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ABSTRACT

Interactive theorem provers are powerful tools for formalizing mathematics and
verifying the correctness of software. However, they require significant back-
ground and effort to use due to the tedious nature of writing formal proofs and
have not seen widespread adoption. Recent advances in machine learning have
enabled formal proofs to be auto-generated; most existing approaches that use
language models, however, have focused on generating proofs step-by-step and
using them in conjunction with an expensive search algorithm to find proofs. In
2023, First et al. introduced Baldur, a system that uses language models to gen-
erate entire proofs at once for theorems in the Isabelle proof assistant. Our work
studies the feasibility of a similar whole-proof generation procedure for Coq and
introduces a novel approach to automated theorem proving that recursively ex-
tracts lemmas at failure points in the proof generation process, allowing the sys-
tem to break complex theorems down into simpler subproblems. We evaluate
these approaches on a dataset of 724 theorems from the Software Foundations
textbook and show that GPT-4 can generate whole-proofs for 66.44% of the the-
orems. Additionally, when augmented with our lemma extraction method, GPT-4
sees a 19.54% improvement to achieve a success rate of 79.42%, thus marginally
outperforming CoqHammer—a state-of-the-art automated reasoning tool—which
proves 78.73% of the theorems. We also evaluate the much smaller open-source
model Phind CodeLlama, which depicts a 103.23% improvement over its baseline
when utilizing lemma extraction. We release our Coq playground that contains
an implementation of this procedure along with the dataset and evaluation results
through an open-source repository to encourage further research in this area.

1 INTRODUCTION

Formal logic studies the rules of correct reasoning and provides a symbolic framework for express-
ing and proving theorems. Traditionally, proofs have been written by mathematicians and computer
scientists in natural language using high-level abstractions, with the emphasis being on communi-
cating the major ideas as opposed to fleshing out every minor detail. Formal proofs differ from these
in that the emphasis is on precision, rigor, and verifiability. As a consequence, formal proofs can be
checked for correctness using a computer, usually through an interactive theorem prover or proof
assistant such as Coq (The Coq Development Team, 2023), Lean (de Moura et al., 2015), Isabelle
(Nipkow et al., 2002), or Metamath (Megill & Wheeler, 2019).

However, the process of finding these proofs continues to be an unsolved problem in artificial in-
telligence. While it is straightforward to verify a formal proof once it has been written in a formal
language, automated theorem proving, the process of searching for or generating these proofs auto-
matically, is computationally intractable. Nevertheless, there have been various attempts to automate
the theorem proving process. One major class of automated theorem provers are based on satisfi-
ability modulo theories (SMT) solvers, which use search algorithms in conjunction with heuristics
and time-outs to attempt to find a proof in a reasonable amount of time. While these solvers are
effective for many simple problems and are often used to automate the verification of small steps
within a larger proof, they are not well-suited for the task of finding complex proofs from scratch
due to the vast search space of possible proofs.
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More recently, machine learning has been used to guide the search for formal proofs. While large
language models (LLMs) have been shown to be effective at generating some simple proofs, these
approaches are still in their infancy and require further research before they can be used in practice.
Indeed, there tend to be frequent logical errors and hallucinations even in natural language responses
to prompts, so these errors are likely to be even more common in the context of formal logic.

Automating parts of the formal proof writing process will be highly significant for not only those
who currently use proof assistants in their work—mathematicians trying to formalize and verify
their theorems and proofs, and engineers writing highly precise and critical code for processors,
compilers, or operating systems—but also those who would benefit by their use but don’t do so
due to their steep learning curve and tediousness. Software developers, for example, commonly
evaluate their code at runtime against a unit test suite that is often not fully comprehensive and lets
bugs go unnoticed. Advancements in automated formal verification could make this unit testing
process unnecessary by simply proving through static analysis that their code matches the required
specifications, without them having to write the cumbersome proofs themselves.

Our contributions in this paper are two-fold.

• We study whole-proof generation using large language models for the Coq proof assistant,
quantifying the fraction of theorems in our dataset provable with only a single prompt.

• We introduce a novel approach to automated theorem proving that repairs incorrectly gener-
ated proofs by recursively extracting lemmas at failure points. This method enables break-
ing complex theorems down into simpler subproblems that are then easier to prove using
a whole-proof approach. We then evaluate this approach against existing proof automation
tools and also demonstrate significant gains over single-step whole-proof generation.

