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ABSTRACT

This study investigates the potential of using natural language descriptions as an
alternative to direct image-based observations for learning policies in reinforce-
ment learning. Due to the inherent challenges in managing image-based observa-
tions, which include abundant information and irrelevant features, we propose a
method that compresses images into a natural language form for state represen-
tation. This approach allows better interpretability and leverages the processing
capabilities of large language models (LLMs). We conducted several experiments
involving tasks that required image-based observation. The results demonstrated
that policies trained using natural language descriptions of images yield better
generalization than those trained directly from images, emphasizing the potential
of this approach in practical settings.

1 INTRODUCTION

Directly learning policies from images holds great promise for practical reinforcement learning ap-
plications. However, managing image-based observations is challenging due to their potential abun-
dance of information and irrelevant features. Furthermore, the learned policy can often be a black
box, as the action corresponding to an image observation is difficult to comprehend. This makes
interpretability a challenge and the policies often fails to generalize to slightest changes to the envi-
ronments. These can hinder the ability to leverage these policies in real-world tasks. On the other
hand, language has been the primary mode of communication for humans. A situation can be pre-
cisely described through language, and conversely, a situation can be constructed from a language
description. For instance, movies are often produced based on narratives found in books (e.g., Game
of Thrones, Lord of the Rings). Ultimately, language is a major source through which humans
reason and understand others’ reasoning.

In reinforcement learning, the ability to learn a policy that generalizes well is essential for real-world
system deployment. Specifically, agents should be adept at operating in scenarios distinct from their
training environments. To address these challenges, several strategies have been proposed. These
encompass data augmentation methods like random cropping and the addition of jitter to image-
based observations Cobbe et al. (2019); Laskin et al. (2020b); Raileanu et al. (2020); Kostrikov
et al. (2020); Laskin et al. (2020a), the injection of random noise Igl et al. (2019), network random-
ization Osband et al. (2018); Burda et al. (2018); Lee et al. (2020), and regularization techniques
Cobbe et al. (2019); Kostrikov et al. (2020); Igl et al. (2019); Wang et al. (2020). These methods
have consistently demonstrated their potential in boosting generalization. The core principle under-
lying these techniques is the amplification of training data diversity, which aids in crafting a more
universally applicable policy. However, such perturbations are often introduced without due regard
for task semantics. This oversight can modify critical observation elements, potentially diminishing
the efficacy of policy learning.

Furthermore, random perturbations through various observation manipulations—such as cropping,
blocking, or combining two random images from different environment levels—may yield unreal-
istic observations that the agent is unlikely to encounter during testing. Therefore, these techniques
might underperform in settings where agents rely on realistic observations for policy learning. To
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Figure 1: Example of Reinforcement Learning from Natural Language. Our method is to compress
image pixels into natural language descriptions, serving as the state information of reinforcement
learning. This language-based approach is advantageous as it is easy for humans to understand and
provides a clearer insight into how the computer perceives visuals. Overall, our findings demon-
strate that policies trained using natural language descriptions of images showcase enhanced gener-
alization capabilities towards unobserved scenarios, surpassing the performance of policies directly
trained from raw images.

circumvent this issue style transfer-based method has been proposed Rahman & Xue (2022) to mit-
igate the issue of spurious features and eventually improve generalization. This method is based
on the assumption of style, which might not represent irrelevant information, for example, in cases
where some aspect of color information might help learn a policy, such as red and green signals for
a driving task. Nevertheless, all of these methods modify the image space, and the policy learning
happens from pixel images. Thus, the learned policy can still be non-interpretable, and it is unclear
how the policy behaves when a particular assumption, such as color information, is not held for a
particular task, such as color information.

