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ABSTRACT

Tensor Attention, a multi-view attention that is able to capture high-order corre-
lations among multiple modalities, can overcome the representational limitations
of classical matrix attention. However, the O(n?) time complexity of tensor at-
tention poses a significant obstacle to its utilization in transformers, where n is
the input sequence length. In this work, we prove that the backward gradient
of tensor attention training can be computed in almost linear time n'*t°(1), the
same complexity as its forward computation under the bounded entries assump-
tion. We provide a closed-form solution for the gradient and propose a fast com-
putation method utilizing polynomial approximation methods and tensor algebraic
techniques. Furthermore, we prove the necessity and tightness of our assumption
through hardness analysis, showing that slightly weakening it renders the gradient
problem unsolvable in truly subcubic time. Our theoretical results establish the
feasibility of efficient higher-order transformer training and may facilitate practi-
cal applications of tensor attention architectures.

1 INTRODUCTION

The generative large language models (LLMs), such as Mistral (Jiang et al.l 2023)), Llama (Touvron
et al.,[2023a), Llama2 (Touvron et al., 2023b)), Llama3 (Al 2024), Gemma (Team et al., 2024), GPT-
3 (Brown et al.,[2020), GPT-4 (Achiam et al.,|2023)), Claude3 (Anthropic,2024), Grok-1 (xAl, 2024)
and many more, have been widely involved in people’s living and work in these two years, such as
bio-informatics (Thirunavukarasu et al.,|[2023)), coding (Hou et al., |2024), education (Kasneci et al.,
2023)), finance (Li et al., |2023b)), law (Sun, [2023), and even writing NeurIPS conference reviews
(Liang et al., [2024). The success of LLMs is based on the transformer architecture introduced by
Vaswani et al.[(2017), which also has been introduced into other modality (Dosovitskiy et al.,|2020),
such as vision-language models, e.g., CLIP (Radford et al.,|2021), Flamingo (Alayrac et al., |2022),
LLaMA-Adapter (Zhang et al.| 2023a} |Gao et al.| [2023)), LLava (Liu et al.,[2024; 2023b), BLIP (Li
et al., [2022; |2023a), MiniGPT-4 (Zhu et al.,2023)), Qwen (Bai et al.,[2023ab), Gemini (Team et al.}
2023), MM1 (McKinzie et al., [2024).

The above open-sourced large models use two-view matrix attention, i.e., each attention score/entry
is related to two tokens (one query token and one key token) to capture the data correlation. More
specifically, let Z be hidden representations and QQ = ZWq, K = ZWgk,V = ZWy be the corre-
sponding query, key, and value matrices after projections using weights W, Wy, Wy, respectively.
Then, the classical/matrix attention head can be written as Att(Z) = Softmax(QK ")V.

On the other hand, many studies find that multi-view is crucial for high-order correlation in various
kinds of data, e.g., math (Sanford et al., 2023)), graph (Demirel et al., 2022; |Luo et al., |2023), and
multi-modality (Lahat et al.| |2015). For example, recently, OpenAl released GPT-40 (OpenAl,
2024])), and Google released Project Astra (Google, 2024), two flagship multi-modality models that
aim to reason across three views, i.e., audio, vision, and text in real-time.

However, [Sanford et al.|(2023)) theoretically and empirically shows that classical attention can cap-
ture pairwise correlation but not triple-wise correlation due to the representational limitations of
matrix attention. [Sanford et al.|(2023) introduces a triple detection task, demonstrating that classical
attention layers have complexity scaling linearly with the input size, while high-order attention can
efficiently perform this computation within a single head. In other words, one classical matrix
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attention head “cannot” capture the information relevant to multi-views simultaneously unless using
multiple layers with careful architecture design. This poses a fundamental technical obstacle for
multi-modality models to efficiently fuse multiple representations/views to capture the high-order
correlation among them, e.g., the high-order correlations among multi-modalities such as audio,
text, and images.

To fundamentally solve the above

obstacle, |Sanford et al.| (2023) Table 1: Comparison to previous works.

and |Alman & Song| (2024b) in-

troduce Tensor Attention, which Reference For/Backward Matrix/Tensor
is a higher-order generalization ™ [Zandieh et al.|(2023) Forward Matrix

of matrix attention that can Alman & Song|(2023) Forward Matrix
capture high-order/multi-view in- Han et al.[(2024) Forward Matrix
formation intrinsically. =~ More Alman & Song|(2024a) Backward Matrix
specifically, it is defined as  [Alman & Song|(2024b) Forward Tensor
Softmax(Q(K; © Ko)")(Vi @ Ours (Theorem 5.2} Backward Tensor

V2) (Definition and illus-
1)

trated in Figure (1), where © is

column-wise Kronecker product, and @, K1/V;, K2/V5 can be from different views/modalities.
However, to implement Tensor Attention practically, we must overcome the complexity bottleneck.
Let the input token length be n, then the forward and backward time complexity of tensor attention
willbe O(n?) as Q(K1 © K») T € Rnxn* (Ma et al.,|2019), while the time complexity of matrix at-
tention is O(n?) only as QK ' € R™*" (Keles et al.,[2023). For example, the input length of Llama2
(Touvron et al.|[2023b)) is 4096. So, intuitively, if we put tensor attention in Llama2, the input length
will reduce to 256 to keep the same complexity in running speed and memory consumption.
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Figure 1: The visualization of tensor attention with Softmax activation function (Definition [3.5).
We give an example of input token length n = 8, feature dimension d = 4.
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There are several recent works to overcome the time complexity bottleneck above, e.g., O(n?) for
matrix attention and O(n3) for tensor attention. Zandieh et al.| (2023) accelerate matrix attention
forward via kernel density estimation and get truly sub-quadratic time running time. |Alman & Song
(2023) uses the polynomial approximation method to map the matrix attention into low-rank matri-
ces during forward computation, leading to an almost linear time complexity n'*°(1) when entries
are bounded. Similarly, under sparsity assumptions, |Han et al.| (2024) achieves nearly linear time
computation for matrix attention forward by identifying the larger entries in the attention matrix. On
the one hand, with fine-grained analysis, |Alman & Song| (2024a) proposes a new backward algo-
rithm to compute the gradient of matrix attention in almost linear time complexity n't°(1) as well,
under the same bounded entry assumption. On the other hand,|/Alman & Song| (2024b)) surprisingly
finds that the forward computation of tensor attention can also be achieved in almost linear time
n'*t°() rather than almost quadratic time n>*°(!), under similar assumptions as Alman & Song
(2023)). See a summary in Table Thus, it is natural to ask,

Can we achieve almost linear time for gradient computation in Tensor Attention Training?

We provide a positive answer in this work. Under the same bounded entries assumption as/Alman &
Song| (2024b), we propose Algorithm [I]to fast compute the backward gradient of Tensor Attention
Training in almost linear time n't°(1) as its forward computation. Thus, our results may make the
tensor attention practical, as we can get around the O(n?) complexity barrier both in its forward and
backward computation. Our contributions are summarized as follows:
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* Under fine-grained analysis, we give the closed-form solution of the gradient computation of
tensor attention (Lemmaf4.T)) and its time complexity without acceleration (Theorem [4.3)).

* Based on the closed-form solution, by utilizing polynomial approximation methods and tensor
computation techniques, we propose Algorithm I]to fast compute the backward gradient of tensor
attention training in almost linear time as its forward computation (Theorem [5.2).

* Furthermore, we prove that our assumption is necessary and “tight” by hardness analysis, i.e.,
if we slightly weaken the assumption, there is no algorithm that can solve the tensor attention
gradient computation in truly sub-cubic complexity (Theorem[6.3)).

2 RELATED WORK

Fast attention computation. In recent years, significant advances have been made in the devel-
opment of efficient attention computation. One research direction involves employing low-rank
approximations, polynomial kernel, or random features for the attention matrix (Zheng et al.| [2022;
Alman & Song} [2023} | Kacham et al.|[2023;Song et al., 2024;|Gu et al.,|2024), which scales the com-
putational complexity sub-quadratically with sequence length. Another method explores patterns of
sparse attention that lessen the computational load (Han et al., [2024). Additionally, using linear at-
tention as an alternative to softmax attention has emerged as a substantial area of study (Katharopou-
los et al., [2020; Schlag et al.,|2021}; [Zhang et al., 2023bj; |Ahn et al.| |2024; [Zhang et al.,2024). These
innovations have enhanced the capability of transformer-based models to handle longer sequences,
thereby broadening their potential applications across various fields (Chen et al., [2023} |Su et al.,
2024; Peng et al., 2024; Ding et al., 2024} Ma et al., 2024; Bertsch et al., [2023} Jin et al., 2024)).

Tensor computation for high-order representation. Tensors excel over matrices in capturing
higher-order relationships within data. Calculating low-rank factorizations or approximations of
tensors is essential in a wide range of computer science applications, such as natural language pro-
cessing (Lei et al., [2015; Bouchard et al., 2015), computer vision (Lu et al.l 2016} |Chen et al.,
2017), computer graphics (Wang et al., 2005; Vasilescu, [2009), security (Acar et al., 2006} [Kolda &
Baderl, [2006), and data mining (Karatzoglou et al., 2010; Rendle & Schmidt-Thieme} 2010; [Mgrup,
2011). Moreover, tensors are crucial in numerous machine learning applications (Podosinnikova
et al., 20155 Zhong et al., 2017} |Yang et al., 2019) and other diverse fields (Reps et al., 2016; |Y1
et al.| 20165 Ray et al.| 2016).

Roadmap. In Section we introduce the notations, several useful definitions, and our loss function.
In Sectionf4] we give the closed form of the gradient of our loss function, and also its computational
time complexity. In Section[5} we prove that we can compute the gradient in almost linear time. In
Section[6] we provide the hardness analysis. In Section[7] we give the conclusion of our paper.

3 PRELIMINARY

In this section, we first provide the notations we use. In Section 3.1} we provide general definitions
related to tensor operation. In Section[3.2] we provide key definitions that we utilize in this paper.

Basic notations. We use [n] to denote {1,2,...,n}. We use e; to denote a column vector where
only i-th location is 1 and zeros everywhere else. We denote an all 1 vector using 1,, € R™ . We use
{a,b) to denote the inner product of a,b € R%i.e. (a,b) := Zle a;b;. We use ||z|, to denote the

¢, norm of a vector z € R", i.e. ||z]|2 := (31, 27)¥/2, and ||z[|cc := max;e[,) |2;]. We use o to

denote the Hadamard product, i.e., the (4, j)-entry of Ao Bis A, ;B; ;.

We use tr[A] := > | A;; to denote the trace of a matrix A € R™*"™. We use exp(A) to denote a
matrix where exp(A); ; := exp(4; ;) for amatrix A € R"*¢. We use || A|| to denote the £, norm
of amatrix A € R™*%, i.e. [|Alls := max;e[n] jejq |Ai ;|- We use | Al F to denote the Frobenius
norm of a matrix A € R"*%, ie. ||[A|r := \/Zie["] > jera [4i,j|?- We use poly(n) to denote

polynomial time complexity w.r.t. n.

Tensor related notations. Let A € R"*¢, We use a := vec(A) to denote the length nd vector
obtained by stacking rows of A into a column vector, i.e. vec(A) := [a] ,aq ,...,a,]" wherea is

Y
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the i-th row of A, or simply vec(A) ;4 (;—1)q := Aqj foranyi € [n], j € [d], visualized in Fig.[2| Let
I; € R¥4 denote the identity matrix. Let ; € R?X4*? denote the identity tensor, i.e., the diagonal
entries are 1 and zeros everywhere else. Let X € RI*?’ Let 2 € RY denote the vectorization of
X € R4 Let X € R¥4*4%d e the tensorization of X € R?*4" where Xabe = Xa,(b—1)d+c fOr
any a,b, c € [d]. We define the corresponding function mat : R¥*4xd — RIXA® g X = mat(X)
where X, (p—1)drec = Xab.c fOrany a, b, c € [d].

3.1 DEFINITION OF TENSOR OPERATIONS

We define some operations like the Kronecker product, which is a
matrix operation applied to two matrices of any size, producing a
block matrix. It is different from regular matrix multiplication and
will be useful for our introduction and analysis of tensor attention.

