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Abstract

We consider the problem of estimating graph limits, known as graphons, from observations
of sequences of sparse finite graphs. In this paper we show a simple method that can shed
light on a subset of sparse graphs. The method involves mapping the original graphs to their
line graphs. We show that graphs satisfying a particular property are sparse, but give rise
to dense line graphs. This property, the square-degree property, enables us to apply results
on graph limits of dense graphs to derive convergence. In particular, star graphs satisfy the
square-degree property resulting in dense line graphs and non-zero graphons of line graphs.
We demonstrate empirically that we can distinguish different numbers of stars (which are
sparse) by the graphons of their corresponding line graphs. Whereas in the original graphs,
the different number of stars all converge to the zero graphon due to sparsity. Similarly,
superlinear preferential attachment graphs give rise to dense line graphs almost surely. In
contrast, dense graphs, including Erdős–Rényi graphs make the line graphs sparse, resulting
in the zero graphon.

1 Introduction

A graphon is the limit of a converging graph sequence. Graphons of dense graphs are useful as they can act
as a blueprint and generate graphs of arbitrary size with similar properties. But for sparse graphs this is not
the case. Sparse graphs converge to the zero graphon, making the generated graphs empty or edgeless. Thus,
the classical graphon definition fails for sparse graphs. Several methods have been proposed to overcome
this limitation and to understand sparse graphs more deeply. However, the nature of sparse graphs makes
these methods mathematically complex. Graphons are useful in machine learning as a prior distribution
on graphs. Graphons provide an interesting connection between combinatorial, probabilistic, and analytical
problems, leading to many new approaches for graph modelling.

The obvious use of graphons is to predict a network and its properties at a future time point when the
network is large (Chayes, 2016). The fact that graphons are compact objects with the ability to generate
arbitrarily large networks is an attractive feature. It is also studied in the context of exchangeable arrays
(Orbanz & Roy, 2015). In addition to network prediction, graphons are used in a myriad ways including
in tranfer learning neural networks (Ruiz et al., 2020), graph embeddings (Davison & Austern, 2023) and
motif sampling (Lyu et al., 2023). They are also of interest to problems in extremal graph theory, the study
of large graphs and random matrix theory. Graphons have had wide application in statistical physics and
network theory.

The theory of graphons of dense graphs is well developed, and is based on the Aldous-Hoover theorem. For
a graphon to exist the sequence of graphs need to converge in homomorphism density, which can be thought
of as subgraph density. However, a limitation of such graphons is that they produce dense graphs when the
graphon is non-zero. If the graphon is zero everywhere, then it is of little use as it can only produce an empty
graph. Thus, sparse graphs cannot be modelled using this approach. The classical constructions prevent
models where the number of edges grow sub-quadratically with respect to the number of nodes. Previous
alternative approaches for sparse graphons include constructions using Kallenberg exchangeability (Caron &
Fox, 2017), stretched graphons (Borgs et al., 2018) and graphexes (Borgs et al., 2021).

In this paper, we propose a new way to model sparse graphons by modeling the graphon of the corresponding
line graph. Line graphs map edges to vertices and connects edges when edges in the original graph share
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a vertex. For a graph Gn with n nodes, a line graph Hm := L(Gn) is a graph where each of the m edges
of the original graph Gn is a node of Hm. Many properties of the original graph Gn have a corresponding
property in the line graph Hm. In contrast to previous approaches to graphons of sparse graphs that required
complex mathematical machinery, our approach builds on the results of graphons on dense graphs directly.
We discover that if graphs Gn have the property that the sum of the squares of the node degrees is greater
than the square of the number of edges, then the corresponding line graphs Hm are dense. This relationship
between Gn and Hm may be of independent interest. We show that sparse graphs Gn that satisfy the so
called “square-degree property” have line graphs Hm that result in non-zero graphons.

We provide some background in Section 2, and present our discovery connecting graphs Gn with their line
graphs Hm in Section 3. We show that graphs Gn that satisfy the square-degree property have convergent
edge densities and homomorphism densities. We derive the graphons for disjoint star graphs in Section 4
and illustrate the empirical behaviour of estimation on sparse graphs in Section 4.4. We derive graphons of
line graphs for preferential attachment and Erdos-Renyi graphs in Section 5.

Contributions of this paper

• We propose a property of sparse graphs, the square-degree property (Definition 3.3) which allows us
to find sparse graphs whose line graphs are dense. In particular, sparse graphs with square-degree
property have dense line graphs, and under certain conditions have line graph limits (Section 3.4).

• We prove that for disjoint star graphs, the corresponding line graphs are dense and hence have graph
limits (Section 4). Furthermore, we show that certain preferential attachment graphs have dense
line graphs that converge to non-zero graphons under certain conditions (Section 5.1).

• We illustrate with empirical graphons the utility of line graphs for sparse graphs in Section 4.4.

2 Notation and Preliminaries

A simple graph is a graph without loops or multiple edges between the same nodes. We only consider simple
graphs and sequences of simple graphs in this paper.

2.1 Line graphs

Let G denote a graph. If G has at least one edge, then its line graph is the graph whose vertices are the
edges of G, with two of these vertices being adjacent if the corresponding edges are adjacent in G (Beineke
& Bagga, 2021). Figure 1 shows an example of a graph and its line graph. The edges in the graph on the
left are mapped to the vertices in the line graph (on the right) as can be seen from the numbers.

We denote the line graph operation by L, i.e., for a graph G we denote its line graph by H := L(G). In
terms of notation we make a distinction between graphs G and line graphs H, i.e., we use the letter H, with
and without subscripts, to denote line graphs.

Rather than a single graph G, we are interested in graph sequences. The exact type of sequences which
forms our interest will be made clear by the end of this section. Let {Gn}∞

n=1 denote a graph sequence. The
index n denotes the number of nodes in Gn and let the number of edges be given by m. We denote the line
graph of Gn by Hm := L(Gn) as Hm has m nodes.

We use standard graph theory notation to denote specific types of graphs. As customary Kn denotes a
complete graph of n nodes, and Ks,r denotes a complete bi-partite graph of partition sizes s and r, i.e., there
are s nodes in one subset completely connected to r nodes in the other subset. When s = 1 we get star
graphs; K1,n denotes a star with n + 1 vertices, where n vertices are connected to the hub vertex.
Definition 2.1. If G is a graph whose line graph is H, that is, L(G) = H, then G is called the root of H.

Whitney (1932) showed that the structure of a graph can be recovered from its line graph with one exception:
if the line graph H is K3, a triangle, then the root of H can be either K1,3, a star or K3 a triangle. This
follows from the following theorem as stated in Harary (1969):
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Figure 1: A graph on the left and its line graph on the right.

Theorem 2.2 (Whitney1932, Harary 1969). Let G and G′ be connected graphs with isomorphic line graphs.
Then G and G′ are isomorphic unless one is K3 and the other is K1,3.

By simply creating edges corresponding to vertices in line graph H and connecting them by merging the
vertices if there is an edge between the vertices in H we can obtain the the graph G, such that H = L(G).
Thus, if H is a line graph and it is not K3, then we can talk about L−1(H).

We state some preliminary results on line graphs covered in Chapter 1 of Beineke & Bagga (2021).
Lemma 2.3. Let G be a non-null graph with n vertices and m edges. Let H = L(G). Then

1. H has m vertices and 1
2

∑
(deg v)2 − m edges

2. If G is an r-regular graph then H is 2(r − 1)-regular and has nr
2 vertices.

3. If G is a path Pn, then H is also a path of n − 1 vertices, i.e., H = Pn−1.

4. If G is a non-trivial connected graph, then H is also connected.

5. If G is a cycle Cn of n vertices, then H is also a cycle Cn of n vertices.

6. If G is a star, i.e., G = K1,n−1, then H is a complete graph of n − 1 vertices, i.e. H = Kn−1.

The edge density of a graph G with n nodes and m edges is given by density(G) = 2m
n(n−1) . Thus, from

Lemma 2.3(1) the edge density of H = L(G) is given by

density(H) =
1
2

∑
(deg v2) − m

1
2 m(m − 1)

, (1)

where deg v denotes the degree distribution of graph G and deg v2 denotes the vector of squared degrees in
G. We refer to the edge density simply as density.

2.2 Graphons

Next we turn our attention to graphons. A graphon is a symmetric, measurable function W : [0, 1]2 → [0, 1]
often used to describe both the limiting properties of graph sequences as well as the graph generation process
(Borgs et al., 2011). We define some terms often used in the graphon literature.
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Definition 2.4. A graph homomorphism from F to G is a map f : V (F ) → V (G) such that if uv ∈ E(F )
then f(u)f(v) ∈ E(G). (Maps edges to edges.) Let Hom(F, G) be the set of all such homomorphisms and let
hom(F, G) = |Hom(F, G)|. Then homomorphism density is defined as

t(F, G) = hom(F, G)
|V (G)||V (F )| .

The number of homomorphisms hom(F, G) is given by

hom(F, G) =
∑

ϕ:V (F )→V (G)

∏
uv∈E(F )

βϕ(u)ϕ(v)(G)

where βij(G) is the weight of edge ij in graph G, which equals either 1 or 0 in unweighted graphs. For a
graphon W , the homomorphism density is defined as

t(F, W ) =
∫

[0,1]|V (F )|

∏
ij∈E(F )

W (xi, xj) dx .

