical study on the usage of browser fin-
gerprinting on these pages. Our model, which achieves a greater
than 96% precision and recall for each page category, can run on-
device for on-the-fly inference, as demonstrated by our Chrome
extension that we will publicly release. Many studies analyze login
and sign-up pages [25, 46, 53], predominantly relying on heuristic
methods for detection in a centralized, server-based setting. How-
ever, given the dynamic nature of the web, rule-based detection
techniques quickly become outdated (e.g. login and sign-up pages
with multi-step designs or lacking password fields) and thus more
dynamic approaches, such as our ML-based solution, are necessary.

Our study makes the following key contributions:

• Awebmeasurement study evaluating browser fingerprinting
for security on the top 100,000 websites’ login and sign-up
pages. Using an instrumented crawler, we detect fingerprint-
ing attempts and potential login/sign-up indicators.

• An ML model identifying login and sign-up pages with high
precision and recall (96-98%).

• A browser extension for identifying and displaying login
and sign-up pages, along with a web crawler for listing such
pages in given URLs, both of which will be publicly available.

Our results show that 9.2% of login and sign-up pages perform
fingerprinting, compared to 8.9% across all pages. While the rates
are similar, fingerprinting scripts on home pages are more likely
to be classified as trackers and far more likely to perform canvas
fingerprinting than scripts on login and sign-up pages. For sites
that fingerprint on at least one authentication page, 50% of them
fingerprint only on the login page. When sites fingerprint on both
login and sign-up pages, they use scripts from the same set of third-
parties in 98% of cases. These new findings show the multifaceted
intent behind fingerprinting scripts on the web.

1

2 BACKGROUND AND RELATEDWORK
In this section we provide background on fingerprinting, including
its use for authentication, and describe prior work on identifying
login and sign-up pages.

2.1 Browser Fingerprinting & Mitigations
Browser fingerprinting is a method that sites use to generate a
unique identifier that can link the same browser across different
domains or visits. It is derived by joining multiple pieces of infor-
mation about the user’s browser, typically via HTTP headers and
JavaScript APIs. Fingerprinting is effective for tracking because it is
stateless, less visible to the users, and – unlike tracking via cookies
– difficult to disable. For example, the library may learn about the
user’s timezone and the list of fonts they have installed on their
system. As the library collects more information, it can potentially
uniquely distinguish a user among millions of visitors to a given
website.

Mitigations for fingerprinting broadly rely on four approaches:
randomization, normalization, heuristics, and machine learning.
Randomization methods, like Privaricator [43] and FPRandom [36],
add noise to APIs like canvas so that the same user presents differ-
ent fingerprints during different sessions. However, adding noise
may affect API functionality and is reversible, potentially serving
as a fingerprint itself. Another approach, normalization, aims to
standardize fingerprints for multiple users and is implemented by
the Tor and Brave browsers [1, 10].

While randomization and normalization attempt to disrupt fin-
gerprinting scripts, the next two approaches try to identify finger-
printing to block it entirely. Heuristic-based identification methods
like Privacy Badger [8], JShelter [7], and Disconnect [3] rely on
predefined rules, which can miss some fingerprinting scripts and
require continuous updates. Learning-based methods such as FP-
Inspector [33] are more effective but can suffer from a higher false
positive rate than heuristic-based methods.

2.2 Fingerprinting for Authentication
Many studies have proposed using browser fingerprinting as an
additional authentication technique [20, 21, 32, 45, 47, 51]. Doing
so can protect users whose credentials are stolen; if an attacker
gets a user’s credentials, the website can detect that the attacker
has a different fingerprint than the victim. Then the site could
show a multi-factor authentication (MFA) prompt to the attacker to
protect the user. Prior work has also proposed using fingerprinting
to protect against cookie hijacking by detecting when cookies are
used on a device with a different fingerprint [27], and to quickly
identify bots [27, 55].

Our work builds on the analysis from Durey et al. [27], which
manually analyzes 1,485 pages from 446 domains to detect browser
fingerprinting on a variety of page categories, including login and
sign-up pages. Login and sign-up pages each compose 12-13% of
the pages they analyze, and their classifier flags 23.4% and 31.1% of
login and sign-up pages as performing fingerprinting, respectively.
Finally, they analyze 14 scripts developed for security and find four
that are used exclusively on login and sign-up pages for payment
platforms, fraud prevention, and bot detection. We build on this pa-
per by analyzing a larger set of websites and performing automated

analysis; we also analyze the most popular websites to understand
the prevalence of fingerprinting in a more general context.

We also build on the work of Lin et al. [38], which presents and
evaluates an attack that uses fingerprints to bypass MFA. They
detect login pages using the approach from Drakonis et al. [26],
which we evaluate in Section 3.1.1. They detect login pages for
11,527 of the Alexa top 20K websites and find that the majority of
these sites perform some fingerprinting. We add to these results by
using a more sophisticated login page detection technique and ana-
lyzing a larger set of websites (100K vs 20K). We compare findings
in more detail in §4.3. Lin et al. was one of the first to present con-
crete security vulnerabilities that stem from using fingerprinting
for authentication; we provide a more comprehensive overview of
how fingerprinting is used for authentication in the broader web
ecosystem.

2.3 Login/Sign-Up Page Detection
Several studies have tried to identify and analyze authentication
pages [19, 24, 26, 27, 31, 35, 39, 46, 52, 57]. Most of the approaches
rely either on manual inspection [27, 46] or on heuristics based
on regex patterns [24, 26, 31, 35, 52, 57]. Specifically, such regex
patterns often include variations of the terms “login” and “sign-up”
and include translations to other languages. Some of these studies
used additional heuristics in addition to the regex strings, such as
checking the visibility of elements and the types of input elements
in forms (e.g. number of password fields) [26, 35]. Other studies
queried search engines to discover authentication pages for a given
domain [31, 35, 52].

However, these heuristics often fail to detect complex authen-
tication flows, such as multi-step login flows (as illustrated in Fig-
ure 6 a○). In this example, the login form only contains a username
field and requires the user to click through before showing a pass-
word field. There are similar multi-step flows for sign-up forms (see
Figure 6 b○). In addition, heuristics and regex patterns can lead to
misclassification. For example, some heuristics from prior work clas-
sify forms with multiple password elements as sign-up forms [26],
or forms with at least three visible input fields as sign-up forms [35].
The form in Figure 6 c○ is a login form that would be misclassified by
these heuristics. Regex patterns can similarly misclassify newsletter
forms as sign-up forms, as shown in Figure 6 d○.

Instead of relying on heuristics and regex patterns, two studies
trained machine learning models [19, 39]. The feature sets used by
both studies tried to capture three key components: 1) the pres-
ence of login/sign-up keywords, 2) the number of password input
fields, and 3) the total number of form input fields. For instance, Al
Roomi and Li [19] achieved 94.5%/96.3% precision/recall for login
forms, and 77.1%/99.5% precision/recall for sign-up forms, while Lo-
drant [39] achieved 71% accuracy. Both works found it challenging
to detect multi-step authentication forms.

3 METHODOLOGY
In this section we describe the methodology we used to collect
the website data via an instrumented crawler, how we extracted
features to train the ML model to detect login and sign-up pages,
and the methods we used to detect fingerprinting on such pages.

2

(a) Twitter’s login form without pass-
word field.

(b) Twitter’s sign-up form without
password field.

(c) Zoetis’ login form
without email and with
two password fields.

(d) The newsletter form on thebodyshop.com closely resem-
bles the account registration form.

Figure 1: Example web forms: a○ is a login form without a password field; b○ is a sign-up form without a password field; c○ is
a login form without an email field; and d○ is a newsletter sign-up form that resembles an account creation form.

3.1 Login/Sign-Up Page Detection
In this section, we describe the four different mechanisms used to
identify login and sign-up pages.

3.1.1 Prior Work Heuristics. Automated discovery of login and
sign-up pages is an area of study in prior works. We implement
heuristics from one study by Drakonakis, Ioannidis, and Polakis
into our crawler, as their code is publicly available [26].1 Their
methodology identifies login and sign-up pages using a combination
of regex string searching (for English phrases such as “register,”
“login,” and “my profile”) and heuristics based on DOM elements.
For example, the latter includes the number of password elements,
the presence of input elements for phone numbers or dates, and
the visibility of these input elements. This methodology has also
been used by Lin et al. in their preliminary analysis of the use of
fingerprinting on login and sign-up pages [38].