1.1 BACKGROUND

Interactive theorem provers, also known as proof assistants, are software tools that provide an im-
plementation of a formal system and allow users to construct and then verify formal proofs by ex-
pressing them as computer programs. Coq (The Coq Development Team, 2023) is a theorem prover
that was first released in 1989 and is used in both academia and industry for formal verification of
software and hardware systems, as well as for formalizing mathematics and proving theorems.

Proofs in Coq are commonly written using a sequence of tactics, which are commands that are used
to manipulate the proof state of a proof until it is complete. The proof state is simply a list of goals
that, if proven in their entirety, will complete the proof. Each goal consists of a conclusion (the
proposition that needs to be proven) and a local context containing local definitions, variables, and
hypotheses that can be used in the proof. Depending on the tactic, it may be necessary to pass one
or more arguments to it; these arguments may include terms containing constants, definitions from
the local context, as well as declarations in the global environment that may include definitions and
previously-proven theorems and lemmas in the file or in an imported file.

Consider the following Coq proof of the closed-form expression for the sum of the first n natural
numbers, a prototypical example of a proof by induction.

1 Require Import ArithRing.
2

3 Fixpoint sum_n (n : nat) : nat :=
4 match n with
5 | 0 => 0
6 | S n' => n + sum_n n'
7 end.
8

9 Lemma sum_n_formula_helper : forall n : nat,
10 2 * sum_n (S n) = 2 * (S n) + 2 * sum_n n.
11 Proof.
12 intro n. simpl. ring.
13 Qed.
14

15 Theorem sum_n_formula : forall n : nat, 2 * sum_n n = n * (n + 1).

2



Published at the ICLR 2025 Worshop on AI Verification in the Wild (VerifAI)

16 Proof.
17 intro n. induction n as [|n' IH].
18 - simpl. reflexivity.
19 - rewrite -> sum_n_formula_helper. rewrite -> IH. ring.
20 Qed.

The proof of the main theorem sum n formula begins by introducing the natural number n and
using the induction tactic to split the proof into two cases: the base case of n = 0 (easily proven
by simplifying to 0 = 0 and then using the reflexivity of equality), and the inductive step. This
second case uses a helper lemma in addition to the inductive hypothesis.

2 METHODS

Large language models have had much success in recent years at understanding and generating code
in various programming languages (Chen et al., 2021). The formal languages used by interactive
theorem provers, however, differ from these in a few different ways, not least of which is the limited
availability of human-written programs in these languages due to the significantly smaller com-
munities and the tediousness of writing formal proofs by hand. Nevertheless, LLMs have shown
promise in theorem proving and there has been much research in the last few years on other ways of
leveraging them for this purpose, beyond training and fine-tuning.

As discussed in section 4, recent attempts at using LLMs have used one of two approaches: either
a step-by-step proof generation process that generates one proof step at a time to grow a search
tree that is used in conjunction with an expensive search algorithm to find a complete proof, or a
more direct approach that generates the entire proof at once. We will focus on the latter approach
which was used in Baldur (First et al., 2023), a recent work that will serve as the basis for our own
investigations.

The authors of Baldur focus on the Isabelle proof assistant, where proofs can be written using a
declarative proof language called Isar that includes the intermediate proof states within the proof
itself, hence allowing it to be human-readable. This makes it more amenable for language models
to generate proofs in a manner akin to chain-of-thought as the output of the model includes the
proof states at each step, allowing the transformer to consider these when generating the next step.
In contrast, Coq uses a procedural proof language that is not human-readable and requires the user
to step through the series of tactics in the proof one by one using the proof assistant’s verifier to
view the intermediate proof states and decide what tactic to use next. This makes whole-proof
generation in Coq a possibly more challenging task for language models and motivates our study of
their effectiveness in this setting (see appendix A for a more detailed comparison).

Given the likely difficulty of generating whole proofs in Coq, we also propose a method of breaking
theorems down into smaller lemmas with the aim of improving the chances of finding a correct proof.
This is motivated by our hypothesis that large language models will be able to reason about smaller,
simpler theorems with fewer proof steps more accurately than complex theorems with highly in-
volved proofs. Now how do we decide what lemmas to extract for a given theorem? Previous works
adjacent to ours have used data-driven lemma synthesis or large language models to generate proof
sketches as a series of assertions or “local lemmas” based on an informal proof draft. See section 4
for a discussion of these methods.

In this work, we propose simply generating a whole-proof, attempting to verify its correctness, and
then extracting a lemma that would complete the goal at the point of the first error encountered
during the verification. This technique is motivated by our hypothesis that LLMs are likely to make
mistakes in the fine-grained details of a proof—hallucinations of identifiers or inapplicable tactics,
for instance—when generating whole proofs, but are more likely to get the general proof structure
right. To the best of our knowledge, this is the first work to explore this method.