Definition 3.1 (® Kronecker product). Given K; € R™ Xdi gnd d
Ky € R"™%%, for any iy € [ni1],iz € [no),j1 € [d1], j2 € [da], B
we define the matrix K := K; @ Ky € RM"2*%d2 g5 follows vee (nl sTel70s ) - nd

BEISEE] ~ [~

a
- 101112
Ki o= Dmr i +Go-1ds = (K1)in gy - (K2)is o -
In this work, we will primarily use the following column-wise and 10|
row-wise versions of the Kronecker product, which are special 1]
kinds of Kronecker product. 12|

Definition 3.2 (©» column-wise Kronecker product, also known ) o
as Kathri-Rao product). Given matrices K1 € R™mxd K, € Figure 2:  The visualization

R™%4 e define the matrix K = K, @ Ko € Rmm2xd g Of vectorization operator Vec('.),
follows which stacks rows of a matrix
A € R into a column vec-

Ki1+(i271)n1’j = (Kl)im’ : (Kz)iz,jy tor a € R™®, In this figure, we

iy € [n1],ia € [n2],j € [d]. give an example of n = 3,d =

4. The components of A and a
are also given for easier under-
standing.

Definition 3.3 (© row-wise Kronecker product, also referred to as
the face-splitting product). Given matrices K; € R™*% K, ¢
R™%% e define the matrix K = K, & Ky € R4 g5 fol-
lows

KijitGo—vyd, = (K1)ij, - (K2)igy, Vi€ [n],j1 € [di],j2 € [da].
3.2 KEY DEFINITIONS OF TENSOR ATTENTION

Now, we are ready to introduce the tensor attention. First, we introduce the parameters and input.
Definition 3.4 (Input and weight matrix). We define the input sequence as Z € R™"*? and the key,
query, and value weight matrix as Wy, , Wy, , Wo, Wy, , Wy, € RIX4. Then, we define the key,
query, and value matrix as K1 := ZWg, € Rx4 [y = ZWk, € R™4 Q = ZWq € R7xd,
Vi = ZWy, € R*¥4 V, := ZWy, € R™*4,

Then, based on Kronecker product, we define tensor attention in the following way.

Definition 3.5 (Tensor attention, Definition 7 in |Sanford et al.| (2023)), Definition 1.1 in |/Alman &
Song| (2024b)). Given input matrices Q, K1, K2, V1, Vo € R"¥9, compute the following matrix

D! A VvV eR™4

N~
nXn nxn? n?xd

where (1) A := exp(QK T /d) € R and K == Ky @ Ky € RV %4, (2) D = diag(Al,2) €

R™¥" and (3)V := V}, @ Vo € R? X4,

Remark 3.6. In Definition[3.3] on the one hand, we separate the Softmax operation into an element-

wise exp operation and a diagonal normalization matrix D for a more transparent formulation. On

. . . 2 .
the other hand, we change K,V € R™*4 in classical attention to K1 @ Ko, Vi @ Vo € R™ X4 jp
tensor attention, where @ is column-wise Kronecker product defined in Definition 3.2
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a2

n d n? d d
N e X _n ¢

4 2

min 0.5 x €Xp A | xd X X d2 (A2 ® Ag)T x n2||M(Ae@As < || v | - n| B

X e Rx¢*
F
n d n?
d?
n =diag | €xP |n{ A |xd x d? (A2 ® A3)T ) x n?{E )

Figure 3: The visualization of loss function defined in Deﬁmtlon- 3.8l Let Ay, Ay, A3, Ay, As and E
be n X d input matrices. Let Y be a given matrix with size d? x d. The Kronecker product operator

® is defined in Definition We minimize matrix X € R%*4" in our loss function. We first
compute exp(A; X (As ® A3) ) Then, we compute Dng = diag(exp(A; X (As ® A3)T)1,2).
Afterwards, we compute D(X) ! exp(A1 X (A2 ® A3) ") (A4 ® A5)Y — E. Finally, we optimize
X to compute the minimum of its Frobenius norm with a scahng factor 0.5.

Our Definition covers the self-attention setting, when the query/key/values Q, K1, Ko, V1, V5
follow Deﬁniti(!%l where they share the same input. It is then a tensor self-attention, which can
capture high-order information of the input Z. When the query/key/values have different inputs, it
is then a tensor cross-attention that can capture high-order relationships among multiple inputs.

Also, note that we have A € R™*"” in Definition Although QK T is a low-rank matrix with rank
at most d, exp(QK ") may be a full-rank matrix in general. Thus, it is clear to see the exact forward
computation of tensor attention takes O(n?) time. Here, we introduce a forward tensor attention
approximation task, which will help us formulate the tensor attention gradient approximation task
later. Furthermore, |Alman & Song| (2024b) show that they can solve this approximation task in
almost linear time n' () (Lemma/5.1)).

Definition 3.7 (Approximate Tensor Attention Computation (ATAttC(n,d, B, ¢€)), Definition 1.2
in |/Alman & Song (2024b)). Given input matrices Q, Ky, Ko, V1, Vo € R™ % and parameters
e, B > 0, where max{||Q|locos [|K1lloos |EK2]loos [|Villoos [|[Valleo} < B. Let A, D,V be defined
in Definition Then, our target is to output a matrix T € R™*% satisfying

| T —D ' A V ||o<e
~ == =~

nxd nXn nxn2n?2xd

For our focus, tensor attention training, we would like to find weights to fit the tensor attention to a
desired output . We first simplify the attention expression of Definition JE whose inputs are from
Deﬁnitionwith weight matrices Wo, Wi, , Wi,, Wy, , Wy, € R4 Let X := W - (Wk, ©
2 2 .

Wk,)T € R*?T and Y := Wy, @ Wy, € R4 >4 It can be verified that the tensor attention
equals D~ lexp(ZX(Z ® Z)"/d)(Z ® Z)Y, where Z ¢ R"*? is defined as the input sequence in
Definition 3.4}

The naive gradient computation for the tensor attention training takes Q(n?) time. The gradient for
X is the bottleneck while that for Y is not, since A, X (A ® Az)T € R™ ™ lies in the non-linear
function Softmax. Also, note that with gradients of X and Y, it is easy to get the gradients of the
weight matrices Wo, Wk, , Wk, , Wy, , Wy, . Therefore, we model the tensor attention training as
the following tensor attention optimization problem (where Ay, Ay, A3, A4, A5 are introduced to
replace Z to capture more general settings such as cross-attention). See Figure[3]for an illustration.
Definition 3.8 (Tensor attention optimization). Suppose that Ay, Ay, As, Ay, A5, E € R and
Y1, Y, € R4 are given. We formulate the attention optimization problem as

min _ Loss(X) := 0.5 D(X) Lexp(A; X (Ay ® A3) " /d)(A4 ® A5)Y — E|%,
X eRaxd?
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D = diag(K - 1,2)

K =exp(A1X(4,®43)7)

F, = diag(F, - 1,2) - S

g =A{F(4,®43)

- 4=

Figure 4: The computational graph for tensor attention backward. The blue boxes are input matrices,
the gray boxes are intermediate matrices, and the orange box is the final gradient matrix. Here,
Ay, Ag, Az, Ay, A5 denote the previous inputs, E denotes the target matrix, and X, Y denote the
attention weights. More detailed definitions of each variable can be found in SectionEI, @and@

where (1) As ® Az € R™* %4 s the tensor product between As and As, (2) D(X) =
diag(exp(A1 X (A2 ® A3)T /d)1,2) € R and (3)Y =Y, 0 Yy € RE X4,

Our main focus is the following Approximate Tensor Attention Loss Gradient Computation task.

Definition 3.9  (Approximate  Tensor  Attention Loss  Gradient = Computation

(ATAttLGC(n,d, B,€))). Let ¢, B > 0. Let Ay, Ay, A3, Ay, A5, E € R™? and let

X1, X5, X3,Y1,Ys € R (see Definition |3.8). Let X = X1 - (X2 © X3)7 € R As-

sume that max{||A1 X1 oo [[A2X2|loos [|43X3]l0os [|AaY1]loos |A5Y2]lce} < B. Let us assume

that any numbers in the previous matrices are in the log(n) bits model'l We define Loss(X) the
L. . . dLoss(X) dxd?

same as Definition Let the gradient of loss function Loss(X) be =33~ € R . Then, our

dL X
Aot |l < €.

. . ~ 2 . . ~
target is to output a matrix g € R satisfying ||g —

4 EXACT TENSOR ATTENTION GRADIENT COMPUTATION AND COMPLEXITY

In this section, we provide the closed form of the tensor attention gradient of the loss function
(Definition [3.8) and also its computational time. First, we calculate the closed form of the gradient
in the following lemma, whose proof is in Appendix [D.3]

Lemma 4.1 (Closed form of gradient, informal version of Lemma . Define the function F(x) €

R™*"° s in Definition (see Fig. V| for an illustration). Suppose that Ay, Ay, As € R™"*¢ gre
three given matrices. Suppose that Loss(z) is defined as Definition[3.8] where x = vec(X). Then,
we have

dLoss(z)

— vec(A] F(z)(Az ® As)) € RT

Note that, F(z) is a size n x n? matrix which is the bottleneck obstacle in time complexity.

Definition 4.2. Let Tat(a, b, ¢) denote the time of multiplying a X b matrix and b x ¢ matrix.

Then, with straightforward analysis, we get the following theorem about the time complexity of
naive computation. The complete proof is in Appendix

'Each entry in the matrix is represented by at most log(n) bits. This assumption is well-accepted and

widely used in the computational complexity community, e.g.,[Feng et al](2024); [Ciu et al]] (2023a); [Merrll &
Sabharwal ||
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Theorem 4.3 (Tensor attention gradient computation, informal version of Theorem [D.7). Suppose
that Ay, Ay, As, Ay, As, E € R™? are input fixed matrices. We denote matrix variables as X €

R4 gndy € RYxd (gradient computation is w.rt. X ). Let g = (“‘?isiigx) € RIxd (for definition

of Loss(X), see Definition . Then, we show that computing the gradient g € Rdxd’ requires
Tonat (1, d%,n?) time.

Note that Tt (n, d?,n2) > Q(n?). Thus, the naive tensor attention gradient computation is a com-
plexity obstacle in practice as discussed in Section[I] Based on the closed formulation in Lemma[4.1]
we derive our acceleration method, which will be introduced in the following section.

5 FAST TENSOR ATTENTION GRADIENT COMPUTATION

In this section, we show how to compute the tensor attention matrix gradient in almost linear time.
In Section we demonstrate our main results. In Section we introduce some key tensor
techniques used in our proof.

Algorithm 1 Almost Linear Time Tensor Attention Gradient Computation

1: procedure FASTTENSORATTENTION(A, Ay, Az, Ay, A5, E € R™? X, Xy. X3,Y1,Y, €

R4 n e N,,d € Ny, e€ (0,0.1)) > Deﬁnition Theorem

: > n can be viewed as the length of the sentence

> d can be viewed as the feature of dimension, and we assume d = O(logn)

> € is the accuracy output, and we typically pick 1/ poly(n)

Get Uy, Vi, W, € R»*" to approximate S(x) via Lemma > O(n'+°M) time

Uy < Ui (Vi@ W1)TL(y) — E to approximate V() via Lemma > O(n'toM) time

Vo, Wo + A4Y1, A5Y,  to approximate W(x) via Lemma > O(nd?) time

Us, V3, W+ Uy ©Us, V1 © Vo, Wy © Wy to approximate F, () via Lemma >
O(n'*°M) time

9: Precompute V"V, and W, W, to approximate Fj(z) via Lemmab O(n'*t°M) time

o(1)

B AN A

10:  for jo € [n] do > Overall R(z) takes O(n'*+°(M) time
11: R(x)jo ¢ (U1)jo, (Vi V2) o (W) W2))((U2) o) "

12: end for .