3.1.2 Autofill Heuristics. Autofill is a Chrome feature that auto-
matically generates new passwords when the user visits a sign-up
form. Users can also opt to save their credentials with Chrome so
that Autofill can automatically fill form fields on behalf of the user.
While Autofill has been studied for its security risks [18, 37, 44]
and its impact on developers [41], to the best of our knowledge, it
has not been studied as a tool for automated login/sign-up form
detection.
<form>

< inpu t type= " t e x t " name= " username " pm_par s e r_anno ta t i on
= " username_element " >

< inpu t type= " password " name= " password "
pm_par s e r_anno ta t i on= " new_password_element " >

< / form>

Listing 1: Example of Autofill annotations for a web form

We collect Autofill information by enabling the show-autofill-
signatures Chrome flag, which adds HTML attributes (called
pm_parser_annotation) to each form input element. An example
is shown in Listing 1. The Autofill annotations are only available

1The heuristics from prior work [26] are available at https://gitlab.com/kostasdrk/
xdriver3-open/-/blob/master/js/scripts.js

to Puppeteer crawlers in the “new” headless mode, which includes
the code in the //chrome path (which was previously included in
headful crawlers but not “old” headless crawlers) where Autofill is
implemented [23]. These annotations only include Autofill’s client-
side heuristics; Autofill also has a server-side component [9] but it
is inaccessible outside of Google. So, the client-side heuristics may
not perfectly match a user’s experience with the Autofill feature.

Once the annotations are collected, classification is simple: if we
see annotations for creating a new password (new_password_element)
or confirming a password (confirmation_password_element), then
we classify the form as a sign-up form. Otherwise, if there are anno-
tations for a username field (username_element) and a password
field (password_element), we classify the form as a login form.

3.1.3 Fathom-based Login& Sign-up Classifier. Fathom is a supervised-
learning framework developed by Mozilla for identifying various
components of web pages[29]. Their repository of rulesets show-
cases the integration of multiple ML models designed to detect
various types of web page elements, such as pop-ups and even spe-
cific HTML components like price tags [30]. Fathom has developed
classifiers for login and sign-up pages [14, 16], which we integrated
into our web crawler without any modifications.

3.1.4 Login & Sign-up Classifier. In the following sections, we
describe how we generate the test, validation, and training datasets,
as well as the login and sign-up page classifier depicted in Figure 2.

Page Type Identification & Feature Extraction.We used the
Chrome User Experience Report (CrUX) [2] to compile a list of the
top 100 sites and manually browsed them to find the login and
sign-up pages, if present. We manually reviewed the source code
of these pages and extracted 88 different features related to distinct
aspects of the design and interaction modalities. For instance, we
created a regex pattern that includes many variations of terms
like “login” and “sign-up” as well as their translations into several
other languages; we checked form attributes, button text content
and attributes, header attributes, and other HTML elements for
regex matches. Finally, we checked the presence of a checkbox
element with a "Remember Me" pattern for login pages. We created

3

https://gitlab.com/kostasdrk/xdriver3-open/-/blob/master/js/scripts.js
https://gitlab.com/kostasdrk/xdriver3-open/-/blob/master/js/scripts.js

Figure 2: ML pipeline for classifying login and sign-up pages.

variations of these features that would check if they are in a form,
are in an iFrame, and are visible. The full feature set is detailed in
Appendix C.

Dataset Curation. We created a training dataset by crawling
the CrUX top 10K homepages and visiting 47K other pages linked
from the homepages that match the aforementioned regex string
created to find login and sign-up pages (we describe this regex string
and our inner page collection process in more detail in Section 3.5).
We manually labeled a random sample of 1,500 login pages, 1,000
sign-up pages, and 2,500 non-authentication pages, totaling 5,000
labeled pages. However, we were unable to collect all 88 features
for our model for 93 (1.9%) pages due to bot detection mechanisms;
more specifically, we collected an average of 2.19 features on non-
authentication pages. We filtered our dataset to only retain pages
where we could collect a minimum of three features, which resulted
in a dataset of 1,299 login pages, 973 sign-up pages, and 2,453 non-
authentication pages for a total of 4,725 labeled pages. We split this
into 67% for training and 33% for testing.

Model Training. We used the TensorFlow [12] framework to
train a multi-class classifier. For each visited page, we generate
an 88-dimensional feature vector and a label, which we fed to a
neural network with two dense hidden layers containing 8 and 16
units. The output layer is mapped to the three classes, i.e., login,
sign-up, and neither. We trained the model for 200 epochs using
the cross-entropy loss function.

Model Performance. The classifier achieves high performance
on the test dataset (see Table 1). Specifically, it scores a recall of 0.98
and 0.96 and a precision of 0.99 and 0.96 on login and sign-up pages,
respectively. Meaning the model has an error rate of 1%-4%, and is
able to correctly label the vast majority of the login and sign-up
pages in the dataset.

3.2 Fingerprinting Detection
Browser fingerprinting has a rich history, marked by the ongoing
evolution of fingerprinting and detection thereof. Prior work has
used both ML-based methods [33] and heuristic approaches [28]
to identify fingerprinting scripts. In this work, we relied on the

Page Type Accuracy Precision Recall F1-score

Login 0.98 0.99 0.98 0.98
Sign-up 0.95 0.96 0.96 0.96
Neither 0.98 0.99 0.99 0.99

Table 1: Classifier performance on test dataset.

heuristics established by Englehardt and Narayanan (described in
Appendix B) that monitor the Canvas, WebRTC, Canvas Font, and
AudioContext APIs to detect fingerprinting scripts [28]. We logged
function calls (including arguments and return values) by overrid-
ing getter and setter functions on all pages, including subframes,
immediately after the document was created.

3.3 Crawler Implementation
Our web crawler is a fork of Tracker Radar Collector (TRC), 2 a
crawler created by DuckDuckGo. TRC is built on Puppeteer and
is designed to capture specific interactions with JavaScript APIs,
HTTP requests and responses, cookies, and other relevant data for
web measurements. We use the “new” headless mode [23] to collect
Autofill signals (see Section 3.1.2).

Furthermore, we implemented a distinct collector to instrument
method calls and property accesses related to fingerprinting (as
explained in Section 3.2). In our approach, we modify the object’s
getters to intercept these function calls.3

To more closely imitate a genuine user, our crawler scrolls to the
bottom of the page and back to the top, and pauses for 5 seconds
before collecting data. We also experimented with filling in some
form elements on the page to activate a wider range of fingerprint-
ing scripts. We conducted two preliminary crawls on 1,000 domains:
one where we filled in input fields, and one where we did not. These
crawls revealed that 102 scripts attempted fingerprinting on 136

2https://github.com/duckduckgo/tracker-radar-collector
3Although TRC already has the capability to intercept JavaScript API calls, we intro-
duced a separate collector due to a known TRC bug that causes it to miss the initial
function calls, as detailed in a public GitHub issue [13].

4

https://github.com/duckduckgo/tracker-radar-collector

Figure 3: (1) Our crawler extends the Tracker Radar Collec-
tor. We collect login and sign-up signals, fingerprinting sig-
nals, and JavaScript execution traces. (2) We then compare
all authentication page detectionmethods and detect finger-
printing scripts.

sites, regardless of whether input fields were filled or not. Since
there was no difference in fingerprinting behavior, we did not fill
in any form fields in subsequent crawls.

We executed both the homepage and inner page crawls using
cloud-based servers provided by DigitalOcean, located in the United
States. Each individual crawl was completed within a three-day
timeframe, using a server with 8 vCPU cores and 16GB of RAM.
The decision to use a US-based server was mainly influenced by
the intention to minimize encounters with cookie consent dialogs.

3.4 Interaction with Consent Dialogs
After GDPR was enacted in 2018 [5], sites began to show cookie
consent banners to give users transparency and control over the
processing of personal information. To increase the likelihood of
triggering fingerprinting scripts, we chose to consent for all forms
of personal data processing, including accepting cookies. To auto-
matically interact with cookie consent banners, we integrated code
derived from Priv-Accept [34, 40], a specialized crawler designed
for this purpose. Priv-Accept finds HTML elements such as <a>,
<button>, and <div>, then checks for keywords such as “Accept,”
and triggers a click action. We ported the Priv-Accept code from
Python to JavaScript without changing any logic.