To summarize, we ask the following research questions:

1. How effective are large language models at generating whole proofs of theorems in
Coq?

2. Can their performance on the whole-proof generation task be improved by recursively
extracting lemmas at failure points during proof generation?
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2.1 LEMMA EXTRACTION ALGORITHM

Given the statement of a theorem and a global environment, our proposed method of proof search
proceeds as follows.

1. Generate a whole-proof attempt of the theorem using a large language model. In addition
to the theorem statement itself, the model is also given access to the statements of the
definitions and theorems in the global environment as part of the prompt to allow it to use
these in its proof. We do not include proofs of these definitions and theorems to avoid
exceeding the context window size of the model.

2. Attempt to verify the proof using the Coq verifier. If the proof is correct, we are done. If
an error is encountered, proceed to the next step.

3. Using an annotated version of the sentences in the proof attempt, identify the index ierr of
the first sentence that caused the error.

4. Extract the first goal of the proof state at the sentence with index ierr − 1.

5. Construct a lemma that uses the variables and hypotheses from the extracted goal as
premises and the goal’s conclusion as its conclusion.

6. Recursively generate a whole-proof attempt for the lemma with the same global environ-
ment as the original theorem, recursing until either a successful proof of the lemma is found
or a maximum depth is reached.

7. Replace the portion of the original theorem’s proof that attempted to prove the extracted
goal with an application of the lemma (i.e. using the apply tactic). Also modify the global
environment of the theorem to include the lemma.

8. Repeat the process for the next error encountered, if any.

2.2 AN EXAMPLE

To illustrate the lemma extraction algorithm, consider the following example based on the in-
duction proof in Coq discussed in section 1.1. Suppose we have previously proven the lemma
sum n formula helper, so the global environment so far includes this lemma in addition to the
definition sum n that recursively computes the sum of the first n natural numbers. Also suppose
we provide the entirety of this global environment to a large language model that then generates the
following proof attempt.

1 Theorem sum_n_formula : forall n : nat, 2 * sum_n n = n * (n + 1).
2 Proof.
3 induction n as [| n' IHn'].
4 - simpl. reflexivity.
5 - ring.
6 Qed.

This proof is valid up to the base case. At the beginning of the inductive step, the proof state looks
as follows.

1 goal
n' : nat
IHn' : 2 * sum_n n' = n' * (n' + 1)
============================
2 * sum_n (S n') = S n' * (S n' + 1)

The next proof step as output by the model is the ring tactic, which produces an error.

Tactic failure: not a valid ring equation.

Indeed, the ring tactic is not applicable here as the goal’s conclusion depends on the sum n func-
tion and is not simply derivable from the axioms of a ring or semi-ring. The inductive hypothesis is
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needed to complete the proof, and the sum n formula helper lemma is also useful. We extract
the hypotheses and conclusion of the goal at the point just before the error (shown above), and use
them to construct the following lemma.

1 Lemma extracted_lemma : forall n' : nat,
2 forall IHn' : 2 * sum_n n' = n' * (n' + 1),
3 2 * sum_n (S n') = S n' * (S n' + 1).

Now we recursively generate a proof attempt for extracted lemma using the same global envi-
ronment as the original theorem. Suppose the model generates the following correct proof.

1 Proof.
2 intro n'. intro IHn'.
3 rewrite sum_n_formula_helper. rewrite IHn'.
4 ring.
5 Qed.

Then, it suffices to inject this new lemma along with its proof into the proof script before the defi-
nition of sum n formula, and then replace the portion of the original proof within the inductive
step with a single apply tactic taking the lemma as an argument. This completes the proof of
sum n formula as shown below.

1 Theorem sum_n_formula : forall n : nat, 2 * sum_n n = n * (n + 1).
2 Proof.
3 induction n as [| n' IHn'].
4 - simpl. reflexivity.
5 - apply (@extracted_lemma n' IHn').
6 Qed.

In this example, the model correctly identifies that the original theorem requires a proof by induction
and also correctly proves the simple base case. The proof of the inductive step, however, results in
an error in the form of a failed tactic. Extracting a lemma for this inductive step allows the proof
state (i.e. the subgoal containing the hypotheses and conclusion) to be passed to the model as a
“reminder” of what needs to be proven, allowing it to focus on the details of that subgoal while
having access to the local context. This is in contrast to the original whole-proof attempt, where the
model had to generate tactics with no guidance as to what remained to be proven after each step.

