
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TENSOR ATTENTION TRAINING: PROVABLY EFFI-
CIENT LEARNING OF HIGHER-ORDER TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tensor Attention, a multi-view attention that is able to capture high-order corre-
lations among multiple modalities, can overcome the representational limitations
of classical matrix attention. However, the O(n3) time complexity of tensor at-
tention poses a significant obstacle to its utilization in transformers, where n is
the input sequence length. In this work, we prove that the backward gradient
of tensor attention training can be computed in almost linear time n1+o(1), the
same complexity as its forward computation under the bounded entries assump-
tion. We provide a closed-form solution for the gradient and propose a fast com-
putation method utilizing polynomial approximation methods and tensor algebraic
techniques. Furthermore, we prove the necessity and tightness of our assumption
through hardness analysis, showing that slightly weakening it renders the gradient
problem unsolvable in truly subcubic time. Our theoretical results establish the
feasibility of efficient higher-order transformer training and may facilitate practi-
cal applications of tensor attention architectures.

1 INTRODUCTION

The generative large language models (LLMs), such as Mistral (Jiang et al., 2023), Llama (Touvron
et al., 2023a), Llama2 (Touvron et al., 2023b), Llama3 (AI, 2024), Gemma (Team et al., 2024), GPT-
3 (Brown et al., 2020), GPT-4 (Achiam et al., 2023), Claude3 (Anthropic, 2024), Grok-1 (xAI, 2024)
and many more, have been widely involved in people’s living and work in these two years, such as
bio-informatics (Thirunavukarasu et al., 2023), coding (Hou et al., 2024), education (Kasneci et al.,
2023), finance (Li et al., 2023b), law (Sun, 2023), and even writing NeurIPS conference reviews
(Liang et al., 2024). The success of LLMs is based on the transformer architecture introduced by
Vaswani et al. (2017), which also has been introduced into other modality (Dosovitskiy et al., 2020),
such as vision-language models, e.g., CLIP (Radford et al., 2021), Flamingo (Alayrac et al., 2022),
LLaMA-Adapter (Zhang et al., 2023a; Gao et al., 2023), LLava (Liu et al., 2024; 2023b), BLIP (Li
et al., 2022; 2023a), MiniGPT-4 (Zhu et al., 2023), Qwen (Bai et al., 2023a;b), Gemini (Team et al.,
2023), MM1 (McKinzie et al., 2024).

The above open-sourced large models use two-view matrix attention, i.e., each attention score/entry
is related to two tokens (one query token and one key token) to capture the data correlation. More
specifically, let Z be hidden representations and Q = ZWQ,K = ZWK , V = ZWV be the corre-
sponding query, key, and value matrices after projections using weights WQ,WK ,WV respectively.
Then, the classical/matrix attention head can be written as Att(Z) = Softmax(QK⊤)V .

On the other hand, many studies find that multi-view is crucial for high-order correlation in various
kinds of data, e.g., math (Sanford et al., 2023), graph (Demirel et al., 2022; Luo et al., 2023), and
multi-modality (Lahat et al., 2015). For example, recently, OpenAI released GPT-4o (OpenAI,
2024), and Google released Project Astra (Google, 2024), two flagship multi-modality models that
aim to reason across three views, i.e., audio, vision, and text in real-time.

However, Sanford et al. (2023) theoretically and empirically shows that classical attention can cap-
ture pairwise correlation but not triple-wise correlation due to the representational limitations of
matrix attention. Sanford et al. (2023) introduces a triple detection task, demonstrating that classical
attention layers have complexity scaling linearly with the input size, while high-order attention can
efficiently perform this computation within a single head. In other words, one classical matrix

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

attention head “cannot” capture the information relevant to multi-views simultaneously unless using
multiple layers with careful architecture design. This poses a fundamental technical obstacle for
multi-modality models to efficiently fuse multiple representations/views to capture the high-order
correlation among them, e.g., the high-order correlations among multi-modalities such as audio,
text, and images.

Table 1: Comparison to previous works.

Reference For/Backward Matrix/Tensor
Zandieh et al. (2023) Forward Matrix

Alman & Song (2023) Forward Matrix
Han et al. (2024) Forward Matrix

Alman & Song (2024a) Backward Matrix
Alman & Song (2024b) Forward Tensor

Ours (Theorem 5.2) Backward Tensor

To fundamentally solve the above
obstacle, Sanford et al. (2023)
and Alman & Song (2024b) in-
troduce Tensor Attention, which
is a higher-order generalization
of matrix attention that can
capture high-order/multi-view in-
formation intrinsically. More
specifically, it is defined as
Softmax(Q(K1 ⊘ K2)

⊤)(V1 ⊘
V2) (Definition 3.5, and illus-
trated in Figure 1), where ⊘ is
column-wise Kronecker product, and Q, K1/V1, K2/V2 can be from different views/modalities.
However, to implement Tensor Attention practically, we must overcome the complexity bottleneck.
Let the input token length be n, then the forward and backward time complexity of tensor attention
will be O(n3) as Q(K1⊘K2)

⊤ ∈ Rn×n2

(Ma et al., 2019), while the time complexity of matrix at-
tention is O(n2) only as QK⊤ ∈ Rn×n (Keles et al., 2023). For example, the input length of Llama2
(Touvron et al., 2023b) is 4096. So, intuitively, if we put tensor attention in Llama2, the input length
will reduce to 256 to keep the same complexity in running speed and memory consumption.

)(Softmax Q

K1

K2

V1

V2

Figure 1: The visualization of tensor attention with Softmax activation function (Definition 3.5).
We give an example of input token length n = 8, feature dimension d = 4.

There are several recent works to overcome the time complexity bottleneck above, e.g., O(n2) for
matrix attention and O(n3) for tensor attention. Zandieh et al. (2023) accelerate matrix attention
forward via kernel density estimation and get truly sub-quadratic time running time. Alman & Song
(2023) uses the polynomial approximation method to map the matrix attention into low-rank matri-
ces during forward computation, leading to an almost linear time complexity n1+o(1) when entries
are bounded. Similarly, under sparsity assumptions, Han et al. (2024) achieves nearly linear time
computation for matrix attention forward by identifying the larger entries in the attention matrix. On
the one hand, with fine-grained analysis, Alman & Song (2024a) proposes a new backward algo-
rithm to compute the gradient of matrix attention in almost linear time complexity n1+o(1) as well,
under the same bounded entry assumption. On the other hand, Alman & Song (2024b) surprisingly
finds that the forward computation of tensor attention can also be achieved in almost linear time
n1+o(1) rather than almost quadratic time n2+o(1), under similar assumptions as Alman & Song
(2023). See a summary in Table 1. Thus, it is natural to ask,

Can we achieve almost linear time for gradient computation in Tensor Attention Training?

We provide a positive answer in this work. Under the same bounded entries assumption as Alman &
Song (2024b), we propose Algorithm 1 to fast compute the backward gradient of Tensor Attention
Training in almost linear time n1+o(1) as its forward computation. Thus, our results may make the
tensor attention practical, as we can get around the O(n3) complexity barrier both in its forward and
backward computation. Our contributions are summarized as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Under fine-grained analysis, we give the closed-form solution of the gradient computation of
tensor attention (Lemma 4.1) and its time complexity without acceleration (Theorem 4.3).

• Based on the closed-form solution, by utilizing polynomial approximation methods and tensor
computation techniques, we propose Algorithm 1 to fast compute the backward gradient of tensor
attention training in almost linear time as its forward computation (Theorem 5.2).

• Furthermore, we prove that our assumption is necessary and “tight” by hardness analysis, i.e.,
if we slightly weaken the assumption, there is no algorithm that can solve the tensor attention
gradient computation in truly sub-cubic complexity (Theorem 6.3).

2 RELATED WORK

Fast attention computation. In recent years, significant advances have been made in the devel-
opment of efficient attention computation. One research direction involves employing low-rank
approximations, polynomial kernel, or random features for the attention matrix (Zheng et al., 2022;
Alman & Song, 2023; Kacham et al., 2023; Song et al., 2024; Gu et al., 2024), which scales the com-
putational complexity sub-quadratically with sequence length. Another method explores patterns of
sparse attention that lessen the computational load (Han et al., 2024). Additionally, using linear at-
tention as an alternative to softmax attention has emerged as a substantial area of study (Katharopou-
los et al., 2020; Schlag et al., 2021; Zhang et al., 2023b; Ahn et al., 2024; Zhang et al., 2024). These
innovations have enhanced the capability of transformer-based models to handle longer sequences,
thereby broadening their potential applications across various fields (Chen et al., 2023; Su et al.,
2024; Peng et al., 2024; Ding et al., 2024; Ma et al., 2024; Bertsch et al., 2023; Jin et al., 2024).

Tensor computation for high-order representation. Tensors excel over matrices in capturing
higher-order relationships within data. Calculating low-rank factorizations or approximations of
tensors is essential in a wide range of computer science applications, such as natural language pro-
cessing (Lei et al., 2015; Bouchard et al., 2015), computer vision (Lu et al., 2016; Chen et al.,
2017), computer graphics (Wang et al., 2005; Vasilescu, 2009), security (Acar et al., 2006; Kolda &
Bader, 2006), and data mining (Karatzoglou et al., 2010; Rendle & Schmidt-Thieme, 2010; Mørup,
2011). Moreover, tensors are crucial in numerous machine learning applications (Podosinnikova
et al., 2015; Zhong et al., 2017; Yang et al., 2019) and other diverse fields (Reps et al., 2016; Yi
et al., 2016; Ray et al., 2016).

Roadmap. In Section 3, we introduce the notations, several useful definitions, and our loss function.
In Section 4, we give the closed form of the gradient of our loss function, and also its computational
time complexity. In Section 5, we prove that we can compute the gradient in almost linear time. In
Section 6, we provide the hardness analysis. In Section 7, we give the conclusion of our paper.

3 PRELIMINARY

In this section, we first provide the notations we use. In Section 3.1, we provide general definitions
related to tensor operation. In Section 3.2, we provide key definitions that we utilize in this paper.

Basic notations. We use [n] to denote {1, 2, . . . , n}. We use ei to denote a column vector where
only i-th location is 1 and zeros everywhere else. We denote an all 1 vector using 1n ∈ Rn . We use
⟨a, b⟩ to denote the inner product of a, b ∈ Rd i.e. ⟨a, b⟩ := ∑d

i=1 aibi. We use ∥x∥p to denote the
ℓp norm of a vector x ∈ Rn, i.e. ∥x∥2 := (

∑n
i=1 x

2
i)

1/2, and ∥x∥∞ := maxi∈[n] |xi|. We use ◦ to
denote the Hadamard product, i.e., the (i, j)-entry of A ◦B is Ai,jBi,j .

We use tr[A] :=
∑n

i=1 Ai,i to denote the trace of a matrix A ∈ Rn×n. We use exp(A) to denote a
matrix where exp(A)i,j := exp(Ai,j) for a matrix A ∈ Rn×d. We use ∥A∥∞ to denote the ℓ∞ norm
of a matrix A ∈ Rn×d, i.e. ∥A∥∞ := maxi∈[n],j∈[d] |Ai,j |. We use ∥A∥F to denote the Frobenius

norm of a matrix A ∈ Rn×d, i.e. ∥A∥F :=
√∑

i∈[n]

∑
j∈[d] |Ai,j |2. We use poly(n) to denote

polynomial time complexity w.r.t. n.

Tensor related notations. Let A ∈ Rn×d. We use a := vec(A) to denote the length nd vector
obtained by stacking rows of A into a column vector, i.e. vec(A) := [a⊤1 , a

⊤
2 , . . . , a

⊤
n]

⊤ where a⊤i is

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the i-th row of A, or simply vec(A)j+(i−1)d := Ai,j for any i ∈ [n], j ∈ [d], visualized in Fig. 2. Let
Id ∈ Rd×d denote the identity matrix. Let Id ∈ Rd×d×d denote the identity tensor, i.e., the diagonal
entries are 1 and zeros everywhere else. Let X ∈ Rd×d2

. Let x ∈ Rd3

denote the vectorization of
X ∈ Rd×d2

. Let X ∈ Rd×d×d be the tensorization of X ∈ Rd×d2

, where Xa,b,c = Xa,(b−1)d+c for
any a, b, c ∈ [d]. We define the corresponding function mat : Rd×d×d → Rd×d2

as X = mat(X)
where Xa,(b−1)d+c = Xa,b,c for any a, b, c ∈ [d].

3.1 DEFINITION OF TENSOR OPERATIONS

vec (n

1 2 3 4

5 6 7 8

9 10 11 12

A

d

) = nd

1

2

3

4

5

6

7

8

9

10

11

12

a

Figure 2: The visualization
of vectorization operator vec(·),
which stacks rows of a matrix
A ∈ Rn×d into a column vec-
tor a ∈ Rnd. In this figure, we
give an example of n = 3, d =
4. The components of A and a
are also given for easier under-
standing.

We define some operations like the Kronecker product, which is a
matrix operation applied to two matrices of any size, producing a
block matrix. It is different from regular matrix multiplication and
will be useful for our introduction and analysis of tensor attention.
Definition 3.1 (⊗ Kronecker product). Given K1 ∈ Rn1×d1 and
K2 ∈ Rn2×d2 , for any i1 ∈ [n1], i2 ∈ [n2], j1 ∈ [d1], j2 ∈ [d2],
we define the matrix K := K1 ⊗K2 ∈ Rn1n2×d1d2 as follows

Ki1+(i2−1)n1,j1+(j2−1)d1
= (K1)i1,j1 · (K2)i2,j2 .

In this work, we will primarily use the following column-wise and
row-wise versions of the Kronecker product, which are special
kinds of Kronecker product.
Definition 3.2 (⊘ column-wise Kronecker product, also known
as Kathri-Rao product). Given matrices K1 ∈ Rn1×d,K2 ∈
Rn2×d, we define the matrix K := K1 ⊘ K2 ∈ Rn1n2×d as
follows

Ki1+(i2−1)n1,j := (K1)i1,j · (K2)i2,j ,

∀i1 ∈ [n1], i2 ∈ [n2], j ∈ [d].

Definition 3.3 (⊖ row-wise Kronecker product, also referred to as
the face-splitting product). Given matrices K1 ∈ Rn×d1 ,K2 ∈
Rn×d2 , we define the matrix K := K1 ⊖K2 ∈ Rn×d1d2 as fol-
lows

Ki,j1+(j2−1)d1
:= (K1)i,j1 · (K2)i,j2 , ∀i ∈ [n], j1 ∈ [d1], j2 ∈ [d2].

3.2 KEY DEFINITIONS OF TENSOR ATTENTION

Now, we are ready to introduce the tensor attention. First, we introduce the parameters and input.
Definition 3.4 (Input and weight matrix). We define the input sequence as Z ∈ Rn×d and the key,
query, and value weight matrix as WK1

,WK2
,WQ,WV1

,WV2
∈ Rd×d. Then, we define the key,

query, and value matrix as K1 := ZWK1
∈ Rn×d, K2 := ZWK2

∈ Rn×d, Q := ZWQ ∈ Rn×d,
V1 := ZWV1

∈ Rn×d, V2 := ZWV2
∈ Rn×d.

Then, based on Kronecker product, we define tensor attention in the following way.
Definition 3.5 (Tensor attention, Definition 7 in Sanford et al. (2023), Definition 1.1 in Alman &
Song (2024b)). Given input matrices Q,K1,K2, V1, V2 ∈ Rn×d, compute the following matrix

D−1︸︷︷︸
n×n

A︸︷︷︸
n×n2

V︸︷︷︸
n2×d

∈ Rn×d,

where (1) A := exp(QK⊤/d) ∈ Rn×n2

and K := K1 ⊘K2 ∈ Rn2×d, (2) D := diag(A1n2) ∈
Rn×n, and (3) V := V1 ⊘ V2 ∈ Rn2×d.
Remark 3.6. In Definition 3.5, on the one hand, we separate the Softmax operation into an element-
wise exp operation and a diagonal normalization matrix D for a more transparent formulation. On
the other hand, we change K,V ∈ Rn×d in classical attention to K1 ⊘K2, V1 ⊘ V2 ∈ Rn2×d in
tensor attention, where ⊘ is column-wise Kronecker product defined in Definition 3.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

min
X ∈ Rd×d2

0.5∥ (n D(X)

n

)
−1

× exp (n A1

d

× d X

d2

× d2 (A2 ⊗A3)
⊤

n2

)× n2 (A4 ⊗A5)

d2

× d2 Y

d

− n E

d

∥ 2
F

n D(X)

n

= diag ()exp (n A1

d

× d X

d2

× d2 (A2 ⊗A3)
⊤

n2

) × n2

1
n
2

Figure 3: The visualization of loss function defined in Definition 3.8. Let A1, A2, A3, A4, A5 and E
be n× d input matrices. Let Y be a given matrix with size d2 × d. The Kronecker product operator
⊗ is defined in Definition 3.1. We minimize matrix X ∈ Rd×d2

in our loss function. We first
compute exp(A1X(A2 ⊗ A3)

⊤). Then, we compute D(X) := diag(exp(A1X(A2 ⊗ A3)
⊤)1n2).