The autoencoder-based approach takes the image and represents it in a lower-dimensional space
(e.g., AE, VAE) Ha & Schmidhuber (2018); Hafner et al. (2019); Zhang et al. (2022), which is then
used as state information for reinforcement learning. However, such an approach can still suffer
from the black-box policy issue, and the intermediate representation might lose information about
the original image observation. All of these methods modify either the image space or the lower-
dimensional projection where policy learning occurs. Consequently, the learned policy can remain
non-interpretable, and it is unclear how the policy will behave when certain assumptions, such as
color information, are not applicable to a specific task.

Overall, with the existing approaches, the resulting learned policy can be difficult to interpret and
may fail when minor changes occur in the environment. Recent advancements in natural language
processing and computer vision have enabled a more detailed, accurate understanding of image con-
tent. These advances are typically driven by large-scale models, often referred to as foundational
models, which contain billions of parameters and are trained on internet-scale datasets with substan-
tial computational resources.

In this paper, we primarily focus on decision making derived from language descriptions of visuals
(e.g., images). We first compress the visual information (i.e., pixels) into natural language and use
this language as state information to learn policy with reinforcement learning (Figure 2). This ap-
proach has several advantages. For instance, the language representation is inherently interpretable,
and it provides a more accurate indication of what the agent understands from the visual scene. In
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this setup, the agent can learn from a natural language description of the image. This approach
provides multiple benefits. Primarily, the representation is easily interpretable by humans, unlike
raw pixel data from the image. Moreover, it paves the way for harnessing the immense processing
power of large language models (LLMs) to handle natural language state information. For instance,
unnecessary features, such as color information, can be filtered out by directing the LLM to ignore
them.rewrite the description excluding color information.

In particular, we utilize the Vision-Language Model (VLM) (i.e., LLAVA Liu et al. (2023)) to gen-
erate a natural language description of the image observation. The resulting language is then passed
to a Large Language Model (LLM) (i.e., LLAMA Touvron et al. (2023)) for further pre-processing.
Finally, it is converted into a text embedding vector using pre-trained embedding models (i.e., Sen-
tence Transformer Reimers & Gurevych (2019)).

We conducted experiments to evaluate the effectiveness of a Vision and Language Model (VLM)
in learning from text in reinforcement learning contexts. These experiments encompassed task that
required image-based observation. Specifically, we conducted experiments on OpenAI Gym (Brock-
man et al., 2016) (Gymnasium Towers et al. (2023)) environment, FrozenLake. The rendered image
was used as the observation, with the task being to learn a policy from this image observation. We
compared our text-based learning approach with learning directly from the raw pixel information.

Our results indicated that policies trained using natural language descriptions of images exhibited
superior generalization compared to those trained directly from images. Moreover, our language-
based state representation is inherently interpretable compared to directly learning from pixels, in-
dicating a strong use case for language-based state representation. In particular, in the Frozen Lake
environment, training results show that all baselines learn the task efficiently, achieving optimal
performance. However, this does not necessarily reflect the true efficacy of the policy, as it might
be overfitting to the training data. When tested in a new ice environment variation, the PPO-Lang
method maintains its performance, highlighting the strength of language-based learning. This ro-
bustness is attributed to the invariant language state information learned during training. Ensuring
that the language state remains consistent and focuses on task-relevant details is crucial. One can
use a Large Language Model (LLM) to filter out irrelevant information from the language input,
creating a more invariant state for training. In contrast, policies based on image observations tend to
overfit and fail to generalize in new environments, proving ineffective for the intended task.

2 PRELIMINARIES AND PROBLEM SETTINGS

Markov Decision Process (MDP). An MDP can be described by the tuple M = (S,A,P,R).
Within this framework, an agent at a discrete timestep t interacts with its environment from a current
state st ∈ S, selecting an action at ∈ A. Subsequently, the environment transitions to a new state
st+1 ∈ S , governed by the transition probabilities P(st+1|st, at). The agent then receives a reward
rt, determined by the reward function R.