2.3 IMPLEMENTATION

Our Coq playground is available as an open-source repository1. The implementation is written in
Python and uses Alectryon (Pit-Claudel, 2020), a Python interface for Coq, to interact with the
verifier. The repository also contains the Coq source files from which the dataset used for eval-
uation is constructed (see section 3.2) as well as the generated proof scripts and logs. Success-
ful proofs are given the filename thm{thm idx} {thm name}.v while failed proofs are named
thm{thm idx} err {thm name}.v.

Although our experiments use specific models as discussed in section 3.1, the playground is designed
to be model-agnostic and can be used with any large language model, including GPT models in
OpenAI’s suite, pre-trained models hosted inside a model repository on HuggingFace, as well as
locally trained or fine-tuned models.

More detailed instructions on how to use the playground to prove a specific theorem or run experi-
ments are available in the README of the repository.

3 EVALUATION

To evaluate our lemma extraction approach, we compare the performance of a large language model
used in conjunction with lemma extraction to that of a single whole-proof approach as used in Bal-
dur. We further report baseline results of existing automation tools in Coq, specifically the auto

1https://github.com/mtarunpr/coq-prover
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and intuition tactics as well as the hammer tactic from the state-of-the-art CoqHammer plu-
gin (Czajka & Kaliszyk, 2018). We use hammer with the CVC4 (Barrett et al., 2011) automated
theorem prover and the default time limit of 20 seconds. We consider a proof to be valid if it is
successfully verified by the Coq proof assistant and does not contain sentences that allow it to exit a
proof without completing it, such as Admitted or Abort.

3.1 MODELS

We run experiments using two large language models: GPT-4, specifically the
gpt-4-1106-preview model, and the open-source model Phind-CodeLlama-34B-v22.
The former is a general purpose foundational model available through the OpenAI API, while the
latter is a much smaller 34B parameter model that is a fine-tuned and instruction-following variant
of CodeLlama (Roziere et al., 2023), which itself is a variant of the foundational model Llama 2
(Touvron et al., 2023) that has been specifically fine-tuned to perform well on code generation tasks.
At the time of writing, Phind CodeLlama is the state-of-the-art among open-source models for
code generation tasks and achieves a performance of 73.8% pass@1 on the HumanEval benchmark
(Chen et al., 2021). We focus our investigations on these base models and do not further fine-tune
them on Coq-specific data.

It is worth noting that the pre-training data for these models may have been contaminated with some
or all of the theorems in our dataset, and this should be kept in mind when interpreting results. We
do not believe this to be a significant issue, however, since this work focuses on improvements in
performance when using our lemma extraction approach, as opposed to merely the base performance
of these models on this dataset.

3.2 DATASET

We use the theorems and exercises from the Software Foundations, Volume 1: Logical Foundations
textbook (Pierce et al., 2023), sourced from a public GitHub repository3 available under the MIT
License, as our evaluation dataset. This dataset consists of 724 theorems and exercises in Coq,
which we use to evaluate the whole-proof generation success rate of the base models, as well as
the performance of our theorem proving approach and the automation baselines. These theorems
are split across 17 source files—each corresponding to one chapter—spanning a variety of topics in
logic and functional programming, including induction, lists, maps, polymorphism, and parsing.

A copy of this dataset is included in our repository under the
data/raw/software foundations directory. The generated proofs for the theorems
are available in the proofs gpt4 and proofs phind subdirectories.

3.3 RESULTS

Table 1: Performance of LLMs with lemma extraction compared to baseline methods

Method Count % Improvement %
GPT-4 + Lemma Extraction 575 79.42% 19.54%
GPT-4 Baseline 481 66.44%
Phind-CodeLlama + Lemma Extraction 189 26.10% 103.23%
Phind-CodeLlama Baseline 93 12.84%
auto 260 35.91%
intuition 331 45.72%
hammer 570 78.73%

Table 1 shows a comparison of the performance of the lemma extraction approach on the 724 theo-
rems in the dataset using each of the two language models, measured as the percentage of theorems
in the dataset successfully proven, against various baseline methods. The improvement percentage

2https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
3https://github.com/marshall-lee/software_foundations
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is calculated as the percentage increase in the number of theorems proven by a given language model
when using lemma extraction compared to the same model without.

The results show, firstly, that whole-proof generation is a promising approach for theorem proving
in Coq, with GPT-4 achieving a success rate of 66.44% even without any fine-tuning. This is signif-
icantly higher than the 35.91% and 45.72% achieved by auto and intuition respectively, but
lower than the 78.73% achieved by hammer.