3.5 Collection of Potential Inner
Authentication Pages

Login and sign-up flows might not be displayed on the homepages
but rather on dedicated inner pages. Hence, our crawler must visit
both types of pages. When crawling homepages, we collected links
on the homepage that may lead to inner pages with login and sign-
up forms. To increase the likelihood of discovering such pages, we

employed a combined regular expression pattern used in our fea-
ture extraction (as described in Section 3.1.4). This pattern includes
various word translations related to "login," "sign up," and "regis-
ter." We employed this pattern search across multiple attributes of
<a> elements, including innerText, title, href, ariaLabel,
placeholder, id, name, and className. During this process,
we filtered out URLs directing to non-HTML files, such as PDFs or
images.

We validated our approach by crawling 300 of the CrUX top 1K
most popular websites and checked how many login and sign-up
pages our regex strings could identify. As outlined in Appendix A,
our crawler initially navigated to the homepage of each website. If it
found both login and sign-up pages on the homepage, it terminated;
otherwise, it visited up to 15 (5 login + 5 sign-up + 5 neither) inner
pages linked on the homepage that our regex pattern matched. Of
the 300 websites in our sample, 4.7% had errors while loading the
homepage. We successfully detected login or sign-up pages on 49%
of sites, while 31% of sites did not contain such pages. In 7.7% of
the remaining pages, the login and sign-up pages were only visible
after interacting with an HTML element. In 4.7% cases, the login
and sign-up pages were present but could not be detected by our
ML model. In only 1.7% cases, the correct links were not identified
using our regex pattern.

We also collected inner links that were not login or sign-up pages.
We intentionally omitted links pointing to external domains. For
non-login or sign-up pages, we prioritized links closer to the view-
port center. This was done to prevent the collection of unrelated
links located in less visible areas, such as footers. To enhance crawl
efficiency, we restricted the number of inner links to five for each
category.

4 MEASUREMENT RESULTS
Following recent best practices [48, 49], we crawled the top 100K
domains from the Chrome User Experience Report (CrUX) [2] (as
of April 2023) in August 2023. We only used this dataset in our
subsequent analysis. We excluded 1,155 URLs on the list with iden-
tical fully qualified domain names but different schemes; as a re-
sult, we attempted to crawl 98,845 homepages and successfully
visited 94,482 homepages (95.8%). After collecting crawler results
(including login and sign-up signals, inner links, screenshots, and
fingerprinting attempts) for the homepages, we extracted the in-
ner links for the second round of crawling. We attempted to crawl
474,436 inner pages and successfully visited 446,688 inner pages
(94.4%). Priv-Accept facilitated the acceptance of personal data pro-
cessing on 26.9% of all pages crawled (including homepages and
inner pages).

4.1 Comparison of Login/Sign-Up Detection
Techniques

To compare login/sign-up detection techniques, we manually la-
belled a random sample of 1,000 pages (including both homepages
and inner pages, based on top 100K-crawl). These 1,000 pages in-
cluded 261 login pages, 160 sign-up pages, 23 pages that had both
login and sign-up functionality, and 532 non-authentication pages
(plus 22 pages that had errors loading). We computed precision
and recall scores for each detection technique, which we show in

5

Prior Work Heuristics Autofill Fathom Our ML-based solution

Precision Recall Precision Recall Precision Recall Precision Recall

Login 0.83 0.51 0.51 0.75 0.77 0.79 0.97 0.89
Sign-up 0.58 0.54 0.47 0.66 0.36 0.95 0.83 0.92
Neither 0.71 0.97 0.80 0.69 0.88 0.78 0.92 0.95

Table 2: Assessment of login and sign-up detection methods through the analysis of a randomly sampled set of 1,000 websites.

Prior Work Heuristics Autofill Fathom Our ML-based solution
Total login pages 42,375 91,220 52,307 52,805
Total sign-up pages 17,517 31,103 138,639 21,988
Domains with at least one login page 22,369 (23.68%) 31,840 (33.70%) 24,963 (26.42%) 27,059 (28.64%)
Domains with at least one sign-up page 12,199 (12.91%) 15,620 (16.53%) 42,672 (45.16%) 15,998 (16.93%)

Table 3: For each detection technique (explained in § 3), we list the number of distinct login and sign-up pages it identifies as
well as the number of domains (i.e. number of CrUX list entries) it can identify a login and sign-up page for.

Table 2, and the number of pages classified as authentication pages
by each technique in Table 3.

We found that our ML approach had the best precision/recall
across page categories. This is, in part, due to its ability to account
for multi-step designs, to validate the visibility of login and sign-up
elements, and to consider their presence within iFrames. Since this
approach is more effective than the others, we use it to classify login
and sign-up pages for all subsequent analysis. Other techniques
were not as effective; for example, Fathom has 304 false positives
for sign-up pages, which results in a low precision score of 0.36. We
found these false positives were Fathom misclassifying newsletter
and contact forms as sign-up forms. Another source of false posi-
tives was Fathom classifying 209 pages as both login and sign-up
pages. In contrast, our Autofill-based approach did not allow pages
to be both login and sign-up pages; it could only be one or the
other (or neither). Of the 23 manually analyzed pages that had both
login and sign-up functionality, Autofill classified 22 as either login
or sign-up (and classified one page as a non-authentication page),
which affected its accuracy.

4.2 Fingerprinting by Page Type
Rates of Fingerprinting. Table 5 shows that 9.3% of the total
pages our crawler visited were flagged as fingerprinting. This figure
is slightly lower than the 10% rate from a 2021 study [33]. However,
when we consider only login and sign-up pages, the percentage
rises slightly to 10.2%, with the majority of scripts being attributed
to third-party sources.

Third Party Fingerprinting Scripts.We find that websites of-
ten treat their login pages differently than their sign-up pages. Of
the 1,902 domains that include third-party fingerprinting scripts on
a login or sign-up page, 914 (48.05%) fingerprint on only the login
page. The remaining sites are evenly split between fingerprinting
only on the sign-up page (473 domains, 24.87%) and fingerprinting
on both pages (515 domains, 27.08%). This pattern holds across pop-
ularity rankings; for every site rank bucket, 48-56% of the websites
that fingerprint on an authentication page only do so on the login

page. While it is difficult to determine the intent behind finger-
printing, this suggests that sites are fingerprinting to enhance user
security.

However, when sites fingerprint on both their login and sign-up
pages, they almost exclusively use the same fingerprinting scripts
on both. Of these 515 domains, 505 (98.06%) used scripts from
the same set of third parties (based on the domains that provide
the scripts). Of the 10 domains that had a different set of third
parties, six include additional third parties on one of the pages,
and one appears to use content served from the same entity that
uses distinct domains (bmcdn5.com and bmcdn6.com). Only two
domains appeared to use scripts from different entities. For example,
sunglasshut.com includes a potentially fingerprinting script from
smct.io on its sign-up page, but not on its login page. This script
is from the company intent.ly (per the Disconnect entity list [4]),
which advertises services for measuring and increasing customer
conversions [6].

Tracking vs Non-Tracking Scripts. We labeled fingerprint-
ing scripts as tracking or non-tracking using classifications from
uBlock Origin Core [11], which rely on blocklists such as EasyList
and EasyPrivacy. We found that home pages have the highest rate
of tracking at 61.46%, compared to login pages at 50.50% and sign-
up pages at 55.65%. The rate of tracking for authentication pages
is surprising; websites are more likely to fingerprint on their login
pages but less likely to use tracking scripts than sign-up pages.
We checked how often each fingerprinting attribute (canvas, can-
vas fonts, WebRTC, and AudioContext) is called by tracking and
non-tracking scripts. We found the prevalence of each attribute
is approximately the same except for canvas font fingerprinting,
which is used by non-tracking scripts more often (2.81% vs 0.73%).