Reinforcement Learning. Within the context of reinforcement learning, the agent operates within
an MDP and aims to discover a policy π ∈ Π that leads to the maximization of the cumulative
reward. Here, Π represents the space of all feasible policies. Based on the current state, the agent
selects an action in line with policy π, and the optimal policy π∗ ∈ Π is the one that yields the
greatest total rewards over time. Extending beyond reinforcement learning methods, Deep Rein-
forcement Learning incorporates deep learning to handle more complex, high-dimensional input
spaces. By utilizing deep neural networks, it can represent policy or value functions with greater
flexibility and sophistication. DRL is suitable for applications that require processing raw pixel
data or controlling intricate systems and has become instrumental in advancing various fields, from
gaming to autonomous robotics. The integration of deep learning enables more precise function
approximation, allowing agents to learn optimal policies in more challenging environments.

Generalization in Reinforcement Learning In the context of Reinforcement Learning, generaliza-
tion refers to an agent’s ability to apply learned knowledge from a specific set of environments to
new, unseen environments. It assumes the presence of a fixed optimal policy, denoted as π∗, capable
of achieving maximum return across all variations of the environments. These environments may
vary in observational characteristics, such as having different background colors or other visual fea-
tures. During training, the agent is exposed to a fixed set of environment variations to learn a policy.
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Figure 2: Pipeline for generating state from an image: Initially, a vision language model (VLM) is
employed to create an image description. Subsequently, a language language model (LLM) refines
this text, removing any spurious information related to the task at hand. The resulting textual content
is utilized for state embedding, which ultimately serves as the observation for the agent within a
reinforcement learning framework.

Subsequently, the agent’s generalization performance is evaluated by testing it on previously unseen
levels, measuring how well it can apply its learned policy to these new environments. This particular
scenario is often referred to as a Contextual MDP Kirk et al. (2021).

Reinforcement Learning from Images In this setup, agents are trained to make decisions directly
from raw visual data, like images. It enables agents to learn patterns and relationships from the visu-
als, making it suitable for real-world applications with complex visual information. This approach
has succeeded in various domains, such as robotics, autonomous vehicles, and video games. It has
promise for building intelligent agents capable of learning directly from raw visual input. However,
dealing with high-dimensional visual data and extracting relevant features demand computation-
ally efficient algorithms, enabling agents to learn and act in complex environments. Additionally,
handling irrelevant features in images is vital as it can confound with the reward, which leads to a
sub-optimal policy.

3 METHOD

This subsequent method section provides a detailed breakdown of our approach to producing natural
language descriptions from visual data, specifically images. The systematic process consists of
several stages that we will outline step-by-step for clarity. A pivotal component in this strategy is the
Vision-Language Model (VLM). Notably, we employ the VLM variant known as LLAVA Liu et al.
(2023). The LLAVA VLM initially processes the input image when employed in our method. During
this phase, the model identifies and understands various features and objects contained within the
visual data. Upon extracting and understanding these elements, the VLM subsequently crafts a well-
structured, coherent, and descriptive narration in natural language form. The resultant description
is not only articulate but also pinpoints the image’s most prominent and defining characteristics,
ensuring that readers or users receive an accurate and detailed understanding of the visual content.

After extracting the natural language description from the Vision-Language Model (VLM), our
method allows pre-processing text with Large Language Model (LLM) (e.g., LLAMA Touvron
et al. (2023), ChatGPT). When the language description, as generated by the VLM, is inputted into
the LLM model, the latter performs complicated processing tasks. These tasks primarily aim at
enhancing the language output by refining its structure, improving its coherence, and bolstering its
information content. The result of this is a description that is not just technically accurate but also
informative in context.

Furthermore, in scenarios where generalization is the goal, this pre-processing step undertaken by
the LLM is valuable. The model inspects the description to identify and eliminate superfluous or
irrelevant details. Such action is required, especially when we consider the need for an agent to de-
velop a consistent and invariant representation of an image observation within a given environment.
By removing unnecessary details, we ensure that the agent focuses only on the most vital aspects of
the environment, thereby optimizing its learning process.