The Phind CodeLlama model, however, performs remarkably more poorly than GPT-4, with a
success rate of only 12.84%. Indeed, even the automation tools built into Coq—auto and
intuition—are able to prove a larger fraction of the theorems in the dataset than Phind CodeL-
Lama, with or without lemma extraction. This is despite such proofs being solvable using a single
tactic, indicating that the language model is unable to identify theorems that are simple enough to
be provable using these tactics; instead, the proofs output by the model attempt to prove the theo-
rem from scratch, without the help of automation. This is likely due to a combination of the small
parameter size of the model and the limited quantity of Coq proofs in its pre-training data.

Next, we look at the performance of both models when augmented with the lemma extraction ap-
proach. GPT-4 with lemma extraction is able to prove 79.42% of the theorems in the dataset,
a 19.54% improvement over its baseline performance. Notably, this improved success rate even
slightly exceeds the performance of the hammer tactic. In the case of Phind CodeLlama, the suc-
cess rate more than doubles in the presence of lemma extraction: successful proofs were found for
26.10% of the theorems in the dataset, i.e. a 103.23% improvement over the whole-proof method.

These results have several implications on possibilities for the future of automated theorem provers.
Our results suggest that lemma extraction is reasonably effective for large foundational models, but
particularly effective for smaller models like Phind CodeLlama. Despite the latter’s poor perfor-
mance on the whole-proof task, the lemma extraction approach is able to significantly improve its
success rate, even though the same model is used to prove the extracted lemmas with no additional
step-by-step guidance. If such techniques were to be integrated into plugins for Coq, models at the
scale of GPT-4 may be far too large to run locally, but there may be possibilities for smaller open-
source models like Phind CodeLlama to be used as tools to assist in proof writing. Having said that,
further research on fine-tuned versions of these open-source models is needed to determine if they
can outperform existing automation tools with the help of lemma extraction.

To conclude, we answer the research questions posed at the beginning of the section.

1. How effective are large language models at generating whole proofs of theorems in
Coq?
Large language models have shown to be reasonably effective at generating whole proofs of
theorems in Coq, with GPT-4 achieving a success rate of 66.44% on the dataset and outper-
forming built-in automation tools like auto and intuition but not powerful external
reasoning tools such as CoqHammer. Smaller models, however, seem to perform much
worse without fine-tuning on Coq proofs: Phind CodeLlama, for instance, has a success
rate of only 12.84% and is outperformed by even simple automation tools like auto.

2. Can their performance on the whole-proof generation task be improved by recursively
extracting lemmas at failure points during proof generation?
Yes, there is evidence to show that the performance of large language models can be sig-
nificantly improved by extracting lemmas at failure points during proof generation and
recursively generating whole proofs for these lemmas. GPT-4 solves 79.42% of the the-
orems in the dataset, thus marginally exceeding the success rate of even the CoqHammer
tool. Phind CodeLlama on the other hand solves 26.10% using this approach, representing
a remarkable 103.23% improvement over its baseline performance.

4 RELATED WORK

Early attempts at using neural networks for theorem proving predate the advent of LLMs. In 2019,
Huang et al. introduced GamePad, an RNN-based learning environment for theorem proving in
Coq that involves two components: position evaluation and tactic evaluation. CoqGym, a dataset
and learning environment for theorem proving in Coq consisting of 71K human-written proofs, was
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published soon after (Yang & Deng, 2019) along with ASTactic, a neural theorem prover that proves
theorems by interacting with the Coq proof assistant, using an encoder-decoder architecture.

These were followed by several investigations into the use of large language models for step-by-step
proof search including GPT-f (Polu & Sutskever, 2020) and HyperTree Proof Search (HTPS) Lample
et al. (2022), as well as approaches involving diversity-driven theorem proving that aim to integrate
language models with hammers or combine the strengths of multiple methods (Jiang et al., 2022;
First & Brun, 2022). Sivaraman et al. (2022) propose a method for synthesizing lemmas that may
be useful in proving a given theorem, and then evaluate their approach with the help of the existing
Proverbot9001 (Sanchez-Stern et al., 2020) that uses neural methods for theorem proving: this work
treats lemma synthesis as a data-driven program synthesis problem, where examples generated from
the current proof state serve as the data.