13: U, + diag(R(x))U; > O(n'+°M) time
14: Vi, Wa Vi, Wy > O(n'+°M) time
15: /* Approximate F(z), Theorem [E.8]*/

16:  Us, Vs, Ws < [Us, —Uy], [V3, V4], [Ws, Wy) > O(n'+°M) time
17: /* Approximate g, Theorem [E.§]*/

18:  Precompute A Us, AJ Vs, A3 W separately > O(dn't°M) time
190 g« (A]Us) ® (A] V5) © (A] Ws) > ® in Definition O(d>n°M) time
20:  returng > As d = O(logn), the total complexity is O(n'+°(1)) time

21: end procedure

5.1 MAIN RESULTS FOR FAST GRADIENT COMPUTATION

Polynomial approximation methods involve representing complex functions through simpler poly-
nomial forms to facilitate easier analysis and computation. They are crucial in numerical analysis,
aiding in the efficient solution of differential equations and optimization problems, and are widely
used in simulations and machine learning (Aggarwal & Alman, 2022} |Alman et al., [2020).

Based on the polynomial approximation methods, Alman & Song|(2024b) get the following result
about tensor attention acceleration, which will be used to prove our main result.

Lemma 5.1 (Theorem 1.4 in |Alman & Song| (2024b)). There is an algorithm that solves
ATAttC(n,d = O(logn), B = o(/logn), e = 1/ poly(n)) (see Definition in time n* o),

Using similar polynomial approximation methods, and combined with a series of tensor analysis
techniques (Section[5.2), we get our main acceleration results.
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Theorem 5.2 (Main result for fast gradient computation). Assuming the entries of A1, Aa, As,
Ay, A5, E € R and X1, Xo, X3,Y;,Ys € R are represented using O(logn) bits. Then,
there exist an algorithm (Algorithm that runs in n'°M) time to solve ATAttLGC(n,d =
O(logn), B = o({/logn),e = 1/poly(n)) (see Definition , i.e., our algorithm computes a
gradient matrix § € R satisfying ||‘ﬂ‘357§X) —Jlloo < 1/poly(n).

Proof sketch of Theorem The complete proof can be found in Appendix [E.6]

We use the polynomial approximation method to obtain low-rank approximation results for
D7 lexp(A; X(As ® A3)T/d) in Lemma However, this cannot be directly used for the closed
form of the tensor attention gradient solution in Theorem[4.3] Utilizing a series of tensor techniques
(Section[5.2]and Appendix [B]), we smartly convey these low rank properties throughout the gradient
formulation and computation, where two key steps are fixed in Lemma and Lemma|E.7 O

Remark 5.3. The assumption in Theorem is practical. In practice, especially in recent long
context tasks, the n is large, e.g, n = 2 x 10° for Google’s Gemini 1.5 Pro (Gemini, |2024)), while the
model training uses a half-precision floating-point format, e.g., the bit number is 16. Furthermore,
our assumption is “tight”, where if we slightly weaken the assumption, there is no algorithm that
can solve the tensor attention gradient computation in truly sub-cubic complexity (Theorem|[6.3).

Our Theorem accurately approximates (¢ = 1/ poly(n)) the tensor attention gradient computa-
tion in almost linear time n'T°(1) under practical assumptions (see the above Remark . Thus,
our methods solve the last puzzle of tensor attention acceleration. Combined with previous work on
tensor attention inference, this may make tensor attention practical, as we overcome the theoretical
cubic time complexity barrier both in inference and training.

We provide Algorithm [I] for our almost linear time tensor attention training method. In the de-
tailed algorithm, first, we construct Uy, V1, W7 in Lemma@ Then, we construct Us, Vo, W5 in
Lemma [E.3|and Us, V3, W3 in Lemma [E.5] We show how to construct Uy, Vy, Wy in Lemma [E.7]
Finally, we construct Us, V5, W5 and compute the gradient g in almost linear time in Theorem [E.§]

5.2 TENSOR OPERATION ANALYSIS TECHNIQUES

Here, we introduce some key techniques for proving Theorem These techniques make it pos-
sible to convey the low-rank property even during the tensor operations, solving the novel technical
challenges in tensor attention gradient computation.
We first introduce a swap rule and a distributed rule, where both proofs are in Appendix
Fact 5.4 (Swap rule for tensor and matrix product). Let Wy, Wy € R¥*? A, Ay € R™*? We have
(A1 ® Ag)- (W1 @ W) = (A - W) © (Ag - Wa).
—_————— — 0 N—

n2xd? d2xd nxd nxd

Fact[5.4]tells us that we can swap the order of tensor operation and matrix multiplication, allowing
us to always compute the low dimension first to reduce the complexity.

Fact 5.5. Let U; € R %% qnd Uy € RM*F. Let Vi € R™"2%% qnd Vo € R™2%E Let W, € R73%d
and Wy € R™%5 We have

(1ol (VieVa)oWioWy)  =(Ui (Vi @ Wi)T)o(Us (Vo @ Wa)T)
—_— — e — —~ —_
ni xXdk no Xdk nsxdk ni1Xd noXd n3yxXd nixXk no Xk nyxk

Fact[5.5]tells us that the multiple tensor operation can be distributed to a different format. If we have
some low-rank matrix/tensor, we can distribute them into each component, so that each component
can be accelerated via the low-rank property. Intuitively, this allows us to borrow some low-rank
benefits from other terms to fix the bottleneck terms.

We provide an important tool whose proof is in Appendix

Lemma 5.6 ( Informal version of Lemma ). Given A7 € Rm>di A, € R™Xd1 Jor A =
(A] © Ag) € Rmum2xdi Given By € R >, By € R"2X9% et B := (By @ By) € R™"2Xd2 We
define C € RN *% g5 C := ATB and C; = AIBl € Rhxd2 O = A;Bg € RUxd2 Then we
have C1 o Co = C and given Ay, As, By, Ba, we can get C in Tmat(d1, max{ni,na}, ds) time.
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Lemma [5.6]is a highly non-trivial method to handle tensor operation, o and matrix multiplication
together. By using the method, we save the computation time from Tp,a¢(d, 72, d) to Trat(d, 0, d),
which gets rid of the bottleneck quadratic term n?.

Lastly, we introduce a tensor trick, which can reduce a tensor operation to a matrix multiplication
operation. The proof is in Appendix

Fact 5.7 (Tensor-trick). Given matrices A; € R™"1%% A, € R™%% gpd X € R4 %2 e have
vec(A1 X AJ) = (A; ® As) vec(X) € R™n2,

Technical novelty over previous works. We generalize beyond the results of |Alman & Song
(2024b), which only provide methods for fensor attention forward. Our paper presents a detailed
analysis for fensor attention backward, providing both upper bound and lower bound. Though we
build on some results from |Alman & Song| (2024b) and Alman & Song| (2024a)), generalizing to
tensor attention backward posed many technical challenges. These challenges are unique to our
setting and not presented in previous settings like matrix attention (Alman & Song, [2023; 2024 a) or
tensor attention forward (Alman & Song} |2024b). To be more specific, we prove many key prop-
erties for tensor operation needed for backward though not needed for forward, including Facts[5.4]
(swap rule for tensor and matrix product), [5.5] (distribution rule for tensor and matrix product), [B.11]
(tensor computation reduction to matrix product), (distribution rule for tensor computation),
ClaimB.20|(tensor product to matrix product). Fact[5.4] used as a key part to prove Lemmas|[E.T|and

gives the swap rule for tensor operations. Lemma [5.6| supports the proof of Fact[5.5]and helps
B.

bypass the O(n3d?) time complexity bottleneck in the fast computation of Us. Fact|5.5] crucial in
proving LemmalE.5| shows the distributive nature of tensor operations. Using Facts B.12] and
Claim[B.20] we leverage the structure of low-rank matrices Us, V5, W5 to prove Theorem[5.2]

6 TENSOR ATTENTION GRADIENT COMPLEXITY LOWER BOUND

In this section, we show that our assumption is necessary. First, we introduce some hardness analysis
background in Section[6.1] Then, we introduce our main hardness result in Section[6.2]

6.1 SETH AND TENSOR ATTENTION FORWARD HARDNESS

We provide the findings that our results are based on. We first introduce a well-known hypothesis in
hardness analysis. The Strong Exponential Time Hypothesis (SETH), a well-established conjecture,
has been instrumental in establishing fine-grained lower bounds for numerous algorithmic problems,
as highlighted in the survey by [Williams|(2018). More than two decades ago, Impagliazzo & Paturi
(2001)) introduced SETH as an enhanced version of the well-known P ## NP conjecture, positing
that current algorithms solving the SAT problem are nearly optimal in terms of efficiency.
Hypothesis 6.1 (Strong Exponential Time Hypothesis (SETH), Impagliazzo & Paturi| (2001)).
Given € > 0, there exists k > 3 € Z such that it is impossible to solve k-SAT problem with n
variables in 0(2(176)”) time, including using any randomized algorithms.

We will critically utilize the hardness result of the forward tensor attention computation.

Lemma 6.2 (Theorem 1.3 in|Alman & Song| (2024b)). Assuming SETH, for any constant § > 0,
no algorithm can solve ATAttC(n,d = ©(logn), B = O(3/(1 +7)logn),e = n'~%W) (Defi-
nition in O(n®°) time, even if the inputs meet the following conditions for any v > 0: (1)
V e {o, 1}"2Xd, (2) There exists B, < O((1 4+ v)log>n) = O(d({/(1+ ) logn)?) where all
entries of Q(K1 @ K2)" are within the range [1, B,] and more than half entries in each row of
Q(K, @ K») T are equal to B,.

This result shows that assuming SETH, if we just slightly weaken the assumption from B =
O(/1logn) to B = O(3/(1+v)logn) with v = w(1), then the tenor attention forward com-
putation is hard, i.e., no algorithm can solve it in truly sub-cubic time.

6.2 MAIN RESULT FOR HARDNESS

Based on the above observation (Lemma @]), we prove our main result for tensor attention gradient
computation hardness.
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Theorem 6.3 (Main result for hardness). Let v : N — N be any function with ~y(n) = o(logn) and
~v(n) = w(1). Assuming SETH, for any constant § > 0, it is impossible to solve ATAttLGC(n,d =

O(logn), B =0O(/v(n) -logn),e = O(1/(logn)*)) (Deﬁnition in time O(n3~%) when E =

0,Y = lg, X = Mg for some scalar X\ € [0, 1].

See the formal proof in Appendix|F.2} The intuition is that if we can solve ATAttLGC in O(t) time,
then we can solve ATAttC in O(t - log"! (n)) time by interpolation and “integral”. We see a similar
sharp complexity transition as forward computation (Lemma [6.2): assuming SETH, if we slightly

weaken the assumption from B = O(+/logn) to B = ©({/(1 + 7) logn) with v = w(1), then the
tensor attention gradient computation will be unsolvable in truly sub-cubic time as well.

7 DISCUSSION AND CONCLUSION

In this work, we proved that the backward gradient of tensor attention training can be computed
in almost linear n'*°() time, the same complexity as its forward computation, under a bounded
entries assumption. We provided a closed-form solution for the gradient and proposed a fast com-
putation method utilizing polynomial approximation and tensor algebraic techniques. Furthermore,
we proved the necessity and tightness of our assumption through hardness analysis, showing that
slightly weakening it renders the tensor attention gradient problem unsolvable in truly subcubic
time. Our theoretical results establish the feasibility of efficient higher-order transformer training
and may facilitate practical applications of tensor attention architectures. Due to space limits, we
provide our further discussion and extension in Appendix [A]l Future work can perform empirical
evaluations of the method in practical large language models, and explore how these findings can be
implemented in real-world scenarios to enable the development of powerful higher-order models.
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Roadmap. In Section[A] we provide a further discussion and extension of this work. In Section[B]
we provide general definitions and several basic facts. In Section [C] we show how we calculate
the gradient of the loss function. In Section |D| we show the time complexity of our algorithm. In
Section[E] we show that our algorithm can be computed in polynomial time. In Section[F} we show
the hardness of our algorithm.