A graph homomorphism is an edge preserving map from one graph to another. The homomorphism density
is useful as it is bounded even when the number of homomorphisms hom(F, G) go to infinity.
Definition 2.5. The cut norm of graphon W (Frieze & Kannan, 1999; Borgs et al., 2008) is defined as

∥W∥□ = sup
S,T

∣∣∣∣∫
S×T

W (x, y) dxdy

∣∣∣∣ ,

where the supremum is taken over all measurable sets S and T of [0, 1].
Definition 2.6. Given two graphons W1 and W2 the cut metric (Borgs et al., 2008) is defined as

δ□(W1, W2) = inf
φ

∥W1 − W φ
2 ∥□ ,

where the infimum is taken over all measure preserving bijections φ : [0, 1] → [0, 1].

Let W denote the space of graphons, i.e., W = {W ∈ W}. Then, the cut metric is a pseudo-metric in W
because δ□(W1, W2) = 0 does not imply W1 = W2, i.e., δ□(W1, W2) ≥ 0 for W1 ̸= W2. However the cut
metric δ□ is a metric on the quotient space W̃ = W/ ∼ where f ∼ g if f(x, y) = g(σx, σy) for some measure
preserving σ.
Definition 2.7. Uniformly pick x1, x2, . . . xn from [0, 1]. A W-random graph G(n, W ) has the vertex set
1, 2, . . . n and vertices i and j are connected with probability W (xi, xj).

We can think of W -random graphs as graphs sampled from the graphon W . We will use W -random graphs
in our experiments.

The homomorphism density is used to define graph convergence.
Definition 2.8 ((Borgs et al., 2008)). A graph sequence {Gn}n is said to be convergent if t(F, Gn) converges
as n goes to infinity for any simple graph F .

Every finite, simple graph G can be represented by a graphon WG, which we call its empirical graphon.
Definition 2.9. Given a graph G with n vertices labeled {1, . . . , n}, we define its empirical graphon
WG : [0, 1]2 → [0, 1] as follows: We split the interval [0, 1] into n equal intervals {I1, I2, . . . , In} (first one
closed, all others half open) and for x ∈ Ii, y ∈ Ij define

WG(x, y) =
{

1 if ij ∈ E(G)
0 otherwise ,
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where E(G) denotes the edges of G. The empirical graphon replaces the the adjacency matrix with a unit
square and the (i, j)th entry of the adjacency matrix is replaced with a square of size (1/n) × (1/n).

The cut metric between graphs G and G′ is defined as δ□ (G, G′) = δ□ (WG, WG′). The cut metric between
a graph G and a graphon U is defined as δ□ (G, U) = δ□ (WG, U).

Borgs et al. (2008) prove the following theorem for convergent graph sequences.
Theorem 2.10 (Borgs et al. (2008)). For every convergent sequence {Gn}n of simple graphs there is a
graphon W with values in [0, 1] such that t(F, Gn) → t(F, W ) for every simple graph F . Moreover for every
graphon W with values in [0, 1] there is a convergent sequence of graphs satisfying this relation.
Theorem 2.11 (Borgs et al. (2011)). A sequence of graphs {Gn}n is convergent if and only if it is Cauchy
in the δ□ distance. The sequence {Gn}n converges to W if and only if δ□(WGn

, W ) → 0. Furthermore,
if this is the case, and |V (Gn)| → ∞, then there is a way to label the nodes of the graphs Gn such that
∥WGn − W∥□ → 0.

2.2.1 Line graphs and edge exchangeability

As discussed above edge-exchangeable graphs can exhibit sparsity (Janson, 2018). Here we show the link
between line graphs and edge exchangeability.

Figure 2 shows the connection between vertex and edge exchangeability when we map from graphs to line
graphs. Graph G is shown on the top left and its line graph H = L(G) is shown on the top right. The graph
on the bottom right H ′ is H with vertices permuted. Let us call the graph on the bottom left G′. Following
definition 2.1 we can see that G′ is the root of H ′ , i.e., H ′ = L(G′). Furthermore, the vertex permutation
ϕ relabeled the vertices (1, 2, 3, 4) in H to (2, 3, 4, 1) in H ′. We see the same permutation occurs in edges
from G to G′, i.e. G′ is an edge permuted version of G. This is not surprising as line graphs map edges to
vertices.

G

1

2

3 4

H =L(G)

1

2

3

4

G' = Edge permuted G

3

2
4

1

H' = Vertex permuted L(G)

1

2

3

4

Figure 2: Vertex and edge exchangeability in graphs and line graphs. Graphs G and H = L(G) on the top
row. Graph H ′ is a vertex permuted version of H. We see that H ′ = L(G′), where G′ is the edge
permuted version of G.
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2.2.2 Edge vs homomorphism density

In this study we mention different types of convergence: convergence with respect to homomorphism density
(Definition 2.4), cut metric (Definition 2.6), and edge density (Equation 1). Homomorphism density conver-
gence is subgraph convergence. Suppose {Gn}n converges in homomorphism density, then for any graph F
the sequence {t(F, Gn)}n converges. That is, the edge density, triangle density, 4-cycle density and all such
densities converge. Convergence in homomorphism density is equivalent to convergence in the cut metric
as shown by Borgs et al. (2011). In contrast, edge density convergence is the same as convergence of the
single sequence {t( , Gn)}n. As edge density is given by 2|E(Gn)|/n(n − 1) and t( , Gn) = 2|E(Gn)|/n2

convergence in one implies convergence in the other. The denominators are different because the edge density
excludes the diagonal of the adjacency matrix whereas {t( , Gn)}n includes it (see Definition 2.4). However,
edge density is much weaker and does not give us subgraph convergence.

We use edge density to characterize a bigger space of graph sequences – sequences that do not converge
either in the cut metric or in edge density. The use of lim inf in the definition of dense graph sequences
(Definition 3.1) means that we do not need convergence of edge densities to call a graph sequence dense.

2.3 Related work

2.3.1 Graphons of sparse graphs

Caron & Fox (2017) set aside the discrete version of exchangeability and consider its continuous counterpart
– Kallenberg exchangeability (Kallenberg, 1990). They consider exchangeable point processes and model
graphs using completely random measures. They show that by selecting an appropriate Lévy measure, they
can construct sparse or dense graphs. Collaborations led by Borgs and Chayes have resulted in considerable
work on sparse graph limits. Borgs et al. (2017) consider sparse graph convergence by introducing a new
notion of convergence called LD-convergence, which is based on the theory of large deviations. The large
deviations rate function is considered to be the limit object for the sparse graph sequence. In Borgs et al.
(2018), they introduce stretched graphons as a way to overcome the zero graphon, which is the natural limit
of sparse graphs. They consider both the rescaled graphon introduced by Bollobás & Riordan (2011) and
the stretched graphon as means of representing sparse graph limits. In Borgs et al. (2019a) they develop
the theory of Lp graphons, which provides convergence for sparse graphs with the flexibility to account for
power laws. Borgs et al. (2019b) and Borgs et al. (2021) consider graphexes – a triple including a positive
number, a positive integrable function and a graphon – as a framework for modelling sparse graphs.

Edge-exchangeability is another avenue used to model sparse graphs. Instead of considering exchangeabil-
ity of vertices, edges are labelled and their permutations are considered. Crane & Dempsey (2018; 2019)
introduce edge-exchangeable network models and show that these models allow for sparse structure and
power-law degree distributions. Cai et al. (2016) consider projective, edge-exchangeable graphs and obtain
sparsity results for all Poisson point process-based graph frequency models. Janson (2018) extends the model
put forward by Crane & Dempsey (2018) and investigate different types of graphs that can be generated by
this model. He shows that graphs ranging from dense to very sparse graphs can be generated by using the
Poisson construction.

2.3.2 Other graphon applications

Possibly due to its rich mathematical context, graphons are used in many topics in machine learning. For
example, it is desirable for a machine learning model to be transferable. Ruiz et al. (2020) propose graphon
neural networks as the limit of graph neural networks (GNNs) with the aim of producing transferable GNNs.
They show that GNNs are transferable between deterministic graphs obtained from the same graphon.
Graphons and the associated theory is used to bolster theoretical aspects of other topics. Levie (2023) propose
a graph signal similarity measure for message passing neural networks based on the graphon cut distance.
Hence they extend the cut distance to graph signals. Graph embeddings are used for a myriad of downstream
tasks such as node classification, clustering and link prediction. Davison & Austern (2023) investigate
theoretical aspects of graph embeddings and show that embedding methods implicitly fit graphon models.
Under the assumption the graph is exchangeable, they describe the limiting distribution of embeddings
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learned via subsampling the network. Graph homomorphisms are closely connected to graphons. Lyu et al.
(2023) introduce motif sampling, which essentially sampling graph homomorphisms uniformly at random.
They propose two MCMC algorithms for sampling random graph homomorphisms.

3 Sparse graphs with dense line graphs

In this section, we show that there are sparse graphs whose line graphs are dense. In particular we show in
Theorem 3.6 that sparse graphs with square-degree property (Definition 3.3) have corresponding line graphs
that are dense, and vice versa. We show in Section 3.4 that under certain conditions, the corresponding line
graphs converge with respect to the homomorphism density, leading to graphons of line graphs. Therefore,
this enables us to define a novel approach to defining graph limits for sparse graphs by their associated line
graphs. Recall we denote graph sequences as {Gn}n and the corresponding line graph sequence as {Hm}m.
If the sequences converge, then we consistently use W and U for graphons corresponding to {Gn}n and
{Hm}m respectively. We defer many of the proofs of lemmas and theorems to Appendix A.

3.1 Graph sequences

Definition 3.1 (Dense graph sequences). A sequence of graphs {Gn}n is dense if the number of edges
m grow quadratically with the number of nodes n, i.e.,

lim inf
n→∞

m

n2 = c > 0 .