In a significant departure from previous attempts at using search techniques that incorporate lan-
guage models as only one component of the larger search algorithm, Baldur (First et al., 2023)
attempts to directly generate whole proofs at once instead of one step at a time for the Isabelle/HOL
theorem prover. In this work, the authors study the feasibility of whole-proof generation along with
proof repair using a transformer-based model. While Baldur is designed to work with any language
model, the authors use Minerva (Lewkowycz et al., 2022) to run their experiments, which is pre-
trained on a mathematics corpus. More recent attempts at whole-proof generation have involved
training on synthetic data (Xin et al., 2024), using a continually growing library of verified lemmas
(Wang et al., 2023), as well as iterative proof-repair using simple methods like undefined reference
replacement and renaming (PALM) (Lu et al., 2024). While our work builds off existing whole-
proof and proof-repair attempts such as Baldur and PALM, it differs in that it introduces the novel
approach of lemma extraction as a proof-repair tool.

LeanDojo (Yang et al., 2024) is a Lean playground that contains toolkits, data, and benchmarks for
theorem proving in Lean released in conjunction with ReProver, a retrieval-augmented prover that
fetches relevant premises from Lean’s library to assist the model in proving theorems. Draft, Sketch,
and Prove (DSP) (Jiang et al., 2023) is an approach that proposes a method to formalize entire proofs
of theorems using three steps: generate a draft of a proof in natural language, convert this to a formal
proof sketch, and then fill in the gaps using an off-the-shelf automated theorem prover like Z3.

Besides the major works discussed above, there have been several other attempts at using machine
learning for related problems: some have focused on using reinforcement learning and MCTS-
based approaches for formal proving and code generation (Gauthier et al., 2021; Wu et al., 2021;
Dou et al., 2024; Brandfonbrener et al., 2024), while others have focused on Olympiad geometry
problems (Trinh et al., 2024) as well as natural-language approaches to math problems (Welleck
et al., 2021; Lightman et al., 2024).

5 CONCLUSION

In this paper, we introduced, investigated, and released an implementation of a novel approach to
automated theorem proving in Coq that makes use of whole-proof generation in conjunction with
lemma extraction at failure points to come up with proofs of theorems. This work differs from most
previous approaches described in section 4 in that it does not use expensive search-based methods
to find proofs, nor does it generate tactics one step at a time. Similar to Baldur (First et al., 2023),
it generates whole proofs at once, but it does so in a guided manner by “reminding” the language
model of what needs to be shown at each error point through the use of lemmas, which are then
proven in the same way.

There are several directions in which this work can be extended. Lemma extraction can be used in
conjunction with retrieval augmented generation to retrieve relevant premises and include them in
the prompt, in a manner similar to LeanDojo (Yang et al., 2024), to overcome context size limita-
tions. Additionally, lemmas that are likely to be useful in the proof can be identified even before the
proof is generated. Using the lfind tactic in Coq, for instance, in conjunction with whole-proof
generation is one possible direction for research (see data-driven lemma synthesis discussed in sec-
tion 4). Instead of explicitly extracting lemmas, one can also use proof sketches as was done in DSP
(Jiang et al., 2023); in Coq, such a sketch could be created as a sequence of assert tactics that act
as the lemmas.
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A COQ VS ISABELLE

Proofs written using Isar in Isabelle include the intermediate proof states within the proof itself,
for instance in the have and the assume steps, making them more human-readable albeit more
verbose. Take, for instance, the following proof of a simple theorem from propositional logic written
in Isabelle.

1 theorem distribute:
2 "A /\ (B \/ C) ==> (A /\ B) \/ (A /\ C)"
3 proof -
4 assume "A /\ (B \/ C)"
5 then have A: "A" and BC: "B \/ C"
6 by auto
7 {
8 assume "B"
9 with A have "A /\ B" by simp

10 then have "(A /\ B) \/ (A /\ C)"
11 by simp
12 }
13 moreover
14 {
15 assume "C"
16 with A have "A /\ C" by simp
17 then have "(A /\ B) \/ (A /\ C)"
18 by simp
19 }
20 ultimately show "(A /\ B) \/ (A /\ C)"
21 using BC by blast
22 qed
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The structure of the Isabelle proof is not too dissimilar from its structure in natural language: the
proof begins by assuming the premise and then proceeds to name the hypotheses before splitting
up into two cases. Each case then involves explicitly writing out the current proof state (such as
have "A /\ C" and then have "(A /\ B) \/ (A /\ C)") at every step.

In Coq, the structure remains similar, except that the proof state is not explicitly written out at each
step; instead the interpreter maintains the state as it verifies each step of the proof. This makes
it harder for a human reader as well as for a language model to keep track of things like which
variable name corresponds to which hypothesis, what the current proof state is, and what remains to
be shown.