After processing the natural language description, the subsequent step in our pipeline focuses on
text representation through embedding. For this purpose, we utilize pre-trained models, specifically
the Sentence Transformer architecture, as outlined by Reimers et al. in 2019 Reimers & Gurevych
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(2019). The Sentence Transformer is designed to convert textual data into dense vectors of fixed
dimensions, known as text embeddings. The primary objective of these embeddings is to encapsulate
the semantic information and context inherent in the original text. By converting the refined natural
language description into this vector format, we aim for an efficient representation for computational
processing and to maintain the semantic properties of the input data.

By integrating a sequence of models— the Vision-Language Model (VLM) for initial image de-
scription generation, the Large Language Model (LLM) for subsequent description refinement, and
the Sentence Transformer for text embedding transformation, we have developed a methodology
that efficiently extracts and represents pertinent information from images in a structured, semantic
format. This systematic approach facilitates a cohesive fusion of visual and textual data.

Detailed Process Description

Figure 2 presents an overview of our methodology’s pipeline. We delve into the details here.

1. Image Description Generation Using Vision-Language Model (VLM)

a. Preprocessing: Input images undergo a preprocessing phase wherein standard image transfor-
mations, including resizing, normalization, and data augmentation, are executed to render them
compatible with the VLM.

b. Vision-Language Model (LLAVA): Our choice of VLM for this procedure is LLAVA Liu et al.
(2023). LLAVA is a comprehensive end-to-end multimodal model. By seamlessly integrating a
vision encoder with a Language Model (LLM), LLAVA provides holistic understanding of both
visual and linguistic modalities. The model is harnessed to produce textual descriptions from image-
based observations from a prompt (e.g., describe the observation).

2. Language Description Refinement Using Large Language Model (LLM)

a. Pre-processing with LLM: The process begins with descriptions generated by LLAVA. These
initial descriptions are then subjected to a refinement process using the capabilities of the Large
Language Model. This refinement stage aims to improve the descriptions’ quality, accuracy, and co-
herence. Various text manipulations can be executed using the Large Language Model by employing
carefully crafted prompts. These manipulations include tasks like paraphrasing, summarizing, trans-
lating, and generating alternative versions of the descriptions. The flexibility and versatility of the
model enable it to handle various text-related tasks, providing an efficient and effective means of
refining and enhancing the descriptions derived from LLAVA.

b. Generalization: In specific scenarios, such as when training agents to operate within dynamic
environments, the need arises to strategically abstract or exclude unnecessary details from the de-
scriptions. This process of generalization is crucial as it guarantees that the agents attain a uniform
and streamlined understanding of the environment. By doing so, the risk of the agents becoming
overly tailored to specific observations is minimized, helping them to avoid overfitting and ensuring
a more adaptable and versatile performance in varying situations.

3. Conversion to Text Embeddings

a. Sentence Transformer: After the refinement process, the descriptions transform into fixed-
dimensional vectors through the use of the Sentence Transformer Reimers & Gurevych (2019).
This model excels at converting sentences into fixed-sized dense vector representations, effectively
encapsulating the semantic significance and contextual nuances inherent within the text. The re-
sulting fixed-size vectors are essential, particularly in their seamless integration into contemporary
Reinforcement Learning (RL) algorithms adhering to the standard Markov Decision Process (MDP)
framework. This transformation presents a structured and compact format for the descriptions, fa-
cilitating downstream tasks.

b. Text Embeddings: The vector embeddings generated by the Sentence Transformer intricately
encapsulate the semantic intricacies that interlace words and constructs within the language descrip-
tions. These succinct yet information-rich representations hold immense value for various subse-
quent tasks, whether it involves gauging similarities between descriptions or seamlessly integrating
them into reinforcement learning frameworks.
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4 EXPERIMENTS

4.1 SETUP

Environments: We experiment with the FrozenLake environment, which is available in OpenAI
Gym Brockman et al. (2016) and further detailed in Gymnasium Towers et al. (2023).