Afterwards, we compute D(X)−1 exp(A1X(A2 ⊗ A3)
⊤)(A4 ⊗ A5)Y − E. Finally, we optimize

X to compute the minimum of its Frobenius norm with a scaling factor 0.5.

Our Definition 3.5 covers the self-attention setting, when the query/key/values Q,K1,K2, V1, V2

follow Definition 3.4 where they share the same input. It is then a tensor self-attention, which can
capture high-order information of the input Z. When the query/key/values have different inputs, it
is then a tensor cross-attention that can capture high-order relationships among multiple inputs.

Also, note that we have A ∈ Rn×n2

in Definition 3.5. Although QK⊤ is a low-rank matrix with rank
at most d, exp(QK⊤) may be a full-rank matrix in general. Thus, it is clear to see the exact forward
computation of tensor attention takes O(n3) time. Here, we introduce a forward tensor attention
approximation task, which will help us formulate the tensor attention gradient approximation task
later. Furthermore, Alman & Song (2024b) show that they can solve this approximation task in
almost linear time n1+o(1) (Lemma 5.1).

Definition 3.7 (Approximate Tensor Attention Computation (ATAttC(n, d,B, ϵ)), Definition 1.2
in Alman & Song (2024b)). Given input matrices Q,K1,K2, V1, V2 ∈ Rn×d and parameters
ϵ, B > 0, where max{∥Q∥∞, ∥K1∥∞, ∥K2∥∞, ∥V1∥∞, ∥V2∥∞} ≤ B. Let A,D, V be defined
in Definition 3.5. Then, our target is to output a matrix T ∈ Rn×d satisfying

∥ T︸︷︷︸
n×d

−D−1︸︷︷︸
n×n

A︸︷︷︸
n×n2

V︸︷︷︸
n2×d

∥∞ ≤ ϵ.

For our focus, tensor attention training, we would like to find weights to fit the tensor attention to a
desired output E. We first simplify the attention expression of Definition 3.5, whose inputs are from
Definition 3.4 with weight matrices WQ,WK1

,WK2
,WV1

,WV2
∈ Rd×d. Let X := WQ · (WK1

⊘
WK2)

⊤ ∈ Rd×d2

and Y := WV1 ⊘ WV2 ∈ Rd2×d. It can be verified that the tensor attention
equals D−1 exp(ZX(Z ⊗ Z)⊤/d)(Z ⊗ Z)Y , where Z ∈ Rn×d is defined as the input sequence in
Definition 3.4.

The naive gradient computation for the tensor attention training takes Ω(n3) time. The gradient for
X is the bottleneck while that for Y is not, since A1X(A2 ⊗ A3)

⊤ ∈ Rn×n2

lies in the non-linear
function Softmax. Also, note that with gradients of X and Y , it is easy to get the gradients of the
weight matrices WQ,WK1 ,WK2 ,WV1 ,WV2 . Therefore, we model the tensor attention training as
the following tensor attention optimization problem (where A1, A2, A3, A4, A5 are introduced to
replace Z to capture more general settings such as cross-attention). See Figure 3 for an illustration.

Definition 3.8 (Tensor attention optimization). Suppose that A1, A2, A3, A4, A5, E ∈ Rn×d and
Y1, Y2 ∈ Rd×d are given. We formulate the attention optimization problem as

min
X∈Rd×d2

Loss(X) := 0.5∥D(X)−1 exp(A1X(A2 ⊗A3)
⊤/d)(A4 ⊗A5)Y − E∥2F ,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

𝐴!

𝑋

𝐴"

𝐾 = exp	(𝐴!𝑋 𝐴"⨂𝐴# $)

𝐷 = diag 𝐾 · 𝟏%!𝑆 = 𝐷&!𝐾

𝐴'

𝐴(

𝑌

𝐿 = 𝐴(⨂𝐴' 𝑌 𝑊 = 𝑉𝐿$ 𝐹) = 𝑆 ∘ 𝑊

𝐹* = diag 𝐹) · 𝟏%! · 𝑆𝐹 = 𝐹) − 𝐹*

𝑔 = 𝐴!$𝐹 𝐴"⨂𝐴# 𝐴#

𝐸 𝑉 = 𝑆𝐿 − 𝐸

Figure 4: The computational graph for tensor attention backward. The blue boxes are input matrices,
the gray boxes are intermediate matrices, and the orange box is the final gradient matrix. Here,
A1, A2, A3, A4, A5 denote the previous inputs, E denotes the target matrix, and X,Y denote the
attention weights. More detailed definitions of each variable can be found in Section C, D and E.

where (1) A2 ⊗ A3 ∈ Rn2×d2

is the tensor product between A2 and A3, (2) D(X) =

diag(exp(A1X(A2 ⊗A3)
⊤/d)1n2) ∈ Rn×n, and (3) Y = Y1 ⊘ Y2 ∈ Rd2×d.

Our main focus is the following Approximate Tensor Attention Loss Gradient Computation task.

Definition 3.9 (Approximate Tensor Attention Loss Gradient Computation
(ATAttLGC(n, d,B, ϵ))). Let ϵ, B > 0. Let A1, A2, A3, A4, A5, E ∈ Rn×d and let
X1, X2, X3, Y1, Y2 ∈ Rd×d (see Definition 3.8). Let X = X1 · (X2 ⊘ X3)

⊤ ∈ Rd×d2

. As-
sume that max{∥A1X1∥∞, ∥A2X2∥∞, ∥A3X3∥∞, ∥A4Y1∥∞, ∥A5Y2∥∞} ≤ B. Let us assume
that any numbers in the previous matrices are in the log(n) bits model1. We define Loss(X) the
same as Definition 3.8. Let the gradient of loss function Loss(X) be dLoss(X)

dX ∈ Rd×d2

. Then, our
target is to output a matrix g̃ ∈ Rd×d2

satisfying ∥g̃ − dLoss(X)
dX ∥∞ ≤ ϵ.

4 EXACT TENSOR ATTENTION GRADIENT COMPUTATION AND COMPLEXITY

In this section, we provide the closed form of the tensor attention gradient of the loss function
(Definition 3.8) and also its computational time. First, we calculate the closed form of the gradient
in the following lemma, whose proof is in Appendix D.5.

Lemma 4.1 (Closed form of gradient, informal version of Lemma D.6). Define the function F(x) ∈
Rn×n2

as in Definition C.6 (see Fig. 4 for an illustration). Suppose that A1, A2, A3 ∈ Rn×d are
three given matrices. Suppose that Loss(x) is defined as Definition 3.8, where x = vec(X). Then,
we have

dLoss(x)

dx
= vec(A⊤

1 F(x)(A2 ⊗A3)) ∈ Rd3

.

Note that, F(x) is a size n× n2 matrix which is the bottleneck obstacle in time complexity.

Definition 4.2. Let Tmat(a, b, c) denote the time of multiplying a× b matrix and b× c matrix.

Then, with straightforward analysis, we get the following theorem about the time complexity of
naive computation. The complete proof is in Appendix D.6.

1Each entry in the matrix is represented by at most log(n) bits. This assumption is well-accepted and
widely used in the computational complexity community, e.g., Feng et al. (2024); Liu et al. (2023a); Merrill &
Sabharwal (2023).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Theorem 4.3 (Tensor attention gradient computation, informal version of Theorem D.7). Suppose
that A1, A2, A3, A4, A5, E ∈ Rn×d are input fixed matrices. We denote matrix variables as X ∈
Rd×d2

and Y ∈ Rd2×d (gradient computation is w.r.t. X). Let g = dLoss(X)
dX ∈ Rd×d2

(for definition
of Loss(X), see Definition 3.8). Then, we show that computing the gradient g ∈ Rd×d2

requires
Tmat(n, d

2, n2) time.

Note that Tmat(n, d
2, n2) ≥ Ω(n3). Thus, the naive tensor attention gradient computation is a com-

plexity obstacle in practice as discussed in Section 1. Based on the closed formulation in Lemma 4.1,
we derive our acceleration method, which will be introduced in the following section.

5 FAST TENSOR ATTENTION GRADIENT COMPUTATION

In this section, we show how to compute the tensor attention matrix gradient in almost linear time.
In Section 5.1, we demonstrate our main results. In Section 5.2, we introduce some key tensor
techniques used in our proof.

Algorithm 1 Almost Linear Time Tensor Attention Gradient Computation

1: procedure FASTTENSORATTENTION(A1, A2, A3, A4, A5, E ∈ Rn×d, X1, X2, X3, Y1, Y2 ∈
Rd×d, n ∈ N+, d ∈ N+, ϵ ∈ (0, 0.1)) ▷ Definition 3.9, Theorem 5.2

2: ▷ n can be viewed as the length of the sentence
3: ▷ d can be viewed as the feature of dimension, and we assume d = O(log n)
4: ▷ ϵ is the accuracy output, and we typically pick 1/ poly(n)

5: Get U1, V1,W1 ∈ Rn×no(1)

to approximate S(x) via Lemma E.1 ▷ O(n1+o(1)) time
6: U2 ← U1(V1 ⊘W1)

⊤L(y)− E to approximate V(x) via Lemma 5.6 ▷ O(n1+o(1)) time
7: V2, W2 ← A4Y1, A5Y2 to approximate W(x) via Lemma E.3 ▷ O(nd2) time
8: U3, V3, W3 ← U1 ⊖ U2, V1 ⊖ V2, W1 ⊖W2 to approximate Fa(x) via Lemma E.5 ▷

O(n1+o(1)) time
9: Precompute V ⊤

1 V2 and W⊤
1 W2 to approximate Fb(x) via Lemma E.7 ▷ O(n1+o(1)) time

10: for j0 ∈ [n] do ▷ Overall R̃(x) takes O(n1+o(1)) time
11: R̃(x)j0 ← (U1)j0,∗((V

⊤
1 V2) ◦ (W⊤

1 W2))((U2)j0,∗)
⊤

12: end for
13: U4 ← diag(R̃(x))U1 ▷ O(n1+o(1)) time
14: V4, W4 ← V1, W1 ▷ O(n1+o(1)) time
15: /* Approximate F(x), Theorem E.8 */
16: U5, V5, W5 ← [U3,−U4], [V3, V4], [W3,W4] ▷ O(n1+o(1)) time
17: /* Approximate g, Theorem E.8 */
18: Precompute A⊤

1 U5, A⊤
2 V5, A⊤

3 W5 separately ▷ O(dn1+o(1)) time
19: g̃ ← (A⊤

1 U5)⊙ (A⊤
2 V5)⊙ (A⊤

3 W5) ▷ ⊙ in Definition B.3. O(d3no(1)) time
20: return g̃ ▷ As d = O(log n), the total complexity is O(n1+o(1)) time
21: end procedure

5.1 MAIN RESULTS FOR FAST GRADIENT COMPUTATION

Polynomial approximation methods involve representing complex functions through simpler poly-
nomial forms to facilitate easier analysis and computation. They are crucial in numerical analysis,
aiding in the efficient solution of differential equations and optimization problems, and are widely
used in simulations and machine learning (Aggarwal & Alman, 2022; Alman et al., 2020).

Based on the polynomial approximation methods, Alman & Song (2024b) get the following result
about tensor attention acceleration, which will be used to prove our main result.
Lemma 5.1 (Theorem 1.4 in Alman & Song (2024b)). There is an algorithm that solves
ATAttC(n, d = O(log n), B = o(3

√
log n), ϵ = 1/ poly(n)) (see Definition 3.7) in time n1+o(1).

Using similar polynomial approximation methods, and combined with a series of tensor analysis
techniques (Section 5.2), we get our main acceleration results.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 5.2 (Main result for fast gradient computation). Assuming the entries of A1, A2, A3,
A4, A5, E ∈ Rn×d and X1, X2, X3, Y1, Y2 ∈ Rd×d are represented using O(log n) bits. Then,
there exist an algorithm (Algorithm 1) that runs in n1+o(1) time to solve ATAttLGC(n, d =
O(log n), B = o(3

√
log n), ϵ = 1/ poly(n)) (see Definition 3.9), i.e., our algorithm computes a

gradient matrix g̃ ∈ Rd×d2

satisfying ∥dLoss(X)
dX − g̃∥∞ ≤ 1/ poly(n).

Proof sketch of Theorem 5.2. The complete proof can be found in Appendix E.6.

We use the polynomial approximation method to obtain low-rank approximation results for
D−1 exp(A1X(A2 ⊗A3)

⊤/d) in Lemma E.1. However, this cannot be directly used for the closed
form of the tensor attention gradient solution in Theorem 4.3. Utilizing a series of tensor techniques
(Section 5.2 and Appendix B), we smartly convey these low rank properties throughout the gradient
formulation and computation, where two key steps are fixed in Lemma E.5 and Lemma E.7.

Remark 5.3. The assumption in Theorem 5.2 is practical. In practice, especially in recent long
context tasks, the n is large, e.g, n = 2×106 for Google’s Gemini 1.5 Pro (Gemini, 2024), while the
model training uses a half-precision floating-point format, e.g., the bit number is 16. Furthermore,
our assumption is “tight”, where if we slightly weaken the assumption, there is no algorithm that
can solve the tensor attention gradient computation in truly sub-cubic complexity (Theorem 6.3).

Our Theorem 5.2 accurately approximates (ϵ = 1/ poly(n)) the tensor attention gradient computa-
tion in almost linear time n1+o(1) under practical assumptions (see the above Remark 5.3). Thus,
our methods solve the last puzzle of tensor attention acceleration. Combined with previous work on
tensor attention inference, this may make tensor attention practical, as we overcome the theoretical
cubic time complexity barrier both in inference and training.

We provide Algorithm 1 for our almost linear time tensor attention training method. In the de-
tailed algorithm, first, we construct U1, V1,W1 in Lemma E.1. Then, we construct U2, V2,W2 in
Lemma E.3 and U3, V3,W3 in Lemma E.5. We show how to construct U4, V4,W4 in Lemma E.7.
Finally, we construct U5, V5,W5 and compute the gradient g in almost linear time in Theorem E.8.

5.2 TENSOR OPERATION ANALYSIS TECHNIQUES

Here, we introduce some key techniques for proving Theorem 5.2. These techniques make it pos-
sible to convey the low-rank property even during the tensor operations, solving the novel technical
challenges in tensor attention gradient computation.

We first introduce a swap rule and a distributed rule, where both proofs are in Appendix B.2.
Fact 5.4 (Swap rule for tensor and matrix product). Let W1,W2 ∈ Rd×d, A1, A2 ∈ Rn×d. We have

(A1 ⊗A2)︸ ︷︷ ︸
n2×d2

· (W1 ⊘W2)︸ ︷︷ ︸
d2×d

= (A1 ·W1)︸ ︷︷ ︸
n×d

⊘ (A2 ·W2)︸ ︷︷ ︸
n×d

.

Fact 5.4 tells us that we can swap the order of tensor operation and matrix multiplication, allowing
us to always compute the low dimension first to reduce the complexity.
Fact 5.5. Let U1 ∈ Rn1×d and U2 ∈ Rn1×k. Let V1 ∈ Rn2×d and V2 ∈ Rn2×k. Let W1 ∈ Rn3×d

and W2 ∈ Rn3×k. We have
(U1 ⊖ U2)︸ ︷︷ ︸

n1×dk

·((V1 ⊖ V2)︸ ︷︷ ︸
n2×dk

⊘ (W1 ⊖W2)︸ ︷︷ ︸
n3×dk

)⊤ = (U1︸︷︷︸
n1×d

(V1︸︷︷︸
n2×d

⊘ W1︸︷︷︸
n3×d

)⊤) ◦ (U2︸︷︷︸
n1×k

(V2︸︷︷︸
n2×k

⊘ W2︸︷︷︸
n3×k

)⊤)

Fact 5.5 tells us that the multiple tensor operation can be distributed to a different format. If we have
some low-rank matrix/tensor, we can distribute them into each component, so that each component
can be accelerated via the low-rank property. Intuitively, this allows us to borrow some low-rank
benefits from other terms to fix the bottleneck terms.