1 Variables A B C : Prop.
2

3 Theorem distribute : A /\ (B \/ C)
4 -> (A /\ B) \/ (A /\ C).
5 Proof.
6 intro H.
7 destruct H as [H1 H2].
8 destruct H2 as [H2 | H3].
9 - left. split.

10 + exact H1.
11 + exact H2.
12 - right. split.
13 + exact H1.
14 + exact H3.
15 Qed.

B PROMPTS USED

We provide the prompt templates used in the experiments in this paper; these are also available in
the Coq playground.

Each time a theorem or lemma needs to proven, we make a request to the model to generate a proof,
without retaining context from previous requests to avoid bias and repetition of the same errors. We
use a system prompt along with a user message.

System message:

You are an automated theorem prover that can prove theorems and
lemmas in Coq. Your entire response must be valid Coq code. You
should explain your reasoning (what the proof steps are
attempting to do), but only in comments inside the Coq code. The
following messages will all consist of a theorem statement
(possibly preceded by necessary definitions, imports, etc.), and
your response must be a valid Coq proof of that theorem. Your
response must be in this format: ```coq
Proof.
<proof>. Qed.
```. Remember: do not add any other text besides Coq code and do
not repeat any imports, definitions, lemmas, etc. provided in the
prompt.

User message:

#### CONTEXT

{global environment}

#### THEOREM TO BE PROVEN
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{theorem statement}

We also use the language model to generate names for the extracted lemmas, which are then suffixed
with an index to ensure uniqueness.

System message:

You are a proof helper for Coq that can come up with descriptive
names for lemmas and theorems based on the statement of the
proposition. Specifically, Replace `helper_lemma` with a better,
more descriptive, name for the following lemma(s) in Coq. Your
entire response must be valid Coq code. Your response must be in
this format: ```coq\nLemma <new_lemma_name> :
<lemma_statement>.\n```.

User message:

{lemma statement}

Note that the OpenAI API for GPT-4 accepts the system and user messages as separate inputs. For
Phind CodeLlama, we use the following template, in accordance with the Alpaca/Vicuna instruction
format as specified in the model’s documentation.

### System Prompt
{system message}

### User Message
{user message}

### Assistant

C EXAMPLES OF PROOFS FOUND

This appendix contains examples of theorems that were unable to be proven by a single whole-proof
sample from the language model, but were successfully proven by the model when broken down
into lemmas. We present one randomly sampled example each for GPT-4 and Phind CodeLlama.
For each theorem, we include the ground-truth proof from the dataset, the incorrect whole-proof
attempt by the model, the error, and the final correct proof (along with lemmas extracted). We retain
comments generated by the models, but omit the global environment. The complete proof scripts
including the global environment can be found in the repository.

EXAMPLE 1 (GPT-4): THEOREM 676 (ADD COMM)

The theorem in this example is a simple result about the commutativity of addition that can be proven
using induction. While the model correctly identifies this, it makes errors in both the base case and
the inductive step that result in four lemmas being necessary to complete the proof.

Ground-truth proof:

1 Theorem add_comm : forall n m : nat,
2 n + m = m + n.
3 Proof.
4 intros n m.
5 induction n as [| n' IHn'].
6 - (* n = 0 *)
7 simpl. rewrite <- plus_n_O. reflexivity.
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8 - (* n = S n' *)
9 simpl. rewrite <- plus_n_Sm. rewrite <- IHn'. reflexivity.

10 Qed.

Incorrect whole-proof attempt:

1 Theorem add_comm : forall n m : nat,
2 n + m = m + n.
3 Proof.
4 (* We prove this lemma by induction on n. *)
5 intros n.
6 induction n as [| n' IHn'].
7 - (* The base case: 0 + 0 = 0 *)
8 reflexivity.
9 - (* The inductive case: S n' + 0 = S n' *)