Fingerprinting APIs. Lin et al. found that sites performed can-
vas fingerprinting an order of magnitude more than canvas fonts,
WebRTC, or AudioContext fingerprinting [38]. We similarly inves-
tigate the rates of each type of fingerprinting for login, sign-up,
and homepages in Figure 4. We confirm the finding from Lin et al.
that canvas fingerprinting is the most popular type; in fact, nearly
every homepage that performs fingerprinting engages in canvas

6

All pages Login and sign-up pages

Entity Domain/Script Category Num.
sites Entity Domain/Script Category Num.

sites

Adscore Tech. adsco.re Ad Motivated Tracking
Ad Fraud 1,907 Signifyd Inc. signifyd.com Fraud Prevention 239

- wpadmngr.com Advertising 1,418 Alibaba Group aeis.alicdn.com/AWSC/
WebUMID/1.93.0/um.js *

Marketing
Analytics 201

Signifyd Inc. signifyd.com Fraud Prevention 1,414 Amazon Tech. ssl-images-amazon.com Marketing
Advertising 171

Bounce Exchange bounceexchange.com Ad Motivated Tracking
Advertising 1,330 Bounce Exchange bounceexchange.com Ad Motivated Tracking

Advertising 159

InsurAds insurads.com Analytics 1,229 Sift Science, Inc. sift.com Fraud Prevention 148

Alibaba Group aeis.alicdn.com/AWSC
/WebUMID/1.93.0/um.js *

Marketing
Analytics 959 FingerprintJS cdnjs.cloudflare.com/ajax/libs/

fingerprintjs2/2.1.2/fingerprint2.min.js
Fraud Prevention
Analytics 144

Rambler Holding top100.ru Audience Measurement 913 Amazon Tech. d38xvr37kwwhcm.cloudfront.net/
js/grin-sdk.js

Marketing
Advertising 139

Benhauer salesmanago.pl Customer Engagement 112 CHEQ AI Tech. clickcease.com Fraud Prevention 118
CHEQ AI Tech. clickcease.com Fraud Prevention 719 Rambler Holding top100.ru Audience Measurement 113

- franecki.net Marketing
Analytics 589 Benhauer salesmanago.pl Customer Engagement 112

Table 4: The list of primary fingerprinting domains and related entities where at least one fingerprinting attempt was detected
during a crawl conducted in August 2023. *Some entities may have multiple associated scripts.

Homepages Inner pages Login Sign-up

All 8,067 (8.5%) 40,828 (9.2%) 4,872 (9.2%) 2,737 (12.5%)
3rd party 4,639 (4.9%) 24,701 (5.6%) 2,294 (4.3%) 1,539 (6.8%)
Table 5: The overall count of unique web pages where finger-
printing attempts were observed. Inner pages include login
and sign-up pages.

Login Sign-Up Home
0

20

40

60

80

Pe
rc

en
t o

f P
ag

es
 th

at
 Fi

ng
er

pr
in

t

Canvas
AudioContext
WebRTC
Canvas Font

Figure 4: For login, sign-up, and homepages that perform
fingerprinting, we plot the percent of pages that call each
fingerprinting API.

fingerprinting (93.10%). Interestingly, we find similar frequencies of
the types of fingerprinting performed by login and sign-up pages.

This supports our earlier finding that when sites fingerprint on both
login and sign-up pages, they use the same fingerprinting scripts.

4.3 Comparison to Prior Results
Compared to a previous study by Durey et al. that examined the
presence of fingerprinting scripts on checkout, basket, and authen-
tication pages, we found fewer fingerprinting scripts on authentica-
tion pages [27]. In the previous study, they reported the detection of
fingerprinting scripts on sign-up pages (31.1%), login pages (23.4%),
and homepages (23.0%). Our results, on the other hand, show lower
percentages: 9.2% for login pages, 8.5% for homepages, and 12.5%
for sign-up pages. Nevertheless, the trend of observing more fin-
gerprinting scripts on sign-up pages compared to login pages, and
more scripts on login pages than homepages, remains consistent.

Several distinctions exist between our study and the prior one
that explain the different fingerprinting rates. First, there is a dis-
parity in the number of websites examined: we analyzed 100,000
sites while they only assessed login and sign-up pages from 446
domains. Furthermore, Durey et al. chose those 446 domains be-
cause they are more likely to collect sensitive personal information
(e.g. sites for job searching or dating) or financial information (e.g.
gambling, e-commerce); thus these sites are more likely to take care
to prevent fraud. Another dissimilarity lies in the method employed
for detecting fingerprinting scripts. We used a detection algorithm
based on [33] that relies on just four primary browser attributes
(Canvas, WebRTC, Canvas Font, and AudioContext fingerprinting).

We conducted an additional examination of the security organiza-
tions mentioned in the previous study by scrutinizing their domains
in our dataset. Notably, we observed that one of the most prominent
domains, sift.com, also ranked among the top fingerprinting do-
mains in our list. While other security companies (Nudata Security
- nudatasecurity.com, Simility - simility.com) also appeared in
our results, they were observed on only a limited number of pages.

7

At Least 1 Page Homepage Login Sign-up

Top 1K 25.75% 22.24% 14.73% 8.82%
1K-5K 19.01% 17.10% 8.36% 5.70%
5K-10K 16.30% 15.02% 6.63% 4.14%
10K-50K 12.61% 11.61% 5.42% 3.08%
50K-100K 10.60% 9.85% 4.57% 2.59%
Table 6: Percent of websites that perform fingerprinting on
various page categories, grouped by popularity according to
the CrUX dataset.

Lin et al. measured how many of the Alexa top 20K websites
perform fingerprinting on login pages [38]. They found 11.5K login
pages for the Alexa top 20K (5,736 for the top 10K and 5,791 for rank
10K-20K), and found that the majority check basic device attributes
such as the navigator and window objects. Using the criteria for
fingerprinting from FP-Inspector [33] (i.e. the presence of canvas,
canvas font, WebRTC, and AudioContext fingerprinting), Lin et al.
found that 18% of login pages performing fingerprinting. 4

There are a few potential explanations for why we find a lower
rate of fingerprinting than Lin et al. [38]. First, we study a larger
pool of websites (100K) than Lin et al (20K). Prior work has found
that more popular websites are more likely to perform fingerprint-
ing [33], so our fingerprinting rate will naturally decline as we
consider more websites (i.e. include less popular websites). We
present the rate of fingerprinting for each site-rank bucket in Ta-
ble 6. As this table shows, we are able to confirm the finding that
more popular websites are more likely to fingerprint. Interestingly,
we find that this trend also holds for each type of page.

4.4 Potential Usage for Anti-Fraud
It is difficult to infer the intent behind the use of fingerprinting
scripts. However, there are some clues that suggest websites may
be using fingerprinting for anti-fraud purposes.

As indicated in Table 4, the most common fingerprinting do-
main on authentication pages, signifyd.com, is associated with
a fraud prevention company. Additionally, we observed another
script from a well-known fraud prevention company, served on
sift.com, appearing among the top-10 fingerprinting domains on
authentication pages. This suggests that browser fingerprinting is
employed for purposes beyond tracking on authentication pages.

Through a small-scale manual analysis, we also found that dis-
abling fingerprinting scripts broke login functionality. Due to the
scalability challenges, we conducted a manual inspection of 30 web-
sites where fingerprinting attempts were detected on login pages.
We visited these websites using the JShelter browser extension [7],
which can blocks fingerprinting scripts. Our findings revealed that
the login functionality on deezer.com and hepsiburada.com (both
of which have 12M+ active users) experienced disruptions when

4Lin et al. find that the majority of the login pages they identified perform some form
of fingerprinting such as accessing the navigator or window objects [38]. We use a
more conservative definition of fingerprinting as explained in Section 3.2. Fortunately,
Lin et al. describe the percentage of the login pages and homepages that perform
each type of fingerprinting that we consider, and so we compare these rates. Lin et al.
find that 2,133 websites perform canvas fingerprinting on their login pages, and they
identified 11,527 login pages, yielding a fingerprinting rate of 18.50%.

fingerprinting scripts were blocked, as depicted in Appendix D.
Specifically, on Deezer’s login page, the login button became non-
responsive, preventing users from signing in. Similarly, on Hep-
siburada, attempting to log in from the homepage resulted in the
login page failing to load.

It is also possible for websites to use fingerprinting for both
anti-fraud and advertising (including ad-driven tracking) simulta-
neously. For instance, a widely used third-party script on 7% of au-
thentication pages is from the aforementioned websites sift.com
and siftscience.com; these are associated with a single fraud
prevention company [17]. However, when we manually examined
this script, we noticed that the users’ fingerprints were sent to
hexagon-analytics.com, which is controlled by the analytics com-
pany Hexagon Data [15].

5 LIMITATIONS
Similar to other research in web measurement, our study faces
several limitations in terms of representativeness and coverage. For
instance, websites may identify our crawler as an automated bot
and treat it differently than genuine traffic. Although we depend
on TRC’s anti-bot measures [22], which provide some mitigation
against bot detection, we recognize that their effectiveness may be
limited [56].