We provide an important tool whose proof is in Appendix B.2.
Lemma 5.6 (Informal version of Lemma B.13). Given A1 ∈ Rn1×d1 , A2 ∈ Rn2×d1 , let A :=
(A1 ⊘A2) ∈ Rn1n2×d1 . Given B1 ∈ Rn1×d2 , B2 ∈ Rn2×d2 , let B := (B1 ⊘B2) ∈ Rn1n2×d2 . We
define C ∈ Rd1×d2 as C := A⊤B and C1 := A⊤

1 B1 ∈ Rd1×d2 , C2 := A⊤
2 B2 ∈ Rd1×d2 . Then, we

have C1 ◦ C2 = C and given A1, A2, B1, B2, we can get C in Tmat(d1,max{n1, n2}, d2) time.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Lemma 5.6 is a highly non-trivial method to handle tensor operation, ◦ and matrix multiplication
together. By using the method, we save the computation time from Tmat(d, n

2, d) to Tmat(d, n, d),
which gets rid of the bottleneck quadratic term n2.

Lastly, we introduce a tensor trick, which can reduce a tensor operation to a matrix multiplication
operation. The proof is in Appendix B.3.
Fact 5.7 (Tensor-trick). Given matrices A1 ∈ Rn1×d1 , A2 ∈ Rn2×d2 and X ∈ Rd1×d2 , we have
vec(A1XA⊤

2) = (A1 ⊗A2) vec(X) ∈ Rn1n2 .

Technical novelty over previous works. We generalize beyond the results of Alman & Song
(2024b), which only provide methods for tensor attention forward. Our paper presents a detailed
analysis for tensor attention backward, providing both upper bound and lower bound. Though we
build on some results from Alman & Song (2024b) and Alman & Song (2024a), generalizing to
tensor attention backward posed many technical challenges. These challenges are unique to our
setting and not presented in previous settings like matrix attention (Alman & Song, 2023; 2024a) or
tensor attention forward (Alman & Song, 2024b). To be more specific, we prove many key prop-
erties for tensor operation needed for backward though not needed for forward, including Facts 5.4
(swap rule for tensor and matrix product), 5.5 (distribution rule for tensor and matrix product), B.11
(tensor computation reduction to matrix product), B.12 (distribution rule for tensor computation),
Claim B.20 (tensor product to matrix product). Fact 5.4, used as a key part to prove Lemmas E.1 and
E.3, gives the swap rule for tensor operations. Lemma 5.6 supports the proof of Fact 5.5 and helps
bypass the O(n3d2) time complexity bottleneck in the fast computation of U2. Fact 5.5, crucial in
proving Lemma E.5, shows the distributive nature of tensor operations. Using Facts B.11, B.12, and
Claim B.20, we leverage the structure of low-rank matrices U5, V5,W5 to prove Theorem 5.2.

6 TENSOR ATTENTION GRADIENT COMPLEXITY LOWER BOUND

In this section, we show that our assumption is necessary. First, we introduce some hardness analysis
background in Section 6.1. Then, we introduce our main hardness result in Section 6.2.

6.1 SETH AND TENSOR ATTENTION FORWARD HARDNESS

We provide the findings that our results are based on. We first introduce a well-known hypothesis in
hardness analysis. The Strong Exponential Time Hypothesis (SETH), a well-established conjecture,
has been instrumental in establishing fine-grained lower bounds for numerous algorithmic problems,
as highlighted in the survey by Williams (2018). More than two decades ago, Impagliazzo & Paturi
(2001) introduced SETH as an enhanced version of the well-known P ̸= NP conjecture, positing
that current algorithms solving the SAT problem are nearly optimal in terms of efficiency.
Hypothesis 6.1 (Strong Exponential Time Hypothesis (SETH), Impagliazzo & Paturi (2001)).
Given ϵ > 0, there exists k ≥ 3 ∈ Z such that it is impossible to solve k-SAT problem with n
variables in O(2(1−ϵ)n) time, including using any randomized algorithms.

We will critically utilize the hardness result of the forward tensor attention computation.
Lemma 6.2 (Theorem 1.3 in Alman & Song (2024b)). Assuming SETH, for any constant δ > 0,
no algorithm can solve ATAttC(n, d = Θ(log n), B = Θ(3

√
(1 + γ) log n), ϵ = nγ−O(1)) (Defi-

nition 3.7) in O(n3−δ) time, even if the inputs meet the following conditions for any γ ≥ 0: (1)
V ∈ {0, 1}n2×d, (2) There exists Ba ≤ O((1 + γ) log2 n) = O(d(3

√
(1 + γ) log n)3) where all

entries of Q(K1 ⊘ K2)
⊤ are within the range [1, Ba] and more than half entries in each row of

Q(K1 ⊘K2)
⊤ are equal to Ba.

This result shows that assuming SETH, if we just slightly weaken the assumption from B =

O(3
√
log n) to B = Θ(3

√
(1 + γ) log n) with γ = ω(1), then the tenor attention forward com-

putation is hard, i.e., no algorithm can solve it in truly sub-cubic time.

6.2 MAIN RESULT FOR HARDNESS

Based on the above observation (Lemma 6.2), we prove our main result for tensor attention gradient
computation hardness.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Theorem 6.3 (Main result for hardness). Let γ : N→ N be any function with γ(n) = o(log n) and
γ(n) = ω(1). Assuming SETH, for any constant δ > 0, it is impossible to solve ATAttLGC(n, d =

Θ(log n), B = Θ(3
√
γ(n) · log n), ϵ = O(1/(log n)4)) (Definition 3.9) in time O(n3−δ) when E =

0, Y = Id, X = λId for some scalar λ ∈ [0, 1].

See the formal proof in Appendix F.2. The intuition is that if we can solve ATAttLGC in O(t) time,
then we can solve ATAttC in O(t · log11(n)) time by interpolation and “integral”. We see a similar
sharp complexity transition as forward computation (Lemma 6.2): assuming SETH, if we slightly
weaken the assumption from B = O(3

√
log n) to B = Θ(3

√
(1 + γ) log n) with γ = ω(1), then the

tensor attention gradient computation will be unsolvable in truly sub-cubic time as well.

7 DISCUSSION AND CONCLUSION

In this work, we proved that the backward gradient of tensor attention training can be computed
in almost linear n1+o(1) time, the same complexity as its forward computation, under a bounded
entries assumption. We provided a closed-form solution for the gradient and proposed a fast com-
putation method utilizing polynomial approximation and tensor algebraic techniques. Furthermore,
we proved the necessity and tightness of our assumption through hardness analysis, showing that
slightly weakening it renders the tensor attention gradient problem unsolvable in truly subcubic
time. Our theoretical results establish the feasibility of efficient higher-order transformer training
and may facilitate practical applications of tensor attention architectures. Due to space limits, we
provide our further discussion and extension in Appendix A. Future work can perform empirical
evaluations of the method in practical large language models, and explore how these findings can be
implemented in real-world scenarios to enable the development of powerful higher-order models.

REFERENCES

Evrim Acar, Seyit A. Camtepe, and Bülent Yener. Collective sampling and analysis of high order
tensors for chatroom communications. In International Conference on Intelligence and Security
Informatics, pp. 213–224. Springer, 2006.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. arXiv preprint arXiv:2205.06249, 2022.

Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Lin-
ear attention is (maybe) all you need (to understand transformer optimization). In The Twelfth
International Conference on Learning Representations, 2024.

Meta AI. Introducing meta llama 3: The most capable openly available llm to date, 2024. https:
//ai.meta.com/blog/meta-llama-3/.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716–
23736, 2022.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b.

10

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear
algebra on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pp. 541–552. IEEE, 2020.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023a.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023b.

Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew Gormley. Unlimiformer: Long-range
transformers with unlimited length input. Advances in Neural Information Processing Systems,
36, 2023.

Markus Bläser. Fast matrix multiplication. Theory of Computing, pp. 1–60, 2013.

Guillaume Bouchard, Jason Naradowsky, Sebastian Riedel, Tim Rocktäschel, and Andreas Vlachos.
Matrix and tensor factorization methods for natural language processing. In ACL (Tutorial Ab-
stracts), pp. 16–18, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Peter Bürgisser, Michael Clausen, and Mohammad A Shokrollahi. Algebraic complexity theory,
volume 315. Springer Science & Business Media, 2013.

Longxi Chen, Yipeng Liu, and Ce Zhu. Iterative block tensor singular value thresholding for extrac-
tion of low rank component of image data. In ICASSP 2017, 2017.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023.

Mehmet F Demirel, Shengchao Liu, Siddhant Garg, Zhenmei Shi, and Yingyu Liang. Attentive
walk-aggregating graph neural networks. Transactions on Machine Learning Research, 2022.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. arXiv
preprint arXiv:2402.13753, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2024.

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,
Conghui He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction model.
arXiv preprint arXiv:2304.15010, 2023.

Google Gemini. Gemini 1.5 pro updates, 1.5 flash debut and 2 new
gemma models. https://blog.google/technology/developers/
gemini-gemma-developer-updates-may-2024/, 2024. Accessed: May 15.

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://blog.google/technology/developers/gemini-gemma-developer-updates-may-2024/
https://blog.google/technology/developers/gemini-gemma-developer-updates-may-2024/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Google. Gemini breaks new ground with a faster model, longer con-
text, ai agents and more. https://blog.google/technology/ai/
google-gemini-update-flash-ai-assistant-io-2024/#exploration,
2024. Accessed: May 14.

Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low rank matrix completion via robust alter-
nating minimization in nearly linear time. In The Twelfth International Conference on Learning
Representations (ICLR), 2024.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
Eh0Od2BJIM.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic litera-
ture review, 2024.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367–375, 2001.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan
Chen, and Xia Hu. Llm maybe longlm: Self-extend llm context window without tuning. arXiv
preprint arXiv:2401.01325, 2024.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver. Multiverse rec-
ommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In
Proceedings of the fourth ACM conference on Recommender systems, pp. 79–86. ACM, 2010.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for
good? on opportunities and challenges of large language models for education. Learning and
individual differences, 103:102274, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In International Conference on Algorithmic Learning Theory, pp.
597–619. PMLR, 2023.

Tamara Kolda and Brett Bader. The tophits model for higher-order web link analysis. In Workshop
on Link Analysis, Counterterrorism and Security, volume 7, pp. 26–29, 2006.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review, 51
(3):455–500, 2009.

Dana Lahat, Tülay Adali, and Christian Jutten. Multimodal data fusion: an overview of methods,
challenges, and prospects. Proceedings of the IEEE, 103(9):1449–1477, 2015.

Tao Lei, Yuan Zhang, Alessandro Moschitti, and Regina Barzilay. High-order low-rank tensors for
semantic role labeling. In Proceedings of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics–Human Language Technologies (NAACL-HLT
2015). Citeseer, 2015.

12

https://blog.google/technology/ai/google-gemini-update-flash-ai-assistant-io-2024/#exploration
https://blog.google/technology/ai/google-gemini-update-flash-ai-assistant-io-2024/#exploration
https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=Eh0Od2BJIM

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023a.

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen. Large language models in finance: A
survey. In Proceedings of the Fourth ACM International Conference on AI in Finance, pp. 374–
382, 2023b.

Weixin Liang, Zachary Izzo, Yaohui Zhang, Haley Lepp, Hancheng Cao, Xuandong Zhao, Lingjiao
Chen, Haotian Ye, Sheng Liu, Zhi Huang, et al. Monitoring ai-modified content at scale: A case
study on the impact of chatgpt on ai conference peer reviews. arXiv preprint arXiv:2403.07183,
2024.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representa-
tions, 2023a.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. arXiv preprint arXiv:2310.03744, 2023b.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024.

Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, and Shuicheng Yan. Tensor robust
principal component analysis: Exact recovery of corrupted low-rank tensors via convex opti-
mization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5249–5257, 2016.

Xiao Luo, Jingyang Yuan, Zijie Huang, Huiyu Jiang, Yifang Qin, Wei Ju, Ming Zhang, and Yizhou
Sun. Hope: High-order graph ode for modeling interacting dynamics. In International Conference
on Machine Learning, pp. 23124–23139. PMLR, 2023.

Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Ming Zhou, and Dawei Song.
A tensorized transformer for language modeling. Advances in neural information processing
systems, 32, 2019.

Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May, Luke
Zettlemoyer, Omer Levy, and Chunting Zhou. Megalodon: Efficient llm pretraining and inference
with unlimited context length. arXiv preprint arXiv:2404.08801, 2024.

Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter,
Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, et al. Mm1: Methods, analysis & insights
from multimodal llm pre-training. arXiv preprint arXiv:2403.09611, 2024.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-
formers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.

Morten Mørup. Applications of tensor (multiway array) factorizations and decompositions in data
mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1):24–40,
2011.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024. Accessed:
May 14.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context win-
dow extension of large language models. In The Twelfth International Conference on Learning
Representations, 2024.

13

https://openai.com/index/hello-gpt-4o/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Anastasia Podosinnikova, Francis Bach, and Simon Lacoste-Julien. Rethinking lda: moment match-
ing for discrete ica. In Advances in Neural Information Processing Systems(NIPS), pp. 514–522.
https://arxiv.org/pdf/1507.01784, 2015.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Avik Ray, Joe Neeman, Sujay Sanghavi, and Sanjay Shakkottai. The search problem in mixture
models. In arXiv preprint. https://arxiv.org/pdf/1610.00843, 2016.

Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction tensor factorization for personalized
tag recommendation. In Proceedings of the third ACM international conference on Web search
and data mining(WSDM), pp. 81–90. ACM, 2010.

Thomas Reps, Emma Turetsky, and Prathmesh Prabhu. Newtonian program analysis via tensor
product. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages(POPL), volume 51:1, pp. 663–677. ACM, 2016.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=36DxONZ9bA.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning. PMLR, 2021.

Zhao Song, Junze Yin, Lichen Zhang, and Ruizhe Zhang. Fast dynamic sampling for determinantal
point processes. In International Conference on Artificial Intelligence and Statistics (AISTATS),
pp. 244–252. PMLR, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. In ICLR 2024 Workshop on Mathematical and Empirical Understanding of Foundation
Models, 2024.

Zhongxiang Sun. A short survey of viewing large language models in legal aspect. arXiv preprint
arXiv:2303.09136, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez,
Ting Fang Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine,
29(8):1930–1940, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

M. Alex O. Vasilescu. A multilinear (tensor) algebraic framework for computer graphics, computer
vision, and machine learning. PhD thesis, Citeseer, 2009.

14

https://arxiv.org/pdf/1507.01784
https://arxiv.org/pdf/1610.00843
https://openreview.net/forum?id=36DxONZ9bA

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Hongcheng Wang, Qing Wu, Lin Shi, Yizhou Yu, and Narendra Ahuja. Out-of-core tensor approxi-
mation of multi-dimensional matrices of visual data. ACM Transactions on Graphics (TOG), 24
(3):527–535, 2005.

Jing Wang, Aixi Qu, Qing Wang, Qibin Zhao, Ju Liu, and Qiang Wu. Tt-net: Tensorized transformer
network for 3d medical image segmentation. Computerized Medical Imaging and Graphics, 107:
102234, 2023.

Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In
Proceedings of the international congress of mathematicians: Rio de janeiro 2018, pp. 3447–
3487. World Scientific, 2018.

xAI. Grok-1. https://github.com/xai-org/grok-1, 2024.

Zhaoyang Yang, Zhenmei Shi, Xiaoyong Shen, and Yu-Wing Tai. Sf-net: Structured feature network
for continuous sign language recognition. arXiv preprint arXiv:1908.01341, 2019.

Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Solving a mixture of many random linear
equations by tensor decomposition and alternating minimization. In arXiv preprint. https:
//arxiv.org/pdf/1608.05749, 2016.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. In ICML. arXiv preprint arXiv:2302.02451, 2023.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Re. The hedgehog & the porcu-
pine: Expressive linear attentions with softmax mimicry. In The Twelfth International Conference
on Learning Representations, 2024.