10 simpl.
11 rewrite IHn'.
12 reflexivity.
13 Qed.

Error in step reflexivity.

In environment
m : nat
Unable to unify "m + 0" with
"0 + m".

Error in step rewrite IHn’.

Found no subterm matching
"n' + ?M1094" in the current goal.

Correct proof after lemma extraction:

1 Lemma add_zero_comm_1 : forall m : nat, 0 + m = m + 0.
2 Proof.
3 intros m.
4 rewrite <- plus_n_O.
5 reflexivity.
6 Qed.
7

8 Lemma add_zero_comm_0 : forall m : nat, 0 + m = m + 0.
9 Proof.

10 (* We use induction on `n` to prove that for all natural numbers
11 `n`, `n + 0 = n`. *)
12 apply (@add_zero_comm_1 ).
13 Qed.
14

15 Lemma succ_plus_comm_2 : forall n' : nat, forall IHn' : forall m : nat,
16 n' + m = m + n', forall m : nat, S (n' + m) = m + S n'.
17 Proof.
18 (* n' is fixed by forall so we can introduce the second premise (IHn')
19 which is the inductive hypothesis that will be used later in the proof *)
20 intros n' IHn' m.
21 (* Apply the previously introduced plus_n_Sm theorem which states that
22 S (n + m) = n + S m *)
23 rewrite <- plus_n_Sm.
24 (* Now apply our inductive hypothesis which will transform
25 n' + m into m + n' *)
26 rewrite IHn'.

14



Published at the ICLR 2025 Worshop on AI Verification in the Wild (VerifAI)

27 (* At this point we have S m + n', which we want to show is equal to
28 m + S n'.*)
29 reflexivity.
30 Qed.
31

32 Lemma succ_plus_comm_1 : forall n' : nat, forall IHn' : forall m : nat,
33 n' + m = m + n', forall m : nat, S (n' + m) = m + S n'.
34 Proof.
35 (* Let's prove the lemma by introducing the necessary variables. *)
36 intros n' IHn' m.
37 (* Use the provided induction hypothesis (IHn'). *)
38 apply (@succ_plus_comm_2 n' IHn' m).
39 Qed.
40

41 Theorem add_comm : forall n m : nat,
42 n + m = m + n.
43 Proof.
44 (* We prove this lemma by induction on n. *)
45 intros n.
46 induction n as [| n' IHn'].
47 - (* The base case: 0 + 0 = 0 *)
48 apply (@add_zero_comm_0 ).
49 - (* The inductive case: S n' + 0 = S n' *)
50 simpl.
51 apply (@succ_plus_comm_1 n' IHn').
52 Qed.

EXAMPLE 2 (PHIND-CODELLAMA): THEOREM 87 (FACTOR IS O)

This example depicts an error due to the use of reflexivity when the goal is not quite yet a
trivial equality but requires some simplification first.

Ground-truth proof:

1 Lemma factor_is_O:
2 forall n m : nat, n = 0 \/ m = 0 -> n * m = 0.
3 Proof.
4 (* This pattern implicitly does case analysis on
5 [n = 0 \/ m = 0] *)
6 intros n m [Hn | Hm].
7 - (* Here, [n = 0] *)
8 rewrite Hn. reflexivity.
9 - (* Here, [m = 0] *)

10 rewrite Hm. rewrite <- mult_n_O.
11 reflexivity.
12 Qed.

Incorrect whole-proof attempt:

1 Lemma factor_is_O : forall n m : nat, n = 0 \/ m = 0 -> n * m = 0.
2 Proof.
3 intros n m H.
4 destruct H as [Hn | Hm].
5 - (* n = 0 *)
6 rewrite Hn.
7 reflexivity.
8 - (* m = 0 *)
9 rewrite Hm.

10 reflexivity.
11 Qed.
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Error in step reflexivity.

In environment
n, m : nat
Hm : m = 0
Unable to unify "0" with "n * 0".

Correct proof after lemma extraction:

1 Lemma mult_zero_right_neutral_1 : forall n' m : nat,
2 forall Hm : m = 0, forall IHn' : n' * 0 = 0, n' * m = m.
3 Proof.
4 intros n' m Hm IHn'.
5 rewrite Hm.
6 (* We know that m = 0, so n' * m = n' * 0 by the equality m = 0. *)
7 rewrite IHn'.
8 (* We know that n' * 0 = 0 by the induction hypothesis. *)
9 (* Therefore, n' * m = 0. *)

10 reflexivity.
11 Qed.
12

13 Lemma multiplication_of_zero_0 : forall n m : nat,
14 forall Hm : m = 0, n * 0 = 0.
15 Proof.
16 intros n m Hm.
17 induction n as [|n' IHn'].
18 - (* n = 0 *)
19 simpl.
20 reflexivity.
21 - (* n = S n' *)
22 simpl.
23 rewrite <- Hm.
24 apply (@mult_zero_right_neutral_1 n' m Hm IHn').
25 Qed.
26

27 Lemma factor_is_O : forall n m : nat, n = 0 \/ m = 0 -> n * m = 0.
28 Proof.
29 intros n m H.
30 destruct H as [Hn | Hm].
31 - (* n = 0 *)
32 rewrite Hn.
33 reflexivity.
34 - (* m = 0 *)
35 rewrite Hm.
36 apply (@multiplication_of_zero_0 n m Hm).
37 Qed.
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