The applicability and efficacy of our fingerprinting approachmay
also be limited. We rely on the technique developed by Englehardt
et al. [33], which intentionally focuses on only four browser APIs.

Finally, our link detection method exclusively considers hyper-
links represented by the <a> element. However, certain login and
sign-up forms may only become visible when triggered by user in-
teraction with an HTML element. Our methodology may overlook
these types of form. In addition, we do not attempt to fill out forms,
and so we may miss additional multi-step authentication forms.

6 CONCLUSION
Browser fingerprinting, which is often associated with online track-
ing, is also sometimes used for user security by preventing account
breaches, detecting bots, and thwarting cookie hijacking. Under-
standing the security implications of fingerprinting is crucial as
mitigations are implemented. Our study fills a gap by examining
the security aspects of fingerprinting at a large scale, particularly
on login and sign-up pages. We introduced a highly accurate ML
model (96-98% recall and precision) that successfully identified
login (52,805) and sign-up (21,988) pages among 100,000 popular
websites. Fingerprinting attempts were detected on 9.2% of these
pages, slightly higher than the 8.9% rate across all pages. Notably,
some of the top invasive fingerprinting scripts on login and sign-up
pages were associated with fraud prevention companies, indicating
diverse motivations for fingerprinting. We also show that when
websites fingerprint on authentication pages, they are far more
likely to only fingerprint on their login page. However, when they
fingerprint on both login and sign-up pages, they almost always
use the same set of fingerprinting scripts. Our contributions include
an empirical web measurement study, a precise machine learning
model, and practical tools (See Appendix A) for detecting login and
sign-up pages. These findings illuminate the multifaceted role of
browser fingerprinting beyond user tracking.

8

REFERENCES
[1] Browse Privately. Explore Freely. (Online; accessed 18. Sept. 2023). URL: https:

//www.torproject.org/.
[2] Chrome User Experience Report. (Online; accessed 05. Sept. 2023). URL: https:

//developers.google.com/web/tools/chrome-user-experience-report.
[3] Disconnect entity list. URL: https://github.com/mozilla-services/shavar-prod-

lists/blob/master/disconnect-entitylist.json.
[4] Freedom from tracking. (Online; accessed 18. Sept. 2023). URL: https://disconnect.

me/.
[5] General Data Protection Regulation (GDPR). (Online; accessed 05. Sept. 2023).

URL: https://gdpr-info.eu/.
[6] intent.ly. URL: https://intent.ly/en/.
[7] JShelter. (Online; accessed 18. Sept. 2023). URL: https://jshelter.org/.
[8] Privacy Badger is a browser extension that automatically learns to block invisible

trackers. . (Online; accessed 18. Sept. 2023). URL: https://privacybadger.org/.
[9] server.proto. https://source.chromium.org/chromium/chromium/

src/+/main:components/autofill/core/browser/proto/server.proto;drc=
cefcacc55347e318a439f3112d96a1c73cfba56c.

[10] The best privacy online. (Online; accessed 18. Sept. 2023). URL: https://brave.com/.
[11] ublock. URL: https://github.com/gorhill/uBlock.
[12] TensorFlow, 2015. (Online; accessed 21. Aug. 2023). URL: https://www.tensorflow.

org/.
[13] Early browser API accesses and function calls are missed, 2023. [Online; accessed

29. Jul. 2023]. URL: https://github.com/duckduckgo/tracker-radar-collector/
issues/77.

[14] Login Forms Ruleset, 2023. (Online; accessed 21. Aug. 2023). URL: https://mozilla.
github.io/fathom/zoo/login.html.

[15] Optimize.Personalize.Monetize., 2023. (Online; accessed 30. Aug. 2023). URL:
https://www.hexagondata.com/en/services-marketer/.

[16] SignUpFormRuleset.sys.mjs, 2023. (Online; accessed 21. Aug. 2023).
URL: https://searchfox.org/mozilla-central/source/toolkit/components/
passwordmgr/SignUpFormRuleset.sys.mjs.

[17] Take control of payment fraud., 2023. (Online; accessed 30. Aug. 2023). URL:
https://sift.com/.

[18] Ayush Agarwal, Sioli O’Connell, Jason Kim, Shaked Yehezkel, Daniel Genkin,
Eyal Ronen, and Yuval Yarom. Spook. js: Attacking chrome strict site isolation
via speculative execution. In 2022 IEEE Symposium on Security and Privacy (SP),
pages 699–715. IEEE, 2022.

[19] Suood Al Roomi and Frank Li. A {Large-Scale} measurement of website login
policies. In 32nd USENIX Security Symposium (USENIX Security 23), pages 2061–
2078, 2023.

[20] Furkan Alaca and Paul C Van Oorschot. Device fingerprinting for augmenting
web authentication: classification and analysis of methods. In Proceedings of the
32nd annual conference on computer security applications, pages 289–301, 2016.

[21] Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre
Garel. A large-scale empirical analysis of browser fingerprints properties for
web authentication. ACM Transactions on the Web (TWEB), 16(1):1–62, 2021.

[22] Konrad Dzwinel et al. Brad Slayter, Sam Macbeth. DuckDuckGo Tracker Radar
Collector, 2021. (Online; accessed 01. Jan. 2023). URL: https://github.com/
duckduckgo/tracker-radar-collector.

[23] Mathias Bynens and Peter Kvitek. Chrome’s Headless mode gets an upgrade:
introducing headless=new, 2023. (Online; accessed 21. Aug. 2023). URL: https:
//developer.chrome.com/articles/new-headless/.

[24] Joe DeBlasio, Stefan Savage, Geoffrey M Voelker, and Alex C Snoeren. Trip-
wire: Inferring internet site compromise. In Proceedings of the 2017 Internet
Measurement Conference, pages 341–354, 2017.

[25] Yana Dimova, Tom Van Goethem, and Wouter Joosen. Everybody’s looking for
ssomething: A large-scale evaluation on the privacy of oauth authentication on
the web. Proceedings on Privacy Enhancing Technologies, 4:452–467, 2023.

[26] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. The cookie hunter:
Automated black-box auditing for web authentication and authorization flaws. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’20, page 1953–1970, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3372297.3417869.

[27] Antonin Durey, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. Fp-
redemption: Studying browser fingerprinting adoption for the sake of web secu-
rity. In Detection of Intrusions and Malware, and Vulnerability Assessment: 18th
International Conference, DIMVA 2021, Virtual Event, July 14–16, 2021, Proceedings
18, pages 237–257. Springer, 2021.

[28] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site
measurement and analysis. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 1388–1401, 2016.

[29] Daniel Hertenstein Erik Rose. Fathom, 2017. (Online; accessed 21. Aug. 2023).
URL: https://github.com/mozilla/fathom.

[30] Daniel Hertenstein Erik Rose. Ruleset Zoo, 2017. (Online; accessed 21. Aug. 2023).
URL: https://mozilla.github.io/fathom/zoo.html.

[31] Mohammad Ghasemisharif, Amrutha Ramesh, Stephen Checkoway, Chris Kanich,
and Jason Polakis. O single {Sign-Off}, where art thou? an empirical analysis
of single {Sign-On} account hijacking and session management on the web. In
27th USENIX Security Symposium (USENIX Security 18), pages 1475–1492, 2018.

[32] Tom Van Goethem, Wout Scheepers, Davy Preuveneers, and Wouter Joosen.
Accelerometer-based device fingerprinting for multi-factor mobile authentication.
In International Symposium on Engineering Secure Software and Systems, pages
106–121. Springer, 2016.

[33] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fingerprinting the fingerprint-
ers: Learning to detect browser fingerprinting behaviors. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 1143–1161. IEEE, 2021.

[34] Nikhil Jha, Martino Trevisan, Luca Vassio, and Marco Mellia. The internet with
privacy policies: measuring the web upon consent. ACM Transactions on the Web
(TWEB), 16(3):1–24, 2022.

[35] Hugo Jonker, Jelmer Kalkman, Benjamin Krumnow, Marc Sleegers, and Alan
Verresen. Shepherd: Enabling automatic and large-scale login security studies.
arXiv preprint arXiv:1808.00840, 2018.

[36] Pierre Laperdrix, Benoit Baudry, and Vikas Mishra. Fprandom: Randomizing
core browser objects to break advanced device fingerprinting techniques. In
Engineering Secure Software and Systems: 9th International Symposium, ESSoS
2017, Bonn, Germany, July 3-5, 2017, Proceedings 9, pages 97–114. Springer, 2017.