We denote the set of all dense graph sequences by D.
Definition 3.2 (Sparse graph sequences). A sequence of graphs {Gn}n is sparse if the number of edges
m grow sub-quadratically with the number of nodes n, i.e.,

lim
n→∞

m

n2 = 0 .

We denote the set of all sparse graph sequences by S.

For dense graph sequences, the density is bounded from below by a non-zero constant, whereas for sparse
graph sequences it goes to zero. The density or m/n2 of a sequence of dense graphs {Gn}n does not
necessarily converge; the lim inf is strictly positive, i.e., any converging subsequence has strictly positive
density as n → ∞. In contrast, the density or m/n2 of sparse graphs converge to zero, i.e., the limit is equal
to zero, not just the lim inf. The set of dense graph sequences D and the set of sparse graph sequences S is
non-intersecting. Furthermore, the complement of the union of D and S, D ∪ S is non-empty. It contains
graph sequences {Gn}n such that lim infn→∞ m/n2 = 0 ̸= lim supn→∞ m/n2, i.e, it is a mixture of dense
and sparse graph sequences with the density of different subsequences converging to different limits with
some converging to zero.

Next we define a property of a graph sequence that we call the square-degree property .
Definition 3.3 (Square-degree property Sq). Let {Gn}n denote a sequence of graphs. We say that
{Gn}n exhibits the square-degree property if there exists some c1 > 0 and N0 ∈ N such that for all n ≥ N0
we have ∑

deg v2
i,n ≥ c1

(∑
deg vi,n

)2
.

We denote the set of graph sequences satisfying the square-degree property by Sq, i.e. if {Gn}n satisfies Sq
then {Gn}n ∈ Sq.

We note that Cauchy-Schwarz inequality gives c1 = 1/n, which is not satisfactory as we need a strictly
positive lower bound c1 > 0 for all n. The square-degree property says that the ratio between the sum of the
degree squared and square of the sum of degrees is bounded from below as n goes to infinity. As the degree
of a node is either zero or positive, this cannot be satisfied if the degree distribution is uniform, because then
the sum of the mixed product terms deg vi,n × deg vj,n would hold the bulk weight compared to the square
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terms (deg vi,n)2, especially as there are
(

n
2
)

mixed product terms and only n square terms. Therefore, we
expect a graph sequence satisfying this property to have some inequalities in the degree distribution. For
example, it may contain a set of “big player” nodes with large degree values.

Using the square-degree property Sq we characterize graph sequences {Gn}n as shown in Figure 3, in which
the blue text represents results obtained in this paper. If a graph sequence converges in homomorphism
density, then by Theorem 2.10 a graphon exists. In such instances, we consistently use W and U for
graphons corresponding to {Gn}n and {Hm}m respectively. It is well-known that for converging dense graph
sequences {Gn}n, the graphon W ̸= 0, while sparse graph sequences correspond to W = 0. This can be
easily verified using the fact that for a converging graph sequence edge density and the non-zero area of the
empirical graphon have the same limit.

{Gn}n

Dense
W ̸= 0

{Gn}n /∈ Sq

U = 0

e.g. Erdős–Rényi graphs §5.2

Sparse
W = 0

{Gn}n /∈ Sq

U = 0

e.g. Paths Pn §4.3,
Cycles Cn §4.3

{Gn}n ∈ Sq

U ̸= 0

e.g. Superlinear PA graphs §5.1,
Stars K1,n §4.2

Figure 3: Characterization of graph sequences {Gn}n with results discussed in this paper in blue text.
{Gn}n ∈ Sq indicates that the graph sequences satisfies the square-degree property. If {Gn}n con-
verges to W (with respect to the homomorphism density), then for dense graphs {Gn}n, W ̸= 0,
but U = 0. Recall that sparse graphs converge to W = 0. However if {Gn}n ∈ Sq and {Hm}m

converges to U , then U ̸= 0. For sparse {Gn}n /∈ Sq then U = 0.

We show that dense graph sequences do not satisfy the square-degree property Sq in Section 3.2. If {Gn}n

converges for dense sequences, then {Hm}m converges to U = 0, i.e., line graphs of dense graph sequences
converge to the zero graphon. If {Gn}n is sparse then we know that W = 0 However, we cannot distinguish
between different sparse graphs using W . We suppose {Gn}n converges to W and find conditions under which
{Hm}m converges to U in Section 3.4. If the line graphs {Hm}m of sparse {Gn}n that satisfy Sq converge,
then U can distinguish different types of sparse graphs. This means that line graphs of sparse graphs can be
more revealing which we illustrate in Sections 4 and 5. The square-degree property Sq is important because
only graphs satisfying Sq give rise to U ̸= 0, if {Hm}m converges. Furthermore, not all sparse graphs satisfy
Sq. Paths Pn or cycles Cn are such sparse graphs. Therefore, the subset of sparse graphs satisfying Sq gives
us certain types of graphs such as stars K1,n or superlinear preferential attachment graphs. For these graph
sequences the line graphs converge to the limit U ̸= 0. We will explore the square-degree property next.

3.2 Graph sequences with square-degree property Sq are sparse

Lemma 3.4. If {Gn}n ∈ Sq =⇒ {Gn}n ∈ S, i.e., graph sequences satisfying the square-degree property are
sparse.

Proof. As {Gn}n ∈ Sq there exist some c1 > 0 and N0 ∈ N such that for all n ≥ N0 we have∑
deg v2

i,n ≥ c1

(∑
deg vi,n

)2
.

As
n(n − 1)2 ≥

∑
deg v2

i,n ≥ c1

(∑
deg vi,n

)2
= 4c1m2 , (2)
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we get m ∈ O(n3/2) making {Gn}n sparse. From the above inequality we can see that

lim sup
n→∞

m2

n4 = lim sup
n→∞

1
4c1n

= 0 ,

making limn→∞ m/n2 = 0.

Lemma 3.4 shows that the sparse graphs are a superset of graphs satisfying the square-degree property.
However, not all sparse graphs satisfy Sq, for example paths and cycles. Therefore

Sq ⊂ S .

Corollary 3.5. If {Gn}n ∈ D =⇒ {Gn}n /∈ Sq, i.e., dense graph sequences do not satisfy the square-degree
property.

3.3 Only line graphs of graphs with square-degree property are dense

Theorem 3.6. Let {Gn}n ∈ S be a sparse graph sequence. Let {Hm}m be the corresponding sequence of
line graphs with Hm = L(Gn). Then {Gn}n ∈ Sq ≡ {Hm}m ∈ D, i.e., {Gn}n satisfies Sq if and only if
{Hm}m is dense.

Proof. 1. First we show {Gn}n ∈ Sq =⇒ {Hm}m ∈ D. Suppose {Gn}n ∈ Sq . Then from Definition
3.3 there exists some c1 > 0 and N0 ∈ N such that for all n ≥ N0 we have∑

deg v2
i,n ≥ c1

(∑
deg vi,n

)2
= 4c1m2 ,

where m denotes the number of edges in Gn. From equation (1) the edge density of the line graph
L(Gn) is

density(Hm) =
1
2

∑
i(deg vi,n)2 − m
1
2 m(m − 1)

,

≥
1
2 4c1m2 − m
1
2 m(m − 1)

,

=
2c1 − 1

m
1
2 − 1

2m

.

Thus,
lim inf
m→∞

density(Hm) = 4c1 > 0 .

2. Next we show {Hm}m ∈ D =⇒ {Gn}n ∈ Sq. If the line graphs {Hm}m are dense, i.e., {Hm}m ∈ D
we have

density(Hm) =
1
2

∑
i(deg vi,n)2 − m
1
2 m(m − 1)

≥ c > 0 for all m > M0 ∈ N.

This can only happen when ∑
i

(deg vi,n)2 ≥ c′m2 where c′ > 0 ,

implying that {Gn}n satisfies the square-degree property.

Next we explore graph sequences {Gn}n that do not satisfy Sq, i.e. {Gn}n /∈ Sq.
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Lemma 3.7. If {Gn}n does not satisfy the square-degree property, i.e., {Gn}n /∈ Sq, then

lim inf
m→∞

density(Hm) = 0 .

Additionally if the graph sequence {Hm}m is convergent in edge density, then

lim
m→∞

density(Hm) = 0 .

Lemma 3.7 coupled with Theorem 3.6 show that dense {Hm}m can only occur as a result of {Gn}n ∈ Sq.
This is shown in Figure 4 with the shaded area representing dense {Hm}m.

Dense

Sparse

Sq

{Gn}n

{Pn}n

{Cn}n

Figure 4: The Euler diagram of the space of dense and sparse graph sequences, and indicate where there
are graph sequences satisfying the square-degree property. The set S\Sq is non-empty as paths
{Pn}n, cycles {Cn}n and other graphs live here. The line graphs {Hm}m are dense in the shaded
set Sq.

3.4 Conditions for non-zero graphons of line graphs

In this section we explore graph sequences converging in homomorphism density. We suppose {Gn}n con-
verges to W and show that under the square-degree property, {Hm}m converges to a non-zero U . We will
start with homomorphism densities.

3.4.1 Revisiting graph homomorphisms

Recall when defining the empirical graphon (Definition 2.9) we divide the interval [0,1] into n equal subin-
tervals I1, I2, . . . , In where each Ij has length 1/n. We use this construction in the next Lemma. Fur-
thermore, recall that the homomorphism density t( , Gn) = 2m/n2 while the edge density, density(Gn) =
2m/(n(n − 1)) (Section 2.2.2) making the two densities converge to the same limit.
Lemma 3.8. Let Hm = L(Gn) and let Wn be the empirical graphon of Gn with [0, 1] divided into n equal
intervals {r1, . . . rn}. Let Um be the empirical graphon of Hm with [0, 1] equally divided into m intervals
{q1, . . . , qm}. Then t( , Hm) can be written as

t( , Hm) =
∑
i,j

Um(qi, qj) · 1
m2 =

∑
i,j,k
i̸=j

Wn(ri, rk)Wn(rk, rj) · 1
m2 .