A FURTHER DISCUSSION AND EXTENSION

Connection to real applications. There are some empirical studies attempting to implement sim-
ilar tensor attention (three order) in language modeling (Ma et al.l [2019) and 3D medical image
segmentation (Wang et al., 2023)). However, due to cubic time complexity, their models remain rela-
tively small, e.g, 12M parameters in|Ma et al.[(2019). Although small scale, Ma et al.|(2019); Wang
et al.| (2023) demonstrates the significant potential of tensor attention. Our work proves that an al-
most linear time algorithm for tensor attention mechanisms exists (Algorithm[I). This advancement
could enable the scaling up of tensor attention and facilitate novel model designs in multi-modality,
3D imaging, and beyond. On the other hand, we abstract the most challenging part (the highest
time complexity operation) in high-order attention into a clear mathematical problem and provide
a solution. Our work introduces a new concept to the community, suggesting that cubic time com-
plexity may not be the bottleneck in implementing three-order attention during training. Practical
implementation poses additional significant challenges, considering numerous other techniques and
operations, such as dropout, layer normalization, residual connections, position encoding, and many
others. We hope our work inspires further algorithmic design.

Feasibility when the large value exists in the matrices. If there exist many large entries in
Q, Ky, K5,V1, V5, our hardness results (Theorem @) indicate that no algorithm can accelerate
the attention computation. However, several exciting works (Sun et al.| 2024} Han et al., 2024)) have
shown that large entries are very sparse in the attention matrix. This suggests that our Algorithm [I]
could inspire many potential practical implementations. One straightforward approach is to handle
large entries separately, as in[Han et al.|(2024), and apply our algorithm to the remaining parts. There
is undoubtedly a broad algorithm design space, and we hope our work provides valuable insights.

Extend our technique to compute the module-wise gradient. Let n be the input toke length,
and d be the hidden dimension. At the i-th layer of transformer model, let G; € R™*¢ denote the
output of upstream gradient, X; € R™*? be defined in Definition 3.8} and Attn; := D! AV be the
tensor attention model where D, A,V are defined in Definition[3.5| Let Loss be some loss function.

Then, by the chain rule, we have the module-wise gradient Cﬂ‘)‘é“‘ = Vec(Gi)%L)g”.
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Extend our technique to the multi-head attention. The gradient computation for each attention
head in the same layer is independent of the others; each head only depends on its upstream gradient
and its current module-wise gradient according to the chain rule. Therefore, our analysis can be
directly applied to multi-head attention.

Generalize to scenarios involving multiple modalities In our three-order attention, one attention
module can handle three modalities simultaneously, i.e., @, K1, K5. For more modality, e.g., m > 3
modality, there are two potential solutions in our minds. First, we could use m-order attention,
ie., Q, Ky, Ks, ..., K, _1. The inference and training time complexity for this approach are still
unknown, and we leave it as our future work. Second, we could use multiple modules of three-order
attention. Note that one layer of standard attention may introduce one more modality K; each time,
while one layer of three-order attention may introduce two more modalities K7, K5 each time. Thus,
if we have m + 1 modality and @) is from one modality, say text, then the standard attention may
need m layers to merge all modalities together, whereas three-order attention may only need log(m)
layers to merge them all together.

Societal impacts. We delve into and offer a deeper understanding of the attention mechanism,
introducing a novel approach to integrate multi-modality into attention through the tensor attention
algorithm. We also demonstrate that the computation of both forward and backward tensor atten-
tion can be achieved with almost linear time complexity. Regarding the negative societal impact,
since our work is completely theoretical in nature, we do not foresee any potential negative societal
impacts which worth pointing out.

B TENSOR OPERATION BACKGROUND

In Section[B.1] we define the notation of computational time and the tensor operation. In Section[B.2}
we provide some helpful facts of tensor operation. In Section we provide some helpful facts of
vectorization operation. In Section [B.4] we provide some helpful facts about the tensor product. It
is worth noting that proofs for some of the facts discussed in this section are also available in[Kolda
& Bader] (2009).

B.1 GENERAL DEFINITIONS AND TENSOR OPERATION

Fact B.1 (Biirgisser et al| (2013); Bliser (2013)). We can show that Tmat(a,b,c) =
O(Tmat(a,¢,0)) = O(Tmat (b, a,¢)) = O(Tmat(b, ¢, a)) = O(Tmat (¢, a,b)) = O(Tmat(c, b, a)).
We define the third mode tensor product, which is the core operator of tensor operations.

Definition B.2 (Third mode tensor product (-, -, -)). Let X € R4, Given matrices A; € R"*4,
Ay € R and Az € R™¥9, Let operator X(A1, Ag, Az) € R™*"™*"™ satisfying

d
X(A, Ag, Ag)iji =Y Z abe(A1)i,a(A2)j0(As)1e, Vi€ [n],j € [n],1 € [n].

a=1b=1 c=1

Definition B.3 (© tensor computation). Given matrices A € R"*d B e R"*d ' e R"*4 we use
T=A0BG®C € R"™" ™ 19 denote an tensor whose entries are given by

d
,gl ZAzaB]aClau VZE[]jE[TL},lE[n].

a=1

We note that a tensor 7" can be written in the form A ® B ® C like this if and only if its tensor rank
is at most d.

B.2 FACTS FOR TENSOR OPERATION

Fact B.4 (Transpose rule). We show the results below

« Supposethat K = K, @ Ko.Wehave K' =K 6 K, .
ning xd nixXd ngxd dxmning dxni dXns
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* Suppose that = Q6 Qy.Wehave QT = Q ©Q, .
NS N

Q
~— ~—

nxdids nxd; nXxdso didaXn dy xXn daXn
_ T  _ yT T
» Suppose that ~ V = Vi @ Vo .Wehave V =V @ V.
~—~ ~ N~ S~~~ ~—~— N~
n1n2><d1d2 n1><d1 Tl2><d2 dldQan’l’Lz d1Xn1 ngTLQ
Proof. The proof is very straightforward. O

Fact B.5 (Swap rule). Let Vi € R"*% Let Vo € R™*F. Let W, € R™*%, Let Wy € R™**. We can
show swap rule for © and S,

(VieVa)o (W e W) = (VioWi)e (Va0 W)
—_—— —m— S —
nxdk mxdk mnXxd mnxk
And we can show swap rule for ® and &,
VieW)e W oWs)=VieaW)e (Vo Ws)
———

nxdk mxdk mnXxdk mnXdk

Proof. The proof is trivially following from definition of @ and ©.
Note that for any i1 € [n],is € [m],j1 € [d], j2 € [K]
(Vi ©V2) @ (W1 © W2))iy +(is—1)mjr+(ja—1)d

= (V1)iy.gs (V2)iy 5o (W) i s (Wa)iy
=((VioWi) o (Va @ W2))i, 4 (ia—1)njr +(ja—1)d

Thus, we complete the proof. O

Remark B.6. In Fact@] due to definition V1 and V5 need to have the same number of rows. Wy
and Ws also need to have the same number of rows. Vi and W1 need to have same number of
columns, and Vo and V5 need to have same number of columns.

Fact B.7 (Swap rule for tensor product and matrix product, Restatement of Fact[5.4). Ler W1, W5 €
R and Ay, Ay € R We have

(Al (024 Ag) . (Wl @ Wg) = (Al . Wl) @ (AQ . WQ) .
—_— — Y — — —
n2xd? d2xd nxd nxd
Proof of Fact[5.4] For any i1,is € [n], j € [d], we have
(A1 ® Az) - (W1 @ W2))i 1 (in—1)n,j
= Y (A ® )iyt (Dt (ka—1)a(W1 © Wa) iy 4 (k=1

k‘le[d]#kQG[d]
= Z (A1 ® A2)iy 1 (i— Dy +(ka—1)d - W1k j - (W2)ky,j
k1 €[d],k2€[d]
= Y (A (A2igke - Wkyj - (Wa)ka g
k1 €[d],k2€[d]
= () (A)i by Wka ) (Y (A2)ig ks - (W) )
kreld] ko€ ld]

= (A1 - Wh)iy,j - (A2 - Wa)iy 5
= ((A1- W) @ (A2 - Wa))i, 4 (is—1)n.js

where the first step follows matrix multiplication, the second step follows Definition 3.2] the third
step follows Definition 3.1} the fourth step follows simple algebra, the fifth step follows matrix
multiplication and the last step follows Definition 3.2} O
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Fact B.8 (Restatement of Fact[5.5). Ler Uy € R™*% and Uy € R™*F. Ler Vi € R™*4 and
Vo € R™2%k Lot Wy € R™X4 gnd Wy € R™3*E. We have
) )o(Us (Vo @ Wa)T)

(1ol (VieVa)o(WioWa) =(U1 (Vi o W
—_—— ———— — _— "~~~ NN NG

ny xXdk no Xdk nsxXdk ni1Xd naoXd nzyXxd nixXk na Xk nyxk

Proof of Fact[5.5] We can show that

(U oU)(VioVe)o (WioWa)) =T oU)((VioWi) o (Vo Wa))'

= oU)((VioW) o (VaoWs)")
=U oUN) T (VioW) @ (Vao Wa)T)
=0 (V1@ W1)T) o (Ux(Va @ WQ)T)

where first step is due to swapping rule for @ and & (see Fact[B.3)), the second step follows from
Fact[B-4] the third step follows from Fact[B.4] and the last step follows from Lemma[B.13] O

Fact B.9. Let U, € R™*% and Uy € R ¥, Let Vi € R™%% and Vy € R™2%F, Let W, € R3x4
and Wy € R"*k_ We have

(ol -(VieVa)eWioWa)' =( Ui (Vi @ Wi)T)o( Uy (Vo @ Wa)')
—_——— ———— e — —~— ' —_ =~
nixd2k? no xdk n3yxdk n1xd? naxd nzxd nyxk2 naxk nzxk

Proof. We can show that,

UL oUs) (VieVa)® (W, 6 Wa)) T
—_——— —— — —

niy X d2 k2 ng Xdk ngXdk
= (Uh 6 Uy)-(Vi@W)o (Va® W) "
—_————
’I’L1><Cl2k}2

=0, eU) - (VieW)T o (VaeWy)")
=0 oU)T-(ieW)" o (Va@Ws)')

=(U (Vi @ W) o( Uy (Vo @ Wy)T)
—~— —
Tl1><d2 ng Xd ngxd n1><k:2 ng Xk ngxk

where the first step is because of the swap rule for ® and & (see Fact[B.3)), the second step follows
from Fact[B.4] the third step follows from Fact[B.4] and the last step follows from Lemma[B.13] [

Claim B.10. Let A, B,C € R™*4.
Part 1. Let I; € R**? denote an identity matrix. Then, we have

AILB" = ABT.

Part 2. Let |; € R¥ ¥4 denote an identity tensor. Then we can show that

l4(A,B,C)=A®B&C

Proof. Now we prove for each part.
Proof of Partl. Using the property of identity matrix, it’s easy to see this holds.
Proof of Part2.

d
> (a)abe(A)ialB);n(Cre

d
b=1 c=1

M=

Id(AaBa C) =

I
-

a

I
M=~

(14)La(13)ﬁa((7)ha

)
Il
-
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=A6GBOC

where the first step follows from Definition[B.2] the second step follows from the property of identity
tensor (l4); ;% which equals 1 only when ¢ = j = k and 0 elsewhere, and the last step follows from
Definition 0

Fact B.11. Let U, V,W € R"*4, we have
UVoW) =matUeVeoWw).

nxn?2 nxn2

Proof. For any i, j, k € [n], we have
mat({U OV OW); i1tk = (U OV OW);

Z Ui,avvj,aWk,a
a€ld]

> UiaVOW)(G-tyniha
a€ld]

Z Uia((VO W)T)a,(j—l)n-&-k
a€ld]
= UV oW) )i G-1yntks

where the first step by definition of mat, the second step follows Definition [B.3] the third step
follows Definition[3.2} the fourth step follows from transpose, and the last step follows from matrix
multiplication. O

Fact B.12. Given A;, Ay, As € R"*% and W1, Wo, W5 € R"** we have
(W10 Wa @ Wal(A], Ag , A3 ) = ((A] W1) @ (A3 W) @ (A5 Wa)).

dxdxd dxdxd

Proof. The proof is trivial by Definition [B.3]and Definition O
We prove an important tool, which will be used in analyzing the running time of our algorithm.
Lemma B.13 ( Formal version of Lemmal[5.6]). If the following condition holds

* Let © be defined as Definition[3.2]

s Given A} € R X, Ay ¢ R™2X% ot A := (A) @ Ay) € Rmnzxdy,

s Given B; € R™m*% B, € R"X% [et B := (B; @ By) € RMin2xdz,

s We define C € R4*% q5C := AT B

o We define C, = ATBl, Cy = A;Bg

—~ -~

d1><d2 d1><d2
Then, we have
e Partl. C10Cy =C

* Part 2. Given as input Ay, As, By, Ba, we can get C in Tmat(d1, max{ny,na}, ds) time.