[37] Xu Lin, Panagiotis Ilia, and Jason Polakis. Fill in the blanks: Empirical analysis
of the privacy threats of browser form autofill. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’20, page
507–519, New York, NY, USA, 2020. Association for Computing Machinery. doi:
10.1145/3372297.3417271.

[38] Xu Lin, Panagiotis Ilia, Saumya Solanki, and Jason Polakis. Phish in sheep’s
clothing: Exploring the authentication pitfalls of browser fingerprinting. In 31st
USENIX Security Symposium (USENIX Security 22), pages 1651–1668, Boston, MA,
August 2022. USENIX Association. URL: https://www.usenix.org/conference/
usenixsecurity22/presentation/lin-xu.

[39] Luka Lodrant. Designing a generic web forms crawler to enable legal compliance
analysis of authentication sections. Master’s thesis, ETH Zurich, 2022.

[40] nikhiljha95 Martino Trevisan, Antonino Musmeci. Priv-Accept, 2020. (Online;
accessed 13. Jul. 2023). URL: https://github.com/marty90/priv-accept.

[41] Ariana Mirian, Nikunj Bhagat, Caitlin Sadowski, Adrienne Porter Felt, Stefan
Savage, and Geoffrey M. Voelker. Web feature deprecation: A case study for
chrome. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pages 302–311, 2019. doi:10.1109/
ICSE-SEIP.2019.00044.

[42] Mozilla. Firefox rolls out total cookie protection by default to all users worldwide.
Mozilla Blog, 2022.

[43] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. Privaricator: Deceiving
fingerprinters with little white lies. In Proceedings of the 24th International
Conference on World Wide Web, pages 820–830, 2015.

[44] Sean Oesch and Scott Ruoti. That was then, this is now: A security evaluation of
password generation, storage, and autofill in browser-based password managers.
In Proceedings of the 29th USENIX Conference on Security Symposium, pages
2165–2182, 2020.

[45] Davy Preuveneers andWouter Joosen. Smartauth: dynamic context fingerprinting
for continuous user authentication. In Proceedings of the 30th annual ACM
symposium on applied computing, pages 2185–2191, 2015.

[46] Jannis Rautenstrauch, Giancarlo Pellegrino, and Ben Stock. The leaky web:
Automated discovery of cross-site information leaks in browsers and the web. In
2023 IEEE Symposium on Security and Privacy (SP), 2023.

[47] Walter Rudametkin. Improving the Security and Privacy of the Web through
Browser Fingerprinting. PhD thesis, Université de Lille, 2021.

[48] Kimberly Ruth, Aurore Fass, Jonathan Azose, Mark Pearson, Emma Thomas,
Caitlin Sadowski, and Zakir Durumeric. A world wide view of browsing the
world wide web. In Proceedings of the 22nd ACM Internet Measurement Conference,
pages 317–336, 2022.

[49] Kimberly Ruth, Deepak Kumar, Brandon Wang, Luke Valenta, and Zakir Du-
rumeric. Toppling top lists: Evaluating the accuracy of popular website lists. In
Proceedings of the 22nd ACM Internet Measurement Conference, pages 374–387,
2022.

[50] Justin Schuh. Building a more private web: A path towards making third party
cookies obsolete. Chromium Blog, 2020.

[51] Thomas Unger, Martin Mulazzani, Dominik Frühwirt, Markus Huber, Sebastian
Schrittwieser, and Edgar Weippl. Shpf: Enhancing http (s) session security with
browser fingerprinting. In 2013 International Conference on Availability, Reliability
and Security, pages 255–261. IEEE, 2013.

[52] Steven Van Acker, Daniel Hausknecht, and Andrei Sabelfeld. Measuring login
webpage security. In Proceedings of the Symposium on Applied Computing, pages
1753–1760, 2017.

[53] Maximilian Westers, Tobias Wich, Louis Jannett, Vladislav Mladenov, Christian
Mainka, and Andreas Mayer. Sso-monitor: Fully-automatic large-scale landscape,
security, and privacy analyses of single sign-on in the wild. arXiv preprint
arXiv:2302.01024, 2023.

9

https://www.torproject.org/
https://www.torproject.org/
https://developers.google.com/web/tools/chrome-user-experience-report
https://developers.google.com/web/tools/chrome-user-experience-report
https://github.com/mozilla-services/shavar-prod-lists/blob/master/disconnect-entitylist.json
https://github.com/mozilla-services/shavar-prod-lists/blob/master/disconnect-entitylist.json
https://disconnect.me/
https://disconnect.me/
https://gdpr-info.eu/
https://intent.ly/en/
https://jshelter.org/
https://privacybadger.org/
https://source.chromium.org/chromium/chromium/src/+/main:components/autofill/core/browser/proto/server.proto;drc=cefcacc55347e318a439f3112d96a1c73cfba56c
https://source.chromium.org/chromium/chromium/src/+/main:components/autofill/core/browser/proto/server.proto;drc=cefcacc55347e318a439f3112d96a1c73cfba56c
https://source.chromium.org/chromium/chromium/src/+/main:components/autofill/core/browser/proto/server.proto;drc=cefcacc55347e318a439f3112d96a1c73cfba56c
https://brave.com/
https://github.com/gorhill/uBlock
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/duckduckgo/tracker-radar-collector/issues/77
https://github.com/duckduckgo/tracker-radar-collector/issues/77
https://mozilla.github.io/fathom/zoo/login.html
https://mozilla.github.io/fathom/zoo/login.html
https://www.hexagondata.com/en/services-marketer/
https://searchfox.org/mozilla-central/source/toolkit/components/passwordmgr/SignUpFormRuleset.sys.mjs
https://searchfox.org/mozilla-central/source/toolkit/components/passwordmgr/SignUpFormRuleset.sys.mjs
https://sift.com/
https://github.com/duckduckgo/tracker-radar-collector
https://github.com/duckduckgo/tracker-radar-collector
https://developer.chrome.com/articles/new-headless/
https://developer.chrome.com/articles/new-headless/
https://doi.org/10.1145/3372297.3417869
https://github.com/mozilla/fathom
https://mozilla.github.io/fathom/zoo.html
https://doi.org/10.1145/3372297.3417271
https://doi.org/10.1145/3372297.3417271
https://www.usenix.org/conference/usenixsecurity22/presentation/lin-xu
https://www.usenix.org/conference/usenixsecurity22/presentation/lin-xu
https://github.com/marty90/priv-accept
https://doi.org/10.1109/ICSE-SEIP.2019.00044
https://doi.org/10.1109/ICSE-SEIP.2019.00044

[54] John Wilander. Full third-party cookie blocking and more. WebKit, 2020.
[55] ShujiangWu, Pengfei Sun, Yao Zhao, and Yinzhi Cao. Him of many faces: Charac-

terizing billion-scale adversarial and benign browser fingerprints on commercial
websites. In 30th Annual Network and Distributed System Security Symposium,
NDSS, 2023.

[56] David Zeber, Sarah Bird, Camila Oliveira,Walter Rudametkin, Ilana Segall, Fredrik
Wollsén, and Martin Lopatka. The representativeness of automated web crawls
as a surrogate for human browsing. In Proceedings of The Web Conference 2020,
pages 167–178, 2020.

[57] Yuchen Zhou and David Evans. Ssoscan: Automated testing of web applications
for single sign-on vulnerabilities. In Proceedings of the 23rd USENIX Conference
on Security Symposium, SEC’14, page 495–510, USA, 2014. USENIX Association.

A CODE AND DATA
The source code for both web crawlers (one dedicated to feature
extraction, as discussed in §3, and another for the detection of login
and sign-up URLs when given the homepage URL) and the browser
add-on, along with the dataset derived from our research, will be
publicly available.

Browser Add-on Through the integration of our ML-based
classifier for login and sign-up pages within the extension, we have
enabled the capability to determine whether a given page is a login
or sign-up page. Additionally, the outcome of this classification is
presented on the user interface of the extension.

Login & Sign-up Links Detector For forthcoming studies that
necessitate the collection of login and sign-up URLs for the investi-
gation of security and privacy concerns, we have developed a web
crawler (an extended version of the TRC). This specialized crawler
is devised to retrieve login and sign-up pages when provided with
the homepage URL by using our ML model. The functioning of this
crawler involves an initial assessment of whether the landing page
is a login and sign-up page. If not, it proceeds to gather potential
login and sign-up links using the method explained in § 3.5. Sub-
sequently, it visits these links sequentially, halting when either a
login and sign-up page is detected, or the list of links is exhausted.
The output of the crawler comprises a list enumerating the located
login and sign-up pages.