3.4.2 Converging graph sequences

Lemma 3.9. Let {Gn}n be a dense graph sequence converging to W and let Hm = L(Gn). Then {Hm}m

converges to U(x, y) = 0 almost everywhere.

Recall the definition of the cut-norm (Definition 2.5). The following lemma shows that for a graph sequence
{Gn}n satisfying the square-degree property, if the sequence of line graphs {Hm}m converge to U , then
U has a strictly positive cut-norm. But Lemma 3.11 shows that for sparse graphs that do not have the
square-degree property, the graphon corresponding to the line graph is uniformly zero.
Lemma 3.10. Let {Gn}n ∈ Sq and let Hm = L(Gn). If {Hm}m converges to U then U has strictly positive
cut-norm, that is ∥U∥□ > 0.

10
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{Gn}n {Hm}m

{Gn}n ∈ D ≡ W ̸= 0

{Gn}n ∈ S\Sq ⇒ W = 0

{Gn}n ∈ Sq ⇒ W = 0

{Hm}m ∈ S ≡ U = 0

{Hm}m ∈ D ≡ U ̸= 0

Figure 5: The map from converging {Gn}n to converging {Hm}m, summarising Lemmas 3.9, 3.10 and
3.11.

Lemma 3.11. Let {Gn}n ∈ S\Sq and let Hm = L(Gn). If {Hm}m converges to U , then U = 0 almost
everywhere.

For graph sequences {Gn}n converging in homomorphism density the Euler diagram of sparse and dense
graphs is given in Figure 6.

Sparse

Sq

Converging {Gn}n

Dense

Figure 6: The Euler diagram in Figure 4 updated for converging {Gn}n.

Lemmas 3.9, 3.10 and 3.11 can be used map different instances of W to U depending on the characteristics
of {Gn}n. For W and U to exist both sequences {Gn}n and {Hm}m need to converge. Figure 5 shows this
relationship.

3.4.3 Orthogonal spaces

Lemma 3.12. Suppose {Gn}n converges to W and {Hm}m converges to U where Hm = L(Gn). Then the
inner product

⟨W, U⟩ =
∫

[0,1]2
W (x, y)U(x, y) dxdy = 0 .

Thus, graphons U obtained from line graphs are orthogonal to graphons W with respect to the above inner
product.

4 Results for deterministic graphs

In this section, consider graph sequences consisting of disjoint star graphs. We show that although the
original graph sequences {Gn}n are sparse, the corresponding sequences of line graphs {Hm}m converge to
distinct non-zero graphons.

4.1 Dense line graphs, for star graphs

Consider a sequence of graphs {Gn}n as follows: For n = 1 we start with a single node v0. At each step we
add a node and connect it to v0. At the (n + 1)st step, this will give us a star graph K1,n. Next we consider
the line graph density of star graphs.
Lemma 4.1. Let {Gn}n denote a sequence of star graphs i.e, Gn = K1,n−1 and let Hm = L(K1,n−1). Then
{K1,n−1}n ∈ Sq. Moreover density(Hm) = 1 and limm→∞ density(Hm) = 1.

11
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Proof. Line graphs of star graphs are complete (Lemma 2.3-6). This gives us the desired result. An alternate
proof from first principles is given in the Appendix.

4.2 Graphons of line graphs of star graphs

Suppose {Gn}n is a sparse graph sequence. Note that {Gn}n converges to W (x, y) = 0 almost everywhere as
per the cut-metric (Definition 2.6), ∥WGn

− W∥□ = 2m
n2 → 0. As any sequence of sparse graphs converges to

W (x, y) = 0, we cannot differentiate different types of sparse graphs from W . However, we can differentiate
different types of sparse graphs using line graphs. In the following, we consider single and disjoint star graphs
as an example of different sparse graphs.

1 star 2 stars 3 stars 4 stars

Figure 7: Top row: Graphs of 1 to 4 disjoint stars. Recall the graphon W = 0 for star graphs. Middle row:
Line graphs of disjoint stars in top row. Line graphs of star graphs are complete graphs. Bottom
row: The empirical graphons of the line graphs UHm of the star graphs shown on top.

4.2.1 Single star graphs

Since the star graph K1,n is sparse, a sequence of star graphs converges to graphon W = 0. In the following
lemma, we show that the corresponding sequence of line graphs Hm = L(Gn) converge to a non-zero graphon
U .
Lemma 4.2. The line graphs {Hm}m of a sequence of star graphs {K1,n−1}n satisfy

∥UHm − U∥□ = 1
m

,

where UHm denotes the empirical graphon (Definition 2.9) of Hm and U(x, y) = 1. Therefore, the line graphs
of star graphs converge to the graphon U in the cut metric (Definition 2.6).

12
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Proof. For n ≥ 2 we consider the line graphs Hm = L(K1,n−1) of this sequence. The line graph Hm of a
star graph K1,n−1 is a complete graph Kn−1 (Lemma 2.3-6). We obtain the empirical graphon (Definition
2.9) of Hm by splitting the interval [0, 1] into m equal intervals {I1, I2, . . . , Im} and for x ∈ Ii, y ∈ Ij have

UHm
(x, y) =

{
0 if i = j ,

1 otherwise
.

The empirical graphon UHm
is illustrated in the bottom leftmost diagram in Figure 7. Consider U(x, y) = 1

for all x, y. The cut norm (Definition 2.5) of ∥UHm − U∥□ is

∥UHm − U∥□ = sup
S,T

∣∣∣∣∫
S×T

UHm(x, y) − U(x, y) dxdy

∣∣∣∣ .

Using the intervals {I1, I2, . . . , Im} and for x ∈ Ii, y ∈ Ij we have

U(x, y) − UHm(x, y) =
{

1 if i = j ,

0 otherwise
,

giving
∥UHm

− U∥□ = 1
m2 × m = 1

m
,

as each Ii ×Ii square would give rise to 1
m2 area. We have used S = T = [0, 1] as any S ⊂ [0, 1] and T ⊂ [0, 1]

would give smaller area. The cut metric (Definition 2.6)
δ□(UHm , U) = inf

φ
∥UHm − Uφ∥□ = ∥UHm − U∥□ ,

as Uφ = U when U(x, y) = 1. As limm→∞∥UHm
− U∥□ = 0, we have

lim
m→∞

δ□(UHm , U) = 0 ,

and from Theorem 2.11 (Borgs et al., 2011) {Hm}m converges to U . We note that this works for any
U(x, y) = 1 almost everywhere.

4.2.2 Multiple stars

Next we consider k disjoint stars denoted by Gni
= {K1,s1 , K1,s2 , . . . , K1,sk

} and the sequence {Gni
}i as

follows: When i = 1 we start with k nodes each denoting the centre of a star. Let {r1, . . . , rk} denote positive
integers and let R =

∑
j rj . At each step we add R nodes to the graph. Of the R nodes, rj nodes connect

to K1,sj
for j ∈ {1, . . . k}. This process results in k disjoint stars with the jth star having 1 + irj nodes at

the ith step. The node ratios converge to r1 : r2 : . . . : rk as i goes to infinity. The following lemma shows
that the line graphs of disjoint stars converge to an almost block diagonal graphon.
Lemma 4.3. Let {Gni}i denote a disjoint set of k star graphs {K1,s1 , K1,s2 , . . . , K1,sk

} where Gni has ni

vertices and the number of degree-1 vertices of the stars satisfy the ratio r1 : r2 : . . . : rk where each rj ∈ Z+.
Consider the graphon U obtained by splitting the interval [0, 1] into k sub intervals {I1, I2, . . . , Ik} such that
the length of Ir denoted by L(Ir) satisfies the following: L(I1) : L(I2) : . . . : L(Ik) = r1 : r2 : . . . : rk and for
x ∈ Ii and y ∈ Ij

U(x, y) =
{

1 if i = j

0 otherwise
,

making U is a block diagonal graphon. The line graphs Hmi
= L(Gni

) satisfy

∥UHm
− U∥□ = 1

mi
,

where UHm denotes the empirical graphon (Definition 2.9) of Hmi making {Hmi}i converge to the graphon
U in the cut metric (Definition 2.6).
Remark 4.4. Both single stars and multiple disjoint stars {Gn}n give rise to W = 0. However their line
graphs {Hm}m give rise to different graphons U as shown in Lemmas 4.2 and 4.3. This is an example of
differentiating sparse graphs in the line graph space. See Figure 7.
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4.3 Line graphs of some dense and sparse graphs

Next, we go through some well known graphs and compute their line graph edge densities. We consider
specific examples of graph sequences {Gn}n ∈ D, and {Gn}n ∈ S\Sq.
Theorem 4.5. Let {Gn}n be a sequence of graphs where Gn has n vertices and m edges. Let Hm = L(Gn)
and suppose m → ∞ as n → ∞. Then {Gn}n with properties described below give rise to following line
graph edge densities.

1. Suppose Gn is the complete graph Kn. Then the edge density of the corresponding line graph,
density(Hm) = 4

n+1 where m = 1
2 n(n − 1) and limm→∞ density(Hm) = 0. Furthermore, {Kn}n ∈ D

and {Hm}m ∈ S.