Proof. Foreachi € [ny], let aIi denote the i-th row of A; € R™ xd1,
For each i € [ny], let ay ; denote the i-th row of Ay € R™2Xd1,
For each i € [ny], let b] ; denote the i-th row of By € R™*%2,

For each i € [ny], let by ; denote the i-th row of By € R">*42,
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Recall that O} € R4z and Cy € R¥1 %2,
Cl = AIBh CQ = A;—BQ
Thus, we see that for all Vk; € [d1], k2 € [da]

Cl kl,kz E al Z ]{31 bl 7 k?z
(C2)ky ke = E a2,j.k, b2,j.ks

Then, we can write C' € R4 %42 ag

c = AT B
~— ~—~ ~—
d1><d2 d1><1’7,177,2n11’7,2><d2
ning
= E Az* 1,*
d1><1 1><d2
ni no
_ T
=3 Air—tynye (Bi(i—1yny.x)
i=1 j=1
d;x1 1xd2
ny no
T
=Y > (ari0as;)- (brioba) (D
==l g 1xds

where the first step follows from definition of C' € R%*?, the second step follows from the matrix
can written as the summation of njny rank-1 matrices, the third step follows from changing the

index, the forth step follows from A; | (;_1)n, « = a1, © az ; by Definition 3.2
—_———— =~ =
dpx1 dix1 dix1

From the above, we can calculate that the entry of C in location k1 € [d1], ko € [d2] is

ny no
Ckl,kz - E E alzoa2] (b110b2,])
1=15=1
ni no
=D a1k 02,5k, D10 kb2, ks
i=1 j=1

ni no
= O arimbiik) - O azkib2 k)
i=1 =1

= (Cl)khkz ’ (02)k1,k2

where the first step follows from Eq. (I)), the second step follows from simple algebra, the third step
follows from separating the summation over ¢ and the summation over j, and the last step follows
from definition of matrices C; and Cs.

Thus, we can conclude

C =Ci00(Cs.
The algorithm will first compute Cy and Co, which takes Tmat(d1, max{ny, na}, ds) time. Then it
calculates C o Cq, which takes O(dyds) time. O

B.3 FACTS FOR VECTORIZATION OPERATION

Fact B.14. Let A, B € R"*4. Then,
tr[A" B] = vec(A) " vec(B)

22



Under review as a conference paper at ICLR 2025

Proof. We can show

n d
tI'[ATB] = Z Z Ai,jBi,j

where the first step is due to the definition of trace, and the second step is because of the definition
of vec operator. O

Fact B.15. Leta € R",b € R, Then,
vec(ab') =a®b

Proof. We can show

ale
ang

vec(ab') = vec( = )

anb’
=[a1b",asb", ... a,b"|"
=a®b

where the first step follows from the definition of the outer product, the second step follows from
the definition of vectorization operator vec(-) which stacks rows of a matrix into a column vector,
and the last step follows from Definition O

Fact B.16 (Tensor-trick, Restatement of Fact[5.7). Given matrices A, € R™ >4 Ay € R"2*% and
X € R4X42 ye have vec(A1 X Ag ) = (A1 @ Ag) vec(X) € Rz,

Proof of Fact[5.7] We can show

di  da

vec(A; X AJ) ZZX” vec(Ay . (A2 )T)

=1 j=1
di do

- ZZXz] A1*1®A27*7])
i= 1j 1 n1><1 ’I’L2><1
dq

= (A1.i® Ay )X,
i=1

nyx1 naxXda dox1

= (A1 X AQ) vec(X)

where the first step is due to the matrix being able to be written as a summation of vectors, the second
step follows from Fact[B.15] the third step follows from that matrix can be written as a summation
of vectors, and the last step follows from the definition of vectorization operator vec(-). O

Fact B.17. Let A € R"*"2, B € R"2X"s (' € R"s*™4 ) € R™4*"5,
We have
tr[ABCD] = vec(AT) T (B® D) vec(C)

Proof. We can show

tr[ABCD] = vec(A") T vec(BCD)

= vec(AT)(B® D) vec(C)
where the first step follows from Fact[B.14] and the second step follows from Fact[B.16] O
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Fact B.18. Let A, B € R™ "™ be two n x n symmetric matrices. Let X and Y denote twon X n
matrices. Then we have

vec(A)T (X ® Y) vec(B) = vec(A) T (Y ® X) vec(B)

Proof. We can show that
vec(A)T (X @ Y)vec(B) = tr[AT XBY ']
= tr[BY TAT X]
=vec(B")" (YT @ XT)vec(AT)
=vec(B)T (YT @ X T)vec(A)
= (YT @ X T)vec(A)) " vec(B)
= vec(A) " (Y ® X)vec(B)

where the first step follows from Fact[B:17] the second step follows from the cyclic property of trace,
the third step follows from Fact[B.17| the fourth step follows from A, B is symmetric, the fifth step
is due to the definition of inner product, and the last step is due to Fact[B.4] O

B.4 FACTS FOR TENSOR PRODUCT

Fact B.19. Let X = mat(ly), where l; € R4 and A, Ay € R™*?. We have
——
dxd?
A @A) XT = A, 0 As.
(A; ® A2) 10 Ay

n2xd2? d2xd n2xd

Proof. For any i1,1i5 € [n],j € [d], we have

(A ® Az)XT)ilJr(irnn,j = Z (A1 ® A2)i, 1 (ia—1)m,ky +(ka—1)d X key +(ka—1)d
k1€[d],k2€[d]
= > (ADik - (A2)is ko Xy (ha—1)d
k1 €[d],k2€[d]

= (A1)ir,j - (A2)iz 5
= (A1 9 A2)i, 4 (is—1)n,j>

where the first step is due to matrix multiplication, the second step follows Definition [3.1] the third
step follows X .,  (k,—1)d = 1 when j = k1 = kg, and X 1, 4 (x,—1)q = 0 otherwise, and the last
step is because of Definition[3.2] O

. . 2 . . . .
Claim B.20. Given X € R¥% . Note X € R¥*4Xd denotes its tensor version. Given matrices
Ay, Ay, Az € R™¥4. Following Deﬁnition we can show

(él./ Xr (A ® A3) )i (j—1yns1 = (X(A1, A2, A3))i i, Vi€ [n],j € [n],l € [n]
nxd dxd? d2 xn?2 nxnxn
and
VBC( Al X (A2 & Ag)T) = VGC()((‘/41,1427 Ag))

nxd dxd? d2 xn? nxXnxn

Proof. We can show that

M=
M=
M=

(A1 X (A2 ® AS)T)i,(j—l)n-H = (A1)i,aXa,(0-1)d+c(A2)5,p(A3)1c

2
Il
_
o
|l
-
o
Il
_

M=

Xa,b,c(Al)i,a(AQ)j,b(AS)l,c

I
M=~

o
Il
_
o
I
—
o
Il
_
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= X(A1, Az, A3)i 1,
where the first step follows the Kronecker product Definition [3.1} the second step follows X, 3 . =
X (b—1)d+c» and the last step is due to Deﬁnition@ O

Now, we introduce a key claim that can reduce the tensor product to matrix multiplication and
Kronecker product to make calculation easy.

Claim B.21. Let I € R¥&xd gnd Ay Ay, A3 € R™¥9 We have mat(l4(A;, Az, Az)) =
Almat( )(A2 X Ag) Al(AQ (%] Ag)T S Rnan .

Proof. The proof follows from Claim [B.20|and Fact[B.19] O

C GRADIENT FORMULATION AND ANALYSIS

In Section[C.1] we define some useful function that will help further calculation. In Section[C.2] we
define the expression for the loss function. In Section [C.3] we give detailed gradient computation.

C.1 DEFINITIONS FOR USEFUL FUNCTIONS

We will introduce the definition of K, «, S, and L used in loss formulation.
Definition C.1. We deﬁne Al, Ay Ag € R"Xd to be three matrices in size n X d. Suppose that
A=A A A3 € R" Ixd® Lot Aj, eR"” *xd® represent an n? x d> sub-block from A. There are
n such sub-blocks, i.e. the (i + (jo — 1) 2)-th row, j-th column of A is the i-th row, j-th column
of A, fori € [n?),j € [d®], jo € [nl.
For all jo € [n], we denote function K(x);, : R% — R" as below:
K(x)j, = exp(Aj,x) .
———
n2x1
Definition C.2. Let three matrices Ay, Ay, A3 € R™*% in size n x d. We define Aj, € R™ % pe q
n? x d? size sub-block from A (see as Deﬁnmonﬂ) (Recall that A = A1 ® A, ® Az € R™ xd? .)
For any index jy € [n], we denote function a(x);, R® — R as follows:
O4(37)3'0 = (exp(Aij), 1,2 >
n2x1 n2x1

Definition C.3. Suppose that o(x);, € R (see Definition .

Recall K(z);, € R"’ (see Definition .
For a fixed jy € [n], we define function S(x) , R — R’ as follows:
S(x)j, == oz(sc)j_ol K(z)j, -
——
scalar n2x1

We use S(x) € R " to denote the matrix where jo-th row is (S(x);)". (Note that we can
rewrite S(z) = D' exp(A1 X (Ay @ As)T /d) € R™*" and where D = diag(exp(A; X (As ®
As)T/d)an)-)
Definition C.4. Let As = A4 ® As € R”sz2, where Ay, As, € R4 Let Y1,Ys € RX4. Lot
Y=Y 0Y; € RE %4 denote the matrix representation of y € R, For all ig € [d], we define
L()i - RY — R™ as follows:

L(y)i, = \A,?’_, Eio/.

n2xd? g2x1

Let L(y) € R™ %4 matrix where iy column is L(y)s,- (Note that we can rewrite L(y) = (A4®A45)Y.)
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We will define W and F used in gradient analysis.
2
Definition C.5. Let V() € R"*? (see Definition . Let L(y) € R™ *4 (see Definition .
We define W(z) € R™*"” 10 be
W(z) = V(z)L(y)"

N S——
nxd dxn?

We denote W (x) ;. as the jo-th row of W(x) € Rmxn’,

Definition C.6. For all index jo € [n], let us define F(z);, € R"” 10 be
F(m)jo = (diag<s(x)j0) - S(LL')JOS(%);;) W(x)jo .
N—— ~——

n2x1 n2xn2 n2x1

We define F(z) € R"*"" in the sense that F(JU)JTO is the jo-th row of F(x).

C.2 DEFINITIONS FOR LOSS FUNCTION

.. .. 3
We now present some useful definitions pertaining to € R% .

Definition C.7. For all jo € [n|, we denote S(x);, € R™ as the normalized vector (see Defini-
tion[C.3)). For all iy € [d], we denote L(y);, to be the same in Definition|C.4}

Consider every jo € [n], every iy € [d]. Let us consider V (), i, R% = R as follows:
V() jo,i0 = (S(2)jo, L(Y)io) — Ejosio

where Ej, ;, is the (jo,i0)-th coordinate of E € R"*? for jo € [n],io € [d]. This is the same as

V(z)=S(x)L(y)— F .
(z) = S(z) L(y) - E_.
nxd nxn2n2xd "Xd

Definition C.8. For all jo € [n), for all ig € [d]. We define Loss(z),, i, to be := 0.5V (x)?

Josto®
C.3 FURTHER INFORMATION ON GRADIENT COMPUTATION

In this section, we offer detailed analysis to help the computations of gradient and derivative. It is
noted that, for the sake of convenience in deriving a closed-form expression for our gradient, we
omit the 1/d normalization factor in S. As this factor merely scales the result, it does not impact the
overall computation of these matrices.