FrozenLake Description: In the FrozenLake scenario (Figure 3), an agent is situated on a grid
representing a frozen lake. The task for the agent is to traverse from its initial position, typically at
the top-left corner, to its goal, generally at the bottom-right corner, all the while evading pitfalls in
the ice. This grid contains distinct cells: frozen tiles (F), holes (H), the starting point (S), and the
ultimate goal (G). Available actions to the agent encompass moves in the four cardinal directions:
up, down, left, and right.

Modifications for our Experiments: Diverging from the default library setup, which provides
true state information, our implementation offers the agent an RGB image of the grid world as its
observation. To infuse variability, we experiment with assorted ice colors in the environment, such
as the default sky blue, a more profound dark blue, and a textured variation.

Evaluation Metric: The core of our experiment centers around determining the agent’s capacity to
derive a strategy in one version of the environment and effectively apply this acquired knowledge
in a different and unfamiliar variation. Thus, our training phase engages the agent with the default
environment setup, post which it undergoes evaluation in an unseen environment variant. The com-
puted reward over a episode is defined as the episodic return. We distinguish between the training
phase’s reward performance, termed train episodic return, and the performance in the evaluated
variant, termed test episodic return.

Figure 3: Frozen Lake Environment.

Implementation Details

Base Algorithm: Our Proximal Policy Opti-
mization (PPO) implementation draws inspira-
tion from the CleanRL Library Huang et al.
(2022a;b). It integrates numerous pivotal modi-
fications for improved performance from con-
temporary research in policy gradient tech-
niques. These modifications include the Nor-
malization of Advantage, Orthogonal Initial-
ization, and Generalized Advantage Estimation
(GAE). For a comprehensive understanding of
these aspects, readers can refer to Huang et al.
(2022a).

Hyperparameters: To maintain consistency
across our experiments, the hyperparameters
of the base PPO algorithm remain unaltered.
We adopt these hyperparameters grounded on
the established standards delineated in the
PPO’s continuous action space implementa-
tions Huang et al. (2022a;b).

Handling RGB Images: For the challenge of
learning from RGB images, we employ a three-
layer convolutional neural network with ReLU activations, a configuration inspired by the PPO
implementation for Atari in the CleanRL library.

Handling Text Embeddings: Text embeddings are crucial for representing textual data’s structured
and semantic meaning in our experiments. We use a transformer-based model to convert natural lan-
guage descriptions into dense vector representations. These embeddings serve as additional inputs
to our agent, complementing the RGB images and providing the agent with a richer understanding
of the environment.

Reproducibility: Ensuring our work contributes to the larger academic community, we will open-
source the complete implementation, including hyperparameters and tracking of our experiments,
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to aid future research and reproducibility. Unless otherwise mentioned, the results are shown with
three random seed runs.

PPO-Image: This baseline uses the standard Proximal Policy Optimization algorithm with RGB
images of the environment as observations. The agent’s policy is trained directly on the visual input,
capturing features like the grid configuration and the agent’s current position. It operates in a more
conventional approach by directly processing the pixel values of the images.

PPO-Lang: In this version, the environment provides a natural language description of the state
instead of an image. As discussed in the method sections, pre-trained models convert this textual
information into embeddings. The agent’s policy is trained on these embeddings, offering a high-
level, abstract view of the environment. This method aims to capture the semantic information in the
descriptions, making it potentially more generalizable across different variations of the environment.

The hyperparameters remain consistent for both implementations, except for the input layer accom-
modating images or text embeddings, ensuring a fair comparison. Through our experiments, we aim
to demonstrate that PPO-Lang can achieve comparable or better performance than the PPO-Image,
especially in environments where language can provide a richer and more generalizable representa-
tion of the state.approach (PPO-Lang).

4.2 RESULTS

Figure 4: Train Results. Experiments on the
Frozen Lake environment. While all baselines
converge rapidly to an optimal training perfor-
mance with scores of 1.0, such results can be
deceptive. Our PPO-Lang method, grounded
in language-based representations, showcases the
potential for consistent performance in training
time, highlighting its effectiveness in learning
compared to image-centric models in new envi-
ronments.