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li, Peng
Gao, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init atten-
tion. arXiv preprint arXiv:2303.16199, 2023a.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023b.

Lin Zheng, Chong Wang, and Lingpeng Kong. Linear complexity randomized self-attention mech-
anism. In International conference on machine learning, pp. 27011–27041. PMLR, 2022.

Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, and Inderjit S. Dhillon. Recovery guarantees
for one-hidden-layer neural networks. In ICML, 2017.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

15

https://github.com/xai-org/grok-1
https://arxiv.org/pdf/1608.05749
https://arxiv.org/pdf/1608.05749

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Appendix

CONTENTS

1 Introduction 1

2 Related Work 3

3 Preliminary 3

3.1 Definition of Tensor Operations . 4

3.2 Key Definitions of Tensor Attention . 4

4 Exact Tensor Attention Gradient Computation and Complexity 6

5 Fast Tensor Attention Gradient Computation 7

5.1 Main Results for Fast Gradient Computation . 7

5.2 Tensor Operation Analysis Techniques . 8

6 Tensor Attention Gradient Complexity Lower Bound 9

6.1 SETH and Tensor Attention Forward Hardness 9

6.2 Main Result for Hardness . 9

7 Discussion and Conclusion 10

A Further Discussion and Extension 17

B Tensor Operation Background 18

B.1 General definitions and tensor operation . 18

B.2 Facts for tensor operation . 18

B.3 Facts for vectorization operation . 22

B.4 Facts for tensor product . 24

C Gradient Formulation and Analysis 25

C.1 Definitions for useful functions . 25

C.2 Definitions for loss function . 26

C.3 Further information on gradient computation . 26

D Tensor Attention Exact Gradient Computation Time Complexity 29

D.1 Time complexity to get S and L . 29

D.2 Time complexity to get V . 30

D.3 Time complexity to get W . 31

D.4 Time complexity to get F . 31

D.5 Closed form of gradient . 31

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D.6 Putting all together . 32

E Running Acceleration via Polynomial Method 33

E.1 Fast computation of S . 33

E.2 Fast computation of V . 34

E.3 Fast computation of W . 34

E.4 Fast computation of Fa: key step . 35

E.5 Fast computation of Fb: key step . 35

E.6 Gradient computation in almost linear time by low rank tensor approximation . . . 37

F Hardness 38

F.1 Tools for backward complexity . 38

F.2 Main result for lower bound . 41

Roadmap. In Section A, we provide a further discussion and extension of this work. In Section B,
we provide general definitions and several basic facts. In Section C, we show how we calculate
the gradient of the loss function. In Section D, we show the time complexity of our algorithm. In
Section E, we show that our algorithm can be computed in polynomial time. In Section F, we show
the hardness of our algorithm.

A FURTHER DISCUSSION AND EXTENSION

Connection to real applications. There are some empirical studies attempting to implement sim-
ilar tensor attention (three order) in language modeling (Ma et al., 2019) and 3D medical image
segmentation (Wang et al., 2023). However, due to cubic time complexity, their models remain rela-
tively small, e.g, 12M parameters in Ma et al. (2019). Although small scale, Ma et al. (2019); Wang
et al. (2023) demonstrates the significant potential of tensor attention. Our work proves that an al-
most linear time algorithm for tensor attention mechanisms exists (Algorithm 1). This advancement
could enable the scaling up of tensor attention and facilitate novel model designs in multi-modality,
3D imaging, and beyond. On the other hand, we abstract the most challenging part (the highest
time complexity operation) in high-order attention into a clear mathematical problem and provide
a solution. Our work introduces a new concept to the community, suggesting that cubic time com-
plexity may not be the bottleneck in implementing three-order attention during training. Practical
implementation poses additional significant challenges, considering numerous other techniques and
operations, such as dropout, layer normalization, residual connections, position encoding, and many
others. We hope our work inspires further algorithmic design.

Feasibility when the large value exists in the matrices. If there exist many large entries in
Q,K1,K2, V1, V2, our hardness results (Theorem 6.3) indicate that no algorithm can accelerate
the attention computation. However, several exciting works (Sun et al., 2024; Han et al., 2024) have
shown that large entries are very sparse in the attention matrix. This suggests that our Algorithm 1
could inspire many potential practical implementations. One straightforward approach is to handle
large entries separately, as in Han et al. (2024), and apply our algorithm to the remaining parts. There
is undoubtedly a broad algorithm design space, and we hope our work provides valuable insights.

Extend our technique to compute the module-wise gradient. Let n be the input toke length,
and d be the hidden dimension. At the i-th layer of transformer model, let Gi ∈ Rn×d denote the
output of upstream gradient, Xi ∈ Rn×d be defined in Definition 3.8, and Attni := D−1AV be the
tensor attention model where D,A, V are defined in Definition 3.5. Let Loss be some loss function.
Then, by the chain rule, we have the module-wise gradient dLoss

dXi
= vec(Gi)

dAttni
dXi

.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Extend our technique to the multi-head attention. The gradient computation for each attention
head in the same layer is independent of the others; each head only depends on its upstream gradient
and its current module-wise gradient according to the chain rule. Therefore, our analysis can be
directly applied to multi-head attention.

Generalize to scenarios involving multiple modalities In our three-order attention, one attention
module can handle three modalities simultaneously, i.e., Q,K1,K2. For more modality, e.g., m > 3
modality, there are two potential solutions in our minds. First, we could use m-order attention,
i.e., Q,K1,K2, . . . ,Km−1. The inference and training time complexity for this approach are still
unknown, and we leave it as our future work. Second, we could use multiple modules of three-order
attention. Note that one layer of standard attention may introduce one more modality K1 each time,
while one layer of three-order attention may introduce two more modalities K1,K2 each time. Thus,
if we have m + 1 modality and Q is from one modality, say text, then the standard attention may
need m layers to merge all modalities together, whereas three-order attention may only need log(m)
layers to merge them all together.

Societal impacts. We delve into and offer a deeper understanding of the attention mechanism,
introducing a novel approach to integrate multi-modality into attention through the tensor attention
algorithm. We also demonstrate that the computation of both forward and backward tensor atten-
tion can be achieved with almost linear time complexity. Regarding the negative societal impact,
since our work is completely theoretical in nature, we do not foresee any potential negative societal
impacts which worth pointing out.

B TENSOR OPERATION BACKGROUND

In Section B.1, we define the notation of computational time and the tensor operation. In Section B.2,
we provide some helpful facts of tensor operation. In Section B.3, we provide some helpful facts of
vectorization operation. In Section B.4, we provide some helpful facts about the tensor product. It
is worth noting that proofs for some of the facts discussed in this section are also available in Kolda
& Bader (2009).

B.1 GENERAL DEFINITIONS AND TENSOR OPERATION

Fact B.1 (Bürgisser et al. (2013); Bläser (2013)). We can show that Tmat(a, b, c) =
O(Tmat(a, c, b)) = O(Tmat(b, a, c)) = O(Tmat(b, c, a)) = O(Tmat(c, a, b)) = O(Tmat(c, b, a)).

We define the third mode tensor product, which is the core operator of tensor operations.
Definition B.2 (Third mode tensor product (·, ·, ·)). Let X ∈ Rd×d×d. Given matrices A1 ∈ Rn×d,
A2 ∈ Rn×d and A3 ∈ Rn×d. Let operator X(A1, A2, A3) ∈ Rn×n×n satisfying

X(A1, A2, A3)i,j,l :=

d∑
a=1

d∑
b=1

d∑
c=1

Xa,b,c(A1)i,a(A2)j,b(A3)l,c, ∀i ∈ [n], j ∈ [n], l ∈ [n].

Definition B.3 (⊙ tensor computation). Given matrices A ∈ Rn×d, B ∈ Rn×d, C ∈ Rn×d, we use
T = A⊙B ⊙ C ∈ Rn×n×n to denote an tensor whose entries are given by

Ti,j,l :=

d∑
a=1

Ai,aBj,aCl,a, ∀i ∈ [n], j ∈ [n], l ∈ [n].

We note that a tensor T can be written in the form A⊙B ⊙C like this if and only if its tensor rank
is at most d.

B.2 FACTS FOR TENSOR OPERATION

Fact B.4 (Transpose rule). We show the results below

• Suppose that K︸︷︷︸
n1n2×d

= K1︸︷︷︸
n1×d

⊘ K2︸︷︷︸
n2×d

. We have K⊤︸︷︷︸
d×n1n2

= K⊤
1︸︷︷︸

d×n1

⊖ K⊤
2︸︷︷︸

d×n2

.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• Suppose that Q︸︷︷︸
n×d1d2

= Q1︸︷︷︸
n×d1

⊖ Q2︸︷︷︸
n×d2

. We have Q⊤︸︷︷︸
d1d2×n

= Q⊤
1︸︷︷︸

d1×n

⊘ Q⊤
2︸︷︷︸

d2×n

.

• Suppose that V︸︷︷︸
n1n2×d1d2

= V1︸︷︷︸
n1×d1

⊗ V2︸︷︷︸
n2×d2

. We have V ⊤︸︷︷︸
d1d2×n1n2

= V ⊤
1︸︷︷︸

d1×n1

⊗ V ⊤
2︸︷︷︸

d2×n2

.

Proof. The proof is very straightforward.

Fact B.5 (Swap rule). Let V1 ∈ Rn×d. Let V2 ∈ Rn×k. Let W1 ∈ Rm×d. Let W2 ∈ Rm×k. We can
show swap rule for ⊘ and ⊖,

(V1 ⊖ V2)︸ ︷︷ ︸
n×dk

⊘ (W1 ⊖W2)︸ ︷︷ ︸
m×dk

= (V1 ⊘W1)︸ ︷︷ ︸
mn×d

⊖ (V2 ⊘W2)︸ ︷︷ ︸
mn×k

And we can show swap rule for ⊗ and ⊖,

(V1 ⊖ V2)︸ ︷︷ ︸
n×dk

⊗ (W1 ⊖W2)︸ ︷︷ ︸
m×dk

= (V1 ⊗W1)︸ ︷︷ ︸
mn×dk

⊖ (V2 ⊗W2)︸ ︷︷ ︸
mn×dk

Proof. The proof is trivially following from definition of ⊘ and ⊖.

Note that for any i1 ∈ [n], i2 ∈ [m], j1 ∈ [d], j2 ∈ [k]

((V1 ⊖ V2)⊘ (W1 ⊖W2))i1+(i2−1)n,j1+(j2−1)d

= (V1)i1,j1(V2)i1,j2(W1)i2,j1(W2)i2,j2
= ((V1 ⊘W1)⊖ (V2 ⊘W2))i1+(i2−1)n,j1+(j2−1)d

Thus, we complete the proof.

Remark B.6. In Fact B.5, due to definition V1 and V2 need to have the same number of rows. W1

and W2 also need to have the same number of rows. V1 and W1 need to have same number of
columns, and V2 and V2 need to have same number of columns.

Fact B.7 (Swap rule for tensor product and matrix product, Restatement of Fact 5.4). Let W1,W2 ∈
Rd×d and A1, A2 ∈ Rn×d. We have

(A1 ⊗A2)︸ ︷︷ ︸
n2×d2

· (W1 ⊘W2)︸ ︷︷ ︸
d2×d

= (A1 ·W1)︸ ︷︷ ︸
n×d

⊘ (A2 ·W2)︸ ︷︷ ︸
n×d

.

Proof of Fact 5.4. For any i1, i2 ∈ [n], j ∈ [d], we have

((A1 ⊗A2) · (W1 ⊘W2))i1+(i2−1)n,j

=
∑

k1∈[d],k2∈[d]

(A1 ⊗A2)i1+(i2−1)n,k1+(k2−1)d(W1 ⊘W2)k1+(k2−1)d,j

=
∑

k1∈[d],k2∈[d]

(A1 ⊗A2)i1+(i2−1)n,k1+(k2−1)d · (W1)k1,j · (W2)k2,j

=
∑

k1∈[d],k2∈[d]

(A1)i1,k1 · (A2)i2,k2 · (W1)k1,j · (W2)k2,j

= (
∑

k1∈[d]

(A1)i1,k1 · (W1)k1,j) · (
∑

k2∈[d]

(A2)i2,k2 · (W2)k2,j)

= (A1 ·W1)i1,j · (A2 ·W2)i2,j

= ((A1 ·W1)⊘ (A2 ·W2))i1+(i2−1)n,j ,

where the first step follows matrix multiplication, the second step follows Definition 3.2, the third
step follows Definition 3.1, the fourth step follows simple algebra, the fifth step follows matrix
multiplication and the last step follows Definition 3.2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Fact B.8 (Restatement of Fact 5.5). Let U1 ∈ Rn1×d and U2 ∈ Rn1×k. Let V1 ∈ Rn2×d and
V2 ∈ Rn2×k. Let W1 ∈ Rn3×d and W2 ∈ Rn3×k. We have

(U1 ⊖ U2)︸ ︷︷ ︸
n1×dk

·((V1 ⊖ V2)︸ ︷︷ ︸
n2×dk

⊘ (W1 ⊖W2)︸ ︷︷ ︸
n3×dk

)⊤ = (U1︸︷︷︸
n1×d

(V1︸︷︷︸
n2×d

⊘ W1︸︷︷︸
n3×d

)⊤) ◦ (U2︸︷︷︸
n1×k

(V2︸︷︷︸
n2×k

⊘ W2︸︷︷︸
n3×k

)⊤)

Proof of Fact 5.5. We can show that

(U1 ⊖ U2)((V1 ⊖ V2)⊘ (W1 ⊖W2))
⊤ = (U1 ⊖ U2)((V1 ⊘W1)⊖ (V2 ⊘W2))

⊤

= (U1 ⊖ U2)((V1 ⊘W1)
⊤ ⊘ (V2 ⊘W2)

⊤)

= (U⊤
1 ⊘ U⊤

2)⊤((V1 ⊘W1)
⊤ ⊘ (V2 ⊘W2)

⊤)

= (U1(V1 ⊘W1)
⊤) ◦ (U2(V2 ⊘W2)

⊤)

where first step is due to swapping rule for ⊘ and ⊖ (see Fact B.5), the second step follows from
Fact B.4, the third step follows from Fact B.4, and the last step follows from Lemma B.13.

Fact B.9. Let U1 ∈ Rn1×d2

and U2 ∈ Rn1×k2

. Let V1 ∈ Rn2×d and V2 ∈ Rn2×k. Let W1 ∈ Rn3×d

and W2 ∈ Rn3×k. We have

(U1 ⊖ U2)︸ ︷︷ ︸
n1×d2k2

·((V1 ⊖ V2)︸ ︷︷ ︸
n2×dk

⊗ (W1 ⊖W2)︸ ︷︷ ︸
n3×dk

)⊤ = (U1︸︷︷︸
n1×d2

(V1︸︷︷︸
n2×d

⊗ W1︸︷︷︸
n3×d

)⊤) ◦ (U2︸︷︷︸
n1×k2

(V2︸︷︷︸
n2×k

⊗ W2︸︷︷︸
n3×k

)⊤)

Proof. We can show that,

(U1 ⊖ U2)︸ ︷︷ ︸
n1×d2k2

·((V1 ⊖ V2)︸ ︷︷ ︸
n2×dk

⊗ (W1 ⊖W2)︸ ︷︷ ︸
n3×dk

)⊤

= (U1 ⊖ U2)︸ ︷︷ ︸
n1×d2k2

·((V1 ⊗W1)⊖ (V2 ⊗W2))
⊤

= (U1 ⊖ U2) · ((V1 ⊗W1)
⊤ ⊘ (V2 ⊗W2)

⊤)

= (U⊤
1 ⊘ U⊤

2)⊤ · ((V1 ⊗W1)
⊤ ⊘ (V2 ⊗W2)

⊤)

= (U1︸︷︷︸
n1×d2

(V1︸︷︷︸
n2×d

⊗ W1︸︷︷︸
n3×d

)⊤) ◦ (U2︸︷︷︸
n1×k2

(V2︸︷︷︸
n2×k

⊗ W2︸︷︷︸
n3×k

)⊤)

where the first step is because of the swap rule for ⊗ and ⊖ (see Fact B.5), the second step follows
from Fact B.4, the third step follows from Fact B.4, and the last step follows from Lemma B.13.

Claim B.10. Let A,B,C ∈ Rn×d.