Remark C.9. Recall that in Definition we consider X € R X for eradient computation,
which has d> number of parameters. On the other hand, in Definition we have X = X -

2 " Co .
(Xy © X3) € R™9 swhich has 3d? number of parameters, which indeed guarantee computation
acceleration.

Lemma C.10 (The gradient computation for various functions w.r.t. ;). Let x € RY. Let
jo € [n],io € [d). Foralli € [d3], we define Aj, ; € R™” 10 be the i-th column for Aj, € R xd®,
Recall that K(z);, € R"’ is defined in Definitions The scalar function a(x);, € R is defined

in Definitions . Column function S(x);, € R™ is defined in Definitions Scalar func-
tion V(x)j,.i, € R is defined in Definitions Scalar function Loss(x)j, i, € R is defined in

Definitions

Then, for each i € [d®], we have

* Part 1.
dz
d.i?i -
e Part 2. For any jo € [n],
dAj,r
dny Mo
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* Part 3. For any jo € [n]
dK(‘T)jo
dJZi

= Ajo,i © K(x)jo

* Part 4. For any jj € [n],
do(z);
dl‘i

= = (Ajo,i, K(2)o)

e Part 5. For any jj € [n],

dS(z);
ch?]o = Ajo,i © (@) jo = (Ajo,is S(2)5o) - S(2);

e Part 6. For any jy € [n], for any ig € [d],

Ao L) — ()1, A0 S(0)e) — (LD o))+ (iS00

* Part 7. For any jy € [n], for each ig € [d]

dV(x jo,%0

inie — (py,50.5()ir L) — ()i L)) (Ao )}
* Part 8. For any jy € [n], for each iy € [d]

LomThiote — (LA © S0 = (S0 M) (L) S)i) V(@i

Proof. Proof of Part 1. We have
dr  dlzi,2o,... cxas] T
dmi o dJZi

where the first step follows from x is a vector, and the second step follows from all coordinates are
independent to each other.

Proof of Part 2. We have

dAjUx: A dx
n2xds3 Y
d3x1
= A - e
] (]
O~
n2xd3d d3x1
= Ajo.i
~
n2x1

where the second step follows from Part 1.
Proof of Part 3.

It’s easy to show that

dK(z)j,  dexp(Aj,x)

dxi N da?,
———
n2x1
dA,,x
= exp(Aj,x) o ﬁ
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= eXp(Ajo'r) o Ajoyi

K(®)j, 0 Aji
—_—— =~

n2x1 n2x1

where the third step is because of Part 2, the last step follows from definition of K(z),.
Proof of Part 4.
To further simplify the writing of proofs, we represent (z) as (+).

It’s easy to see that

da(')jo _ d<K(')j071n2>
d.l‘i d.TZ
= (K(-)jo © Ao, 1n2)
= (K()jo» Ajo.i)
where the first step is due to definition of «(-), the second step is because of Part 3, the third step
comes from (a0 b,1,2) = {a, b).

Proof of Part 5.

To further simplify the writing of proofs, we represent (x) as (-).

It’s easy to see that

dS(')jO _ da(')j_olK(')jo

d.Z‘i d.TZ
L1 dK (), da()gt
_ 1 J J
*a(')jo dl‘l <+ dxio )K()]O
For the first term, we have
71dK(')jo

oo~z = a(-)5, K ()jo 0 Ajy i
= 5(-)jo © Ajo.i
where the first step is due to Part 3, the second step is because of definition of S(-).
For the second term, we have
da();,! _pda();
(T;)K(-)jo = - Of(‘)jo TioK(')jo
= —a();,2 - (K(jor Ajoi) - K(Djo
= = 50)jo - (5()jo» Ajoi)

where the first step is from simple calculus, the second step is from Part 4, and the third step is due
to the definition of S(-) ;.

By applying all of the above, we have
dS(')jo

d, S()jo © Ajoi = S0 = (S( )0 Ajo.i)

Proof of Part 6. From Part 5, clearly this holds.
Proof of Part 7.
To further simplify the writing of proofs, we represent (x) as (-).

From definition of V in Definition it holds that
V(')jmio = <S(')j0’ L<y)i0> - Ejo,io 2
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Thus it holds that
dv(')joaio _ d(<s()]0’ L(y)7o> - Ejofio)
dz; dx;
_ d<S(')jo7 L(y)10>
d.CCi
= <S()Jo ° Ajoﬂi’ L(y)io> - <S(')jo’ L(y)io> ’ <S(')j07Aj071?>7

where the first step comes from Eq. (Z), the second step follows from di% = 0, and the last step

is due to Part 6. (
Proof of Part 8.
To further simplify the writing of proofs, we represent (z) as (+).
From definition of Loss(-) (see Definition[C.8), it holds that
Loss(+)jo,io = 0-5V()% 4o 3)

Thus, we have
dLoss(')joJo _ d<0’5v(.)?07i0)

= V(')joﬂo : (<S()Jo © Aj07i7 L(y)bo> - <S(')jo7 L(y)bo> : <S(')jov Ajo,i>)7
where the 1st step comes from the Eq. (3), the second step follows from the chain rule, and the last
step is because of Part 7.

O

D TENSOR ATTENTION EXACT GRADIENT COMPUTATION TIME
COMPLEXITY

Section[D.1]demonstrates how to calculate S (1/d factor is still ignored) and L. Section|D.2]explains
the straightforward method for calculating V. Section and Section define F and W, and
demonstrate their computations. Section [D.5] presents a more elegant way to express the gradient.
Finally, Section combines all these elements and determine the overall time complexity of our
algorithm.

D.1 TIME COMPLEXITY TO GET S AND L
Remark D.1. Note that Tpae(n, d?,n?) > Q(n?).

Now we will show the time complexity for computing S and L.
Lemma D.2 (Computing S and L). If the following conditions hold

o LetS(x) € R™X"” (see Deﬁnition
e Let L(y) € R"* %4 (see Deﬁnition

Then, we have
o the time complexity of S(z) is Tmat (1, d*,n?) + Tmat(n, d, d?)
o the time complexity of L(y) is Tmas(n?, d?,d)

Proof. Note that
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and
D = diag(exp(A; X (Az @ A3) ") 1,2)

We firstly compute exp(A4; X (A2 ® Az) "), this takes time of

o Ay X takes Tmat(n,d,d?)
~ =
nxd dxd?

* Computing A, ® A3 takes O(n%d?) time

* Computing A1 X - (Ay ® A3) T takes Trat(n, d?, n?) time

The overall time complexity of above three parts is dominated by

Tmat (na da d2) + O(d2n2) + Tmat (n7 d2) n2) = Tmat (n) d) d2) + Tmat (n7 d2a n2)

Therefore, computing D takes O(n?) time.
Computing D~ ! exp(A; X (As ® A3) ") requires O(n?) time.

Therefore, the overall time complexity is

Tmat (n; d7 d2) + Tmat (nv d23 n2)

It is noted that computing L(y) = As takes time of Trat(n?, d?, d).

Y
~—~
n2xd2 d2xd

Thus, we complete the proof. O

D.2 TIME COMPLEXITY TO GET V

We will explain the calculation of V.

Lemma D.3 (Computing V). If the following conditions hold
o Let E € R"¥d
o Let S(x) € R™*™",
e LetL(y) € RV x4,

Then one can get \(x) € R™*% in O(Tiat(n,n?, d)) time.

Proof. Based on the definition of V() € R"*? which is

V(z)=S(z)L(y) — F
(z) = S(z) L(y) - E_
nxn2n2xd "Xd

It is easy to see that we can compute S(z)L(y) in time Tmat(n, n?, d), and S(x)L(y) — E in time
O(nd).

Therefore, overall running time is

Tmat (12, n?, d) + O(nd) = O(Tmat(n, n2, d)).
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D.3 TIME COMPLEXITY TO GET W

We will explain how to calculate W.
Lemma D.4. [f the below holds that

s LetV(x) € R4
o LetL(y) € R x4

Then, computing W (z) takes time of O(Tmat(n, d,n?)).
Proof. Let use recall that W(z) = V(z)L(y) T. This need time of Tra¢(n, d, n?) to compute. ]

D.4 TIME COMPLEXITY TO GET F

We can show how to construct F.
Lemma D.5. If the following conditions hold

e Let S(x) € R
e Let W(z) € R

Then, computing takes time of F(z) in O(n?).

Proof. For every jo € [n], it follows that F(z),; € R™ can be computed in O(n? , given that
ry J Jo p g

diag(S(x);,) is a diagonal matrix and S(z),,S(z), is a rank-one matrix. Consequently, construct-

ing the matrix F(z) € R"*"’ takes a total time of n x O(n2) = O(n?). O

D.5 CLOSED FORM OF GRADIENT

We will give the closed form the gradient of the loss function.

Lemma D.6 (Closed form of gradient, formal version of Lemma. Let us define functions S(x) €
R V(z) € R4 L(y) € RV, W(z) € R™" and F(z) € R™*"" (see Definitions

and respectively). Suppose three matrices Ay, Ao, Az € R™*? are given. We
define A = Ay ® Ay ® As. Let Loss(x) and Loss(x) j, i, be defined as Definition[3.8and|[C.8| Then,
we can show that

dLoss(x)

= vee(A[ F(2)(A2 ® 43)) € RY.

Proof. From the Lemma statement and Lemma [C.10|Part 8, we have

Losth Uhiote — V(i) - (S0 o A L)) = (S0 L) - (S A )

“)
We know that for all a, b € R™, we have diag(a) - b = diag(b) - a = a o b = b o a. Then, we have

(S(2) o © Ajois L(1)io) = (diag(S(x)o)Aje.i) " L(y)iy = Aj, i diag(S(x),)L(y)i,

and
(S(2) 50> LW)io) - (S(2) 0> Ajosi) = AJ, iS(2)5oS(2) ) L(Y)io

Therefore, Eq. (E[) becomes

dLoss(x) .40

dz = V(.I‘, y)jo,io ' (A_;’Z,i dlag(s(x)]o)l-(y)lo - AjTolS(x)]oS(x)]ToL(y)lo)
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= V(ac, y)jo,in ’ A;,z(dlag(s(x)h) - S(x)JoS(x);))L(y)lm

where the second step is due to basic algebra.
Note that we defined W(z) , in Definition|C.5]

d
W(x)jo = Z V(w)jo,iol-(y)io'

i0=1

Also, we defined F(x);, € R™ in Deﬁnition

F(x)jo = (diag<s(x)j0) - S(Z’)]OS(LL');;)W(LL')]O

‘We can show

n d
Z Z V() jo i - ézg (diag(S(x);,) — S(x);,5(x);,

) L(y)io
S~

scalar d3 xn2 n2xn2

5o (diag(S(@)j,) — S(x) 5o S(x) 1, )W(@);,

|

I
>
£
~
5
&

(=}

= vec(A] F(z)(As ® A3)) € RY

n2x1

&)

(6)

)

where the first step comes from Definition [3.8] the second step is due to Eq. (3, the third step is
because of Eq. (), the fourth step is due to Eq. (7), the fifth step utilize the notation of vec(-), and

the last step follows from Fact[B.16]

D.6 PUTTING ALL TOGETHER

We now show the overall running time of computing the gradient.

O

Theorem D.7 (Tensor attention gradient computation, formal version of Theorem[4.3]). If we have

the following conditions

* Suppose that we have input fixed matrices Ay, Aa, Az, Ay, As, E € R"*%,

o We denote X € R and Y € R %4 g5 matrix variables (gradient is computed w.r.t. X

)

— For simplicity of calculation, we utilize vector variables x € R* *! and y €

ie, vec(X) =zx.

— For simplicity of calculation, we use tensor variables X € R¥ >4 qndY ¢

e Letg = d"(f;i;gx) € R (see Loss(X) in Deﬁnition

. . . 2 .
Then it’s plain to see that we can compute gradient g € R4 in Toac(n, d?,n?) time.

32
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Proof. Step 1.  We compute S(z) and L(y). According to Lemma [D.2] this takes
O(Tmat (n, d%,n?) + Tmat(n, d, d?)) time.