2. Suppose Gn is an r-regular graph. Then the edge density density(Hm) = 2(r−1)
m−1 and

limm→∞ density(Hm) = 0. Furthermore {Gn}n, {Hm}m ∈ S\Sq.

3. Suppose Gn is a path. Then the edge density density(Hm) = 2
m and limm→∞ density(Hm) = 0.

Furthermore {Gn}n, {Hm}m ∈ S\Sq.

4. Suppose Gn is a cycle. Then the edge density density(Hm) = 2
m−1 and limm→∞ density(Hm) = 0.

Furthermore {Gn}n, {Hm}m ∈ S\Sq.

4.4 Empirical Experiments on Estimating Graphons

In this section we compare graphs generated from different empirical graphons. Let Gn denote a star K1,n−1
with n vertices and let Hm = L(Gn). We consider the empirical graphons (see Definition 2.9) WGn

and UHm

where we consistently use W and U to denote graphons related to Gn and Hm respectively. We consider
the set of k disjoint stars as illustrated in Figure 7. We want to evaluate how well these empirical graphons
can generate graphs with kn vertices where n = 100 and k ∈ {2, 3, 4, 5}. That is, do graphs generated from
WGn

resemble stars when n increases? Similarly, do graphs generated from UHm
resemble line graphs of

stars when m increases?

To evaluate this, we generate (following Definition 2.7) W -random graphs from WGn
and U -random graphs

UHm
with kn vertices i.e., let ĜW = G(kn, WGn

) and ĤU = G(kn, UHm
). Noting we cannot compare ĜW

and ĤU because ĜW is in the space of original graphs whereas ĤU is in the space of line-graphs, we consider
the line graph of ĜW , that is, let ĤW = L(ĜW ). Then we have 3 graphs in the line graph space, the actual
line graph H = L(Gkn), the estimated line graph of the W -random graph ĤW and the estimated U -random
graph ĤU . We compare different quantities derived from H, ĤW and ĤU for different k. These include the
edge-density, the triangle-density, and the cosine similarity of the degree distributions of ĤU and ĤW with
H.

Figure 8 shows the values obtained from ĤU , ĤW and H for a single star graph and Figure 9 shows the
metrics for 2 stars. All 3 metrics are better for ĤU compared to ĤW . Interestingly, the edge and triangle
densities of ĤU are slightly lower than those of H in all instances. This is because ĤU is sampled from UHm

which has empty squares along the diagonal, which are effectively closed or blacked out in the graphon U
(see empirical graphons in Figure 7). In these two scenarios we know that the shaded-area of UHm is less
than that of U , and as such slightly lower edge and triangle densities are expected.

14



Under review as submission to TMLR

Degree Cosine Edge Density Triangle Density

200 300 400 500 200 300 400 500 200 300 400 500

0

1

2

3

0.25

0.50

0.75

1.00

0.4

0.6

0.8

1.0

Nodes

V
al

ue

Graph

H

ĤU
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Figure 8: Experiment with 1 star graph. Degree cosine similarity, edge density and triangle density for H,
ĤU and ĤW .

Degree Cosine Edge Density Triangle Density

200 300 400 500 200 300 400 500 200 300 400 500

0.0

0.2

0.4

0.6

0.1

0.2

0.3

0.4

0.5

0.4

0.6

0.8

1.0

Nodes

V
al

ue

Graph

H

ĤU
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Figure 9: Experiment with 2 star graphs. Degree cosine similarity, edge density and triangle density for H,
ĤU and ĤW .

5 Results on probabilistic graphs

In this section, we consider two models of graphs that are popular in social network analysis, namely
preferential attachment models (Albert & Barabási, 2002) and Erdős–Rényi model G(n, p). As noted in
Figure 3, the two models have contrasting behaviours. We show in Section 5.1 that superlinear preferential
attachment models satisfy the square-degree property almost surely, and the corresponding line graphs Hm

converges to a non-zero graphon U . The Erdős–Rényi model results in a dense non-zero graphon W , and we
show in Section 5.2 that the edge density of Hm convergence to zero with an exponential rate.
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5.1 Superlinear preferential attachment graphs

Preferential attachment models (Albert & Barabási, 2002) consider nodes connecting to more connected
nodes with higher probability. Specifically the probability Π(i) that a new node connects to node i, which
has degree ki is given by

Π(i) = kα
i∑

i kα
i

, (3)

where α is a parameter. The three regimes α < 1, α = 1 and α > 1 are called sublinear, linear and superlinear
preferential attachment respectively. Suppose we start with s0 nodes and s0 edges and at each time step t
a new node is added to the network with s edges. After t timesteps the network has

n = t + s0 nodes and m = s0 + ts edges. (4)

For growing networks with superlinear preferential attachment Krapivsky & Redner (2001); Krapivsky et al.
(2000) state that the maximum degree kmax satisfies

kmax ∼ n .

Sethuraman & Venkataramani (2019) prove a more rigorous version of the above statement. They show
that,

P

[
lim

n→∞

1
n

kmax = 1
]

= 1 .

We will use this result to show that superlinear preferential attachment graphs satisfy the square-degree
property almost surely.
Lemma 5.1. Let {Gn}n denote a sequence of graphs growing by superlinear preferential attachment satisfying
equation (3) with α > 1. Then {Gn}n ∈ Sq almost surely.

Proof. Using the result from Sethuraman & Venkataramani (2019) we know that for every ϵ > 0 there exists
N0 ∈ N such that

P

[∣∣∣∣ 1
n

kmax − 1
∣∣∣∣ < ϵ

]
= 1 ,

for all n > N0. That is, almost surely

1 − ϵ <
1
n

kmax < 1 + ϵ ,

for n > N0. Rearranging the equations for n and m (equation (4)) we get ns = m + (s − 1)s0 giving us
ns > m. Hence, ∑

(deg v2
i ) > k2

max > (1 − ϵ)2n2 >
(1 − ϵ)2m2

s2 almost surely.

Thus, for n > N0

P

[∑
(deg v2

i ) >
(1 − ϵ)2

s2 m2
]

= 1

showing that superlinear preferential attachment graphs satisfy the square-degree property (Definition 3.3)
almost surely for large values of n. From Theorem 3.6 they produce dense line graphs. If {t(F, Hm)}m

converges for all graphs F , where Hm = L(Gn) then Theorem 2.10 (Borgs et al., 2008) ensures {Hm}m

converges to a graphon U . As {Hm}m is dense U ̸= 0.

5.2 Erdős–Rényi graphs

The Erdős–Rényi model G(n, p) describes graphs of n vertices with edge probability p, where p is a parameter.
Each edge is equally likely to be included in the graph. The degree distribution for any vertex in Gn ∼ G(n, p)
is binomial with parameters n − 1 and p. For a given n and p there exists a graph distribution as different
edges can be included or left out in different graphs. Expectations are calculated with respect to this graph
distribution.
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Theorem 5.2. Let Gn be an Erdős–Rényi graph sampled from a G(n, p) model and suppose Gn has n nodes
and m edges. Let Hm = L(Gn). Then for any c ∈ (0, 1), the edge density of Hm satisfies

P [density(Hm) ≥ c] ≤ exp
(

−α2pn(n − 1)
4

)
+ exp

(
ln n − β2p(n − 1)

3

)
+ exp

(
−α2pn(n − 1)

6

)
,

where α ∈ (0, 1), n > 4
c(1−α)2 and β =

√
cn(1−α)

2 − 1. Therefore, as n and m go to infinity the edge density
of Hm satisfies

lim
m→∞

P [density(Hm) = 0] = 1 .

6 Conclusions

Graphons are a compact representation or a graph model that can generate arbitrarily large graphs. The
standard construction of the graphon is useful for dense graphs, but sparse graphs converge to the zero
graphon, limiting its utility. The classical construction concerns the non-zero area of the graphon, which
is zero for sparse graphs. To overcome this limitation, methods have been proposed that can capture and
differentiate point masses, a feature of sparse graphs. Typically, these methods have strong measure-theoretic
underpinnings and often involve complex mathematical machinery. In this paper, we show that for a subset of
sparse graphs, taking the line graph gives promising results. We propose a condition on sparse graphs, called
the square-degree property, which results in dense line graphs. This enables standard graph convergence to
be used to analyse graph limits.

We show that graphs that satisfy the square-degree property are sparse, but map to dense line graphs,
while graphs that do not satisfy the square-degree property give rise to sparse line graphs. Using the square
degree property, we illustrate three cases. First we show that star graphs are sparse and converge to the
zero graphon (W = 0). However, line graphs of star graphs are complete and converge to the graphon
U = 1. Similarly, multiple star graphs converge to W = 0, but their line graphs converge to a block diagonal
graphon U ̸= 0. Thus, line graphs of multiple star graphs (since they satisfy the the square-degree property)
are dense, making the graphon of these line graphs non-zero when convergence exists. Second we show that
preferential attachment models give rise to graph sequences that satisfy the square degree property, and
hence result in line graphs that converge to non-zero graphons. Third we prove that Erdős–Rényi graphs
almost surely give rise to sparse line graphs. We hope that this new approach of using line graphs to analyse
graph limits provides an interesting tool for researchers working on graphons.
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A Proofs on sparse graphs with dense line graphs

Corollary A.1. If {Gn}n ∈ D =⇒ {Gn}n /∈ Sq, i.e., dense graph sequences do not satisfy the square-degree
property.

Proof. As D ⊂ S̄, where S̄ denotes the complement of S, this is true because of the contrapositive of Lemma
3.4. It can be quickly verified that dense graph sequences do not satisfy equation (2) in Lemma 3.4 because
for dense graphs m ≥ cn2 for some c > 0.