B FINGERPRINTING DETECTION
HEURISTICS

Here are the heuristics employed in this study to identify finger-
printing attempts. Initially proposed by Englehardt and Narayanan
[28], these heuristics were subsequently refined by Iqbal et al. [33].

Canvas Fingerprinting: A script is classified as a canvas fin-
gerprinting script based on the following criteria:

(1) The script uses the canvas element to write text using meth-
ods such as fillText or strokeText and applies styling
using methods like fillStyle or strokeStyle within the
rendering context.

(2) The script invokes the toDataURL method to extract the
canvas image.

(3) The script does not make use of the save, restore, or add
EventListener methods on the canvas element.

WebRTC Fingerprinting: A script is identified as a WebRTC fin-
gerprinting script according to the following conditions:

(1) The script invokes methods like createDataChannel or
createOffer within the WebRTC peer connection.

(2) The script calls methods such as onicecandidate or local
Description within the WebRTC peer connection.

Canvas Font Fingerprinting: A script qualifies as a canvas font
fingerprinting script based on the following criteria:

(1) The script sets the font property on a canvas element to
utilize more than 20 different fonts.

(2) The script invokes the measureTextmethod of the rendering
context more than 20 times.

AudioContext Fingerprinting: A script is identified as an Audio-
Context fingerprinting script according to the following conditions:

(1) The script invokes any of the following methods within the
audio context: createOscillator, createDynamicsCompres
sor, destination, startRendering, and oncomplete.

C LOGIN & SIGN-UP PAGE FEATURES
(1) Form Features
(a) hasLogin: Checks all forms on the page for attributes con-

taining a regular expression pattern contains several trans-
lations of terms associated with ‘login’.

(b) hasRegister: Checks all forms on the page for attributes
containing a regular expression pattern contains several
translations of terms associated with ‘sign-up’.

(c) hasNewsletter: Checks all forms on the page for attributes
containing a regular expression pattern contains several
translations of terms associated with ‘newsletter’.

(d) hasForgot: Checks all forms on the page for attributes
containing a regular expression pattern contains several
translations of terms associated with ‘forgot’.

(2) Button Features
(a) hasLoginInAttributes: Checks all buttons on the page for

attributes containing a regular expression pattern contains
several translations of terms associated with ‘login’.

(b) hasLoginInAttributesOnAForm: Checks all buttons on a
form for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘login’.

(c) hasLoginInTextContent: Checks all buttons on a page for
its text content containing a regular expression pattern
contains several translations of terms associated with ‘lo-
gin’.

(d) hasLoginInTextContentOnAForm: Checks all buttons on
a form for its text content containing a regular expression
pattern contains several translations of terms associated
with ‘login’.

(e) hasRegisterInAttributes: Checks all buttons on the page
for attributes containing a regular expression pattern con-
tains several translations of terms associated with ‘regis-
ter’.

(f) hasRegisterInAttributesOnAForm: Checks all buttons on
a form for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘register’.

(g) hasRegisterInTextContent: Checks all buttons on a page
for its text content containing a regular expression pat-
tern contains several translations of terms associated with
‘register’.

10

(h) hasRegisterInTextContentOnAForm: Checks all buttons
on a form for its text content containing a regular ex-
pression pattern contains several translations of terms
associated with ‘register’.

(i) hasNewsletterInAttributes: Checks all buttons on the page
for attributes containing a regular expression pattern con-
tains several translations of terms associatedwith ‘newslet-
ter’.

(j) hasNewsletterInAttributesOnAForm: Checks all buttons
on a form for attributes containing a regular expression
pattern contains several translations of terms associated
with ‘newsletter’.

(k) hasNewsletterInTextContent: Checks all buttons on a page
for its text content containing a regular expression pat-
tern contains several translations of terms associated with
‘newsletter’.

(l) hasNewsletterInTextContentOnAForm: Checks all but-
tons on a form for its text content containing a regular
expression pattern contains several translations of terms
associated with ‘newsletter’.

(m) hasNextInAttributes: Checks all buttons on the page for
attributes containing a regular expression pattern contains
several translations of terms associated with ‘next’.

(n) hasNextInAttributesOnAForm: Checks all buttons on a
form for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘next’.

(o) hasNextInTextContent: Checks all buttons on a page for its
text content containing a regular expression pattern con-
tains several translations of terms associated with ‘next’.

(p) hasNextInTextContentOnAForm: Checks all buttons on a
form for its text content containing a regular expression
pattern contains several translations of terms associated
with ‘next’.

(q) hasForgotInAttributes: Checks all buttons on the page for
attributes containing a regular expression pattern contains
several translations of terms associated with ‘forgot’.

(r) hasForgotInAttributesOnAForm: Checks all buttons on a
form for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘forgot’.

(s) hasForgotInTextContent: Checks all buttons on a page
for its text content containing a regular expression pat-
tern contains several translations of terms associated with
‘forgot’.

(t) hasForgotInTextContentOnAForm: Checks all buttons on
a form for its text content containing a regular expression
pattern contains several translations of terms associated
with ‘forgot’.

(u) hasNextButtonCloseToUsername: Evaluates the text con-
tent of all buttons on a page using a regular expression
pattern that includes various translations of terms related
to ‘next’ aiming to identify the presence of a nearby user-
name field.

(v) hasNextButtonCloseToUsernameOnAForm: Evaluates the
text content of all buttons on a form using a regular expres-
sion pattern that includes various translations of terms

related to ‘next’ aiming to identify the presence of a nearby
username field.

(w) hasLoginButtonCloseToUsername: Evaluates the text con-
tent of all buttons on a page using a regular expression
pattern that includes various translations of terms related
to ‘login’ aiming to identify the presence of a nearby user-
name field.

(x) hasLoginButtonCloseToUsernameOnAForm: Evaluates the
text content of all buttons on a form using a regular expres-
sion pattern that includes various translations of terms re-
lated to ‘login’ aiming to identify the presence of a nearby
username field.

(y) hasSignupButtonCloseToUsername: Evaluates the text con-
tent of all buttons on a page using a regular expression
pattern that includes various translations of terms related
to ‘sign-up’ aiming to identify the presence of a nearby
username field.

(z) hasSignupButtonCloseToUsernameOnAForm: Evaluates
the text content of all buttons on a page using a regular
expression pattern that includes various translations of
terms related to ‘sign-up’ aiming to identify the presence
of a nearby username field.

(3) Anchor Features
(a) hasForgotInAttributes: Checks all anchor on the page for

attributes containing a regular expression pattern contains
several translations of terms associated with ‘forgot’.

(b) hasForgotInAttributesOnAForm: Checks all anchor on a
form for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘forgot’.

(c) hasForgotInTextContent: Checks all anchor on a page for
its text content containing a regular expression pattern
contains several translations of terms associated with ‘for-
got’.

(d) hasForgotInTextContentOnAForm: Checks all anchor on
a form for its text content containing a regular expression
pattern contains several translations of terms associated
with ‘forgot’.

(4) Label Features
(a) hasRememberMeInAttributes: Checks all anchor on the

page for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘remember me’.

(b) hasRememberMeInAttributesOnAForm: Checks all an-
chor on a form for attributes containing a regular ex-
pression pattern contains several translations of terms
associated with ‘remember me’.

(c) hasRememberMeInTextContent: Checks all anchor on a
page for its text content containing a regular expression
pattern contains several translations of terms associated
with ‘remember me’.

(d) hasRememberMeInTextContentOnAForm: Checks all an-
chor on a form for its text content containing a regular
expression pattern contains several translations of terms
associated with ‘remember me’.

11

(e) hasNewsletterMeInAttributes: Checks all anchor on the
page for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘newsletter’.

(f) hasNewsletterMeInAttributesOnAForm: Checks all an-
chor on a form for attributes containing a regular ex-
pression pattern contains several translations of terms
associated with ‘newsletter’.

(g) hasNewsletterMeInTextContent: Checks all anchor on a
page for its text content containing a regular expression
pattern contains several translations of terms associated
with ‘newsletter’.

(h) hasNewsletterMeInTextContentOnAForm: Checks all an-
chor on a form for its text content containing a regular
expression pattern contains several translations of terms
associated with ‘newsletter’.