Step 2. We compute V(z). According to Lemma|D.3} this takes O(7Tmat (n, n?, d)) time.
Step 3. We compute W(z). According to Lemma|D.4] this takes O(7Tmat(n, d,n?)) time.
Step 4. We compute F(). According to Lemma|D.5] this takes O(n?) time.

Step 5. From Lemma [D.6| the gradient is give by vec(A{ F(x)(As ® Az)). We know that
AT € R™*™ F(z) € R™™  and Ay ® A € R™ %9 it can be calculated in O(Tpat (d, n, d2) +
Tmat (n,n%, d?)) time.

Thus, the overall running time complexity for computing the gradient is O(Tmat(n, d?,n?) +
Tnat (0, d, d?)). O

E RUNNING ACCELERATION VIA POLYNOMIAL METHOD

Remember that in the preceding section, for simplicity in the computations of the gradient, we didn’t
consider the d factor in S. This factor does not affect the time complexity in our algorithms as it
merely acts as a rescaling factor. We will now retake the 1/d in S factor into consideration to utilize
the tools from previous work |Alman & Song| (2023)).

In Section[E.T} we demonstrate how to create a low-rank representation for S efficiently and explic-
itly. In Section we show how to make a low-rank construction for V(x). In Sections

and [E.5| we present low-rank representations for W(z), F, (), and Fy(z), respectively. Finally, in
Section [E.6] we will consolidate all these elements to prove our final algorithmic result.

E.1 FAST COMPUTATION OF S

Using the polynomial method results in|/Alman & Song| (2023} [2024b)), we have the following low-
rank representation results.

Lemma E.1. For any B = o({/logn), we have k1 = n°D) such that: Let Ay, Ay, A5 € R4,

X1, X0, Xz €ER™and X = X; - (Xy ©XJ) € R4*4* Assume that each number in S(x) can
be written using O(logn) bits. It holds that max{||A; X1 ||, ||A2X2 Hrom ||A3X3||Oo} < B, then
there are three matrices Uy, Vi, W, € R™ ¥ such that U, (Vi © W, Z)|loo < €/ poly(n).

Here S(x) = D™ 'exp(A1 X (A ® A3)T/d) € R and we deﬁne D= dlag(exp(A X(A2®
A3) T /d)1,2). Moreover; these matrices Uy, Vi, W, can be created explicitly in n*+°() time.

Proof. We have
(X7 ©X3) (A2®43)" =((A2®43)- (X7 ©X3)1)T
= ((A2® A3) - (X0 X3)) "
= ((A2- X2) @ (A5 X3)) T,

where the first step is due to simple algebra, the second step comes from Fact[B.4] and the last step
follows Fact

Thus, we can rewrite S(z) = D lexp(Q(K1 @ K5)7/d) € R™" and we define D =
diag(exp(Q(K1 @ K3) T /d)1,2), where Q = A1 X1, K1 = A X5, Ky = A3 Xs.

More explicitly, we have
QK1 @ Ka)" = A1 X1(AsXo @ A3X3) "
= A X1 (Xy ©X] ) (A A3) "
= A1 X (A, ® A3) T,

where the st step is due to Q = A1 X7, K1 = A Xy, Ko = A3 X3, the 2nd step is because of the
identity in the beginning of the proof, and the 3rd step follows from X = X (X, © X ).

Thus, we finish the proof by applying Lemma[5.1] O
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E.2 FAST COMPUTATION OF V

We will explain how to obtain the low rank representation of V().

Lemma E.2. We assume conditions the same as Lemma Let d = O(logn) and k1 = n°M). We

also assume that we can write each number in E € R"*% and L(y) € R™* %4 ysing O(logn) bits.
LetV(x) € R"™*4 (see Definition . Then, there are three matrices Uy, Vi, W1 € R™*¥1 we have

U (Vi @ W) TL(y) — E — V(2)|oe < ¢/ poly(n), where Vi @ Wy € R *k1. Moreover, we can
construct these matrices Uy, Vi, W1 in nito@) fime.

Proof. Let Uy, Vi, Wi be the matrices in Lemmal[E.T] We can show that
U (Vi @ W1) TL(y) = E = V(2)]loo = |U1(Vi @ W1) "L(y) — E = S(z)L(y) + El
= (UL (Vi @ W1) T = S(@))L(y) o
< ¢/ poly(n)

where the 1st step is due to V(z) = S(z)L(y) — F, the 2nd step comes from basic algebra, and 3rd
step is due to Lemma E.1|and each number in L(y) € R™ *¢ can be written using O(log n).

O

E.3 FAST COMPUTATION OF W

We will explain how to obtain the low rank representation of W(x).

Lemma E.3. Assume the same condition as Lemma Let ky = n°1). We define V(z) € R"*4
(see Definition . We define L(y) € R™ %% (see Definition . Let W(z) := V(z)L(y)" €
R pe defined in Definition There are three matrices Uy, Vo, Wo € R™ %2 sych that

|Ua(Va @ Wa)T — W(x)||oo < €/ poly(n). We can construct the matrices Us, Vo, Wy in nt*o(1)
time.

Proof. For W(z), we define its approximation as W/(z).

According to Lemma we find a good approximation Uy (V; @ W1)TL(y) — E of V(z), where
ki1 = n°M and Uy, Vi, Wy € R7%F1,

Now we turn W(z) into low-rank representation

W(z) = (U;(Vi o W1) T L(y) — E) L(y)"

d d 2
= (Ui(VioWi)"L(y) — E) (A4 ® A5) - (Y1 @ Y2)) T
nxd dxn?
= (h(VioW1)"L(y) = B)((As- Y1) 0 (45 - Ya)) T,
nxd nxd nxd

where the st step is because that Uy (V; @ W1) TL(y) — E is a good approximation to V (), the 2nd
step comes from definition of L(y) (see Definition [C.4), the last step is due to Fact[B.7]

Thus, we let Us = Uy (Vi @ W) "L(y) — E, Vo = Ay - Yy and Wy = Aj - Ys, which only takes
n'to() time. (We remark that, if we use naive way to compute U, that it takes Q(n?), however
using Lemma can beat O(n?) time.) We can explicitly construct Us, Vo, Wo € R™**2 where
ko < max{d,k,} +d = n°"). (Here the reason is k; = n°}) and d = n°1))

For controlling the error, we can show
IW(z) = W(z)]loo = [I(TU1 (Vi @ W1) TL(y) — B)L(y) " = V(2)L(y) " [l
<d- L)l - 1U1(Va @ W) TL(y) — E = V(2)]|
< ¢/ poly(n),
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where the first step follows from the definition of W(z), W(z), the second step follows from
labT||co < d - ||alloo - ||b]| s for length d vectors a, b, and the last step follows Lemma

Thus, we complete the proof. O

E.4 FAST COMPUTATION OF F,: KEY STEP

Definition E.4. Let S(z) € R™*"" (see Definition . Let W(z) € R™*"’ (see Definition .
Then, we define

Fo(z) = S(z) o W(z) € R,

We will explain how to obtain the low-rank representation of F, ().

Lemma E.5. Let k1 = n°W, ky = n°W, kg = n°W). We assume Uy, Vi, W1 € R %1 approxi-
mates the S(x) € R satisfying U1 (Vi @ W1)T — S(z)||oe < €/ poly(n). Let us assume that

Uy, Va, Wy € R k2 approximates the W(z) € R"™"" satisfying ||[Us(Va @ Wa)T — W (2)[los <
¢/ poly(n). We assume that each number in S(x) and W(x) can be written using O(logn) bits.

Let Fo(z) := S(z) o W(z) € R™*"* be defined in Definition Then there are matrices
Us, Va3, W3 € R™% such that |[Us(Vz @ W3)T — Fo(2)||ec < €/poly(n). We can construct
the matrices Us, Va, Wy in n*+°() time.

Proof. If we choose Uz = U © Uy € R™¥1*2 and V3 = V; © Vo € RVMF2 Wy = Wy © Ws €
R™*Fk1k2 this need n'T°(1) time to compute.

For further simplicity of proofs, we call S(z) = Uy (Vs @ W1) T and W(z) = Us(Va @ W) ™.
According to Lemma|[B.13] we can show
1U3(Vs @ Ws) " = Fa(@)]|oo = [Us(Vs @ Ws) " = S(2) 0 W(2)]oe
= [(U1 & U2) (V1 6V2) © (W1 &6 W2)) " = S(x) o W(2)]lo0
=i (Vio W) ") o (Ua(V2 @ Wa) ") = S(z) 0 W(z) o
= [5(x) 0 W(z) = S(x) o W(a) e
= [[S(x) o W(z) — S(z) o W(x) + S(w) o W(x) — S(2) 0 W(2)|ox
< [IS(x) o W(w) = S(x) o W(2) ]| + [[S(x) 0 W() — S() o W(2)] o
< ¢/ poly(n)

where the first step is due to the definition of F,(z), the second step is because of the definition
of Us, V3, W3, the third step is due to Fact the fourth step follows from the definition of S(x)

and W(I> the fifth step is because of basic algebra, the sixth step comes from triangle inequality,
and the last step is because bounded entries (we can write each number in S(z) and W(z) using

O(log n) bits) and Lemma assumptions that Hg(x)—S(x)Hoo < ¢/ poly(n) and ||V~\/(x)—W(a:)HOo <
¢/ poly(n)
O

E.5 FAST COMPUTATION OF F,: KEY STEP

Definition E.6. Ler S(z) € R"*" (see Definition . Let W(z) € R"™*"” (see Definition .
Then, we define Fy(x) € R™ " whose jo-th column

Fo(2)jo = S(@)oS(2)j,W(2)5,
Sor each jo € [n].

We will explain how to obtain the low rank representation of Fy(x).
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Lemma E.7. Let k1 = n°Y, ky = n°®, ky = n°WY. Ler us assume that Uy, Vi,W; € Rk
approximates the S(x) € R™*"” satisfying |Uy(Vi @ W1)T = S(z)||oe < €/ poly(n). We assume
Us, Vo, Wo € R ¥2 gpproximates the W(z) € Rnxn’ satisfying |Uz(Va @ Wa) T — W()]|oo <
e/ poly(n). Assume that we can write each number in S(x) and W(z) using O(logn) bits. Let us
assume that Fy(x) € R"™"" whose jo-th column Fo(2)j, = S(2);,S(x)} W(x)j, for each jo € [n]
(see Definition @) Then there are matrices Uy, Vi, Wy € R™ ¥ such that |[Uy(Vy @ Wy)T —
Fo(2)||oo < €/ poly(n). We can construct the matrices Uy, Vy, Wy in n'*+°0) time.

Proof. For further simplicity of proofs, we define R(xz) € R™ to be a lo~cal vector function where
R(z);, is (S(z);,, W(z);,). We denote the approximation of R(z) to be R(z).

It is noted that a good approximation of S(x);, is (U1 (V4 @Wl)T)jTO’*. We denote the approximation
of S(z) tobe S(x) = U1 (Vi @ Wy) T.

It is noted that a good approximation of W(x);, is (Uz(V2 @ WQ)T)JTO* Let denote the approxima-
tion of W(x) to be W(x) = Us(Vo @ Wo)T.

Suppose that R(x);, = (S(x);,, W(z),) = (U1(Vi @ W1)T)ju - (U2(Va @ W2) )T,

Jo,*"

For the side of computation time, we compute V;" V5 first and this takes n'*te(M time. Then, we
compute W, W, and this also takes n'+°(1) time.