Part 1. Let Id ∈ Rd×d denote an identity matrix. Then, we have

AIdB
⊤ = AB⊤.

Part 2. Let Id ∈ Rd×d×d denote an identity tensor. Then we can show that

Id(A,B,C) = A⊙B ⊙ C

Proof. Now we prove for each part.

Proof of Part1. Using the property of identity matrix, it’s easy to see this holds.

Proof of Part2.

Id(A,B,C) =

d∑
a=1

d∑
b=1

d∑
c=1

(Id)a,b,c(A)i,a(B)j,b(C)l,c

=

d∑
a=1

(A)i,a(B)j,a(C)l,a

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

= A⊙B ⊙ C

where the first step follows from Definition B.2, the second step follows from the property of identity
tensor (Id)i,j,k, which equals 1 only when i = j = k and 0 elsewhere, and the last step follows from
Definition B.3.

Fact B.11. Let U, V,W ∈ Rn×d, we have

U(V ⊘W)⊤︸ ︷︷ ︸
n×n2

= mat(U ⊙ V ⊙W)︸ ︷︷ ︸
n×n2

.

Proof. For any i, j, k ∈ [n], we have

mat(U ⊙ V ⊙W)i,(j−1)n+k = (U ⊙ V ⊙W)i,j,k

=
∑
a∈[d]

Ui,aVj,aWk,a

=
∑
a∈[d]

Ui,a(V ⊘W)(j−1)n+k,a

=
∑
a∈[d]

Ui,a((V ⊘W)⊤)a,(j−1)n+k

= (U(V ⊘W)⊤)i,(j−1)n+k,

where the first step by definition of mat, the second step follows Definition B.3, the third step
follows Definition 3.2, the fourth step follows from transpose, and the last step follows from matrix
multiplication.

Fact B.12. Given A1, A2, A3 ∈ Rn×d and W1,W2,W3 ∈ Rn×k, we have

[W1 ⊙W2 ⊙W3](A
⊤
1 , A

⊤
2 , A

⊤
3)︸ ︷︷ ︸

d×d×d

= ((A⊤
1 W1)⊙ (A⊤

2 W2)⊙ (A⊤
3 W3))︸ ︷︷ ︸

d×d×d

.

Proof. The proof is trivial by Definition B.3 and Definition B.2.

We prove an important tool, which will be used in analyzing the running time of our algorithm.
Lemma B.13 (Formal version of Lemma 5.6). If the following condition holds

• Let ⊘ be defined as Definition 3.2.

• Given A1 ∈ Rn1×d1 , A2 ∈ Rn2×d1 , let A := (A1 ⊘A2) ∈ Rn1n2×d1 .

• Given B1 ∈ Rn1×d2 , B2 ∈ Rn2×d2 , let B := (B1 ⊘B2) ∈ Rn1n2×d2 .

• We define C ∈ Rd1×d2 as C := A⊤B

• We define C1︸︷︷︸
d1×d2

:= A⊤
1 B1, C2︸︷︷︸

d1×d2

:= A⊤
2 B2

Then, we have

• Part 1. C1 ◦ C2 = C

• Part 2. Given as input A1, A2, B1, B2, we can get C in Tmat(d1,max{n1, n2}, d2) time.

Proof. For each i ∈ [n1], let a⊤1,i denote the i-th row of A1 ∈ Rn1×d1 .

For each i ∈ [n2], let a⊤2,i denote the i-th row of A2 ∈ Rn2×d1 .

For each i ∈ [n1], let b⊤1,i denote the i-th row of B1 ∈ Rn1×d2 .

For each i ∈ [n2], let b⊤2,i denote the i-th row of B2 ∈ Rn2×d2 .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Recall that C1 ∈ Rd1×d2 and C2 ∈ Rd1×d2 ,

C1 := A⊤
1 B1, C2 := A⊤

2 B2

Thus, we see that for all ∀k1 ∈ [d1], k2 ∈ [d2]

(C1)k1,k2
=

n1∑
i=1

a1,i,k1
b1,i,k2

(C2)k1,k2 =

n2∑
j=1

a2,j,k1b2,j,k2

Then, we can write C ∈ Rd1×d2 as

C︸︷︷︸
d1×d2

= A⊤︸︷︷︸
d1×n1n2

B︸︷︷︸
n1n2×d2

=

n1n2∑
i=1

Ai,∗︸︷︷︸
d1×1

(Bi,∗)
⊤︸ ︷︷ ︸

1×d2

=

n1∑
i=1

n2∑
j=1

Ai+(j−1)n1,∗︸ ︷︷ ︸
d1×1

· (Bi+(j−1)n1,∗)
⊤︸ ︷︷ ︸

1×d2

=

n1∑
i=1

n2∑
j=1

(a1,i ◦ a2,j)︸ ︷︷ ︸
d1×1

· (b1,i ◦ b2,j)⊤︸ ︷︷ ︸
1×d2

(1)

where the first step follows from definition of C ∈ Rd×d, the second step follows from the matrix
can written as the summation of n1n2 rank-1 matrices, the third step follows from changing the
index, the forth step follows from Ai+(j−1)n1,∗︸ ︷︷ ︸

d1×1

= a1,i︸︷︷︸
d1×1

◦ a2,j︸︷︷︸
d1×1

by Definition 3.2.

From the above, we can calculate that the entry of C in location k1 ∈ [d1], k2 ∈ [d2] is

Ck1,k2
=

n1∑
i=1

n2∑
j=1

(a1,i ◦ a2,j)k1
· (b1,i ◦ b2,j)⊤k2

=

n1∑
i=1

n2∑
j=1

a1,i,k1a2,j,k1b1,i,k2b2,j,k2

= (

n1∑
i=1

a1,i,k1b1,i,k2) · (
n2∑
j=1

a2,j,k1b2,j,k2)

= (C1)k1,k2 · (C2)k1,k2

where the first step follows from Eq. (1), the second step follows from simple algebra, the third step
follows from separating the summation over i and the summation over j, and the last step follows
from definition of matrices C1 and C2.

Thus, we can conclude

C = C1 ◦ C2.

The algorithm will first compute C1 and C2, which takes Tmat(d1,max{n1, n2}, d2) time. Then it
calculates C1 ◦ C2, which takes O(d1d2) time.

B.3 FACTS FOR VECTORIZATION OPERATION

Fact B.14. Let A,B ∈ Rn×d. Then,

tr[A⊤B] = vec(A)⊤ vec(B)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof. We can show

tr[A⊤B] =

n∑
i=1

d∑
j=1

Ai,jBi,j

= vec(A)⊤ vec(B)

where the first step is due to the definition of trace, and the second step is because of the definition
of vec operator.

Fact B.15. Let a ∈ Rn, b ∈ Rd. Then,

vec(ab⊤) = a⊗ b

Proof. We can show

vec(ab⊤) = vec(

a1b
⊤

a2b
⊤

. . .
anb

⊤

)
= [a1b

⊤, a2b
⊤, . . . , anb

⊤]⊤

= a⊗ b

where the first step follows from the definition of the outer product, the second step follows from
the definition of vectorization operator vec(·) which stacks rows of a matrix into a column vector,
and the last step follows from Definition 3.1.

Fact B.16 (Tensor-trick, Restatement of Fact 5.7). Given matrices A1 ∈ Rn1×d1 , A2 ∈ Rn2×d2 and
X ∈ Rd1×d2 , we have vec(A1XA⊤

2) = (A1 ⊗A2) vec(X) ∈ Rn1n2 .

Proof of Fact 5.7. We can show

vec(A1XA⊤
2) =

d1∑
i=1

d2∑
j=1

Xi,j vec(A1,∗,i(A2,∗,j)
⊤)

=

d1∑
i=1

d2∑
j=1

Xi,j(A1,∗,i︸ ︷︷ ︸
n1×1

⊗A2,∗,j︸ ︷︷ ︸
n2×1

)

=

d1∑
i=1

(A1,∗,i︸ ︷︷ ︸
n1×1

⊗ A2︸︷︷︸
n2×d2

)Xi,∗︸︷︷︸
d2×1

= (A1 ⊗A2) vec(X)

where the first step is due to the matrix being able to be written as a summation of vectors, the second
step follows from Fact B.15, the third step follows from that matrix can be written as a summation
of vectors, and the last step follows from the definition of vectorization operator vec(·).

Fact B.17. Let A ∈ Rn1×n2 , B ∈ Rn2×n3 , C ∈ Rn3×n4 , D ∈ Rn4×n5 .

We have

tr[ABCD] = vec(A⊤)⊤(B ⊗D⊤) vec(C)

Proof. We can show

tr[ABCD] = vec(A⊤)⊤ vec(BCD)

= vec(A⊤)⊤(B ⊗D⊤) vec(C)

where the first step follows from Fact B.14, and the second step follows from Fact B.16.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Fact B.18. Let A,B ∈ Rn×n be two n × n symmetric matrices. Let X and Y denote two n × n
matrices. Then we have

vec(A)⊤(X ⊗ Y) vec(B) = vec(A)⊤(Y ⊗X) vec(B)

Proof. We can show that

vec(A)⊤(X ⊗ Y) vec(B) = tr[A⊤XBY ⊤]

= tr[BY ⊤A⊤X]

= vec(B⊤)⊤(Y ⊤ ⊗X⊤) vec(A⊤)

= vec(B)⊤(Y ⊤ ⊗X⊤) vec(A)

= ((Y ⊤ ⊗X⊤) vec(A))⊤ vec(B)

= vec(A)⊤(Y ⊗X) vec(B)

where the first step follows from Fact B.17, the second step follows from the cyclic property of trace,
the third step follows from Fact B.17, the fourth step follows from A,B is symmetric, the fifth step
is due to the definition of inner product, and the last step is due to Fact B.4.

B.4 FACTS FOR TENSOR PRODUCT

Fact B.19. Let X = mat(Id)︸ ︷︷ ︸
d×d2

, where Id ∈ Rd×d×d and A1, A2 ∈ Rn×d. We have

(A1 ⊗A2)︸ ︷︷ ︸
n2×d2

X⊤︸︷︷︸
d2×d

= A1 ⊘A2︸ ︷︷ ︸
n2×d

.

Proof. For any i1, i2 ∈ [n], j ∈ [d], we have

((A1 ⊗A2)X
⊤)i1+(i2−1)n,j =

∑
k1∈[d],k2∈[d]

(A1 ⊗A2)i1+(i2−1)n,k1+(k2−1)dXj,k1+(k2−1)d

=
∑

k1∈[d],k2∈[d]

(A1)i1,k1
· (A2)i2,k2

Xj,k1+(k2−1)d

= (A1)i1,j · (A2)i2,j

= (A1 ⊘A2)i1+(i2−1)n,j ,

where the first step is due to matrix multiplication, the second step follows Definition 3.1, the third
step follows Xj,k1+(k2−1)d = 1 when j = k1 = k2, and Xj,k1+(k2−1)d = 0 otherwise, and the last
step is because of Definition 3.2.

Claim B.20. Given X ∈ Rd×d2

. Note X ∈ Rd×d×d denotes its tensor version. Given matrices
A1, A2, A3 ∈ Rn×d. Following Definition B.2, we can show

(A1︸︷︷︸
n×d

X︸︷︷︸
d×d2

(A2 ⊗A3)
⊤︸ ︷︷ ︸

d2×n2

)i,(j−1)n+l = (X(A1, A2, A3)︸ ︷︷ ︸
n×n×n

)i,j,l, ∀i ∈ [n], j ∈ [n], l ∈ [n]

and

vec(A1︸︷︷︸
n×d

X︸︷︷︸
d×d2

(A2 ⊗A3)
⊤︸ ︷︷ ︸

d2×n2

) = vec(X(A1, A2, A3)︸ ︷︷ ︸
n×n×n

).

Proof. We can show that

(A1X(A2 ⊗A3)
⊤)i,(j−1)n+l =

d∑
a=1

d∑
b=1

d∑
c=1

(A1)i,aXa,(b−1)d+c(A2)j,b(A3)l,c

=

d∑
a=1

d∑
b=1

d∑
c=1

Xa,b,c(A1)i,a(A2)j,b(A3)l,c

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

= X(A1, A2, A3)i,j,l,

where the first step follows the Kronecker product Definition 3.1, the second step follows Xa,b,c =
Xa,(b−1)d+c, and the last step is due to Definition B.2.

Now, we introduce a key claim that can reduce the tensor product to matrix multiplication and
Kronecker product to make calculation easy.
Claim B.21. Let Id ∈ Rd×d×d and A1, A2, A3 ∈ Rn×d. We have mat(Id(A1, A2, A3)) =

A1mat(Id)(A2 ⊗A3)
⊤ = A1(A2 ⊘A3)

⊤ ∈ Rn×n2

.

Proof. The proof follows from Claim B.20 and Fact B.19.

C GRADIENT FORMULATION AND ANALYSIS

In Section C.1, we define some useful function that will help further calculation. In Section C.2, we
define the expression for the loss function. In Section C.3, we give detailed gradient computation.

C.1 DEFINITIONS FOR USEFUL FUNCTIONS

We will introduce the definition of K, α, S, and L used in loss formulation.
Definition C.1. We define A1, A2, A3 ∈ Rn×d to be three matrices in size n × d. Suppose that
A = A1⊗A2⊗A3 ∈ Rn3×d3

. Let Aj0 ∈ Rn2×d3

represent an n2×d3 sub-block from A. There are
n such sub-blocks, i.e. the (i + (j0 − 1) · n2)-th row, j-th column of A is the i-th row, j-th column
of Aj0 , for i ∈ [n2], j ∈ [d3], j0 ∈ [n].

For all j0 ∈ [n], we denote function K(x)j0 : Rd3 → Rn2

as below:

K(x)j0 := exp(Aj0x)︸ ︷︷ ︸
n2×1

.

Definition C.2. Let three matrices A1, A2, A3 ∈ Rn×d in size n× d. We define Aj0 ∈ Rn2×d3

be a
n2 × d3 size sub-block from A (see as Definition C.1). (Recall that A = A1 ⊗A2 ⊗A3 ∈ Rn3×d3

.)

For any index j0 ∈ [n], we denote function α(x)j0 : Rd3 → R as follows:

α(x)j0 := ⟨exp(Aj0x)︸ ︷︷ ︸
n2×1

, 1n2︸︷︷︸
n2×1

⟩.

Definition C.3. Suppose that α(x)j0 ∈ R (see Definition C.2).

Recall K(x)j0 ∈ Rn2

(see Definition C.1).

For a fixed j0 ∈ [n], we define function S(x)j0 : Rd3 → Rn2

as follows:

S(x)j0 := α(x)−1
j0︸ ︷︷ ︸

scalar

K(x)j0︸ ︷︷ ︸
n2×1

.

We use S(x) ∈ Rn×n2

to denote the matrix where j0-th row is (S(x)j0)
⊤. (Note that we can

rewrite S(x) = D−1 exp(A1X(A2 ⊗ A3)
⊤/d) ∈ Rn×n2

and where D = diag(exp(A1X(A2 ⊗
A3)

⊤/d)1n2).)

Definition C.4. Let A3 = A4 ⊗ A5 ∈ Rn2×d2

, where A4, A5,∈ Rn×d. Let Y1, Y2 ∈ Rd×d. Let
Y = Y1 ⊘ Y2 ∈ Rd2×d denote the matrix representation of y ∈ Rd3

. For all i0 ∈ [d], we define
L()i0 : Rd3 → Rn2

as follows:

L(y)i0 := A3︸︷︷︸
n2×d2

Y∗,i0︸︷︷︸
d2×1

.

Let L(y) ∈ Rn2×d matrix where i0 column is L(y)i0 . (Note that we can rewrite L(y) = (A4⊗A5)Y .)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

We will define W and F used in gradient analysis.

Definition C.5. Let V(x) ∈ Rn×d (see Definition C.7). Let L(y) ∈ Rn2×d (see Definition C.4).

We define W(x) ∈ Rn×n2

to be

W(x) := V(x)︸︷︷︸
n×d

L(y)⊤︸ ︷︷ ︸
d×n2

We denote W(x)⊤j0 as the j0-th row of W(x) ∈ Rn×n2

.

Definition C.6. For all index j0 ∈ [n], let us define F(x)j0 ∈ Rn2

to be

F(x)j0︸ ︷︷ ︸
n2×1

:= (diag(S(x)j0)− S(x)j0S(x)
⊤
j0)︸ ︷︷ ︸

n2×n2

W(x)j0︸ ︷︷ ︸
n2×1

.