In our experiments with the Frozen Lake envi-
ronment, as depicted in Figure 4, all the base-
lines quickly converge to optimal training per-
formance, consistently achieving a score of 1.0.
Nevertheless, this training efficacy can be mis-
leading; high training scores might obscure a
model’s potential to overfit its training data,
leading to suboptimal performance in novel en-
vironments or unseen scenarios.

To better understand the generalization capa-
bility of our models, we transition to testing
our policies in a variant of the ice environ-
ment not exposed to the model during train-
ing. PPO-Lang, our proposed method, ex-
hibits commendable performance consistency,
as seen in Figure 5. This consistency under-
scores the advantages of grounding reinforce-
ment learning in language-based representa-
tions. One attributing factor to this stability is
the incorporation of invariant linguistic states
during the policy learning process. Ensuring
this invariance, especially against non-essential
environmental nuances, is paramount. In prac-
tical terms, this translates to crafting queries for
the language model that hone in on consistent,
task-centric details. In cases where the linguis-
tic input might carry extraneous information,
leveraging a Large Language Model (LLM) can
be beneficial for removing these distractions,
leaving behind a purified, invariant state repre-
sentation for training.

Contrastingly, a policy that leans on image observations as their primary source of information
(PPO-Image) fails to manifest any significant performance in our test environment. Such a stark
discrepancy in outcomes reinforces the inherent challenge with image-centric models: their ten-
dency to overfit to visual features of their training environments. This tendency compromises their
ability to generalize, rendering them ineffective in adapting to and learning within new or modified
environments.
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Implications From our empirical evaluation within the Frozen Lake environment, several salient
insights emerge that hold significance for the domain of reinforcement learning: In Figure 4, we see
that training performance does not always indicate a model’s generalization capacity. An algorithm
might exhibit optimal behavior during training, but this does not guarantee its efficacy in previously
unseen conditions or variations of the environment.

Our observations from Figure 5 suggest that leveraging linguistic information during training can
potentially bolster a model’s robustness to novel scenarios, which can be attributed to the abstraction
capabilities inherent in language-based representations. Such representations capture the essence of
a situation without getting entangled in the specifics, analogous to employing high-level heuristics
instead of detailed mappings.

Conversely, visual-centric models, although rich in representational content, may run the risk of
overfitting the training data. Overfitting occurs when a model becomes excessively tailored to the
training dataset, compromising its ability to generalize to new data, which is analogous to a system
that excels in memorizing a dataset but fails in extracting and applying the underlying patterns to
fresh, unseen data.

In summary, while visual data offers a granular view of the environment, linguistic information pro-
vides a more abstract, generalized perspective. The trade-off between specificity and generalization
is pivotal in reinforcement learning model design and training.

5 RELATED WORK

Figure 5: Test (Generalization) Results. Testing
performance in a variant of the Frozen Lake envi-
ronment. PPO-Lang, our language-based method,
demonstrates consistent performance, underscor-
ing the advantages of language-grounded rein-
forcement learning. In contrast, image-centric
models, such as PPO-Image, struggle to adapt,
highlighting their susceptibility to overfitting to
specific visual features of their training environ-
ments.

The integration of language with reinforcement
learning has been a subject of growing inter-
est in the research community. Language, be-
ing one of the most remarkable human achieve-
ments, plays a pivotal role in our ability to
learn, teach, reason, and interact with oth-
ers. However, the current state-of-the-art rein-
forcement learning agents have shown limita-
tions in understanding or utilizing human lan-
guage. The potential benefits of integrating
language with reinforcement learning are man-
ifold. Agents that can harness language in
conjunction with rewards and demonstrations
have the potential to enhance their generaliza-
tion capabilities, scope, and sample efficiency.
The practical implications of such integration
are vast. For instance, agents that can trans-
fer domain knowledge from textual data might
be more efficient in exploring given environ-
ments or performing zero-shot learning in new
settings. Moreover, many real-world applica-
tions, such as personal assistants and household
robots, inherently require language processing
to interact with humans or to utilize existing
interfaces. The linking Language to Actions
and Observations has been explored with meth-
ods aiming to effectively associate language
with actions and observations in various envi-
ronments Branavan et al. (2009); Tellex et al.
(2011); Chen & Mooney (2011).