Next, we have

R(z)j, = (U1(Vi @ W) 1) jo - (Ua(Va @ Wa) 1) ],

Jo,*
= (U1)jo,s Vi@ W)" (Vo @ Wa) (Ua)jo,+) "
——
1%k k1><n2 ’I‘L2><k2 ko x1

= (U1)jo,« (Vi Va) o (W} W2)) (Us)o,+) "
—_——— —— —— ——
1xkq k1 X ko k1 X ko ko x1

where the first step follows from the definition of R(z), the second step follows from (AB);, « =
ejo(AB) = (e;,A)B = Aj, . B for any matrices A and B, and the third step is due to Lemmam

Once we have pre-computed V," Vo € RF1*¥2 and W' W, € R¥1**2_ the above step only takes
O(k1ko) time. Since there n coordinates, so the overall time complexity is still O(nkiks) =
n1+o(1)_

We can use g(x) and ﬁ(m) to approximate Fp(x). Let Fb(x) = diag(ﬁ(x))g(x). Because
————
nxn nxn?2

diag(R(x)) is a diagonal matrix and S(z) has low-rank representation, then obviously we know

how to construct Uy, Vi, Wy. Basically Uy = diag(R(z))U; and Vy = Vi, Wy = W1,
Now, we need to control the error, and we have

[Us(Va @ W) T = Fy(2)]

[Fo(z) — Fp(2)]oo

max ||S(x)joR(x)j0 - S(x)joR(x)jo Hoo

Jo€l[n]
= jlglea[ﬁ] ||§(z)jo§(x)jo - g(x)joR(x)jo + g(x)jo R(z)jo - S(I)jo R(x)jo HOO
< JIoneaﬁ] ||§(CE)30§(.’L')JO - g(x)]oR(x)JOHOO + ||§($)30R(.’L')JO - S(x)]oR(x)JOHOO

where the first step is due to the definition of Fb(:c), the second step follows from the definition of

Fy(x) and Fb(x), the third step follows from simple algebra, and the last step follows from triangle
inequality.
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For the 1st term, we have
max [|S(x);,R()j, — S(2)oR(2)jo oo < max [|S(x)joloc - [R(z)j, — R(@)jo|
Jo€[n] Jo€[n]
< ¢/ poly(n)
For the 2nd term, we have
max |‘§(x)JoR(x)]o - S(x)JoR(I)JOHOO < max |I§(x)10 - S(x)Jo”OO : |R(x)Jo|
Jo€[n] Jo€[n]
< ¢/ poly(n)

We complete the proof, by using all three equations we derived above. [

E.6 GRADIENT COMPUTATION IN ALMOST LINEAR TIME BY LOW RANK TENSOR
APPROXIMATION

We now present our main result regarding the time complexity of our algorithm.

Theorem E.8 (Main result for fast gradient computation, Restatement of Theorem [5.2)). Assuming
the entries of Ay, Ay, As, Ay, As, E € R"Yand X1, Xy, X3,Y1,Ys € R¥¥4 are represented using
O(logn) bits. Then, there exist an algorithm that runs in n*+°) time to solve ATAttLGC(n,d =

O(logn), B = o({/logn),e = 1/poly(n)) (see Definition , i.e., our algorithm computes a
gradient matrix § € R satisfying ||d|'257§§X) —Glloo < 1/ poly(n).

Proof of Theorem[5.2} Given size n x n? matrices F(z) (see Definition|C.6), F, () (see Lemmal|E.7)
and Fy,(x) (see Lemma E.5)), obviously we know

F(z) = Fa(x) — Fy(x).

By applying Lemma Lemma [E2] and Lemma [E3] we confirm that the assumptions in
Lemma [E.5] and Lemma [E7] hold true. Therefore, we can utilize Lemma [E-3] and Lemma [E7] to
conclude that

e Let k3 = n°1). We know that F,(z) has approximate low rank representation
Us, V3, W3 € R"*F3 let F,(z) denote Us(Vz @ W3) .

s Let kg = n°1). We know that F,(z) has approximate low rank representation Uy, Vy, W, €
R"™¥F4 et Fy(x) denote Ug(Vy @ Wy) 7.

s Let Us, V5, W5 € R™*ks denote the approximate low rank representation for F(x), call it
Flx) =Us(Vs @ W5)T. We have ks < ks + kg = n°),

Thus, Lemmas and[E.7|all are taking n'T°() time to compute.

From the Lemma[D.6] we know that

dLoss(z)

= vec(A{ F(z)(A2 ® A3))

We use vec(A] F(z)(Az @ As)) to do approximation, then

vec( A] F(z) (Ay @ As)) = vec( A] F(z) (A @ AJ)T)
N —— ~ N ——

dXn nxn? n2xd? dxXn nxn? n2xd?
— vec([Us © Vs © Wi](A], AJ, A]))
R
vee(((A{ Us) © (Ag V5) © (A3 W5))),

where the first step is due to Fact[B-4] the second step is because of Claim [B.20]and Fact[B.T1] and
the last step follows Fact[B.12]
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The above computation takes n'*°(1)d + d®n°() time. So, overall time complexity is still n'+°(1).
Recall that § € R?*?" and dL%gX) € Rixd”
We have

dLoss(X)

=g — — Gllee = | vec(A F(x)(42 ® A3) — vec(A] F(z)(A2 © A3)) ||

)
= || A{ F(2)(A2 © A3) — A] F(2)(A2 ® A3)||o
= [|A] (Fa(2) — Fy(2))(A2 ® A3) — A] (Fa(x) — Fy(2)) (A2 ® 43)]0
<A (Fa(@) = Fa(2))(A2 ® 43)|loc + |41 (Fy(z) — Fo(2))(A2 ® A3)] 0
< A1l llAzlloo | Asllso - 77 - (IFa(2) = Fa(@)lloo + IFe() = Fo(2) o)
< ¢/ poly(n)
where the 1st step is due to definition of dLoss(X) 4 the above, the 2nd step follows from the def-
inition of vec(+), the 3rd step follows from simple algebra, the 4th step follows from triangle in-

equality, the 5th step follows from || T(A1, Az, A3)|lcoc < 72+ | Tlloo - [ A1lloo * 42|00 * [[A3]]00
where T is a tensor, and the last step follows from entries in A, As, A3 are bounded, and

[Fa(z) = Fa(2)lloc < €/ poly(n), [[Fs(x) = Fy(z)]loc < €/ poly(n).
By picking e = 1/ poly(n), we complete the proof. O

F HARDNESS

In this section, we will show the hardness of our algorithm. In Section[F.1} we provide some useful
tools for our results. In Section [F2]we present our main hardness results.

F.1 ToOOLS FOR BACKWARD COMPLEXITY

Next, we demonstrate that the tensor attention optimization problem (see Definition [3.8) exhibits
favorable behavior when applied to matrices constrained as described in Lemma [6.2}

Lemma F.1. Suppose that a fixed matrix H € R"*™ with entries in the interval [1, B,| satisfying
2
that more than half entries of H in each row are equal to B,. Let a matrix V€ R™ *¢ with entries

in {0,1}. For A € R, let us define My := exp(AH) € R"™ " We denote the function f : R — R
as

f\) == || diag(M1,2)"" My V ||%,
nxn nxn2n?xd

Then, for every A € R we get
* [F'(N] < O(Band),
* |f"(N] < O(B3nd).
Proof. Let G denote the n x n? matrix G = diag(M,1,,) "t M. Fori € [n],j € [n?], we calculate

that My, ; = eMii and so

NHi

- Sohsy M

For ¢ € [d], let Sy C [n?] represent the set of 1s in column ¢ of V, defined as S, = {j € [n?] |
Vj¢ = 1}. Therefore, for each i € [n],¢ € [d], the (i, ) entry of the matrix diag(Mx1,) ' M,V
can be shown that

.3

(diag(Mx1,) "' MAV); 0 = (GV)i 0
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77,2
= E GijVje
=1

= Z Gij

JES,

_ Ejesz Ml
222:1 eMik .

where the Ist step comes from definition, the 2nd step is due to simple algebra, the 3rd step is
because of definition of Sy, and the last step comes from definition of G.

Thus, we obtain:

2
d AH;
2 = (Zjese € ’])
f(/\) - Z 2 2
i=1 ( - eAHi,,c)
d NH; j,+H; ;
S ZZ:l Zjlese Zhesge (Hi,jy+Hijp)

n? 2”2 AN Hi iy +Hi ky)

i=1 ki=12ks=1C€

We define
d
)= 30 T S
£=1j1ESy j2E€Sp
We also define
n2 n2
h(A i)=Y Y A M i)
ki=1ko=1

By the previous three equations, we have:

n

FO) =" g\ i) /h(\0).

i=1

As at least half of the entries in each row of H are equal to B, and all entries lie within the interval
[1, B,], we can bound:

o\ 2
("2> LB < (i) < (n)* - 2B, ®)

Furthermore, since the derivative of e iki+Hiks) with respect to A is (Hix, + Hig,) -
e Hiky +Hiks) we can bound

dh(\,i
2-h(x 1) < P8 <opneni), ©)
We may similarly bound
0 < g(\ i) <dn-e?Pe?, (10)
and
dg(\,i
2. g(\i) < G < 2B, - g(\i). (11)
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The derivative of f can be bounded by (where the ' notation denotes the derivative w.r.t. \):

/ _ g/()\,i) ) h()‘vi) — g()\7i) i h/()‘7i)
=2 (%))

where the first step is due to the calculation of derivative, the second step is due to basic algebra, the
third step is because of cancelling h (), 7), the fourth step is by Eq. (8) (h(}, ¢) term) and Eq. (
¢’ (), ) term), the fifth step is due to basic algebra, and the last step is due to basic algebra.

In a similar manner, a lower bound for f/(\) can be,

/ _ - g/(A,i) i h()‘ai) - g(/\vi) ) h/()‘vi)
o =2 (h(%1))?

n M

i; (h(\, 1))
&N (dn - e2Be) - (2B, - h(M, 1))

-2 ((n?/2)? - €2Ba2) - (h(A, 1))

where the first step is due to the definition, the second step is due to basic algebra, the third step
comes from Eq. §) (h(A, %) term), Eq. @) (R' (), ¢)term), and Eq. (g9(\, 1) term), the fourth step
is due to basic algebra, and the final step comes from basic algebra.

Finally, we let f(\,4) := £ (A%) "and we can have f” (M) is equal to the following using the quotient

h(X3)°
rule:
2": 9"\ i) = WA 4) - f(A ) = 2- BN 6) - f1 (A 0)
part h(A,4) ’
which we can likewise bound in magnitude by O(B2nd). O

We have the following tool from previous work.
Lemma F.2 (Lemma 5.4 in |Alman & Song| (2024a)). Suppose that f : [0,1] — R is a twice-

differentiable function that satisfy | f”(\)| < b for all X\ € [0,1]. And for any positive integer t, we
define

-
|
—

f'(i/)

t

»
<
I
<
I
o

Then, we have

lse = (f(1) = F(O))] < b/t.
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F.2 MAIN RESULT FOR LOWER BOUND

Finally, we are prepared to present our main result:

Theorem F.3 (Main result for hardness, Restatement of Theorem [6.3). Ler v : N — N be any
Sunction with v(n) = o(logn) and v(n) = w(1). Assuming SETH, for any constant 6 > 0, it
is impossible to solve ATAttLGC(n,d = ©(logn), B = ©(/y(n) -logn),e = O(1/(logn)*))
(Deﬁnition in time O(n3=%) when E = 0,Y = lg, X = A, for some scalar \ € [0, 1].

Proof of Theorem[6.3] Let us assume that such an algorithm do exist. Then we can call it
O((logn)*!) times to refute Lemmausing parameter v = 7y(n), i.e., we can get f(1) by solving
ATAttLGC with O((logn)'!) times.

Suppose that I; € R%* %4 g an identity tensor. Also suppose that the input matrices to Lemma

are Q,Kl,KQ, Vl,VQ. And we set A1 = Q, A2 = Kl,A3 = KQ, A4 = ‘/1,145 = V2, Y = I, and

X = X - mat(lyg), with some A € [0, 1]. Let f : [0,1] — R be defined in Lemma where H is the
——

dxd?
matrix A;(As @ Az)", so that M), is the matrix exp(A4; X (A ® A3)T) by Fact It follows
from Lemma|[F.1]and d = ©(logn) that

[f"(N)] < O(nlog®n - (y(n)?),
where B, = O(y(n)log®n) in Lemmaby the second bullet point of Lemma

It is worth noting that £(0) can be computed in O(n) time because of the all-1s matrix M ¢. Our
final target is to calculate f(1).

From Lemma f(X\) can be computed on O(log? (n)(y(n))?) = O(log" n) points up to error

O(1/(logn)*), and give back their average. Because we have already chosen X = I, f'()\)

ch(’;;gx) in (see Definition , by our assumed approximated

can be calculated from the gradient
algorithm.
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