Lemma 3.7. If {Gn}n does not satisfy the square-degree property, i.e., {Gn}n /∈ Sq, then

lim inf
m→∞

density(Hm) = 0 .

Additionally if the graph sequence {Hm}m is convergent in edge density, then

lim
m→∞

density(Hm) = 0 .

Proof. The first part is the contra-positive of Theorem 3.6(2). We prove it from first principles for the sake
of completeness. Let us restate the square-degree property and consider its negation. If a graph sequence
{Gn}n satisfies the square-degree property, then there exists constants c1 ∈ (0, 1) and N0 ∈ N such that for
all n ≥ N0 we have ∑

deg v2
i,n ≥ c1

(∑
deg vi,n

)2
.

The negation of square-degree property, ¬Sq says that for all c1 > 0 and N0 ∈ N there exists n ≥ N0 such
that ∑

deg v2
i,n < c1

(∑
deg vi,n

)2
.

For every N0 ∈ N there exists n ≥ N0 such that this inequality is satisfied. Consider

Ac1 =
{

n ∈ N : n ≥ N0,
∑

deg v2
i,n < c1

(∑
deg vi,n

)2
}

.

If |Ac1 | was finite, then we can pick Nν = max(Ac1) + 1 and for n ≥ Nν the inequality
∑

deg v2
i,n <

c1 (
∑

deg vi,n)2 would not be satisfied. Thus, the set Ac1 has infinitely many elements. Therefore for every
c1 ∈ (0, 1) and N0 ∈ N there is an infinite sequence Ac1 such that for any n ∈ Ac1∑

deg v2
i,n < c1

(∑
deg vi,n

)2
.

Hence we can consider a sequence of sequences {Ac1i
}c1i

where c1i
> c1j

when i < j. From this sequence
set we can choose a diagonal subsequence {n1, n2, . . .} such that n1 ∈ Ac11

and n2 ∈ Ac12
and so on, such

that this sequence converges to zero. From equation (1) recall that

density(Hm) =
1
2

∑
i(deg vi,n)2 − m
1
2 m(m − 1)

.

For the diagonal subsequence selected above∑
deg v2

i,n

(
∑

deg vi,n)2 =
∑

deg v2
i,n

4m2 → 0 ,
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giving us
lim inf
m→∞

density(Hm) = 0 .

If {Hm}m is convergent, then all subsequences converge to the same limit and we get

lim
m→∞

density(Hm) = 0 .

Lemma 3.8. Let Hm = L(Gn) and let Wn be the empirical graphon of Gn with [0, 1] divided into n equal
intervals {r1, . . . rn}. Let Um be the empirical graphon of Hm with [0, 1] equally divided into m intervals
{q1, . . . , qm}. Then t( , Hm) can be written as

t( , Hm) =
∑
i,j

Um(qi, qj) · 1
m2 =

∑
i,j,k
i̸=j

Wn(ri, rk)Wn(rk, rj) · 1
m2 .

Proof. From Definition 2.4

t(F, Hm) =
∑

ϕ:V (F )→V (Hm)

∏
ij∈E(F )

βϕ(i)ϕ(j)(Hm) · 1
m|V (F )| ,

where ϕ is a mapping from V (F ) to V (Hm) and βij(Hm) denotes the weight of edge ij in graph Hm, which
is either 1 or 0. Thus,

t( , Hm) =
∑

ϕ:V ( )→V (Hm)

∏
ij∈E( )

βϕ(i)ϕ(j)(Hm) · 1
m2 ,

=
∑

ϕ:V ( )→V (Hm)
ij∈E( )

βϕ(i)ϕ(j)(Hm) · 1
m2 ,

where we have dropped the product term as there is only one edge. We can replace the edge weight
βϕ(i)ϕ(j)(Hm) with the associated value in the empirical graphon Um(qϕ(i), qϕ(j)) giving us

t( , Hm) =
∑

ϕ:V ( )→V (Hm)
ij∈E( )

Um(qϕ(i), qϕ(j)) · 1
m2 ,

=
∑
i,j

Um(qi, qj) · 1
m2 ,

as ϕ can map the edge to any two vertices in Hm. Every edge in Gn is mapped to a vertex in Hm and 2
vertices in Hm are connected if the corresponding edges in Gn have a common vertex. That is, L( ) = ,
and for every edge in Hm there is a corresponding set of two edges with a common vertex ( ) in Gn. As
a result the empirical graphon (Definition 2.9),

Um(qi, qj) = 1 if and only if Wn(rk, rℓ)Wn(rℓ, rs) = 1

for some k, ℓ, s ∈ {1, . . . , n} with k ̸= s. The reason k ̸= s is because we need 2 distinct edges in Gn with a
common vertex to make an edge in Hm. As a result of this one-to-one and onto mapping we have∑

i,j

Um(qi, qj) =
∑
k,ℓ,s
k ̸=s

Wn(rk, rℓ)Wn(rℓ, rs)

giving us the desired result.
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Lemma 3.9. Let {Gn}n be a dense graph sequence converging to W and let Hm = L(Gn). Then {Hm}m

converges to U(x, y) = 0 almost everywhere.

Proof. As {Gn}n is a dense graph sequence converging to W

lim
n→∞

t( , Gn) = lim
n→∞

2m

n2 = c > 0 . (5)

We will use this limit later. Let Wn be the empirical graphon of Gn with [0, 1] divided into n equal
intervals {r1, . . . rn} and let Um be the empirical graphon of Hm with [0, 1] equally divided into m intervals
{q1, . . . , qm}. The homomorphism density {t( , Gn)}n is a converging sequence as {Gn}n converges to W .
We have

t( , Gn) =
∑
i,j,k

W (ri, rk)W (rk, rj) · 1
n3 ,

converging as n goes to infinity. From Lemma 3.8 we know

t( , Hm) =
∑
i,j

U(qi, qj) · 1
m2 ,

=
∑
i,j,k
i ̸=j

W (ri, rk)W (rk, rj) · 1
m2 ,

≤
∑
i,j,k

W (ri, rk)W (rk, rj) · 1
m2 ,

=
∑
i,j,k

1
n4 W (ri, rk)W (rk, rj) · 1(

m
n2

)2 .

As n and m go to infinity we get

lim sup
m→∞

t( , Hm) = lim
n→∞
m→∞

1
n

· t( , Gn) · 1(
m
n2

)2 = 0 ,

as m/n2 goes to c/2 > 0 (equation (5)) and t( , Gn) converges. As t( , Hm) lies between 0 and 1 we get

lim
m→∞

t( , Hm) = 0 .

As t( , Hm) = 2m′

n′2 goes to 0, where m′ and n′ denote the number of edges and vertices in Hm, the cut-norm
(Definition 2.5) satisfies

∥UHm
− U∥□ = ∥UHm

∥□ = 2m′

n′(n′ − 1) → 0 ,

where U(x, y) = 0. As the cut-metric (Definition 2.6)

δ□ (UHm
, U) = inf

φ
∥UHm

− Uφ∥ ,

{Hm}m converges to U in the cut-metric as the infimum is considered and as Uφ = U for U = 0.

Lemma 3.10. Let {Gn}n ∈ Sq and let Hm = L(Gn). If {Hm}m converges to U then U has strictly positive
cut-norm, that is ∥U∥□ > 0.

Proof. From Theorem 3.6 we know {Gn}n ∈ Sq ≡ {Hm}m ∈ D. Additionally, if {Hm}m converges to U

then {t( , Hm)}m converges to t( , U). As t( , Hm) = 2m′

n′2 where m′ and n′ denote the number of edges
and nodes in Hm where n′ = m, the sequence 2m′

n′2 converges to some constant c. But as {Hm}m ∈ D

t( , U) = lim
n′→∞

2m′

n′2 = c > 0 ,
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that is, the edge density of {Hm}m converges to a positive constant. The homomorphism density t( , U)
(Definition 2.4) is given by

t( , U) =
∫

[0,1]2
U(x, y) dxdy ,

which is equal to the cut-norm of U

∥U∥□ = sup
S,T

∣∣∣∣∫
S×T

U(x, y)dxdy

∣∣∣∣ ,

because U(x, y) ∈ [0, 1] and the supremum is achieved when S = T = [0, 1], giving us

∥U∥□ = t( , U) > 0 .

Lemma 3.11. Let {Gn}n ∈ S\Sq and let Hm = L(Gn). If {Hm}m converges to U , then U = 0 almost
everywhere.

Proof. As {Gn}n ∈ S, it is sparse and it converges to W = 0. From Lemma 3.7 if {Gn}n /∈ Sq

lim inf
m→∞

density(Hm) = 0 .

As {Hm}m converges to U , the edge densities converge and we get limm→∞ density(Hm) = 0. The empirical
graphon UHm

converges to U and we have the cut norm (Definition 2.5) of the empirical graphon

∥UHm
∥ = 2m′

n′(n′ − 1) → 0

giving us
lim

m→∞
∥UHm

− U∥ = 0 ,

where U = 0. As the cut-metric (Definition 2.6)

δ□ (UHm
, U) = inf

φ
∥UHm

− Uφ∥ ,

we get the result.

Lemma 3.12. Suppose {Gn}n converges to W and {Hm}m converges to U where Hm = L(Gn). Then the
inner product

⟨W, U⟩ =
∫

[0,1]2
W (x, y)U(x, y) dxdy = 0 .

Thus, graphons U obtained from line graphs are orthogonal to graphons W with respect to the above inner
product.