We define F(x) ∈ Rn×n2

in the sense that F(x)⊤j0 is the j0-th row of F(x).

C.2 DEFINITIONS FOR LOSS FUNCTION

We now present some useful definitions pertaining to x ∈ Rd3

.

Definition C.7. For all j0 ∈ [n], we denote S(x)j0 ∈ Rn2

as the normalized vector (see Defini-
tion C.3). For all i0 ∈ [d], we denote L(y)i0 to be the same in Definition C.4.

Consider every j0 ∈ [n], every i0 ∈ [d]. Let us consider V(x)j0,i0 : Rd3 → R as follows:

V(x)j0,i0 := ⟨S(x)j0 , L(y)i0⟩ − Ej0,i0 ,

where Ej0,i0 is the (j0, i0)-th coordinate of E ∈ Rn×d for j0 ∈ [n], i0 ∈ [d]. This is the same as
V(x)︸︷︷︸
n×d

= S(x)︸︷︷︸
n×n2

L(y)︸︷︷︸
n2×d

− E︸︷︷︸
n×d

.

Definition C.8. For all j0 ∈ [n], for all i0 ∈ [d]. We define Loss(x)j0,i0 to be := 0.5V(x)2j0,i0 .

C.3 FURTHER INFORMATION ON GRADIENT COMPUTATION

In this section, we offer detailed analysis to help the computations of gradient and derivative. It is
noted that, for the sake of convenience in deriving a closed-form expression for our gradient, we
omit the 1/d normalization factor in S. As this factor merely scales the result, it does not impact the
overall computation of these matrices.
Remark C.9. Recall that in Definition 3.8, we consider X ∈ Rd×d×d for gradient computation,
which has d3 number of parameters. On the other hand, in Definition 3.9, we have X = X1 ·
(X⊤

2 ⊖X⊤
3) ∈ Rd×d2

which has 3d2 number of parameters, which indeed guarantee computation
acceleration.
Lemma C.10 (The gradient computation for various functions w.r.t. xi). Let x ∈ Rd3

. Let
j0 ∈ [n], i0 ∈ [d]. For all i ∈ [d3], we define Aj0,i ∈ Rn2

to be the i-th column for Aj0 ∈ Rn2×d3

.
Recall that K(x)j0 ∈ Rn2

is defined in Definitions C.1. The scalar function α(x)j0 ∈ R is defined
in Definitions C.2 . Column function S(x)j0 ∈ Rn2

is defined in Definitions C.3. Scalar func-
tion V(x)j0,i0 ∈ R is defined in Definitions C.7. Scalar function Loss(x)j0,i0 ∈ R is defined in
Definitions C.8.

Then, for each i ∈ [d3], we have

• Part 1.
dx

dxi
= ei

• Part 2. For any j0 ∈ [n],

dAj0x

dxi
= Aj0,i

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

• Part 3. For any j0 ∈ [n]

dK(x)j0
dxi

= Aj0,i ◦ K(x)j0

• Part 4. For any j0 ∈ [n],

dα(x)j0
dxi

= ⟨Aj0,i,K(x)j0⟩

• Part 5. For any j0 ∈ [n],

dS(x)j0
dxi

= Aj0,i ◦ S(x)j0 − ⟨Aj0,i,S(x)j0⟩ · S(x)j0

• Part 6. For any j0 ∈ [n], for any i0 ∈ [d],

d⟨S(x)j0 , L(y)i0⟩
dxi

= ⟨L(y)i0 ,Aj0,i ◦ S(x)j0⟩ − ⟨L(y)i0 ,S(x)j0⟩ · ⟨Aj0,i,S(x)j0⟩

• Part 7. For any j0 ∈ [n], for each i0 ∈ [d]

dV(x)j0,i0
dxi

= ⟨Aj0,i ◦ S(x)j0 , L(y)i0⟩ − ⟨S(x)j0 , L(y)i0⟩ · ⟨Aj0,i,S(x)j0⟩

• Part 8. For any j0 ∈ [n], for each i0 ∈ [d]

dLoss(x)j0,i0
dxi

= (⟨L(y)i0 ,Aj0,i ◦ S(x)j0⟩ − ⟨S(x)j0 ,Aj0,i⟩ · ⟨L(y)i0 ,S(x)j0⟩) · V(x)j0,i0

Proof. Proof of Part 1. We have

dx

dxi
=

d[x1, x2, . . . , xd3]⊤

dxi

= ei

where the first step follows from x is a vector, and the second step follows from all coordinates are
independent to each other.

Proof of Part 2. We have
dAj0x

dxi
= Aj0︸︷︷︸

n2×d3

dx

dxi︸︷︷︸
d3×1

= Aj0︸︷︷︸
n2×d3

· ei︸︷︷︸
d3×1

= Aj0,i︸︷︷︸
n2×1

where the second step follows from Part 1.

Proof of Part 3.

It’s easy to show that

dK(x)j0
dxi︸ ︷︷ ︸
n2×1

=
d exp(Aj0x)

dxi

= exp(Aj0x) ◦
dAj0x

dxi

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

= exp(Aj0x) ◦ Aj0,i

= K(x)j0︸ ︷︷ ︸
n2×1

◦Aj0,i︸︷︷︸
n2×1

where the third step is because of Part 2, the last step follows from definition of K(x)j0 .

Proof of Part 4.

To further simplify the writing of proofs, we represent (x) as (·).
It’s easy to see that

dα(·)j0
dxi

=
d⟨K(·)j0 ,1n2⟩

dxi

= ⟨K(·)j0 ◦ Aj0,i,1n2⟩
= ⟨K(·)j0 ,Aj0,i⟩

where the first step is due to definition of α(·), the second step is because of Part 3, the third step
comes from ⟨a ◦ b,1n2⟩ = ⟨a, b⟩.
Proof of Part 5.

To further simplify the writing of proofs, we represent (x) as (·).
It’s easy to see that

dS(·)j0
dxi

=
dα(·)−1

j0
K(·)j0

dxi

= α(·)−1
j0

dK(·)j0
dxi

+ (
dα(·)−1

j0

dxi
)K(·)j0

For the first term, we have

α(·)−1
j0

dK(·)j0
dxi

= α(·)−1
j0

K(·)j0 ◦ Aj0,i

= S(·)j0 ◦ Aj0,i

where the first step is due to Part 3, the second step is because of definition of S(·).
For the second term, we have

(
dα(·)−1

j0

dxi
)K(·)j0 = − α(·)−2

j0

dα(·)j0
dxi

K(·)j0
= − α(·)−2

j0
· ⟨K(·)j0 ,Aj0,i⟩ · K(·)j0

= − S(·)j0 · ⟨S(·)j0 ,Aj0,i⟩
where the first step is from simple calculus, the second step is from Part 4, and the third step is due
to the definition of S(·)j0 .

By applying all of the above, we have

dS(·)j0
dxi

= S(·)j0 ◦ Aj0,i − S(·)j0 · ⟨S(·)j0 ,Aj0,i⟩

Proof of Part 6. From Part 5, clearly this holds.

Proof of Part 7.

To further simplify the writing of proofs, we represent (x) as (·).
From definition of V in Definition C.7, it holds that

V(·)j0,i0 := ⟨S(·)j0 , L(y)i0⟩ − Ej0,i0 (2)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Thus it holds that
dV(·)j0,i0

dxi
=

d(⟨S(·)j0 , L(y)i0⟩ − Ej0,i0)

dxi

=
d⟨S(·)j0 , L(y)i0⟩

dxi

= ⟨S(·)j0 ◦ Aj0,i, L(y)i0⟩ − ⟨S(·)j0 , L(y)i0⟩ · ⟨S(·)j0 ,Aj0,i⟩,
where the first step comes from Eq. (2), the second step follows from dEj0,i0

dxi
= 0, and the last step

is due to Part 6.

Proof of Part 8.

To further simplify the writing of proofs, we represent (x) as (·).
From definition of Loss(·) (see Definition C.8), it holds that

Loss(·)j0,i0 = 0.5V(·)2j0,i0 (3)

Thus, we have

dLoss(·)j0,i0
dxi

=
d(0.5V(·)2j0,i0)

dxi

= V(·)j0,i0
dV(·)
dxi

= V(·)j0,i0 · (⟨S(·)j0 ◦ Aj0,i, L(y)i0⟩ − ⟨S(·)j0 , L(y)i0⟩ · ⟨S(·)j0 ,Aj0,i⟩),
where the 1st step comes from the Eq. (3), the second step follows from the chain rule, and the last
step is because of Part 7.

D TENSOR ATTENTION EXACT GRADIENT COMPUTATION TIME
COMPLEXITY

Section D.1 demonstrates how to calculate S (1/d factor is still ignored) and L. Section D.2 explains
the straightforward method for calculating V. Section D.3 and Section D.4 define F and W, and
demonstrate their computations. Section D.5 presents a more elegant way to express the gradient.
Finally, Section D.6 combines all these elements and determine the overall time complexity of our
algorithm.

D.1 TIME COMPLEXITY TO GET S AND L

Remark D.1. Note that Tmat(n, d
2, n2) ≥ Ω(n3).

Now we will show the time complexity for computing S and L.
Lemma D.2 (Computing S and L). If the following conditions hold

• Let S(x) ∈ Rn×n2

(see Definition C.3)

• Let L(y) ∈ Rn2×d (see Definition C.4)

Then, we have

• the time complexity of S(x) is Tmat(n, d
2, n2) + Tmat(n, d, d

2)

• the time complexity of L(y) is Tmat(n
2, d2, d)

Proof. Note that

S(x) = D−1︸︷︷︸
n×n

exp(A1︸︷︷︸
n×d

X︸︷︷︸
d×d2

(A2 ⊗A3)
⊤︸ ︷︷ ︸

d2×n2

)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

and

D = diag(exp(A1X(A2 ⊗A3)
⊤)1n2)

We firstly compute exp(A1X(A2 ⊗A3)
⊤), this takes time of

• A1︸︷︷︸
n×d

X︸︷︷︸
d×d2

takes Tmat(n, d, d
2)

• Computing A2 ⊗A3 takes O(n2d2) time

• Computing A1X · (A2 ⊗A3)
⊤ takes Tmat(n, d

2, n2) time

The overall time complexity of above three parts is dominated by

Tmat(n, d, d
2) +O(d2n2) + Tmat(n, d

2, n2) = Tmat(n, d, d
2) + Tmat(n, d

2, n2)

Therefore, computing D takes O(n3) time.

Computing D−1 exp(A1X(A2 ⊗A3)
⊤) requires O(n3) time.

Therefore, the overall time complexity is

Tmat(n, d, d
2) + Tmat(n, d

2, n2)

It is noted that computing L(y) = A3︸︷︷︸
n2×d2

Y︸︷︷︸
d2×d

takes time of Tmat(n
2, d2, d).

Thus, we complete the proof.

D.2 TIME COMPLEXITY TO GET V

We will explain the calculation of V.

Lemma D.3 (Computing V). If the following conditions hold

• Let E ∈ Rn×d

• Let S(x) ∈ Rn×n2

.

• Let L(y) ∈ Rn2×d.

Then one can get V(x) ∈ Rn×d in O(Tmat(n, n
2, d)) time.

Proof. Based on the definition of V(x) ∈ Rn×d which is

V(x) = S(x)︸︷︷︸
n×n2

L(y)︸︷︷︸
n2×d

− E︸︷︷︸
n×d

It is easy to see that we can compute S(x)L(y) in time Tmat(n, n
2, d), and S(x)L(y) − E in time

O(nd).

Therefore, overall running time is

Tmat(n, n
2, d) +O(nd) = O(Tmat(n, n

2, d)).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

D.3 TIME COMPLEXITY TO GET W

We will explain how to calculate W.

Lemma D.4. If the below holds that

• Let V(x) ∈ Rn×d

• Let L(y) ∈ Rn2×d

Then, computing W(x) takes time of O(Tmat(n, d, n
2)).

Proof. Let use recall that W(x) = V(x)L(y)⊤. This need time of Tmat(n, d, n
2) to compute.

D.4 TIME COMPLEXITY TO GET F

We can show how to construct F.

Lemma D.5. If the following conditions hold

• Let S(x) ∈ Rn×n2

• Let W(x) ∈ Rn×n2

Then, computing takes time of F(x) in O(n3).

Proof. For every j0 ∈ [n], it follows that F(x)j0 ∈ Rn2

can be computed in O(n2), given that
diag(S(x)j0) is a diagonal matrix and S(x)j0S(x)

⊤
j0

is a rank-one matrix. Consequently, construct-
ing the matrix F(x) ∈ Rn×n2

takes a total time of n×O(n2) = O(n3).

D.5 CLOSED FORM OF GRADIENT

We will give the closed form the gradient of the loss function.

Lemma D.6 (Closed form of gradient, formal version of Lemma 4.1). Let us define functions S(x) ∈
Rn×n2

, V(x) ∈ Rn×d, L(y) ∈ Rn2×d, W(x) ∈ Rn×n2

and F(x) ∈ Rn×n2

(see Definitions C.3,
C.7, C.4, C.5 and C.6 respectively). Suppose three matrices A1, A2, A3 ∈ Rn×d are given. We
define A = A1⊗A2⊗A3. Let Loss(x) and Loss(x)j0,i0 be defined as Definition 3.8 and C.8. Then,
we can show that

dLoss(x)

dx
= vec(A⊤

1 F(x)(A2 ⊗A3)) ∈ Rd3

.

Proof. From the Lemma statement and Lemma C.10 Part 8, we have

dLoss(x, y)j0,i0
dxi

= V(x, y)j0,i0 · (⟨S(x)j0 ◦ Aj0,i, L(y)i0⟩ − ⟨S(x)j0 , L(y)i0⟩ · ⟨S(x)j0 ,Aj0,i⟩)
(4)

We know that for all a, b ∈ Rn, we have diag(a) · b = diag(b) · a = a ◦ b = b ◦ a. Then, we have

⟨S(x)j0 ◦ Aj0,i, L(y)i0⟩ = (diag(S(x)j0)Aj0,i)
⊤L(y)i0 = A⊤

j0,i diag(S(x)j0)L(y)i0

and

⟨S(x)j0 , L(y)i0⟩ · ⟨S(x)j0 ,Aj0,i⟩ = A⊤
j0,iS(x)j0S(x)

⊤
j0L(y)i0

Therefore, Eq. (4) becomes

dLoss(x)j0,i0
dxi

= V(x, y)j0,i0 · (A⊤
j0,i diag(S(x)j0)L(y)i0 − A⊤

j0,iS(x)j0S(x)
⊤
j0L(y)i0)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

= V(x, y)j0,i0 · A⊤
j0,i(diag(S(x)j0)− S(x)j0S(x)

⊤
j0)L(y)i0 , (5)

where the second step is due to basic algebra.

Note that we defined W(x)j0 in Definition C.5.

W(x)j0 :=

d∑
i0=1

V(x)j0,i0L(y)i0 . (6)

Also, we defined F(x)j0 ∈ Rn2

in Definition C.6,

F(x)j0 := (diag(S(x)j0)− S(x)j0S(x)
⊤
j0)W(x)j0 . (7)

We can show

dLoss(x)

dx

=

n∑
j0=1

d∑
i0=1

dLoss(x)j0,i0
dx

=

n∑
j0=1

d∑
i0=1

V(x)j0,i0︸ ︷︷ ︸
scalar

· A⊤
j0︸︷︷︸

d3×n2

(diag(S(x)j0)− S(x)j0S(x)
⊤
j0)︸ ︷︷ ︸

n2×n2

L(y)i0︸ ︷︷ ︸
n2×1

=

n∑
j0=1

A⊤
j0(diag(S(x)j0)− S(x)j0S(x)

⊤
j0)W(x)j0

=

n∑
j0=1

A⊤
j0F(x)j0

= A⊤ vec(F(x))

= vec(A⊤
1 F(x)(A2 ⊗A3)) ∈ Rd3

where the first step comes from Definition 3.8, the second step is due to Eq. (5), the third step is
because of Eq. (6), the fourth step is due to Eq. (7), the fifth step utilize the notation of vec(·), and
the last step follows from Fact B.16.

D.6 PUTTING ALL TOGETHER

We now show the overall running time of computing the gradient.