From a generalization perspective, various strategies have been proposed; these include data aug-
mentation techniques such as random cropping and noise addition, as well as network randomiza-
tion to augment training diversity Cobbe et al. (2019); Laskin et al. (2020b); Raileanu et al. (2020);
Kostrikov et al. (2020); Laskin et al. (2020a); Osband et al. (2018); Burda et al. (2018); Lee et al.
(2020); Cobbe et al. (2019); Kostrikov et al. (2020); Igl et al. (2019); Wang et al. (2020). However,
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the effectiveness of these methods can diminish if the semantics of the task are overlooked. Random
manipulations, like cropping or merging images, can lead to unrealistic observations during testing,
which can adversely affect performance. A style transfer-based method Rahman & Xue (2022) has
been proposed to mitigate spurious features and enhance generalization by leveraging style assump-
tions. However, these methods often lack interpretability and can fail when certain assumptions,
such as color information, do not hold. The autoencoder-based method, which reduces images into
a lower-dimensional space Ha & Schmidhuber (2018); Hafner et al. (2019); Zhang et al. (2022),
can also face challenges like unclear policy behavior due to its black-box nature and the potential
loss of original image information in the intermediate representation. These methods modify the
image space or the lower-dimensional projection where policy learning occurs, which can result in
non-interpretable policies.

While the integration of language with reinforcement learning has been a topic of interest, the ma-
jority of existing research has primarily focused on direct associations between language and actions
or observations. These methods often rely on data augmentation techniques, network randomiza-
tion, or image manipulations to enhance generalization. However, these strategies can sometimes
lead to unrealistic outcomes during testing or lack interpretability, especially when certain assump-
tions do not hold true. For instance, autoencoder-based methods, which condense images into a
lower-dimensional space, might grapple with ambiguous policy behavior due to their opaque nature.
Such methods can also risk losing essential image information, leading to policies that are hard to
interpret.

In contrast, our work takes a fundamentally different approach. We emphasize decision-making
through language descriptions of visual content. Instead of relying heavily on visual cues, which
can be susceptible to overfitting or misinterpretation, our method harnesses the power of language
to provide a more robust and transparent representation. This language-centered approach addresses
the challenges inherent in image-based policy learning and offers a more interpretable and gener-
alizable solution. By grounding reinforcement learning in linguistic descriptions, we aim to create
models better equipped to handle diverse scenarios, ensuring that they memorize training data and
genuinely understand it. This focus on language as a primary source of information sets our work
apart, offering a novel perspective in reinforcement learning.

6 CONCLUSION

In reinforcement learning, while directly learning policies from images offers potential, it also
presents challenges due to the abundance of information and irrelevant features in image-based
observations. Such policies often lack interpretability and struggle to generalize across varying en-
vironments. Language, a primary mode of human communication, offers a precise way to describe
and construct situations, serving as a foundation for human reasoning. We introduces a novel ap-
proach that leverages language descriptions of visuals for decision-making. By converting visual
information into natural language and using this language as state information, the resulting pol-
icy is more interpretable and offers a clearer insight into the agent’s understanding of the visual
scene. Utilizing Vision-Language Models and Large Language Models, we present a method to
generate natural language descriptions of image observations, preprocess them, and convert them
into text embedding vectors. Experiments conducted on OpenAI Gym Frozen Lake environment,
demonstrate the superiority of policies trained using natural language descriptions over those trained
directly from images. Such language-based state representations offer enhanced interpretability and
generalization, underscoring the potential of language as a powerful tool in reinforcement learning.
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