Proof. For converging sequences {Gn}n and {Hm}m we have W = 0 or U = 0 (Lemmas 3.9, 3.10 and 3.11).
The graphon W ̸= 0 only when {Gn}n ∈ D. When {Gn}n ∈ D we have {Hm}m ∈ S giving U = 0. The
graphon U ̸= 0 only when {Gn}n ∈ Sq implying W = 0 as Sq ⊂ S.

B Proofs on results for deterministic graphs

Lemma 4.1. Let {Gn}n denote a sequence of star graphs i.e, Gn = K1,n−1 and let Hm = L(K1,n−1). Then
{K1,n−1}n ∈ Sq. Moreover density(Hm) = 1 and limm→∞ density(Hm) = 1.
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Proof. We present an alternate proof from first principles. For the sake of completeness, we do the compu-
tation from first principles. For a star graph

deg vi =
{

n − 1 for star vertex ,

1 otherwise

giving us ∑
deg v2

i,n = (n − 1)2 + 1 + · · · + 1 ,

= (n − 1)2 + (n − 1) ,∑
deg vi,n = m = n − 1 ,∑

deg v2
i,n

(
∑

deg vi,n)2 = 1 + 1
n − 1 > 1 ,

showing that {K1,n}n ∈ Sq (Definition 3.3). From equation (1), the density of Hm is given by

density(Hm) =
1
2

∑
i(deg vi,n)2 − m
1
2 m(m − 1)

,

=
1
2 ((n − 1)2 + 1 + 1 + . . . + 1) − (n − 1)

1
2 (n − 1)(n − 2)

,

=
1
2 ((n − 1)2 + (n − 1)) − (n − 1)

1
2 (n − 1)(n − 2)

,

=
1
2 (n − 1)(n) − (n − 1)

1
2 (n − 1)(n − 2)

,

=
1
2 (n − 1)(n − 2)
1
2 (n − 1)(n − 2)

,

= 1 .

Thus, limm→∞ density(Hm) = 1.

Lemma 4.3. Let {Gni
}i denote a disjoint set of k star graphs {K1,s1 , K1,s2 , . . . , K1,sk

} where Gni
has ni

vertices and the number of degree-1 vertices of the stars satisfy the ratio r1 : r2 : . . . : rk where each rj ∈ Z+.
Consider the graphon U obtained by splitting the interval [0, 1] into k sub intervals {I1, I2, . . . , Ik} such that
the length of Ir denoted by L(Ir) satisfies the following: L(I1) : L(I2) : . . . : L(Ik) = r1 : r2 : . . . : rk and for
x ∈ Ii and y ∈ Ij

U(x, y) =
{

1 if i = j

0 otherwise
,

making U is a block diagonal graphon. The line graphs Hmi = L(Gni) satisfy

∥UHm
− U∥□ = 1

mi
,

where UHm
denotes the empirical graphon (Definition 2.9) of Hmi

making {Hmi
}i converge to the graphon

U in the cut metric (Definition 2.6).

Proof. The line graph of k disjoint stars is k disjoint complete subgraphs. This follows from Lemma 2.3 (4
and 6) as vertices of 2 different stars are not connected. Noting Hmi has mi vertices, we obtain the empirical
graphon (Definition 2.9) of Hmi

by splitting the interval [0, 1] into mi equal intervals {I1, I2, . . . , Imi
}.

At the ith step, the jth star K1,sj has 1+irj nodes and irj edges. Then the corresponding complete subgraph
Ksj

of the line graph Hmi
has irj nodes as each node in the line graph corresponds to an edge in Gni

. We
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label nodes belonging to a complete subgraph consecutively. That gives us vertices 1, . . . , ir1 corresponding
to the first complete subgraph Ks1 , and nodes (ir1 + 1), . . . , (ir1 + ir2) corresponding the second complete
subgraph Ks2 and so on. The ratio between the number of nodes in each subgraph is r1 : r2 : . . . : rk.

Let us group the vertices in Hm, {1, 2, . . . , mi} into k groups {J1, J2, . . . , Jk} according to the complete
subgraph they belong to. Then for x ∈ Ij , y ∈ Ih we have the empirical graphon (Definition 2.9) of Hm

UHmi
(x, y) =


1 if j, h ∈ Jℓ for some ℓ but j ̸= h

0 if j = h as there are no loops
0 if j ∈ Jp and h ∈ Jq where p ̸= q

.

The bottom row in Figure 7 shows empirical graphons for k ∈ {2, 3, 4}. Note that U is a block diagonal
graphon similar to UHmi

differing to UHmi
only on the diagonal. One can visualize U by colouring the white

squares on the diagonal in empirical graphons in Figure 7 for k ∈ {2, 3, 4}.

Then, the cut-norm (Definition 2.5),

∥UHm
− U∥□ = sup

S,T

∣∣∣∣∫
S×T

UHm
(x, y) − U(x, y) dxdy

∣∣∣∣ ,

= 1
m2

i

× mi = 1
mi

,

where we have used S = T = [0, 1] in computing the cut-norm as any other S or T would give smaller area.
Then the cut metric (Definition 2.6)

δ□(UHm
, U) = inf

φ
∥UHm

− Uφ∥□ ≤ ∥UHm
− U∥□ = 1

mi
.

As ∥UHm
−U∥□ goes to zero as m goes to infinity δ□(UHm

, U) converges to zero. From Theorem 2.11 (Borgs
et al., 2011) {Hmi

}mi
converges to U .

Theorem 4.5. Let {Gn}n be a sequence of graphs where Gn has n vertices and m edges. Let Hm = L(Gn)
and suppose m → ∞ as n → ∞. Then {Gn}n with properties described below give rise to following line
graph edge densities.

1. Suppose Gn is the complete graph Kn. Then the edge density of the corresponding line graph,
density(Hm) = 4

n+1 where m = 1
2 n(n − 1) and limm→∞ density(Hm) = 0. Furthermore, {Kn}n ∈ D

and {Hm}m ∈ S.

2. Suppose Gn is an r-regular graph. Then the edge density density(Hm) = 2(r−1)
m−1 and

limm→∞ density(Hm) = 0. Furthermore {Gn}n, {Hm}m ∈ S\Sq.

3. Suppose Gn is a path. Then the edge density density(Hm) = 2
m and limm→∞ density(Hm) = 0.

Furthermore {Gn}n, {Hm}m ∈ S\Sq.

4. Suppose Gn is a cycle. Then the edge density density(Hm) = 2
m−1 and limm→∞ density(Hm) = 0.

Furthermore {Gn}n, {Hm}m ∈ S\Sq.

Proof. Recall that

density(Hm) =
1
2

∑
(deg v2) − m

1
2 m(m − 1)

.
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1. Suppose Gn is the complete graph Kn. As density(Kn) = 1, the sequence {Kn}n is dense, i.e,
{Kn}n ∈ D. For Kn, deg vi = n − 1 and m = n(n − 1)/2 giving us

density(Hm) =
1
2 n(n − 1)2 − 1

2 n(n − 1)
1
2

1
2 n(n − 1)( 1

2 n(n − 1) − 1)
,

=
1
2 n(n − 1)(n − 1 − 1)

1
2

1
2 n(n − 1) 1

2 (n(n − 1) − 2)

= n − 2
1
4 (n + 1)(n − 2)

,

= 4
n + 1 ,

making lim
m→∞

density(Hm) = 0 ⇒ {Hm}m ∈ S.

2. Suppose Gn is an r-regular graph. As n grows each Gn is connected to r nodes. Then deg vi = r
and m = rn/2. The ratio m/n2 = r/2n assigning {Gn}n ∈ S. The density of Hm is given by

density(Hm) =
1
2 nr2 − 1

2 nr
1
2

1
2 rn( 1

2 rn − 1)
,

=
1
2 rn(r − 1)

1
2

1
2 rn 1

2 (rn − 2)
,

= 4(r − 1)
rn − 2 ,

= 2(r − 1)
m − 1 . (6)

Thus, limm→∞ density(Hm) = 0, making both {Gn}n, {Hm}m ∈ S. Using Theorem 3.6 we can
conclude {Gn}n /∈ Sq because {Gn}n ∈ Sq ⇐⇒ {Hm}m ∈ D. Hence {Gn}n ∈ S\Sq. As G is
an r-regular graph, H is a 2(r − 1)-regular graph with nr

2 vertices (Lemma 2.3-2). Thus, using the
same reasoning we have {Hm}m ∈ S\Sq. This is an example where both graph sequences {Gn}n

and {Hm}m are sparse and both {Gn}n, {Hm}m ∈ S\Sq.

3. Suppose Gn is a path. Then m = n − 1 and the starting and ending vertices have degree 1 and the
rest have degree 2. Thus,

density(Hm) =
1
2 (12 + (n − 2)22 + 12) − m

1
2 m(m − 1)

,

=
1
2 (2 + 4(m − 1)) − m

1
2 m(m − 1)

,

= 1 + 2(m − 1) − m
1
2 m(m − 1)

,

= m − 1
1
2 m(m − 1)

,

= 2
m

= 2
n − 1 .

Thus, limm→∞ density(Hm) = 0. The edge density can also be derived by recognizing a path of n
vertices gives rise to a line graph that is a path of n − 1 vertices (Lemma 2.3-3). Using the same
reasoning as previously for r-regular graphs, we can conclude that both {Gn}n, {Hm}m ∈ S\Sq.
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4. Suppose Gn is a cycle, i.e. Gn = Cn. Then n = m and all vertices have degree 2. This is a 2-regular
graph. Using equation (6) we get

density(Hm) = 4(r − 1)
rn − 2 ,

= 4
2n − 2 = 2

n − 1 = 2
m − 1 ,

which limits to zero. From Lemma 2.3-5 we know that L(Cn) = Cn. Here too both {Gn}n, {Hm}m ∈
S\Sq as previously.