Theorem D.7 (Tensor attention gradient computation, formal version of Theorem 4.3). If we have
the following conditions

• Suppose that we have input fixed matrices A1, A2, A3, A4, A5, E ∈ Rn×d.

• We denote X ∈ Rd×d2

and Y ∈ Rd2×d as matrix variables (gradient is computed w.r.t. X
)

– For simplicity of calculation, we utilize vector variables x ∈ Rd3×1 and y ∈ Rd3×1,
i.e., vec(X) = x.

– For simplicity of calculation, we use tensor variables X ∈ Rd×d×d and Y ∈ Rd×d×d

• Let g = dLoss(X)
dX ∈ Rd×d2

(see Loss(X) in Definition 3.8)

Then it’s plain to see that we can compute gradient g ∈ Rd×d2

in Tmat(n, d
2, n2) time.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Proof. Step 1. We compute S(x) and L(y). According to Lemma D.2, this takes
O(Tmat(n, d

2, n2) + Tmat(n, d, d
2)) time.

Step 2. We compute V(x). According to Lemma D.3, this takes O(Tmat(n, n
2, d)) time.

Step 3. We compute W(x). According to Lemma D.4, this takes O(Tmat(n, d, n
2)) time.

Step 4. We compute F(x). According to Lemma D.5, this takes O(n3) time.

Step 5. From Lemma D.6, the gradient is give by vec(A⊤
1 F(x)(A2 ⊗ A3)). We know that

A⊤
1 ∈ Rd×n, F(x) ∈ Rn×n2

, and A2 ⊗ A3 ∈ Rn2×d2

, it can be calculated in O(Tmat(d, n, d
2) +

Tmat(n, n
2, d2)) time.

Thus, the overall running time complexity for computing the gradient is O(Tmat(n, d
2, n2) +

Tmat(n, d, d
2)).

E RUNNING ACCELERATION VIA POLYNOMIAL METHOD

Remember that in the preceding section, for simplicity in the computations of the gradient, we didn’t
consider the d factor in S. This factor does not affect the time complexity in our algorithms as it
merely acts as a rescaling factor. We will now retake the 1/d in S factor into consideration to utilize
the tools from previous work Alman & Song (2023).

In Section E.1, we demonstrate how to create a low-rank representation for S efficiently and explic-
itly. In Section E.2, we show how to make a low-rank construction for V(x). In Sections E.3, E.4,
and E.5, we present low-rank representations for W(x), Fa(x), and Fb(x), respectively. Finally, in
Section E.6, we will consolidate all these elements to prove our final algorithmic result.

E.1 FAST COMPUTATION OF S

Using the polynomial method results in Alman & Song (2023; 2024b), we have the following low-
rank representation results.

Lemma E.1. For any B = o(3
√
log n), we have k1 = no(1) such that: Let A1, A2, A3 ∈ Rn×d,

X1, X2, X3 ∈ Rd×d and X = X1 · (X⊤
2 ⊖X⊤

3) ∈ Rd×d2

. Assume that each number in S(x) can
be written using O(log n) bits. It holds that max{∥A1X1∥∞, ∥A2X2∥∞, ∥A3X3∥∞} ≤ B, then
there are three matrices U1, V1,W1 ∈ Rn×k1 such that ∥U1(V1 ⊘W1)

⊤ − S(x)∥∞ ≤ ϵ/ poly(n).
Here S(x) = D−1 exp(A1X(A2 ⊗ A3)

⊤/d) ∈ Rn×n2

and we define D = diag(exp(A1X(A2 ⊗
A3)

⊤/d)1n2). Moreover, these matrices U1, V1,W1 can be created explicitly in n1+o(1) time.

Proof. We have

(X⊤
2 ⊖X⊤

3) · (A2 ⊗A3)
⊤ = ((A2 ⊗A3) · (X⊤

2 ⊖X⊤
3)⊤)⊤

= ((A2 ⊗A3) · (X2 ⊘X3))
⊤

= ((A2 ·X2)⊘ (A3 ·X3))
⊤,

where the first step is due to simple algebra, the second step comes from Fact B.4, and the last step
follows Fact B.7.

Thus, we can rewrite S(x) = D−1 exp(Q(K1 ⊘ K2)
⊤/d) ∈ Rn×n2

and we define D =
diag(exp(Q(K1 ⊘K2)

⊤/d)1n2), where Q = A1X1,K1 = A2X2,K2 = A3X3.

More explicitly, we have

Q(K1 ⊘K2)
⊤ = A1X1(A2X2 ⊘A3X3)

⊤

= A1X1(X
⊤
2 ⊖X⊤

3) · (A2 ⊗A3)
⊤

= A1X(A2 ⊗A3)
⊤,

where the 1st step is due to Q = A1X1,K1 = A2X2,K2 = A3X3, the 2nd step is because of the
identity in the beginning of the proof, and the 3rd step follows from X = X1(X

⊤
2 ⊖X⊤

3).

Thus, we finish the proof by applying Lemma 5.1.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

E.2 FAST COMPUTATION OF V

We will explain how to obtain the low rank representation of V(x).

Lemma E.2. We assume conditions the same as Lemma E.1. Let d = O(log n) and k1 = no(1). We
also assume that we can write each number in E ∈ Rn×d and L(y) ∈ Rn2×d using O(log n) bits.
Let V(x) ∈ Rn×d (see Definition C.7). Then, there are three matrices U1, V1,W1 ∈ Rn×k1 we have
∥U1(V1 ⊘W1)

⊤L(y)− E − V(x)∥∞ ≤ ϵ/ poly(n), where V1 ⊘W1 ∈ Rn2×k1 . Moreover, we can
construct these matrices U1, V1,W1 in n1+o(1) time.

Proof. Let U1, V1,W1 be the matrices in Lemma E.1. We can show that

∥U1(V1 ⊘W1)
⊤L(y)− E − V(x)∥∞ = ∥U1(V1 ⊘W1)

⊤L(y)− E − S(x)L(y) + E∥∞
= ∥(U1(V1 ⊘W1)

⊤ − S(x))L(y)∥∞
≤ ϵ/poly(n)

where the 1st step is due to V(x) = S(x)L(y)− E, the 2nd step comes from basic algebra, and 3rd
step is due to Lemma E.1 and each number in L(y) ∈ Rn2×d can be written using O(log n).

E.3 FAST COMPUTATION OF W

We will explain how to obtain the low rank representation of W(x).

Lemma E.3. Assume the same condition as Lemma E.2. Let k2 = no(1). We define V(x) ∈ Rn×d

(see Definition C.7). We define L(y) ∈ Rn2×d (see Definition C.4). Let W(x) := V(x)L(y)⊤ ∈
Rn×n2

be defined in Definition C.5. There are three matrices U2, V2,W2 ∈ Rn×k2 such that
∥U2(V2 ⊘W2)

⊤ −W(x)∥∞ ≤ ϵ/poly(n). We can construct the matrices U2, V2,W2 in n1+o(1)

time.

Proof. For W(x), we define its approximation as W̃(x).

According to Lemma E.2, we find a good approximation U1(V1 ⊘W1)
⊤L(y) − E of V(x), where

k1 = no(1) and U1, V1,W1 ∈ Rn×k1 .

Now we turn W̃(x) into low-rank representation

W̃(x) = (U1(V1 ⊘W1)
⊤L(y)− E)︸ ︷︷ ︸

n×d

L(y)⊤︸ ︷︷ ︸
d×n2

= (U1(V1 ⊘W1)
⊤L(y)− E)︸ ︷︷ ︸

n×d

((A4 ⊗A5) · (Y1 ⊘ Y2))
⊤︸ ︷︷ ︸

d×n2

= (U1(V1 ⊘W1)
⊤L(y)− E)︸ ︷︷ ︸

n×d

((A4 · Y1)︸ ︷︷ ︸
n×d

⊘ (A5 · Y2)︸ ︷︷ ︸
n×d

)⊤,

where the 1st step is because that U1(V1⊘W1)
⊤L(y)−E is a good approximation to V(x), the 2nd

step comes from definition of L(y) (see Definition C.4), the last step is due to Fact B.7.

Thus, we let U2 = U1(V1 ⊘W1)
⊤L(y) − E, V2 = A4 · Y1 and W2 = A5 · Y2, which only takes

n1+o(1) time. (We remark that, if we use naive way to compute U2 that it takes Ω(n2), however
using Lemma B.13 can beat O(n2) time.) We can explicitly construct U2, V2,W2 ∈ Rn×k2 where
k2 ≤ max{d, k1}+ d = no(1). (Here the reason is k1 = no(1) and d = no(1))

For controlling the error, we can show

∥W̃(x)−W(x)∥∞ = ∥(U1(V1 ⊘W1)
⊤L(y)− E)L(y)⊤ − V(x)L(y)⊤∥∞

≤ d · ∥L(y)∥∞ · ∥U1(V1 ⊘W1)
⊤L(y)− E − V(x)∥∞

≤ ϵ/ poly(n),

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

where the first step follows from the definition of W̃(x),W(x), the second step follows from
∥ab⊤∥∞ ≤ d · ∥a∥∞ · ∥b∥∞ for length d vectors a, b, and the last step follows Lemma E.2.

Thus, we complete the proof.

E.4 FAST COMPUTATION OF Fa: KEY STEP

Definition E.4. Let S(x) ∈ Rn×n2

(see Definition C.3). Let W(x) ∈ Rn×n2

(see Definition C.5).
Then, we define

Fa(x) := S(x) ◦W(x) ∈ Rn×n2

.

We will explain how to obtain the low-rank representation of Fa(x).

Lemma E.5. Let k1 = no(1), k2 = no(1), k3 = no(1). We assume U1, V1,W1 ∈ Rn×k1 approxi-
mates the S(x) ∈ Rn×n2

satisfying ∥U1(V1 ⊘W1)
⊤ − S(x)∥∞ ≤ ϵ/ poly(n). Let us assume that

U2, V2,W2 ∈ Rn×k2 approximates the W(x) ∈ Rn×n2

satisfying ∥U2(V2 ⊘W2)
⊤ −W(x)∥∞ ≤

ϵ/ poly(n). We assume that each number in S(x) and W(x) can be written using O(log n) bits.
Let Fa(x) := S(x) ◦ W(x) ∈ Rn×n2

be defined in Definition E.4. Then there are matrices
U3, V3,W3 ∈ Rn×k3 such that ∥U3(V3 ⊘ W3)

⊤ − Fa(x)∥∞ ≤ ϵ/ poly(n). We can construct
the matrices U3, V3,W3 in n1+o(1) time.

Proof. If we choose U3 = U1 ⊖ U2 ∈ Rn×k1k2 and V3 = V1 ⊖ V2 ∈ Rn×k1k2 , W3 = W1 ⊖W2 ∈
Rn×k1k2 , this need n1+o(1) time to compute.

For further simplicity of proofs, we call S̃(x) = U1(V1 ⊘W1)
⊤ and W̃(x) = U2(V2 ⊘W2)

⊤.

According to Lemma B.13, we can show

∥U3(V3 ⊘W3)
⊤ − Fa(x)∥∞ = ∥U3(V3 ⊘W3)

⊤ − S(x) ◦W(x)∥∞
= ∥(U1 ⊖ U2)((V1 ⊖ V2)⊘ (W1 ⊖W2))

⊤ − S(x) ◦W(x)∥∞
= ∥(U1(V1 ⊘W1)

⊤) ◦ (U2(V2 ⊘W2)
⊤)− S(x) ◦W(x)∥∞

= ∥S̃(x) ◦ W̃(x)− S(x) ◦W(x)∥∞
= ∥S̃(x) ◦ W̃(x)− S̃(x) ◦W(x) + S̃(x) ◦W(x)− S(x) ◦W(x)∥∞
≤ ∥S̃(x) ◦ W̃(x)− S̃(x) ◦W(x)∥∞ + ∥S̃(x) ◦W(x)− S(x) ◦W(x)∥∞
≤ ϵ/ poly(n)

where the first step is due to the definition of Fa(x), the second step is because of the definition
of U3, V3,W3, the third step is due to Fact B.8, the fourth step follows from the definition of S̃(x)
and W̃(x), the fifth step is because of basic algebra, the sixth step comes from triangle inequality,
and the last step is because bounded entries (we can write each number in S(x) and W(x) using
O(log n) bits) and Lemma assumptions that ∥S̃(x)−S(x)∥∞ ≤ ϵ/poly(n) and ∥W̃(x)−W(x)∥∞ ≤
ϵ/ poly(n)

E.5 FAST COMPUTATION OF Fb: KEY STEP

Definition E.6. Let S(x) ∈ Rn×n2

(see Definition C.3). Let W(x) ∈ Rn×n2

(see Definition C.5).
Then, we define Fb(x) ∈ Rn×n2

whose j0-th column

Fb(x)j0 = S(x)j0S(x)
⊤
j0W(x)j0 ,

for each j0 ∈ [n].

We will explain how to obtain the low rank representation of Fb(x).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Lemma E.7. Let k1 = no(1), k2 = no(1), k4 = no(1). Let us assume that U1, V1,W1 ∈ Rn×k1

approximates the S(x) ∈ Rn×n2

satisfying ∥U1(V1 ⊘W1)
⊤ − S(x)∥∞ ≤ ϵ/ poly(n). We assume

U2, V2,W2 ∈ Rn×k2 approximates the W(x) ∈ Rn×n2

satisfying ∥U2(V2 ⊘W2)
⊤ −W(x)∥∞ ≤

ϵ/ poly(n). Assume that we can write each number in S(x) and W(x) using O(log n) bits. Let us
assume that Fb(x) ∈ Rn×n2

whose j0-th column Fb(x)j0 = S(x)j0S(x)
⊤
j0
W(x)j0 for each j0 ∈ [n]

(see Definition E.6). Then there are matrices U4, V4,W4 ∈ Rn×k4 such that ∥U4(V4 ⊘W4)
⊤ −

Fb(x)∥∞ ≤ ϵ/ poly(n). We can construct the matrices U4, V4,W4 in n1+o(1) time.

Proof. For further simplicity of proofs, we define R(x) ∈ Rn to be a local vector function where
R(x)j0 is ⟨S(x)j0 ,W(x)j0⟩. We denote the approximation of R(x) to be R̃(x).

It is noted that a good approximation of S(x)j0 is (U1(V1⊘W1)
⊤)⊤j0,∗. We denote the approximation

of S(x) to be S̃(x) = U1(V1 ⊘W1)
⊤.

It is noted that a good approximation of W(x)j0 is (U2(V2 ⊘W2)
⊤)⊤j0,∗. Let denote the approxima-

tion of W(x) to be W̃(x) = U2(V2 ⊘W2)
⊤.

Suppose that R̃(x)j0 := ⟨S̃(x)j0 , W̃(x)j0⟩ = (U1(V1 ⊘W1)
⊤)j0,∗ · (U2(V2 ⊘W2)

⊤)⊤j0,∗.

For the side of computation time, we compute V ⊤
1 V2 first and this takes n1+o(1) time. Then, we

compute W⊤
1 W2 and this also takes n1+o(1) time.

Next, we have

R̃(x)j0 = (U1(V1 ⊘W1)
⊤)j0,∗ · (U2(V2 ⊘W2)

⊤)⊤j0,∗

= (U1)j0,∗︸ ︷︷ ︸
1×k1

(V1 ⊘W1)
⊤︸ ︷︷ ︸

k1×n2

(V2 ⊘W2)︸ ︷︷ ︸
n2×k2

((U2)j0,∗)
⊤︸ ︷︷ ︸

k2×1

= (U1)j0,∗︸ ︷︷ ︸
1×k1

((V ⊤
1 V2)︸ ︷︷ ︸

k1×k2

◦ (W⊤
1 W2)︸ ︷︷ ︸

k1×k2

) ((U2)j0,∗)
⊤︸ ︷︷ ︸

k2×1

where the first step follows from the definition of R(x), the second step follows from (AB)j0,∗ =
ej0(AB) = (ej0A)B = Aj0,∗B for any matrices A and B, and the third step is due to Lemma B.13.

Once we have pre-computed V ⊤
1 V2 ∈ Rk1×k2 and W⊤

1 W2 ∈ Rk1×k2 , the above step only takes
O(k1k2) time. Since there n coordinates, so the overall time complexity is still O(nk1k2) =
n1+o(1).