(5) Header Features
(a) hasLoginInAttributes: Checks all headers on the page for

attributes containing a regular expression pattern contains
several translations of terms associated with ‘login’.

(b) hasLoginInAttributesOnAForm: Checks all headers on a
form for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘login’.

(c) hasLoginInTextContent: Checks all headers on a page for
its text content containing a regular expression pattern
contains several translations of terms associated with ‘lo-
gin’.

(d) hasLoginInTextContentOnAForm: Checks all headers on
a form for its text content containing a regular expression
pattern contains several translations of terms associated
with ‘login’.

(e) hasRegisterInAttributes: Checks all headers on the page
for attributes containing a regular expression pattern con-
tains several translations of terms associated with ‘regis-
ter’.

(f) hasRegisterInAttributesOnAForm: Checks all headers on
a form for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘register’.

(g) hasRegisterInTextContent: Checks all headers on a page
for its text content containing a regular expression pat-
tern contains several translations of terms associated with
‘register’.

(h) hasRegisterInTextContentOnAForm: Checks all headers
on a form for its text content containing a regular ex-
pression pattern contains several translations of terms
associated with ‘register’.

(i) hasNewsletterInAttributes: Checks all headers on the page
for attributes containing a regular expression pattern con-
tains several translations of terms associatedwith ‘newslet-
ter’.

(j) hasNewsletterInAttributesOnAForm: Checks all headers
on a form for attributes containing a regular expression
pattern contains several translations of terms associated
with ‘newsletter’.

(k) hasNewsletterInTextContent: Checks all headers on a page
for its text content containing a regular expression pat-
tern contains several translations of terms associated with
‘newsletter’.

(l) hasNewsletterInTextContentOnAForm: Checks all head-
ers on a form for its text content containing a regular
expression pattern contains several translations of terms
associated with ‘newsletter’.

(m) hasForgotInAttributes: Checks all headers on the page for
attributes containing a regular expression pattern contains
several translations of terms associated with ‘forgot’.

(n) hasForgotInAttributesOnAForm: Checks all headers on
a form for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘forgot’.

(o) hasForgotInTextContent: Checks all headers on a page
for its text content containing a regular expression pat-
tern contains several translations of terms associated with
‘forgot’.

(p) hasForgotInTextContentOnAForm: Checks all headers on
a form for its text content containing a regular expression
pattern contains several translations of terms associated
with ‘forgot’.

(6) Checkbox Features
(a) hasNewsletterInAttributes: Checks all checkbox on the

page for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘newsletter’.

(b) hasNewsletterInAttributesOnAForm: Checks all checkbox
on a form for attributes containing a regular expression
pattern contains several translations of terms associated
with ‘newsletter’.

(c) hasRememberMeInAttributes: Checks all checkbox on the
page for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘remember me’.

(d) hasRememberMeInAttributesOnAForm: Checks all check-
box on a form for attributes containing a regular expres-
sion pattern contains several translations of terms associ-
ated with ‘remember me’.

(7) Input Features
(a) hasLoginInAttributes: Checks all input on the page for

attributes containing a regular expression pattern contains
several translations of terms associated with ‘login’.

(b) hasLoginInAttributesOnAForm: Checks all input on a
form for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘login’.

(c) hasRegisterInAttributes: Checks all input on the page for
attributes containing a regular expression pattern contains
several translations of terms associated with ‘register’.

(d) hasRegisterInAttributesOnAForm: Checks all input on a
form for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘register’.

12

(e) hasNewsletterInAttributes: Checks all input on the page
for attributes containing a regular expression pattern con-
tains several translations of terms associatedwith ‘newslet-
ter’.

(f) hasNewsletterInAttributesOnAForm: Checks all input on
a form for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘newsletter’.

(g) hasAnyEmail: Check whether there is any email field.
(h) hasAnyUsername: Check whether there is any username

field.
(i) hasAnyPEmailOnAForm: Checkwhether there is any email

field on a form.
(j) hasAnyUsernameOnAForm: Check whether there is any

username field on a form.
(k) hasMultipleInputs: Check whether there is multiple input

fields.
(8) Password Features
(a) hasLabelOrAriaLabelOrPlaceholderContainsConfirm: Checks

all password’s label, aria label and placeholders on the
page for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘confirm’.

(b) hasLabelOrAriaLabelOrPlaceholderContainsConfirmOnAForm:
Checks all password’s label, aria label and placeholders
on a form for attributes containing a regular expression
pattern contains several translations of terms associated
with ‘confirm’.

(c) hasLabelOrAriaLabelOrPlaceholderContainsCurrent: Checks
all password’s label, aria label and placeholders on the
page for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘current’.

(d) hasLabelOrAriaLabelOrPlaceholderContainsCurrentOnAForm:
Checks all password’s label, aria label and placeholders
on a form for attributes containing a regular expression
pattern contains several translations of terms associated
with ‘current’.

(e) hasLabelOrAriaLabelOrPlaceholderContainsNew: Checks
all password’s label, aria label and placeholders on the
page for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘new’.

(f) hasLabelOrAriaLabelOrPlaceholderContainsNewOnAForm:
Checks all password’s label, aria label and placeholders
on a form for attributes containing a regular expression
pattern contains several translations of terms associated
with ‘new’.

(g) hasAnyPasswordField: Check whether there is any pass-
word field.

(h) hasMultiplePasswordFields: Check whether there is mul-
tiple password fields.

(9) Div Features
(a) hasAlreadyHaveAnAccount: Checks all divs on the page

for attributes containing a regular expression pattern con-
tains several translations of terms associated with ‘already
have an account’.

(b) hasAlreadyHaveAnAccountOnAForm: Checks all divs on
a form for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘already have an account’.

(c) hasDontHaveAnAccount: Checks all divs on the page for
attributes containing a regular expression pattern contains
several translations of terms associated with ‘don’t have
an account’.

(d) hasDontHaveAnAccountOnAForm: Checks all divs on a
form for attributes containing a regular expression pat-
tern contains several translations of terms associated with
‘don’t have an account’.

(e) hasNewsletter: Checks all divs on the page for its tect
content containing a regular expression pattern contains
several translations of terms associated with ‘newsletter’.

(10) URL Features
(a) hasResetInURL: Checks the URL of the page for attributes

containing a regular expression pattern contains several
translations of terms associated with ‘reset password’.

(b) hasNewsletterInURL: Checks the URL of the page for at-
tributes containing a regular expression pattern contains
several translations of terms associated with ‘newsletter’.

D WEB PAGE BEHAVIORS WHEN
FINGERPRINTING SCRIPTS ARE BLOCKED

13

(a) Deezer’s login form when JShelter was disabled. (b) Deezer’s homepage when a user is signed in and fingerprinting scripts are not
blocked

(c) When JShelter is activated and blocks fingerprinting scripts, the functionality of Deezer’s login form is affected, causing the login buttons
to behave abnormally.

Figure 5: Effect of fingerprinting script blocking onDeezer’s login page. Deezer’s login formbehaves abnormallywhen JShelter
is activated and blocks fingerprinting scripts c○, causing disruptions in the functionality of login buttons.

14

(a) The login form of Hepsiburada with JShelter deactivated. (b) Upon clicking the login button in Figure a○,
users are directed to the Hepsiburada login page
with JShelter disabled.

(c) The Hepsiburada login page fails to load when the extension is active, and the extension has disabled fingerprinting scripts.

Figure 6: Hepsiburada’s Login Page Behavior with JShelter Activation

15

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Browser Fingerprinting & Mitigations
	2.2 Fingerprinting for Authentication
	2.3 Login/Sign-Up Page Detection

	3 Methodology
	3.1 Login/Sign-Up Page Detection
	3.2 Fingerprinting Detection
	3.3 Crawler Implementation
	3.4 Interaction with Consent Dialogs
	3.5 Collection of Potential Inner Authentication Pages

	4 MEASUREMENT RESULTS
	4.1 Comparison of Login/Sign-Up Detection Techniques
	4.2 Fingerprinting by Page Type
	4.3 Comparison to Prior Results
	4.4 Potential Usage for Anti-Fraud

	5 Limitations
	6 Conclusion
	References
	A Code and Data
	B Fingerprinting Detection Heuristics
	C Login & Sign-up Page Features
	D Web Page Behaviors When Fingerprinting Scripts are blocked