C Proofs on results for probabilistic graphs

Lemma C.1. Consider the graph Gn sampled from a G(n, p) model and suppose Gn has n nodes and m
edges. Let Xij denote the random variable corresponding to the edge between vertices i and j, i.e., Xij = 1
if the edge exists and 0 otherwise. Let Yj =

∑
i Xij, µ = E[Yj ] and m̄ = E[m]. Let Yssq =

∑
j Y 2

j , and
msq = m2. Then for a given α ∈ (0, 1) and c > 0 we have

P
[
Yssq ≥ cmsq|msq ≤ (1 − α)2m̄2]

P
[
msq ≤ (1 − α)2m̄2]

≤ exp
(

−α2pn(n − 1)
4

)
.

Proof. For a given α ∈ (0, 1) we get the following Chernoff-Hoeffding bounds (Frieze & Karoński, 2015) for
m:

P [m ≤ (1 − α)m̄] ≤ exp
(

−α2m̄

2

)
,

giving us P
[
m2 ≤ (1 − α)2m̄2]

≤ exp
(

−α2m̄

2

)
,

as m is positive. As the probability P
[
Yssq ≥ cmsq|msq ≤ (1 − α)2m̄2]

≤ 1, msq = m2 and m̄ = pn(n − 1)/2
we get the desired result.

Lemma C.2. Consider the graph Gn sampled from a G(n, p) model and suppose Gn has n nodes and m
edges. Let Xij denote the random variable corresponding to the edge between vertices i and j, i.e., Xij = 1
if the edge exists and 0 otherwise. Let Yj =

∑
i Xij, µ = E[Yj ] and m̄ = E[m]. Let Yssq =

∑
j Y 2

j , and
msq = m2. Then for a given α ∈ (0, 1) and c > 0 we have

P
[
Yssq ≥ cmsq|msq ≥ (1 + α)2m̄2]

P
[
msq ≥ (1 + α)2m̄2]

≤ exp
(

−α2pn(n − 1)
6

)
.

Proof. The proof is similar to Lemma C.1 with the only difference being the Chernoff-Hoeffding bound,
which changes to:

P [m ≥ (1 + α)m̄] ≤ exp
(

−α2m̄

3

)
.

Lemma C.3. Consider the graph Gn sampled from a G(n, p) model and suppose Gn has n nodes and m
edges. Let Xij denote the random variable corresponding to the edge between vertices i and j, i.e., Xij = 1
if the edge exists and 0 otherwise. Let Yj =

∑
i Xij, µ = E[Yj ] and m̄ = E[m]. Let Yssq =

∑
j Y 2

j , and
msq = m2. Then for a fixed c > 0 and fixed α ∈ (0, 1) for n > 4

c(1−α)2 and β =
√

cn(1−α)
2 − 1 we have

P
[
Yssq ≥ cmsq|(1 − α)2m̄2 ≤ msq ≤ (1 + α)2m̄2]

P
[
(1 − α)2m̄2 ≤ msq ≤ (1 + α)2m̄2]

≤ exp
(

ln n − β2p(n − 1)
3

)
.
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Proof. We focus on the term P
[
Yssq ≥ cmsq|(1 − α)2m̄2 ≤ msq ≤ (1 + α)2m̄2]

. We know that µ = p(n − 1)
and m̄ = pn(n − 1)/2. As msq ∈

[
(1 − α)2m̄2, (1 + α)2m̄2]

we get

P
[
Yssq ≥ cmsq|(1 − α)2m̄2 ≤ msq ≤ (1 + α)2m̄2]

≤ P
[
Yssq ≥ c(1 − α)2m̄2]

,

= P

[
Yssq ≥ c

(nµ

2

)2
(1 − α)2

]
, (7)

= P
[
Yssq ≥ nµ2(1 + β)2]

, (8)

where we have substituted m̄ = nµ
2 in equation (7) and rearranged the terms for β. For n > 4

c(1−α)2 , we get
√

cn(1−α)
2 > 1 making β > 0.

For a given β > 0, we get the following Chernoff-Hoeffding bound for Yj :

P [Yj ≥ (1 + β)µ] ≤ exp
(

−β2µ

3

)
.

As Yj ≥ 0 we have P
[
Y 2

j ≥ (1 + β)2µ2]
≤ exp

(
−β2µ

3

)
,

and from Boole’s inequality P
[
Yssq ≥ n(1 + β)2µ2]

≤ n exp
(

−β2µ

3

)
. (9)

Substituting equation (9) in equation (8) we get

P
[
Yssq ≥ cmsq|(1 − α)2m̄2 ≤ msq ≤ (1 + α)2m̄2]

≤ n exp
(

−β2µ

3

)
,

≤ exp
(

ln n − β2µ

3

)
for n > 4

c(1−α)2 and β =
√

cn(1−α)
2 − 1.

Theorem 5.2. Let Gn be an Erdős–Rényi graph sampled from a G(n, p) model and suppose Gn has n nodes
and m edges. Let Hm = L(Gn). Then for any c ∈ (0, 1), the edge density of Hm satisfies

P [density(Hm) ≥ c] ≤ exp
(

−α2pn(n − 1)
4

)
+ exp

(
ln n − β2p(n − 1)

3

)
+ exp

(
−α2pn(n − 1)

6

)
,

where α ∈ (0, 1), n > 4
c(1−α)2 and β =

√
cn(1−α)

2 − 1. Therefore, as n and m go to infinity the edge density
of Hm satisfies

lim
m→∞

P [density(Hm) = 0] = 1 .

Proof. Let Xij denote the Bernoulli random variable corresponding to the edge between nodes i and j in Gn

and let Xij = 1 if the edge is present and 0 otherwise. Let Yj =
∑

i Xij . Then the degree of each node j in
Gn is given by deg vj = Yj . Let µ = E[Yj ] and m̄ = E[m]. We know that µ = p(n − 1) and m̄ = pn(n − 1)/2.
Let Yssq =

∑
j Y 2

j , and msq = m2 where ssq denotes the sum of squares and sq denotes square.

We fix c and α such that c, α ∈ (0, 1) and compute P [Yssq ≥ cmsq] using the law of total probability

P [Yssq ≥ cmsq] = P
[
Yssq ≥ cmsq|msq ≤ (1 − α)2m̄2]

P
[
msq ≤ (1 − α)2m̄2]

+
P

[
Yssq ≥ cmsq|(1 − α)2m̄2 ≤ msq ≤ (1 + α)2m̄2]

P
[
(1 − α)2m̄2 ≤ msq ≤ (1 + α)2m̄2]

+
P

[
Yssq ≥ cmsq|msq ≥ (1 + α)2m̄2]

P
[
msq ≥ (1 + α)2m̄2]

,

≤ exp
(

−α2pn(n − 1)
4

)
+ exp

(
ln n − β2p(n − 1)

3

)
+ exp

(
−α2pn(n − 1)

6

)
,
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from Lemmas C.1, C.2 and C.3 for n > 4
c(1−α)2 and β =

√
cn(1−α)

2 − 1.

For a fixed c ∈ (0, 1) we get
lim

n,m→∞
P [Yssq ≥ cmsq] = 0

As

P

[
1
2Yssq ≥ 1

2cmsq

]
= P

1
2

∑
j

Y 2
j − m ≥ 1

2cm2 − m


For c ∈ (0, 1) we have 1

2 cm2 − 1
2 cm > 1

2 cm2 − m giving us

P

1
2

∑
j

Y 2
j − m ≥ 1

2cm2 − 1
2cm

 ≤ P

1
2

∑
j

Y 2
j − m ≥ 1

2cm2 − m

 = P [Yssq ≥ cmsq] .

This gives us

P

[
1
2

∑
j Y 2

j − m
m(m−1)

2

≥ c

]
≤ P [Yssq ≥ cmsq] ,

P [density(Hm) ≥ c] ≤ exp
(

−α2pn(n − 1)
4

)
+ exp

(
ln n − β2p(n − 1)

3

)
+ exp

(
−α2pn(n − 1)

6

)
,

where we have used the line graph edge density in equation (1). As n and m go to infinity

lim
m→∞

P [density(Hm) ≥ c] = 0 ,

giving us the first result. Taking the complement we have

lim
m→∞

P [density(Hm) < c] = 1 ,

for a fixed c ∈ (0, 1). As this is true for any c ∈ (0, 1) we have

lim
m→∞

P [density(Hm) = 0] = 1 .

28


	Introduction
	Notation and Preliminaries
	Line graphs
	Graphons
	Line graphs and edge exchangeability
	Edge vs homomorphism density

	Related work
	Graphons of sparse graphs
	Other graphon applications


	Sparse graphs with dense line graphs
	Graph sequences
	Graph sequences with square-degree property Sq are sparse
	Only line graphs of graphs with square-degree property are dense
	Conditions for non-zero graphons of line graphs
	Revisiting graph homomorphisms
	Converging graph sequences
	Orthogonal spaces


	Results for deterministic graphs
	Dense line graphs, for star graphs
	Graphons of line graphs of star graphs
	Single star graphs
	Multiple stars

	Line graphs of some dense and sparse graphs
	Empirical Experiments on Estimating Graphons

	Results on probabilistic graphs
	Superlinear preferential attachment graphs
	Erdős–Rényi graphs

	Conclusions
	Proofs on sparse graphs with dense line graphs
	Proofs on results for deterministic graphs
	Proofs on results for probabilistic graphs