We can use S̃(x) and R̃(x) to approximate Fb(x). Let F̃b(x) = diag(R̃(x))︸ ︷︷ ︸
n×n

S̃(x)︸︷︷︸
n×n2

. Because

diag(R̃(x)) is a diagonal matrix and S̃(x) has low-rank representation, then obviously we know
how to construct U4, V4,W4. Basically U4 = diag(R̃(x))U1 and V4 = V1, W4 = W1.

Now, we need to control the error, and we have

∥U4(V4 ⊘W4)
⊤ − Fb(x)∥∞

= ∥F̃b(x)− Fb(x)∥∞
= max

j0∈[n]
∥S̃(x)j0 R̃(x)j0 − S(x)j0R(x)j0∥∞

= max
j0∈[n]

∥S̃(x)j0 R̃(x)j0 − S̃(x)j0R(x)j0 + S̃(x)j0R(x)j0 − S(x)j0R(x)j0∥∞

≤ max
j0∈[n]

∥S̃(x)j0 R̃(x)j0 − S̃(x)j0R(x)j0∥∞ + ∥S̃(x)j0R(x)j0 − S(x)j0R(x)j0∥∞

where the first step is due to the definition of F̃b(x), the second step follows from the definition of
Fb(x) and F̃b(x), the third step follows from simple algebra, and the last step follows from triangle
inequality.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

For the 1st term, we have

max
j0∈[n]

∥S̃(x)j0 R̃(x)j0 − S̃(x)j0R(x)j0∥∞ ≤ max
j0∈[n]

∥S̃(x)j0∥∞ · |R̃(x)j0 − R(x)j0 |

≤ ϵ/ poly(n)

For the 2nd term, we have

max
j0∈[n]

∥S̃(x)j0R(x)j0 − S(x)j0R(x)j0∥∞ ≤ max
j0∈[n]

∥S̃(x)j0 − S(x)j0∥∞ · |R(x)j0 |

≤ ϵ/ poly(n)

We complete the proof, by using all three equations we derived above.

E.6 GRADIENT COMPUTATION IN ALMOST LINEAR TIME BY LOW RANK TENSOR
APPROXIMATION

We now present our main result regarding the time complexity of our algorithm.
Theorem E.8 (Main result for fast gradient computation, Restatement of Theorem 5.2). Assuming
the entries of A1, A2, A3, A4, A5, E ∈ Rn×d and X1, X2, X3, Y1, Y2 ∈ Rd×d are represented using
O(log n) bits. Then, there exist an algorithm that runs in n1+o(1) time to solve ATAttLGC(n, d =
O(log n), B = o(3

√
log n), ϵ = 1/ poly(n)) (see Definition 3.9), i.e., our algorithm computes a

gradient matrix g̃ ∈ Rd×d2

satisfying ∥dLoss(X)
dX − g̃∥∞ ≤ 1/ poly(n).

Proof of Theorem 5.2. Given size n×n2 matrices F(x) (see Definition C.6), Fa(x) (see Lemma E.7)
and Fb(x) (see Lemma E.5), obviously we know

F(x) = Fa(x)− Fb(x).

By applying Lemma E.1, Lemma E.2, and Lemma E.3, we confirm that the assumptions in
Lemma E.5 and Lemma E.7 hold true. Therefore, we can utilize Lemma E.5 and Lemma E.7 to
conclude that

• Let k3 = no(1). We know that Fa(x) has approximate low rank representation
U3, V3,W3 ∈ Rn×k3 , let F̃a(x) denote U3(V3 ⊘W3)

⊤.

• Let k4 = no(1). We know that Fb(x) has approximate low rank representation U4, V4,W4 ∈
Rn×k4 , let F̃b(x) denote U4(V4 ⊘W4)

⊤.

• Let U5, V5,W5 ∈ Rn×k5 denote the approximate low rank representation for F(x), call it
F̃(x) = U5(V5 ⊘W5)

⊤. We have k5 ≤ k3 + k4 = no(1).

Thus, Lemmas E.1, E.2, E.3, E.5 and E.7 all are taking n1+o(1) time to compute.

From the Lemma D.6, we know that

dLoss(x)

dx
= vec(A⊤

1 F(x)(A2 ⊗A3))

We use vec(A⊤
1 F̃(x)(A2 ⊗A3)) to do approximation, then

vec(A⊤
1︸︷︷︸

d×n

F̃(x)︸︷︷︸
n×n2

(A2 ⊗A3)︸ ︷︷ ︸
n2×d2

) = vec(A⊤
1︸︷︷︸

d×n

F̃(x)︸︷︷︸
n×n2

(A⊤
2 ⊗A⊤

3)
⊤︸ ︷︷ ︸

n2×d2

)

= vec([U5 ⊙ V5 ⊙W5]︸ ︷︷ ︸
n×n×n

(A⊤
1 , A

⊤
2 , A

⊤
3))

= vec(((A⊤
1 U5)⊙ (A⊤

2 V5)⊙ (A⊤
3 W5))),

where the first step is due to Fact B.4, the second step is because of Claim B.20 and Fact B.11, and
the last step follows Fact B.12.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

The above computation takes n1+o(1)d+ d3no(1) time. So, overall time complexity is still n1+o(1).

Recall that g̃ ∈ Rd×d2

and dLoss(X)
dX ∈ Rd×d2

.

We have

∥dLoss(X)

dX
− g̃∥∞ = ∥ vec(A⊤

1 F(x)(A2 ⊗A3))− vec(A⊤
1 F̃(x)(A2 ⊗A3))∥∞

= ∥A⊤
1 F(x)(A2 ⊗A3)−A⊤

1 F̃(x)(A2 ⊗A3)∥∞
= ∥A⊤

1 (Fa(x)− Fb(x))(A2 ⊗A3)−A⊤
1 (F̃a(x)− F̃b(x))(A2 ⊗A3)∥∞

≤ ∥A⊤
1 (Fa(x)− F̃a(x))(A2 ⊗A3)∥∞ + ∥A⊤

1 (Fb(x)− F̃b(x))(A2 ⊗A3)∥∞
≤ ∥A1∥∞∥A2∥∞∥A3∥∞ · n3 · (∥Fa(x)− F̃a(x)∥∞ + ∥Fb(x)− F̃b(x)∥∞)

≤ ϵ/poly(n)

where the 1st step is due to definition of dLoss(X)
dX in the above, the 2nd step follows from the def-

inition of vec(·), the 3rd step follows from simple algebra, the 4th step follows from triangle in-
equality, the 5th step follows from ∥T(A1, A2, A3)∥∞ ≤ n3 · ∥T∥∞ · ∥A1∥∞ · ∥A2∥∞ · ∥A3∥∞,
where T is a tensor, and the last step follows from entries in A1, A2, A3 are bounded, and
∥Fa(x)− F̃a(x)∥∞ ≤ ϵ/ poly(n), ∥Fb(x)− F̃b(x)∥∞ ≤ ϵ/poly(n).

By picking ϵ = 1/ poly(n), we complete the proof.

F HARDNESS

In this section, we will show the hardness of our algorithm. In Section F.1, we provide some useful
tools for our results. In Section F.2,we present our main hardness results.

F.1 TOOLS FOR BACKWARD COMPLEXITY

Next, we demonstrate that the tensor attention optimization problem (see Definition 3.8) exhibits
favorable behavior when applied to matrices constrained as described in Lemma 6.2:

Lemma F.1. Suppose that a fixed matrix H ∈ Rn×n2

with entries in the interval [1, Ba] satisfying
that more than half entries of H in each row are equal to Ba. Let a matrix V ∈ Rn2×d with entries
in {0, 1}. For λ ∈ R, let us define Mλ := exp(λH) ∈ Rn×n2

. We denote the function f : R → R
as

f(λ) := ∥ diag(Mλ1n2)−1︸ ︷︷ ︸
n×n

Mλ︸︷︷︸
n×n2

V︸︷︷︸
n2×d

∥2F ,

Then, for every λ ∈ R we get

• |f ′(λ)| ≤ O(Band),

• |f ′′(λ)| ≤ O(B2
and).

Proof. Let G denote the n×n2 matrix G = diag(Mλ1n)
−1Mλ. For i ∈ [n], j ∈ [n2], we calculate

that Mλi,j = eλHi,j and so

Gi,j =
eλHi,j∑n2

k=1 e
λHi,k

.

For ℓ ∈ [d], let Sℓ ⊆ [n2] represent the set of 1s in column ℓ of V , defined as Sℓ = {j ∈ [n2] |
Vj,ℓ = 1}. Therefore, for each i ∈ [n], ℓ ∈ [d], the (i, ℓ) entry of the matrix diag(Mλ1n)

−1MλV
can be shown that

(diag(Mλ1n)
−1MλV)i,ℓ = (GV)i,ℓ

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

=

n2∑
j=1

Gi,jVj,ℓ

=
∑
j∈Sℓ

Gi,j

=

∑
j∈Sℓ

eλHi,j∑n2

k=1 e
λHi,k

.

where the 1st step comes from definition, the 2nd step is due to simple algebra, the 3rd step is
because of definition of Sℓ, and the last step comes from definition of G.

Thus, we obtain:

f(λ) =

n∑
i=1

∑d
ℓ=1

(∑
j∈Sℓ

eλHi,j

)2

(∑n2

k=1 e
λHi,k

)2

=

n∑
i=1

∑d
ℓ=1

∑
j1∈Sℓ

∑
j2∈Sℓ

eλ(Hi,j1+Hi,j2)∑n2

k1=1

∑n2

k2=1 e
λ(Hi,k1

+Hi,k2
)

.

We define

g(λ, i) :=

d∑
ℓ=1

∑
j1∈Sℓ

∑
j2∈Sℓ

eλ(Hi,j1
+Hi,j2

).

We also define

h(λ, i) :=

n2∑
k1=1

n2∑
k2=1

eλ(Hi,k1
+Hi,k2

)

By the previous three equations, we have:

f(λ) =

n∑
i=1

g(λ, i)/h(λ, i).

As at least half of the entries in each row of H are equal to Ba and all entries lie within the interval
[1, Ba], we can bound: (

n2

2

)2

· e2Baλ ≤ h(λ, i) ≤ (n)
4 · e2Baλ. (8)

Furthermore, since the derivative of eλ(Hi,k1
+Hi,k2

) with respect to λ is (Hi,k1 + Hi,k2) ·
eλ(Hi,k1

+Hi,k2
), we can bound

2 · h(λ, i) ≤ dh(λ, i)

dλ
≤ 2Ba · h(λ, i). (9)

We may similarly bound

0 ≤ g(λ, i) ≤ d·n4 · e2Baλ, (10)

and

2 · g(λ, i) ≤ dg(λ, i)

dλ
≤ 2Ba · g(λ, i). (11)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

The derivative of f can be bounded by (where the ′ notation denotes the derivative w.r.t. λ):

f ′(λ) =
n∑

i=1

g′(λ, i) · h(λ, i)− g(λ, i) · h′(λ, i)
(h(λ, i))2

≤
n∑

i=1

g′(λ, i) · h(λ, i)
(h(λ, i))2

=

n∑
i=1

g′(λ, i)
h(λ, i)

≤
n∑

i=1

2Bad · n4e2Baλ

(n2/2)2 · e2Baλ

=

n∑
i=1

8Bad

= 8Ba · nd.
where the first step is due to the calculation of derivative, the second step is due to basic algebra, the
third step is because of cancelling h(λ, i), the fourth step is by Eq. (8) (h(λ, i) term) and Eq. (11) (
g′(λ, i) term), the fifth step is due to basic algebra, and the last step is due to basic algebra.

In a similar manner, a lower bound for f ′(λ) can be,

f ′(λ) =
n∑

i=1

g′(λ, i) · h(λ, i)− g(λ, i) · h′(λ, i)
(h(λ, i))2

≥ −
n∑

i=1

g(λ, i) · h′(λ, i)
(h(λ, i))2

≥ −
n∑

i=1

(dn4 · e2Baλ) · (2Ba · h(λ, i))
((n2/2)2 · e2Baλ) · (h(λ, i))

= −
n∑

i=1

8Bad

= −8Ba · nd.
where the first step is due to the definition, the second step is due to basic algebra, the third step
comes from Eq. (8) (h(λ, i) term), Eq. (9) (h′(λ, i)term), and Eq. (10) (g(λ, i) term), the fourth step
is due to basic algebra, and the final step comes from basic algebra.

Finally, we let f(λ, i) := g(λ,i)
h(λ,i) , and we can have f ′′(λ) is equal to the following using the quotient

rule:
n∑

i=1

g′′(λ, i)− h′′(λ, i) · f(λ, i)− 2 · h′(λ, i) · f ′(λ, i)
h(λ, i)

,

which we can likewise bound in magnitude by O(B2
and).

We have the following tool from previous work.
Lemma F.2 (Lemma 5.4 in Alman & Song (2024a)). Suppose that f : [0, 1] → R is a twice-
differentiable function that satisfy |f ′′(λ)| ≤ b for all λ ∈ [0, 1]. And for any positive integer t, we
define

st :=

t−1∑
i=0

f ′(i/t)
t

Then, we have

|st − (f(1)− f(0))| ≤ b/t.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

F.2 MAIN RESULT FOR LOWER BOUND

Finally, we are prepared to present our main result:
Theorem F.3 (Main result for hardness, Restatement of Theorem 6.3). Let γ : N → N be any
function with γ(n) = o(log n) and γ(n) = ω(1). Assuming SETH, for any constant δ > 0, it
is impossible to solve ATAttLGC(n, d = Θ(log n), B = Θ(3

√
γ(n) · log n), ϵ = O(1/(log n)4))

(Definition 3.9) in time O(n3−δ) when E = 0, Y = Id, X = λId for some scalar λ ∈ [0, 1].

Proof of Theorem 6.3. Let us assume that such an algorithm do exist. Then we can call it
O((log n)11) times to refute Lemma 6.2 using parameter γ = γ(n), i.e., we can get f(1) by solving
ATAttLGC with O((log n)11) times.

Suppose that Id ∈ Rd×d×d is an identity tensor. Also suppose that the input matrices to Lemma 6.2
are Q,K1,K2, V1, V2. And we set A1 = Q, A2 = K1,A3 = K2, A4 = V1,A5 = V2, Y = I , and
X = λ ·mat(Id)︸ ︷︷ ︸

d×d2

, with some λ ∈ [0, 1]. Let f : [0, 1]→ R be defined in Lemma F.1 where H is the

matrix A1(A2 ⊘ A3)
⊤, so that Mλ is the matrix exp(A1X(A2 ⊗ A3)

⊤) by Fact B.19. It follows
from Lemma F.1 and d = Θ(log n) that

|f ′′(λ)| ≤ O(n log5 n · (γ(n))2),

where Ba = O(γ(n) log2 n) in Lemma F.1 by the second bullet point of Lemma 6.2.

It is worth noting that f(0) can be computed in Õ(n) time because of the all-1s matrix Mf . Our
final target is to calculate f(1).

From Lemma F.2, f ′(λ) can be computed on O(log9(n)(γ(n))2) = O(log11 n) points up to error
O(1/(log n)4), and give back their average. Because we have already chosen X = λI , f ′(λ)
can be calculated from the gradient dLoss(X)

dX in (see Definition 3.9), by our assumed approximated
algorithm.

41

	Introduction
	Related Work
	Preliminary
	Definition of Tensor Operations
	Key Definitions of Tensor Attention

	Exact Tensor Attention Gradient Computation and Complexity
	Fast Tensor Attention Gradient Computation
	Main Results for Fast Gradient Computation
	Tensor Operation Analysis Techniques

	Tensor Attention Gradient Complexity Lower Bound
	 and Tensor Attention Forward Hardness
	Main Result for Hardness

	Discussion and Conclusion
	Further Discussion and Extension
	Tensor Operation Background
	General definitions and tensor operation
	Facts for tensor operation
	Facts for vectorization operation
	Facts for tensor product

	Gradient Formulation and Analysis
	Definitions for useful functions
	Definitions for loss function
	Further information on gradient computation

	Tensor Attention Exact Gradient Computation Time Complexity
	Time complexity to get and
	Time complexity to get
	Time complexity to get
	Time complexity to get
	Closed form of gradient
	Putting all together

	Running Acceleration via Polynomial Method
	Fast computation of
	Fast computation of
	Fast computation of
	Fast computation of
	Fast computation of
	Gradient computation in almost linear time by low rank tensor approximation

	Hardness
	Tools for backward complexity
	Main result for lower bound

